有关最大和最小问题的六年级奥数例题
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
有关最大和最小问题的六年级奥数例题
学生们可以通过奥数对自己的思维和逻辑进行锻炼,快来做做奥数题来锻炼自己吧!下面是为大家收集到的最大和最小问题的六年级奥数例题,供大家参考。
1.把一个两位数质数写在另一个两位数质数右边,得到一个四位数,它能被这两个质数之和的一半整除,那么这样的两个质数乘积最大是()。
考点:最大与最小.
分析:根据题意,设出两个质数,再根据题中的数量关系,列出方程,再根据未知数的取值受限,解答即可.
解答:解:设a,b是满足题意的质数,根据一个两位质数写在另一个两位质数后面,得到一个四位数,它能被这两个质数之和的一半整除,
那么有100a+b=k(a+b)÷2( k为大于0的整数),
即(200-k)a=(k-2)b,
由于a,b均为质数,所以k-2可以整除a,200-k可以整除b,
那么设k-2=ma,200-k=mb,( m为整数),
得到m(a+b)=198,
由于a+b可以被2整除,
所以m是99的约数,
可能是1,3,9,11,33,99,
若m=1,a+b=198且为两位数显然只有99+99 这时a,b不是质数,
若m=3,a+b=66 则 a=13 b=53,
或a=19 b=47,
或a=23 b=43,
或a=29 b=37,
若m=9,a+b=22 则a=11 b=11(舍去),
其他的m值都不存在满足的a,b,
综上a,b实数对有(13,53)(19,47)(23,43)(29,37)共4对,
当两个质数最接近时,乘积最大,
所以两个质数乘积最大是:29×37=1073,
以上是查字典数学网为大家准备的最大和最小问题的六年级奥数例题,希望对大家有所帮助。