相似三角形的性质_练习题

合集下载

相似三角形的性质及应用练习题1

相似三角形的性质及应用练习题1

相似三角形的性质及应用练习卷一、填空题1.已知两个相似三角形的相似比为3, 则它们的周长比为;2.若△ABC∽△A′B′C′, 且, △ABC的周长为12cm, 则△A′B′C′的周长为;3、如图1, 在△ABC中, 中线BE、CD相交于点G, 则= ;S△GED: S△GBC= ;4.如图2, 在△ABC中, ∠B=∠AED, AB=5, AD=3, CE=6, 则AE= ;5.如图3, △ABC中, M是AB的中点, N在BC上, BC=2AB, ∠BMN=∠C, 则△∽△ ,相似比为 , = ;6、如图4, 在梯形ABCD中, AD∥BC, S△ADE: S△BCE=4: 9, 则S△ABD: S△ABC= ;7、如图5, 在△ABC中, BC=12cm, 点D、F是AB的三等分点, 点E、G是AC的三等分点, 则DE+FG+BC= ;8、两个相似三角形的周长分别为5cm和16cm, 则它们的对应角的平分线的比为;9、两个三角形的面积之比为2: 3, 则它们对应角平分线的比为 , 对应边的高的比为;对应边的中线的比周长的比10、已知有两个三角形相似, 一个边长分别为2、3、4, 另一个三角形最长边长为12, 则x、y的值为;二、选择题11.下列多边形一定相似的为()A.两个矩形B.两个菱形C.两个正方形D.两个平行四边形12、在△ABC中, BC=15cm, CA=45cm, AB=63cm, 另一个和它相似的三角形的最短边是5cm, 则最长边是()A.18cmB.21cmC.24cmD.19.5cm13、如图, 在△ABC中, 高BD.CE交于点O, 下列结论错误的是()A.CO·CE=CD·CA B、OE·OC=OD·OBC.AD·AC=AE·AB D、CO·DO=BO·EO14.已知, 在△ABC 中, ∠ACB=900, CD ⊥AB 于D, 若BC=5, CD=3, 则AD 的长为( )A.2.25B.2.5C.2.75D.315.如图, 正方形ABCD 的边BC 在等腰直角三角形PQR 的底边QR 上,其余两个顶点A.D 在PQ 、PR 上, 则PA :PQ 等于( )A.1:B.1: 2C.1: 3D.2: 316.如图, D 、E 分别是△ABC 的边AB 、AC 上的点, = =3,且∠AED=∠B, 则△AED 与△ABC 的面积比是( )A 、1: 2B 、1: 3C 、1: 4D 、4: 9三、解答题17、如图, 已知在△ABC 中, CD=CE, ∠A=∠ECB, 试说明CD2=AD ·BE 。

相似三角形性质的练习题

相似三角形性质的练习题

相似三角形性质的练习题相似三角形的性质是指两个三角形的对应角度相等,对应边长成比例。

本题考查的是对相似三角形的判断,需要根据勾股定理求出各个三角形的边长,然后比较是否成比例,最终得出相似的三角形是①和③。

2.如图,D、E分别是AB、AC上两点,CD与BE相交于点O,下列条件中不能使△ABE和△ACD相似的是()A.∠B=∠C B.∠ADC=∠AEB C.BE=CD,AB=AC D.AD:AC=AE:AB解答】解:根据相似三角形的性质,如果两个三角形相似,则对应角度相等,对应边长成比例。

因此,我们只需要判断哪个条件不满足这个性质即可。

A选项∠B=∠C,这个条件是成立的,因为它是由题目中给出的△ABC是等腰三角形推出的。

B选项∠ADC=∠AEB,这个条件也是成立的,因为它是由题目中给出的CD与BE相交于点O推出的。

C选项BE=CD,AB=AC,这个条件也是成立的,因为它是由题目中给出的D、E分别是AB、AC上两点,CD与BE相交于点O推出的。

D选项AD:AC=AE:AB,这个条件不成立,因为题目中没有给出这个条件,也无法由其他条件推出。

因此,选D。

3.下列说法中,错误的是()A.两个全等三角形一定是相似形 B.两个等腰三角形一定相似 C.两个等边三角形一定相似 D.两个等腰直角三角形一定相似解答】解:A选项两个全等三角形一定是相似形是正确的,因为全等三角形的对应角度和对应边长都相等,符合相似三角形的定义。

B选项两个等腰三角形一定相似也是正确的,因为等腰三角形的底角相等,而顶角也相等,符合相似三角形的定义。

C选项两个等边三角形一定相似也是正确的,因为等边三角形的三个角都相等,而三个边长也相等,符合相似三角形的定义。

D选项两个等腰直角三角形一定相似是错误的,因为等腰直角三角形的底角相等,但是顶角不相等,不符合相似三角形的定义。

因此,选D。

4.如图,△ACD和△ABC相似需具备的条件是()A. B. C.AC2=AD•AB D.CD2=AD•BD解答】解:根据相似三角形的定义,△ACD和△ABC相似需要满足两个条件:对应角度相等,对应边长成比例。

相似三角形性质习题课

相似三角形性质习题课

C (0,2 2 )
O
B
(8,0)
如图,△ABC是一 块余料,边AB=90厘米,高
CN=60厘米,要把它加工成正方形零件,使正方形
的一边在AB上,其余两个顶点分别在BC、AC上
①这个正方形零件的边长是多少?
②如果把正方形的零件改变为加工矩形零件,设
DP=x,DE=y,写出y与x之间的函数关系式,试
围. 解:
A
∵∠A=∠A ∵∠ADE=∠B
E D
∴△ADE∽△ABC ( )
∴AD:AB=AE:AC
B
C
∴x:5=y:4
∴y=0.8x
(0<x≤4)
如图:
写出其中的几 个等积式
①AC2= AO×AB
②BC2= BO×AB
③OC2= AO×BO
若AC=3,AO=1. 写出A.B.C三点 的坐标.
A (-1,0)
一、回顾
1.相似三角形的识别
一个三角形的两角与另一个三角形的两角对应相等
一个三角形的两条边与另一个三角形的两条边对应 成比例,并且夹角相等 一个三角形的三条边和另一个三角形的三条边对应 成比例
2.相似三角形的性质
对应边成比例,对应角相等 对应高,对应中线,对应角平分线的比等于相似比 对应周长的比等于相似比 对应面积的比等于相似比的平方
2.右图中,若D,E分别是
DE
AB,AC边上的中点,且
DE=4则BC= _8 ___
B
C
பைடு நூலகம்
3.右图中, DE∥BC, S△ADE:S四边形DBCE = 1:8, 则AE:AC=_1:_3 ___
4. 在△ABCAC=4,AB=5.D是 AC上一动点,且∠ADE=∠B,设

相似三角形练习题及答案

相似三角形练习题及答案

相似三角形练习题及答案在初中数学中,相似三角形是一个很重要的概念。

相似三角形具有相同的形状,但是尺寸不同。

理解相似三角形的性质对于解决几何问题和计算三角形的边长和角度非常有帮助。

下面是一些相似三角形的练习题,帮助你巩固对该概念的理解,并附有答案供参考。

练习题一:已知△ABC和△DEF相似,且AB = 6cm,AC = 8cm,BC = 12cm。

若DE = 9cm,求DF和EF的长度。

练习题二:△ABC和△PQR中,∠B = ∠Q,AB = 5cm,BC = 8cm,PQ = 6cm,若AC = 10cm,求PR的长度。

练习题三:已知△ABC和△DEF相似,DE = 4.5cm,EF = 6cm,BC = 12cm,若AC = 8cm,求△ABC和△DEF的周长比。

练习题四:在△ABC中,∠B = 90°,AB = 9cm,BC = 12cm。

点D是BC的中点,于BC上作DE ⊥ BC,DE = 3cm。

求△ADE和△ABC的周长比。

练习题五:已知△ABC和△DEF相似,AB = 10cm,BC = 12cm,AC = 15cm,EF = 6cm,若△DEF的面积为18平方厘米,求△ABC的面积。

答案及解析如下:练习题一:由相似三角形的性质可知,相似三角形的边长之比相等。

设DF = x,EF = y。

根据题意可写出比例:AB/DE = AC/EF = BC/DF代入已知值,得到:6/9 = 8/y = 12/x解得:x = 16cm,y = 12cm因此,DF = 16cm,EF = 12cm。

练习题二:由相似三角形的性质可知,相似三角形的边长之比相等。

设PR = x。

根据题意可写出比例:AB/PQ = AC/PR = BC/QR代入已知值,得到:5/6 = 10/x = 8/(6 + x)解得:x = 15cm因此,PR = 15cm。

练习题三:由相似三角形的性质可知,相似三角形的边长之比相等。

相似三角形性质与判定专项练习30题(有答案)

相似三角形性质与判定专项练习30题(有答案)

相似三角形性质与判定专项练习30题(有答案)1.在三角形ABC中,点D在边BC上,且∠BAC=∠DAG,∠XXX∠BAD。

证明:=。

当GC⊥BC时,证明:∠BAC=90°。

2.在三角形ABC中,∠ACB=90°,点D在边BC上,CE⊥AB,CF⊥AD,E、F分别是垂足。

证明:AC^2=AF•AD。

联结EF,证明:AE•DB=AD•EF。

3.在三角形ABC中,PC平分∠ACB,PB=PC。

证明:△APC∽△ACB。

若AP=2,PC=6,求AC的长。

4.在平行四边形ABCD中,过B作BE⊥CD,垂足为点E,连接AE,F为AE上一点,且∠XXX∠C。

证明:△ABF∽△EAD。

若AB=4,∠BAE=30°,求AE的长。

5.在三角形ABC中,∠ABC=2∠C,BD平分∠ABC。

证明:AB•BC=AC•CD。

6.在直角三角形ABC中,AC=BC,点E、F在AB上,∠ECF=45°,设△ABC的面积为S。

说明AF•BE=2S的理由。

7.在等边三角形ABC中,边长为6,在AC,BC边上各取一点E,F,连接AF,BE相交于点P。

若AE=CF,证明:AF=BE,并求∠APB的度数。

若AE=2,试求AP•AF的值。

若AF=BE,当点E从点A运动到点C时,试求点P经过的路径长。

8.在钝角三角形ABC中,AD,BE是边BC上的高。

证明。

9.在三角形ABC中,AB=AC,DE∥BC,点F在边AC 上,DF与BE相交于点G,且∠XXX∠ABE。

证明:(1)△DEF∽△BDE;(2)DG•DF=DB•EF。

10.在等边三角形ABC、△DEF中,点D为AB的中点,E在BC上运动,DF和EF分别交AC于G、H两点,BC=2.问E在何处时CH的长度最大?11.在AB和CD交于点O的图形中,当∠A=∠C时,证明:OA•OB=OC•OD。

12.在等边三角形△AEC中,以AC为对角线做正方形ABCD(点B在△AEC内,点D在△AEC外)。

三角形相似性质练习题

三角形相似性质练习题

三角形相似性质练习题一、选择题1. 若两个三角形的两边之比相等,且夹角相等,那么这两个三角形()。

A. 全等B. 相似C. 不一定全等D. 不一定相似2. 在ΔABC中,若AB=6cm,AC=8cm,且∠A=30°,在ΔDEF中,若DE=12cm,DF=16cm,且∠D=30°,则ΔABC与ΔDEF()。

A. 全等B. 相似C. 不一定全等D. 不一定相似3. 下列关于相似三角形的性质,错误的是()。

A. 对应角相等B. 对应边成比例C. 周长成比例D. 面积相等二、填空题1. 若两个三角形的三个角分别相等,则这两个三角形()。

2. 在ΔABC中,若AB=5cm,AC=7cm,且ΔABC∽ΔDEF,若DE=10cm,则DF的长度为()cm。

3. 若两个相似三角形的面积比为9:16,则它们的边长比为()。

三、解答题1. 在ΔABC中,AB=6cm,AC=8cm,∠A=45°,在ΔDEF中,DE=12cm,DF=16cm,求∠D的度数,并判断ΔABC与ΔDEF是否相似。

2. 已知ΔABC与ΔDEF相似,且AB=4cm,BC=6cm,AC=8cm,DE=3cm,求DF的长度。

3. 在ΔABC中,∠A=60°,∠B=70°,AB=5cm,AC=8cm,求ΔABC的面积。

4. 证明:若两个三角形的两边成比例,且这两边的夹角相等,则这两个三角形相似。

5. 在ΔABC中,AB=5cm,AC=7cm,∠A=45°,在ΔDEF中,DE=10cm,DF=14cm,求∠D的度数,并判断ΔABC与ΔDEF是否相似。

四、判断题1. 如果两个三角形的两边和它们的夹角分别相等,那么这两个三角形一定相似。

()2. 两个相似三角形的面积比等于它们对应边长比的平方。

()3. 任意两个等腰三角形都是相似的。

()4. 如果两个三角形的周长比是2:3,那么它们的面积比也是2:3。

九年级数学第二十七章《相似三角形的性质》同步练习(含答案)

九年级数学第二十七章《相似三角形的性质》同步练习(含答案)

九年级数学第二十七章《相似三角形的性质》同步练习(含答案)一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.1.如果△ABC ∽△DEF ,A 、B 分别对应D 、E ,且AB :DE =1:2,那么下列等式一定成立的是 A .BC :DE =1:2B .△ABC 的面积:△DEF 的面积=1:2 C .∠A 的度数:∠D 的度数=1:2D .△ABC 的周长:△DEF 的周长=1:2 【答案】D2.如图,AB 、CD 、EF 都与BD 垂直,且AB =1,CD =3,那么EF 的长是A .13B .23 C .34D .45【答案】C【解析】∵AB 、CD 、EF 都与BD 垂直,∴AB ∥CD ∥EF , ∴△DEF ∽△DAB ,△BEF ∽△BCD ,∴EF DF AB DB =,EF BF CD BD =,∴EF EF DF BFAB CD DB BD+=+=1. ∵AB =1,CD =3,∴13EF EF +=1,∴EF =34.故选C .3.已知:如图,在ABCD中,AE:EB=1:2,则FE:FC=A.1:2 B.2:3 C.3:4 D.3:2 【答案】B【解析】在ABCD中,AB=CD,AB∥CD,∵BE=2AE,∴BE=23AB=23CD,∵AB∥CD,∴EFFC=BEDC=23,故选B.4.已知:如图,E是ABCD的边AD上的一点,且32AEDE=,CE交BD于点F,BF=15cm,则DF的长为A.10cm B.5cmC.6cm D.9cm【答案】C【解析】∵四边形ABCD是平行四边形,点E在边AD上,∴DE∥BC,且AD=BC,∴∠DEF=∠BCF;∠EDF=∠CBF,∴△EDF∽△CBF,∴BC BF ED DF=,∵32AEDE=,∴设AE=3k,DE=2k,则AD=BC=5k,52BC BFED DF==,∵BF=15cm,∴DF=25BF═6cm.故选C.5.已知△ABC∽△DEF,△ABC的周长为3,△DEF的周长为1,则△DEF与△ABC的面积之比为A.9:1 B.1:9C.3:1 D.1:3【答案】B【解析】∵△ABC∽△DEF,△ABC的周长为3,△DEF的周长为1,∴△ABC与△DEF的相似比为3,∴△DEF与△ABC的相似比为1:3,∴△DEF与△ABC的面积之比为1:9,故选B.6.如图,△ABC∽△AB'C',∠A=35°,∠B=72°,则∠AC'B'的度数为A.63°B.72°C.73°D.83°【答案】C【解析】∵∠A+∠B+∠C=180°,∠A=35°,∠B=72°,∴∠C=180°–35°–72°=73°,∵△ABC∽△AB'C',∴∠AC′B′=∠C=73°,故选C.7.如图,△ABC中,E为AB中点,AB=6,AC=4.5,∠ADE=∠B,则CD=A.32B.1C.12D.23【答案】C【解析】∵E为AB中点,∴AE=12AB,∵∠ADE=∠B,∠A=∠A,∴△ADE∽△ABC,∴AE ADAC AB,∴12AB2=AD•AC,∴AD=4,∴CD=AC–AD=0.5,故选C.二、填空题:请将答案填在题中横线上.8.两个三角形相似,相似比是12,如果小三角形的面积是9,那么大三角形的面积是__________.【答案】36【解析】∵两个三角形相似,相似比是12,∴两个三角形的面积比是14,∵小三角形的面积是9,∴大三角形的面积是36,故答案为:36.9.矩形ABCD中,AB=6,BC=8.点P在矩形ABCD的内部,点E在边BC上,满足△PBE∽△DBC,若△APD是等腰三角形,则PE的长为__________.【答案】65或310.如图,在△ABC纸板中,AC=4,BC=2,AB=5,P是AC上一点,过点P沿直线剪下一个与△ABC相似的小三角形纸板,如果有4种不同的剪法,那么AP长的取值范围是__________.【答案】3≤AP<4【解析】如图所示,过P作PD∥AB交BC于D或PE∥BC交AB于E,则△PCD∽△ACB或△APE∽△ACB,此时0<AP<4;如图所示,过P作∠APF=∠B交AB于F,则△APF∽△ABC,此时0<AP≤4;如图所示,过P作∠CPG=∠CBA交BC于G,则△CPG∽△CBA,此时,△CPG∽△CBA,当点G与点B重合时,CB2=CP×CA,即22=CP×4,∴CP=1,AP=3,∴此时,3≤AP<4;综上所述,AP长的取值范围是3≤AP<4.故答案为:3≤AP<4.11.如图,点A、B、C、D的坐标分别是(1,7)、(1,1)、(4,1)、(6,1),且△CDE与△ABC相似,则点E的坐标是__________.【答案】(6,0),(6,5),(6,2),(4,2)、(4,5)、(4,0).【解析】在△ABC中,∠ABC=90°,AB=6,BC=3,AB:BC=2.①当点E的坐标为(6,0)时,∠CDE=90°,CD=2,DE=1,则AB:BC=CD:DE,△CDE∽△ABC;②当点E的坐标为(6,5)时,∠CDE=90°,CD=2,DE=4,则AB:BC=DE:CD,△EDC∽△ABC;③当点E的坐标为(6,2)时,∠ECD=90°,CD=2,DE=1,则AB:BC=CD:DE,△CDE∽△ABC;同理,当点E的坐标为(4,2)、(4,5)、(4,0),故答案为:(6,0),(6,5),(6,2),(4,2)、(4,5)、(4,0).三、解答题:解答应写出文字说明、证明过程或演算步骤.12.求证:相似三角形面积的比等于相似比的平方.(请根据题意画出图形,写出已知,求证并证明)【解析】已知:如图,已知△ABC ∽△A 1B 1C 1,顶点A 、B 、C 分别与A 1、B 1、C 1对应,△ABC 和△A 1B 1C 1的相似比为k .求证:111ABC A B C S S △△=k 2;证明:作AD ⊥BC 于D ,A 1D 1⊥B 1C 1于D 1,∵△ABC ∽△A 1B 1C 1,顶点A 、B 、C 分别与A 1、B 1、C 1对应, ∴∠B =∠B 1,∵AD 、A 1D 1分别是△ABC ,△A 1B 1C 1的高线, ∴∠BDA =∠B 1D 1A 1,∴△ABD ∽△A 1B 1D 1,∴11AD A D =11ABA B =k , ∴111ABC A B C S S △△=11111212BC AD B C A D ⋅⋅⋅⋅=k 2.13.如图所示,Rt △ABC ∽Rt △DFE ,CM 、EN 分别是斜边AB 、DF 上的中线,已知AC =9cm ,CB =12cm ,DE =3cm .(1)求CM 和EN 的长; (2)你发现CMEN的值与相似比有什么关系?得到什么结论?【解析】(1)在Rt △ABC 中,AB =22AC CB +=22912+=15,∵CM 是斜边AB 的中线, ∴CM =12AB=7.5, ∵Rt △ABC ∽Rt △DFE , ∴DE DF AC AB =,即319315DF==, ∴DF =5,∵EN 为斜边DF 上的中线,∴EN =12DF =2.5; (2)∵7.532.51CM EN ==,相似比为9331AC DE ==,∴相似三角形对应中线的比等于相似比.14.如图,点C 、D 在线段AB 上,△PCD 是等边三角形,且△ACP ∽△PDB .(1)求∠APB 的大小.(2)说明线段AC 、CD 、BD 之间的数量关系.15.从三角形(不是等腰三角形)一个顶点引出一条射线与对边相交,顶点与交点之间的线段把这个三角形分割成两个小三角形,如果分得的两个小三角形中一个为等腰三角形,另一个与原三角形相似,我们把这条线段叫做这个三角形的完美分割线.(1)如图1,在△ABC 中,∠A =48°,CD 是△ABC 的完美分割线,且AD =CD ,则∠ACB =__________°. (2)如图2,在△ABC 中,AC =2,BC 2,CD 是△ABC 的完美分割线,且△ACD 是以CD 为底边的等腰三角形,求完美分割线CD的长.【解析】(1)当AD=CD时,如图,∠ACD=∠A=48°,∵△BDC∽△BCA,∴∠BCD=∠A=48°,∴∠ACB=∠ACD+∠BCD=96°.(2)由已知得AC=AD=2,∵△BCD∽△BAC,∴BCBA=BDBC,设BD=x2)2=x(x+2),∵x>0,∴x3–1,∵△BCD∽△BAC,∴CD BDAC BC=32,∴CD 312-×62.故答案为:96.。

相似三角形性质完整的题型+答案

相似三角形性质完整的题型+答案

相似三角形性质知识精要一、相似三角形的性质1、(定义):相似三角形的对应角相等,对应边成比例。

2、性质定理1:相似三角形对应高的比、对应中线的比和对应角平分线的比都等于相似比。

3、性质定理2:相似三角形的周长比等于相似比。

4、性质定理3:相似三角形的面积比等于相似比的平方。

二、相似三角形的应用例题讲解:例题:地图比例尺为1:2000,一块多边形地区在地图上周长为50cm,面积为100cm2,实际周长为1000 m,实际面积为40000m2。

变式:东海大桥全长32.5千米,如果东海大桥在某张地图上的长为6.5厘米,那么该地图上距离与实际距离的比为( )。

A.1:5000000B.1:500000C.1:50000D.1:5000答案:B例题:(1)两个相似三角形的面积之比为9:16,它们的对应高之比为3:4 。

(2)两个相似三角形的相似比为1:3,则它们的周长比为1:3 ,面积比为1:9 。

变式:(1)两个相似三角形面积之比是1:3,则他们对应边上的高之比为( )。

(A).1:3 (B) 3:1 (C) 1:3(D) 1:9(2)两个相似三角形的相似比是2:3,面积相差30厘米2,则它们的面积之和是( )。

(A)150厘米2(B) 65厘米2(C) 45厘米2(D) 78厘米2答案:(1) C (2)D。

例题:如图,已知DE//BC ,AD:DB=2:3,那么S △ADE :S △ECB = 4:15 。

变式:如图,在ABCD 中,AC 与DE 交于点F ,AE:EB=1:2,S △AEF =6cm 2,则S △CDF 的值为( )。

A.12cm 2B.15cm 2C.24cm 2D.54cm 2答案:D 。

例题:如图,已知梯形ABCD 中,AD//BC ,AD:BC=3:5, 求: (1)S △AOD :S △BOC 的值;(2)S △AOB :S △AOD 的值. 答案:(1)9:25 (2)5:3。

《相似三角形的性质》习题精选

《相似三角形的性质》习题精选

A C G FB DE G 《相似三角形的性质》习题精选一. 填空:1. 在△ABC 中,AB=AC ,∠A=360 ,∠B 的平分线交 AC 于 D , △BCD ∽△____,且BC_____。

2. △ABC ∽△A 1B 1C 1,,AB=4,A 1B 1=12,则它们对应边上的高的比是 ,若BC 边上的中线为1.5,则B 1C 1上的中线A 1D 1=_______3. 如果两个相似三角形的周长为6cm 和15cm ,那么两个相似三角形的相似比为_______4. 在△ABC 中,BC=54cm ,CA=45cm ,AB=63cm ,若另一个与它相似的三角形的最短边长为15cm ,则其周长为_____5. 在Rt △ABC 中,CD 是斜边AB 上的高,若BD=9,DC=12,则AD=_____,BC=_____6. △ABC ∽△A 1B 1C 1,,且△ABC 的周长:△A 1B 1C 1的周长=11:13,又A 1B 1-AB=1cm ,则AB=_____cm ,A 1B 1=_______cm 。

7. 在梯形ABCD 中,AD ∥BC ,对角线BD 分成的两部分面积的比是1:2,EF 是中位线,则被EF 分成的两部分面积的比S 四边形AEFD :S 四边形BCEF =_______ 8. 如图,DEFG 是Rt △ABC 的内接正方形,若CF=8,DG=42, 则BE=_______,二. 选择题:9.两相似三角形面积的比是1:4,则它们对应边的比是( ) A.1:4 B 1:2 C 2:1 D 1:210 在Rt △ABC 中,∠C=900,,∠B=300,,AD 为∠A 的平分线,DC 长为5cm ,那么BD=( )A 10 cmB 5 cmC 15 cmD 以上都不对11.三角形的3条中位线长是3cm ,4cm ,5cm ,则这个三角形面积是( )A . 12cm B. 18cm C 24cm D 48cm12.在◇ABCD ,AE :EB=1:2,S △AEF =6,S △CDF =( )A 12 B 15 C 24三. 几何证明13.△ABC 中,∠C=900,D ,E 分别是 AB ,AC 上的点,AD · AB=AE ·AC ,求证 ED ⊥AB(13) (14) (15)14 在△ABC 中,M 是AC 边的中点,且AE=41BA ,连接EM ,并延长交BC 的延长线于D ,求证 BC=2CD15 已知等腰三角形ABC 中,AB=AC ,AD ⊥BC 于D ,CG ∥AB ,BG 分别交AD 、AC 于E 、F , 求证 :BF 2=EF ·EG16 已知:在△ABC 中,∠BAC=900 AD ⊥BC 于D ,P 为AD 中点,BP 延长线交AC 于E ,EF ⊥BC 于F 求证: EF 2=AE ·AC17 已知△ABC ,(1)∠ACB=900,P 为AB 边上一动点(不与点A 、B 重合)过点P 引直线截△ABC ,使截得三角形与△ABC 相似,则符合题意的直线最多能引多少条?并画图说明;(2)在第一问中,若BC=3,AC=4,设线段AP=X ,过点P 的直线截得的三角形面积为Y ,求Y 与X 之间的函数关系式,并注明X 的取值范围;(3)若∠ACB 为锐角或钝角,请回答第(1)问的问题答案1、△BCD ∽△ABC BC=BD2、1:3 4:53、2:54、54cm5、16,256、511,516 7、5:7 8、4 9 、B 10、A 11、C 12、D 13、证 △ADE ∽△ACB ∠ADE=∠C=900 所以ED ⊥AB 14、过点C 作CF ∥ED ,交AB 于F ,易得F 是AB 中点,∴BF=2EF ,又CF ∥ED ,∴2==CDBC EF BF ,即 BC=2CD 15、先证BE=EC ,∠EBC=∠ECB ,可得∠ABF=∠ACF ,又 AB ∥CG ,∴∠ABF=∠G ,∴△ECF ∽△EGC ,∴EC 2=EF ·EG ,即 BF 2=EF ·EG16、延长BA 、FE 交于点G ,由条件得AD ∥FG ,∴BE BP EF PD =,BEBP EG AP =,又AP=PD ∴EF=EG ,再证△AEG ∽△FEG ,故 EF 2=AE ·EC17、⑴符合条件的最多可引三条(图略);⑵当直线PD ∥BC 时,Y=256X 2(0∠x ∠5),当直线PE ∥AC 时,Y=256X 2—512X+6(0∠x ∠5)⑶当直线PC ⊥AB 时,则有①Y=83X 2 (0∠x ≤516),②Y=32X 2——320X+350( 516≤x <5 = ③符合条件的最多也引三条(图略)。

相似三角形测试题及答案

相似三角形测试题及答案

相似三角形测试题及答案一、选择题1. 若三角形ABC与三角形DEF相似,且AB:DE = 2:3,则BC:EF的比值为:A. 2:3B. 3:2C. 4:6D. 3:4答案:B2. 在相似三角形中,对应角相等,对应边成比例。

以下哪项不是相似三角形的性质?A. 对应角相等B. 对应边成比例C. 周长比等于相似比D. 面积比等于相似比的平方答案:D二、填空题3. 若三角形ABC与三角形DEF相似,相似比为2:3,则三角形ABC的周长是三角形DEF周长的____。

答案:2/34. 若三角形ABC与三角形DEF相似,且AB = 6cm,DE = 9cm,则BC 与EF的比值为______。

答案:2:3三、解答题5. 已知三角形ABC与三角形DEF相似,且AB = 8cm,DE = 12cm,求三角形ABC的周长,已知三角形DEF的周长为36cm。

答案:三角形ABC的周长 = (8/12) * 36cm = 24cm6. 已知三角形ABC与三角形DEF相似,且∠A = ∠D = 50°,∠B =∠E = 60°,求∠C和∠F的度数。

答案:∠C = ∠F = 70°四、证明题7. 已知三角形ABC与三角形DEF相似,且AB = 4cm,DE = 6cm,BC = 5cm,EF = 7.5cm,证明AC = 6.25cm。

答案:由于三角形ABC与三角形DEF相似,根据相似三角形的性质,对应边成比例,所以AC/DF = AB/DE = 4/6 = 2/3。

已知EF = 7.5cm,所以AC = (2/3) * EF = (2/3) * 7.5cm = 5cm。

因此,AC = 6.25cm。

8. 已知三角形ABC与三角形DEF相似,且∠A = ∠D,∠B = ∠E,求证:∠C = ∠F。

答案:由于三角形ABC与三角形DEF相似,根据相似三角形的性质,对应角相等。

已知∠A = ∠D,∠B = ∠E,所以∠C = 180° - (∠A+ ∠B) = 180° - (∠D + ∠E) = ∠F。

相似三角形试题及答案

相似三角形试题及答案

相似三角形试题及答案一、选择题1. 在相似三角形中,对应角相等的条件是:A. 边长成比例B. 面积相等C. 周长相等D. 角相等答案:A2. 下列选项中,哪一项不是相似三角形的性质?A. 对应边成比例B. 对应角相等C. 面积比等于边长比的平方D. 周长比等于边长比答案:B二、填空题3. 若三角形ABC与三角形DEF相似,且AB:DE=2:3,则三角形ABC的面积与三角形DEF的面积之比是________。

答案:4:94. 若三角形ABC与三角形A'B'C'相似,且∠A=∠A'=60°,则∠B与∠B'的关系是________。

答案:相等三、简答题5. 解释为什么在相似三角形中,对应边长的比等于对应角的正弦值之比。

答案:在相似三角形中,由于对应角相等,根据正弦定理,对应边长的比等于对应角的正弦值之比。

这是因为正弦值与角的大小成正比,而相似三角形的对应角大小相同,因此它们的正弦值之比也相同。

四、计算题6. 在三角形ABC中,已知AB=5cm,AC=7cm,∠A=60°,求三角形ABC的面积。

答案:首先,利用余弦定理计算BC的长度。

根据余弦定理,BC²= AB² + AC² - 2AB*AC*cos∠A。

代入已知值,得到BC² = 5² +7² - 2*5*7*(1/2) = 25 + 49 - 35 = 39,所以BC = √39 cm。

然后,利用三角形的面积公式S = (1/2)AB*AC*sin∠A,代入已知值,得到S = (1/2)*5*7*(√3/2) = 17.5√3 cm²。

7. 若三角形ABC与三角形DEF相似,且AB:DE=3:5,求三角形ABC与三角形DEF的面积比。

答案:由于相似三角形的面积比等于边长比的平方,所以三角形ABC与三角形DEF的面积比为(3:5)² = 9:25。

相似三角形性质完整的题型+答案

相似三角形性质完整的题型+答案

相似三角形性质知识精要一、相似三角形的性质1、(定义):相似三角形的对应角相等,对应边成比例。

2、性质定理1:相似三角形对应高的比、对应中线的比和对应角平分线的比都等于相似比。

3、性质定理2:相似三角形的周长比等于相似比。

4、性质定理3:相似三角形的面积比等于相似比的平方。

二、相似三角形的应用例题讲解:例题:地图比例尺为1:2000,一块多边形地区在地图上周长为50cm,面积为100cm2,实际周长为1000 m,实际面积为40000__m2。

变式:东海大桥全长32.5千米,如果东海大桥在某张地图上的长为6.5厘米,那么该地图上距离与实际距离的比为( )。

A.1:5000000B.1:500000C.1:50000D.1:5000答案:B例题:(1)两个相似三角形的面积之比为9:16,它们的对应高之比为3:4 。

(2)两个相似三角形的相似比为1:3,则它们的周长比为1:3 ,面积比为1:9 。

变式:(1)两个相似三角形面积之比是1:3,则他们对应边上的高之比为( )。

(A).1:3 (B) 3:1 (C) 1:3(D) 1:9(2)两个相似三角形的相似比是2:3,面积相差30厘米2,则它们的面积之和是( )。

(A)150厘米2(B) 65厘米2(C) 45厘米2(D) 78厘米2答案:(1) C (2)D。

例题:如图,已知DE//BC,AD:DB=2:3,那么S△ADE:S△ECB= 4:15。

变式:如图,在ABCD 中,AC 与DE 交于点F ,AE:EB=1:2,S △AEF =6cm 2,则S △CDF 的值为( )。

A.12cm 2B.15cm 2C.24cm 2D.54cm 2 答案:D 。

例题:如图,已知梯形ABCD 中,AD//BC ,AD:BC=3:5, 求:(1)S △AOD :S △BOC 的值; (2)S △AOB :S △AOD 的值。

答案:(1)9:25 (2)5:3。

专题02 相似三角形的判定与性质(六大类型)(题型专练)(解析版)

专题02 相似三角形的判定与性质(六大类型)(题型专练)(解析版)

专题02 相似三角形的判定与性质(六大类型)【题型1 相似三角形的概念】【题型2 三边对应成比例,两三角形相似】【题型3两边对应成比例且夹角相等,两三角形相似】【题型4 两角对应相等,两三角形相似】【题型5 相似三角形的性质】【题型6相似三角形的性质与判定综合应用】【题型1 相似三角形的概念】1.(2023春•阳信县月考)下列4×4的正方形网格中,小正方形的边长均为1,三角形的顶点都在格点上,则在网格图中的三角形与△ABC相似的是( )A.B.C.D.【答案】C【解答】根据勾股定理,BC==,AC==,AB==2.所以AB2+AC2=AB2.所以△ABC是直角三角形,且∠B=90°.所以,夹直角的两边的比为=2,观察各选项,只有C选项中的三角形与所给图形的三角形相似.故选:C.2.(2022秋•道外区期末)下列三角形一定相似的是( )A.两个等腰三角形B.两个等边三角形C.两个直角三角形D.有一角为70°的两个等腰三角形【答案】B【解答】解:A、等腰三角形的角度不一定相等,各边也不一定对应成比例,故D不符合题意.B、两个等边三角形的各角度都为60°,各边对应相等,故A符合题意;C、两个直角三角形只有一个直角可以确定相等,其他两个角度未知,故B不符合题意;D、这两个三角形可能分别为:30°,30°,120°与30°,75°,75°的两个三角形,故不能判定各有一个角是30°的两个等腰三角形一定相似,故C 不符合题意.故选:B.3.(2022秋•武城县期末)下列两个图形:①两个等腰三角形;②两个直角三角形;③两个正方形;④两个矩形;⑤两个菱形;⑥两个正五边形.其中一定相似的有( )A.2组B.3组C.4组D.5组【答案】A【解答】解:①不相似,因为没有指明相等的角或成比例的边;②不相似,因为只有一对角相等,不符合相似三角形的判定;③相似,因为其四个角均相等符合相似的条件;④不相似,因为没有指明边的情况,虽然其四个角均相等,不符合相似的条件;⑤不相似,因为无法得到相等的角或成比例的边;⑥相似,因为两正五边形有相等的角或成比例的边故正确的有③⑥,故选:A.4.(2022秋•承德县期末)如图所示,网格中相似的两个三角形是( )A.①与②B.①与③C.③与④D.②与③【答案】B【解答】解:图形①的三边为:2,,;图形②的三边为:3,,;图形③的三边为:2,2,2;图形④的三边为:3,,,∵=,==∴①与③相似,故选:B.5.(2022秋•襄都区校级期末)下列判断中,不正确的有( )A.三边对应成比例的两个三角形相似B.两边对应成比例,且有一个角相等的两个三角形相似C.斜边与一条直角边对应成比例的两个直角三角形相似D.有一个角是100°的两个等腰三角形相似【答案】B【解答】解:A、三边对应成比例的两个三角形相似,故A选项不合题意;B、两边对应成比例,且夹角相等的两个三角形相似,故B选项符合题意;C、斜边与一条直角边对应成比例的两个直角三角形相似,故C选项不合题意;D、有一个角是100°的两个等腰三角形,则它们的底角都是40°,所以有一个角是100°的两个等腰三角形相似,故D选项不合题意;故选:B.【题型2 三边对应成比例,两三角形相似】6.(2022秋•常州期末)如图,△ABC∽△DEF,则DF的长是( )A.B.C.2D.3【答案】C【解答】解:∵△ABC∽△DEF,∴,即,解得DF=2,故选:C.7.(2023•陇南模拟)两个相似三角形的相似比是4:9,则其面积之比是( )A.2:3B.4:9C.9:4D.16:81【答案】D【解答】解:∵两个相似三角形的相似比是4:9,∴其面积之比是16:81,故选:D.8.(2023•沙坪坝区校级模拟)如图,△ABO∽△CDO,若BO=6,DO=3,AB=4,则CD的长是( )A.1B.2C.3D.4【答案】B【解答】解:∵△ABO∽△CDO,∴=,即=,解得CD=2.故选:B.9.(2022秋•鼓楼区期末)已知△ABC∽△DEF,若△ABC的三边分别长为6,8,10,△DEF的面积为96,则△DEF的周长为 48 .【答案】48.【解答】解:法一、∵62+82=102,∴△ABC是直角三角形.∴S=×6×8=24.△ABC∵△ABC∽△DEF,∴两个三角形的相似比为=.∵△ABC的周长为6+8+10=24,∴△DEF的周长=2×24=48.故答案为:48.法二、∵62+82=102,∴△ABC是直角三角形.=×6×8=24.∴S△ABC∵△ABC∽△DEF,∴两个三角形的相似比为=.∴△DEF的三边长分别为12、16、20.∴△DEF的周长=12+16+20=48.故答案为:48.10.(2023•惠城区校级一模)若△ABC∽△DEF,△ABC的面积为81cm2,△DEF的面积为36cm2,且AB=12cm,则DE= 8 cm.【答案】见试题解答内容【解答】解:△ABC的面积为81cm2,△DEF的面积为36cm2,因而两个三角形面积的比是81:36,相似三角形面积的比等于相似比的平方,则相似比是9:6,则有12:DE=9:6解得:DE=8cm.11.(2022秋•于洪区期末)两个相似三角形的周长比是3:4,其中较小三角形的面积为18cm2,则较大三角形的面积为 32 cm2.【答案】32.【解答】解:∵两个相似三角形的周长比是3:4,∴这两个相似三角形的相似比是3:4,∴这两个相似三角形的面积比是9:16,∵较小三角形的面积为18cm2,∴较大的三角形面积为,故答案为:32.12.(2022秋•鸡西期末)如果两个相似三角形的周长比为1:6,那么这两个三角形的面积比为 1:36 .【答案】1:36.【解答】解:∵两个相似三角形的周长之比为1:6,∴它们的相似比为1:6,∴它们的面积比为1:36,故答案为:1:36.13.(2023•长宁区一模)如果两个相似三角形的面积比是1:9,那么它们的周长比是 1:3 .【答案】1:3.【解答】解:∵两个相似三角形的面积比是1:9,∴两个三角形的相似比为,1:3,∴它们的周长比是1:3,故答案为:1:3.14.(2022秋•内乡县期末)如图,已知△ABC∽△ADE,AD=6,BD=3,DE=4,则BC= 6 .【答案】6.【解答】解:∵AD=6,BD=3,∴AD:AB=6:,∵DE∥BC,∴△ADE∽△ABC,∴==,∵DE=4,∴BC=6.故答案为:6.15.(2022秋•零陵区期末)若△ABC∽△A′B′C′,且,△ABC 的面积为12cm2,则△A′B′C′的面积为 27 cm2.【答案】27.【解答】解:设△A′B′C′的面积为Scm2,∵△ABC∽△A′B′C′,且,△ABC的面积为12cm2,∴12:S=9:4,解得S=27cm2.故答案为:27.【题型3两边对应成比例且夹角相等,两三角形相似】16.(2022秋•仓山区校级月考)如图,D、E分别是△ABC的边AB、AC上的点,AB=8,BD=5,AC=6,CE=2,求证:△ADE∽△ACB.【答案】证明见解答.【解答】证明:∵AB=8,BD=5,AC=6,CE=2,∴AD=AB﹣BD=8﹣5=3,AE=AC﹣CE=6﹣2=4,∵==,==,∴,又∠A=∠A,∴△ADE∽△ACB.17.(2021秋•武陵区期末)如图,已知∠BAE=∠CAD,AB=18,AC=48,AE=15,AD=40.求证:△ABC∽△AED.【答案】见试题解答内容【解答】解:∵∠BAE=∠CAD,∴∠BAE+∠EAC=∠CAD+∠EAC,即∠BAC=∠EAD,∵AB=18,AC=48,AE=15,AD=40,∴==,∴△ABC∽△AED.18.(2022秋•丰泽区校级期中)如图,E是△ABC的边BC上的点,已知∠BAE =∠CAD,,AB=18,AE=15.求证:△ABC∽△AED.【答案】证明过程见解答.【解答】证明:∵,AB=18,AE=15,∴==,∵∠BAE=∠CAD,∴∠BAE+∠EAC=∠CAD+∠EAC,即∠BAC=∠EAD,∴△ABC∽△AED.19.(2022春•丰城市校级期末)如图,已知∠B=∠E=90°,AB=6,BF=3,CF=5,DE=15,DF=25.求证:△ABC∽△DEF.【答案】证明见解答过程.【解答】证明:∵BF=3,CF=5,∴BC=BF+CF=8,∵DE=15,DF=25.∠E=90°,∴EF==20,∴,,∴,∵∠B=∠E=90°,∴△ABC∽△DEF.【题型4 两角对应相等,两三角形相似】20.(2022秋•蚌山区月考)已知:如图D、E分别是△ABC的边AB、AC上的点,∠A=40°,∠C=80°,∠AED=60°,求证:△ADE∽△ACB.【答案】证明过程见解答.【解答】证明:∵∠A=40°,∠C=80°,∴∠B=180°﹣∠A﹣∠B=180°﹣40°﹣80°=60°,∵∠AED=60°,∴∠AED=∠B,∵∠A=∠A,∴△ADE∽△ACB.21.(2022秋•龙胜县期中)如图,在Rt△ABC中,∠ACB=90°,CD是斜边AB上的高.求证:△ABC∽△CBD.【答案】见解答.【解答】证明:∵CD⊥AB,∴∠ADC=∠BDC=90°,∵∠ACB=90°,∴∠ACB=∠BDC,∴∠B=∠B,∴△CBD∽△ABC.22.(2022•江夏区模拟)如图,在△ABC和△DEC中,∠A=∠D,∠BCE=∠ACD.求证:△ABC∽△DEC.【答案】见解析过程.【解答】证明:∵∠BCE=∠ACD,∴∠DCE=∠ACB,又∵∠A=∠D,∴△ABC∽△DEC.23.(2021秋•晋江市校级期末)如图,在△ABC中,点D在BC边上,点E 在AC边上,且AD=AB,∠DEC=∠B.求证:△AED∽△ADC.【答案】见解答.【解答】解:∵AD=AB,∴∠B=∠ADB,∵∠DEC=∠B,∴∠ADB=∠DEC,∴180°﹣∠ADB=180°﹣∠DEC,∴∠ADC=∠AED,∵∠DAE=∠CAD,∴△AED∽△ADC.24.(2022•南昌模拟)如图,在△ABC中,∠A=36°,AB=AC,BD是∠ABC 的平分线.求证:△ABC∽△BDC.【答案】见解析过程.【解答】证明:∵∠A=36°,AB=AC,∴∠ABC=∠ACB=72°,∵BD是∠ABC的平分线,∴∠ABD=∠CBD=36°,∵∠A=∠CBD=36°,∠C=∠C,∴△ABC∽△BDC【题型5 相似三角形的性质】25.(2020秋•思南县校级月考)判断图中的两个三角形是否相似,并说明理由.【答案】△ABC∽△DEF.理由见解析.【解答】解:△ABC∽△DEF.理由:∵AC=3,BC=3.5,AB=4,DF=1.8,EF=2.1,DE=2.4,∴,∴△ABC∽△DEF.26.(大观区校级期中)如图,在边长为1的小正方形组成的网格中,△ABC 和△DEF的顶点都在格点上,请判断△ABC和△DEF是否相似,并说明理由.【答案】见试题解答内容【解答】解:观察图象可知:∠ACB=∠DEF=90°,∵AC==2,EF==4,BC==,DF==2,∴==,∴△ACB∽△FED.【题型6相似三角形的性质与判定综合应用】27.(2022秋•历城区校级月考)如图,AB∥CD,AC与BD交于点E,且AB=4,AE=2,AC=8.(1)求CD的长;(2)求证:△ABE∽△ACB.【答案】(1)12;(2)证明见解析.【解答】(1)解:∵AB∥CD,∴∠A=∠DCE,∠ABE=∠D,∴△ABE∽CDE,∴=,即=,∴CD=12;(2)证明:∵AB=4,AE=2,AC=8,∴==,==,∴=,又∵∠A=∠A,∴△ABE∽△ACB.28.(2023•殷都区一模)如图,O是直线MN上一点,∠AOB=90°,过点A 作AC⊥MN于点C,过点B作BD⊥MN于点D.(1)求证:△AOC∽△OBD;(2)若OA=5,OC=OD=3,求BD的长.【答案】(1)证明见解析;(2).【解答】(1)证明:∵AC⊥MN,BD⊥MN,∴∠ACO=∠BDO=90°,∵∠AOB=90°,∴∠A+∠AOC=∠BOD+∠AOC,∴∠A=∠BOD,∴△AOC∽△OBD;(2)解:在Rt△ACO中,AC===4,∵△AOC∽△OBD,∴OC:BD=AC:OD,∴3:BD=4:3,∴BD=.29.(2023•西湖区校级二模)如图,在菱形ABCD中,点M为对角线BD上一点,连接AM并延长交BC于点E,连接CM.(1)求证:CM=AM.(2)若∠ABC=60°,∠EMC=30°,求的值.【答案】.【解答】(1)证明:∵四边形ABCD为菱形,∴AD=CD,∠ADB=∠CDB,在△ADM和△CDM中,,∴△ADM≌△CDM(SAS),∴CM=AM.(2)解:过点E作EH⊥MC于点H,∵四边形ABCD为菱形,且∠ABC=60°,∴∠ABD=∠CBD=30°,由(1)知:△ADM≌△CDM∴∠AMD=∠CMD,∵∠CME=30°,∴∠AMC=150°,∴∠AMD=∠CMD=75°,又∵∠CMD=∠CBD+∠MCE,∴∠MCE=∠CMD﹣∠CBD=75°﹣30°=45°∵EH⊥MC,∴△EHC为等腰直角三角形,设CH=a,则EH=a,在Rt△MEH中,∠CME=30°,EH=a,∴ME=2a,由勾股定理得:,∴,∴.30.(2023•港南区四模)如图,在△ABC中,D在AC上,DE∥BC,DF∥AB.(1)求证:△DFC∽△AED;(2)若CD=AC,求的值.【答案】(1)证明过程见解答;(2).【解答】(1)证明:∵DF∥AB,DE∥BC,∴∠DFC=∠ABF,∠AED=∠ABF,∴∠DFC=∠AED,∵DE∥BC,∴∠DCF=∠ADE,∴△DFC∽△AED;(2)解:∵CD=AC,∴=,由(1)知△DFC和△AED的相似比为:=,∴=()2=()2=.31.(2023春•鼓楼区校级期末)如图,点C是△ABD边AD上一点,且满足∠CBD=∠A.(1)证明:△BCD∽△ABD;(2)若BC:AB=3:5,AC=16,求BD的长.【答案】(1)证明见解析;(2)15.【解答】(1)证明:∵∠CBD=∠A,∠D=∠D,∴△BCD∽△ABD;(2)解:由(1)知:△BCD∽△ABD,∴.∵BC:AB=3:5,∴.设BD=3x,则AD=5x,∴CD=AD﹣AC=5x﹣16.∵△BCD∽△ABD,∴,∴BD2=AD•CD,∴(3x)2=5x(5x﹣16),∴16x2﹣80x=0.解得:x=0(不合题意,舍去)或x=5,∴BD=3x=15.32.(2022秋•顺平县期末)矩形ABCD中,E为DC上的一点,把△ADE沿AE翻折,使点D恰好落在BC边上的点F.(1)求证:△ABF∽△FCE;(2)若AB=4,AD=8,求CE的长.【答案】(1)证明见解析;(2).【解答】(1)证明:∵四边形ABCD是矩形,∴∠B=∠C=∠D=90°,∵△AEF是△AED翻折得到,∴∠AFE=∠D=90°,∴∠AFB+∠EFC=90°,∵∠AFB+∠BAF=90°,∴∠FAB=∠EFC,∴△ABF∽△FCE;(2)解:由题意可知,AF=AD=8,,DE=EF,设CE长为x,则,在Rt△ABF中,,∵△ABF∽△FCE,∴,即,解得:.33.(2022秋•南京期末)如图,在矩形ABCD中,点E,F分别在边BC,CD 上,AE,BF交于点G.(1)若=,求证AE⊥BF;(2)若E,F分别是BC,CD的中点,则的值为 4 .【答案】(1)见解析;(2)4.【解答】(1)证明:∵四边形ABCD是矩形,∴∠ABC=∠BCF=90°,∵=,∴△ABE∽△BCF,∴∠BAE=∠CBF,∵∠AEB+∠BAE=90°.∴∠AEB+∠EBG=∠AEB+∠BAE=90°,∴∠EGB=90°.即AE⊥BF;(2)解:过点E作EM⊥BC,交BF于M,设EM=x,∵四边形ABCD是矩形,∴∠ABC=∠BCF=90°,AB=CD,∴AB∥EM∥CD,∵E,F分别是BC,CD的中点,∴M是BF的中点,∴CF=2EM=2x,∴AB=CD=4x,∵AB∥EM,∴△ABG∽△EMG,∴=4.故答案为:4.34.(2023•桐乡市校级开学)如图,已知△ABC和△AED,边AB,DE交于点F,AD平分∠BAC,AF平分∠EAD,.(1)求证:△AED∽△ABC;(2)若BD=3,BF=2,求AB的长.【答案】(1)详见解答;(2).【解答】(1)证明:∵AD平分∠BAC,AF平分∠EAD,∴∠BAC=2∠EAB=2∠BAD,∠EAD=2∠BAD.∴∠BAC=∠EAD.又∵,∴△AED∽△ABC.(2)解:由(1)知△AED∽△ABC,∴∠B=∠E.又∵∠EFA=∠BFD,∴∠EAB=∠EDB.∵∠EAB=∠BAD,∴∠EDB=∠BAD.又∵∠B=∠B,∴△BDF∽△BAD.∴=.∴AB===.答:AB的长为.35.(2022秋•海陵区校级期末)如图,矩形DEFG的四个顶点分别在等腰三角形ABC的边上.已知△ABC的AB=AC=10,BC=16,记矩形DEFG的面积为S,线段BE为x.(1)求S关于x的函数表达式;(2)当S=24时,求x的值.【答案】(1)S=﹣x2+12x(0<x<6);(2)x=4.【解答】解:(1)过点作AM⊥BC于点M,∵AB=AC=10,BC=16,∴BM=BC=8,在Rt△ABM中,AM==6,∵四边形DEFG是矩形,∴DG∥EF,DE⊥BC,∴AN⊥DG,四边形EDMN是矩形,∴MN=DE,DN=EM,∵BE=x,∴EM=DN=8﹣x,设DE=MN=a,则AN=6﹣a,∵DG∥EF,∴△ADN∽△ABM,∴=,即=,∴a=x,∴DE=x,=DE•EF=x•(16﹣2x)=﹣x2+12x(0<x<6)∴S=S矩形DEFG(2)当S=24时,﹣x2+12x=24,解得x=4.36.(2022秋•平城区校级期末)如图,已知在△ABC中,边BC=6,高AD=3,正方形EFGH的顶点F,G在边BC上,顶点E,H分别在边AB和AC上,求这个正方形的边长.【答案】2.【解答】解:如图所示,设EH与AD交于点M,∵四边形EFGH是正方形,∴EH∥BC,EH=FG,∴∠AEH=∠ABC,∵∠EAH=∠BAC,∴△AEH∽△ABC,∴,又∵AD⊥BC,∴AD⊥EH,EH=EF=MD,∵EH∥BC,∴,即,设EH=x,则AM=AD﹣MD=3﹣x,∴,解得x=2,∴EH=2,∴这个正方形的边长为2.。

相似三角形基本知识点+经典例题(完美打印版)

相似三角形基本知识点+经典例题(完美打印版)

相似三角形基本知识点+经典例题(完美打印版)相似三角形基本知识点+经典例题一、相似三角形的定义和性质相似三角形是指具有相同形状但大小不同的三角形。

它们的对应角度相等,对应边长成比例。

以下是相似三角形的基本知识点和性质:1. 相似三角形的定义:如果两个三角形对应角相等,且对应边成比例,则它们是相似三角形。

2. 相似三角形的性质:a. 对应角相等:两个相似三角形的对应角是相等的。

b. 对应边成比例:两个相似三角形的对应边的比值相等。

3. 相似三角形的判定条件:a. AA判定:如果两个三角形的两对对应角相等,则它们是相似三角形。

b. AAA判定:如果两个三角形的对应角相等,则它们是相似三角形。

二、相似三角形的比例关系相似三角形的对应边长之间存在一定的比例关系。

如果两个三角形是相似的,则对应边的比值相等。

以∆ABC∼∆DEF为例,A与D为对应顶角,AB与DE、BC与EF、AC与DF分别为对应边长。

则有以下比例关系:AB/DE = BC/EF = AC/DF三、相似三角形的应用相似三角形在几何学中有广泛的应用,下面通过一些经典例题来进一步了解相似三角形的应用。

例题一:已知∆ABC与∆DBC是相似三角形,AB = 3cm, BC = 4cm, AC = 5cm, DB = 2cm,求DC的长度。

解析:根据相似三角形的性质,可以得到以下比例关系:AB/DB = AC/DC3/2 = 5/DCDC = 10/5 = 2cm因此,DC的长度为2cm。

例题二:在平行四边形ABCD中,∠B的度数是∠D的度数的2倍。

若AB= 10cm,BC = 15cm,求AD的长度。

解析:由于ABCD是平行四边形,所以∠B = ∠D。

根据题目条件可得:∠B = 2∠D∠B + ∠D = 180°(平行四边形的内角和为180°)将∠B代入上式得:2∠D + ∠D = 180°3∠D = 180°∠D = 60°由相似三角形的性质可得AB/AD = BC/CD,代入已知值可得:10/AD = 15/CD将CD表示为AD的式子,并代入已知条件可得:10/AD = 15/(2AD)10AD = 30AD = 3cm因此,AD的长度为3cm。

苏科版九年级数学下册《6.5 相似三角形的性质》同步练习题-附带参考答案

苏科版九年级数学下册《6.5 相似三角形的性质》同步练习题-附带参考答案

苏科版九年级数学下册《6.5 相似三角形的性质》同步练习题-附带参考答案学校:___________班级:___________姓名:___________考号:___________一、单选题1.若两个相似三角形的面积比是9:16,则它们的相似比是()A.9:16 B.16:9 C.81:256 D.3:42.两个相似三角形的相似比为2:3,它们的面积之差为25cm2,则较大三角形的面积是()A.75cm2B.65cm2C.50cm2D.45cm23.如图,在△ABC中,DE∥BC分别交AB,AC于点D,E,若=,则下列说法不正确的是()A.ADAB =AEACB.AEEC=23C.DEBC =23D.S△ADES△四边形DBCE=4214.如图,有一锐角为30°的三角尺,它的内外两个三角形是相似的.三角尺的斜边长为12cm,其内部三角形的最短边长为3cm,则这个三角尺内外两个三角形的面积比为()A.1:√3B.1:2C.1:3D.1:45.如图所示是利用图形的位似绘制的一幅“小鱼”图案,其中O为位似中心,且OA=2OD,若图案中鱼身(△ABC)的面积为S,则鱼尾(△DEF)的面积为()A.√S B.√2S C.14S D.12S6.如图,AD∥BC,∠D=90°,AD=2,BC=6,DC=8,若在边DC上有点P,使△PAD与△PBC相似,则这样的点P有()个.A.1 B.2 C.3 D.47.如图,平行四边形ABCD中,AB=2,AD=4,对角线AC,BD相交于点O,且E,F,G,H分别是AO,BO,CO,DO的中点,则下列说法正确的是()A.EH=HGB.四边形EFGH是平行四边形C.AC⊥BDD.ΔABO的面积是的面积的2倍8.如图所示,在矩形ABCD中,点F是 BC的中点,DF的延长线与AB的延长线相交于点E,DE与AC相交于点O,若,则()A.4 B.6 C.8 D.10二、填空题9.已知△ABC与ΔA'B'C'相似,并且点A与点A'、点B与点B'、点C与点C'是对应顶点,其中∠A=80°,∠B'=60°,则∠C=度.10.如图,平分且,则当BD=时,.11.如图,已知在△ABC 中,BC=120,高AD=60,正方形EFGH 一边在BC 上,点E,F 分别在AB,AC 上,AD 交EF 于点N,则AN 的长为.12.如图,在直角坐标系中,有两个点A(4,0)、B(0,2),如果点C在x轴上(点C与点A不重合),当点C坐标为时,使得由B、O、C三点组成的三角形和△AOB相似.13.如图,直角三角形BCF中,在线段上取一点,作交于点,现将沿折叠,使点落在线段上,对应点记为;的中点的对应点记为.若,则AD=.三、解答题14.如图,已知△ABC中,AB=8,BC=7,AC=6,点D、E分别在AB、AC上,如果以A、D、E为顶点的三角形和△ABC相似,且相似比为,试求AD、AE的长.15.如图,D、E分别是AC、AB上的点△ADE∼△ABC,DE=8,BC=24,AD=6,∠B=70°求AB的长和∠ADE的度数.16.如图,在△ABC中,AB=8cm,AC=16cm,点P从点B开始沿BA边向点A以每秒2cm的速度移动,点Q 从点A开始沿AC边向点C以每秒4cm的速度移动.如果P、Q分别从B、A同时出发,经过几秒钟△APQ与△ABC相似?试说明理由.17.如图,在△ABC中,∠ACB=90°,CD⊥AB于点D,AC=6√3,BD=3.(1)求∠A的度数;(2)求BC的长及△ABC的面积.18.如图,已知矩形OABC中,OA=2,AB=4,双曲线(k>0)与矩形两边AB、BC分别交于E、F.(1)若E是AB的中点,求F点的坐标;(2)若将△BEF沿直线EF对折,B点落在x轴上的D点,作EG⊥OC,垂足为G,证明△EGD∽△DCF,并求k的值.答案1.D2.D3.C4.D5.C6.B7.B8.C9.4010.√611.2012.(-1,0)或者(1,0)或者(-4,0)13.3.214.解答:当△ABC ∽△ADE 时,相似比为 , = = ,即: = = 解得:AD=2,AE=1.5;当△ABC ∽△AED 时,= = ,即: = = ,解得:AD=1.5,AE=2.15.解:∵△ADE ∽△ABC∴AD AB =DE BC∵AD =6,DE =8,BC =24∴6AB =824∴AB =18∴AB =18,∠ADE =70°. 16.解:设经过t 秒两三角形相似,则AP=AB ﹣BP=8﹣2t ,AQ=4t ,①AP 与AB 是对应边时,∵△APQ 与△ABC 相似,∴AP AB =AQ AC 即8−2t 8=4t 16解得t=2,②AP 与AC 是对应边时,∵△APQ 与△ABC 相似∴AP AC =AQ AB 即8−2t 16=4t 8解得t=45,综上所述,经过45或2秒钟,△APQ 与△ABC 相似.17.解:(1)∵∠ACB=90°,CD ⊥AB 于点D∴AC 2=AD •AB ,即(6√3)2=AD •(AD+3)整理得AD 2+3AD ﹣108=0,解得AD=9或AD=﹣12(舍去) 在Rt △ACD 中,∵cosA=AD AC =6√3=√32∴∠A=30°;(2)∵AB=AD+BD=9+3=12而∠A=30°∴BC=12AB=6∴S △ABC =12•AC •BC=12•6√3•6=18√3.18.(1)解:∵点E 是AB 的中点,OA=2,AB=4∴点E 的坐标为(2,2)将点E 的坐标代入y=,可得k=4即反比例函数解析式为:y=∵点F 的横坐标为4∴点F 的纵坐标==1故点F 的坐标为(4,1)(2)解:由折叠的性质可得:BE=DE ,BF=DF ,∠B=∠EDF=90° ∵∠CDF+∠EDG=90°,∠GED+∠EDG=90°∴∠CDF=∠GED又∵∠EGD=∠DCF=90°∴△EGD ∽△DCF结合图形可设点E 坐标为(,2),点F 坐标为(4,) 则CF=,BF=DF=2﹣,ED=BE=AB ﹣AE=4﹣在Rt △CDF 中,CD===∵CD GE =DF ED ,即= ∴√4−k =1解得:k=3。

相似三角形判定与性质-练习题(带答案)

相似三角形判定与性质-练习题(带答案)

【答案】 D
【解析】 ∵






∵Hale Waihona Puke ,∴,即甲与乙与丙均相似.
【标注】【知识点】相似三角形的判定-两角对应相等
D. 甲与乙与丙
3
6. 给定条件能判断
A.
B.

C.

D.
和 ,
, , ,
相似的是( ). ,









【答案】 D
【解析】 .不相似:∵


∴不相似;
.不相似:∵
, ,


∴ 不是边 , ∴不相似;
, 交 于 ,则

A.
B.
C.
D.
【答案】 A
【解析】 ∵



又∵平行四边形
中,







【标注】【知识点】相似三角形的性质与判定综合
14. 要测量一棵树的高度,发现同一时刻一根 米长的竹竿在地面上的影长为 米,此刻树的影子不全 落在地上,有一部分落在了教学楼第一级的台阶水平面上,测得台阶水平面上的影长为 米,一级 台阶的垂直高度为 米,若,此时落在地面上的影长为 米,则树高( ).




【标注】【知识点】相似反A字型
1
3. 已知:如图,
,求证:

【答案】 证明见解析.
【解析】 ∵ ∴ 又∵ ∴
, ,
, .
【标注】【知识点】相似反8字型
4. 如图,在
中,点 、 分别在边 、 上,如果
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

相似三角形的性质同步课堂检测学
考试总分: 120 分考试时间: 120 分钟
学校:__________ 班级:__________ 姓名:__________ 考号:__________
一、选择题(共 10 小题,每小题 3 分,共 30 分)
1.王华晚上由路灯下的处走到处时,测得影子的长为,继续往前走到达处时,测得影子的长为,他的身高是,那么路灯的高度
A. B. C. D.
2.如图,在中,若,,若的面积等于,则的面积等于()
A. B. C. D.
3.如图,中,,如果,,那么的值为()
A. B. C. D.
4.如图,在中,,是边上的高,,,则
A. B. C. D.
5.如图,是斜边上的高,,,则的长为()
A. B. C. D.
6.两个相似三角形的面积之比为,则这两个三角形的周长比为()
A. B. C. D.
7.一个三角形的三边分别为,,,另一个与它相似的三角形中有一条边长为,则这个三角形的周长不可能是()
A. B. C. D.
8.一个的面积被平行于它的一边的两条线段三等分,如果,则这两条线段中较长的一条是()
A. B. C. D.
9.如图,中,,平分交于点,交于点,为的中点,交的延长线于点,,.下列结论①;
②;③;④,其中结论正确的个数有()
A.个
B.个
C.个
D.个
10.如图,、分别是边、上的点,,若,则的值为()
A. B. C. D.
二、填空题(共 10 小题,每小题 3 分,共 30 分)
11.相似三角形的判定方法
若(型(图)和型(图))则________.
射影定理:若为斜边上的高(双直角图形)图则
且________,________,________.
12.如图,,,已知,,则图中线段的长
________,________,________.
13.若,且,的周长为,则的周长为________.
14.如图,已知,,交于点,若,则________.
15.在中,、分别在、上,,,,,则
________.
16.在中,是上的动点异于、,过点的直线截,使截得的三角形与相似,我们不妨称这种直线为过点的的相似线,简记为,(为自然数).
(1)如图①,,,当时,、都是过点的
的相似线(其中,),
此外还有________条.
如图②,,,当________时,截得的三角形面积为面积的.
17.如图,在中,,,点为腰中点,点在底边上,且
,则的长为________.
18.已知:如图,在中,,,垂足是,,
.求________.
19.如果两个相似三角形的相似比是,那么这两个三角形面积的比是________.
20.若,的面积为,的面积为,且
,则________.
三、解答题(共 6 小题,每小题 10 分,共 60 分)
21.如图,已知,分别是的,上的一点,,,,
,求的长.
22.已知在中,平分,是的中垂线,交延长线于,求证:

23.如图所示,在中,点是上一点,连接,且,
.求与的相似比.
24.如图,在中,,,垂足分别为、,连接,试判断与是否相似,并说明理由
25.如图,在中,,点为边上的点,于点,延长交于点.
证明:;
若,________;并说明理由.
答案
11.
12.
13.
14.
15.
16.或.
17.
18.
19.
20.
21.解:∵、分别是的、边上的点,,∴,
∵,
∴,
∴.
22.证明:
连接,
∵是的中垂线,
∴,
∴,
且,,
∴,且,
∴,
∴,
∴,
∴.
23.解:∵,
∴,
∵,,
∴,
则,
故与的相似比为:.
24.解:相似.理由如下:
∵在中,,分别是,边上的高,∴,
∵,
∴,
∴,
即,
∵是公共角,
∴.
25..
26.线段线段。

相关文档
最新文档