物理光学-第2章 光的干涉

合集下载

物理光学第二章答案

物理光学第二章答案

第二章光的干涉作业1、在杨氏干涉实验中,两个小孔的距离为1mm,观察屏离小孔的垂直距离为1m,若所用光源发出波长为550nm和600nm的两种光波,试求:(1)两光波分别形成的条纹间距;(2)两组条纹的第8个亮条纹之间的距离。

2、在杨氏实验中,两小孔距离为1mm,观察屏离小孔的距离为100cm,当用一片折射率为1.61的透明玻璃贴住其中一小孔时,发现屏上的条纹系移动了0.5cm,试决定该薄片的厚度。

3、在菲涅耳双棱镜干涉实验中,若双棱镜材料的折射率为1.52,采用垂直的激光束(632.8nm)垂直照射双棱镜,问选用顶角多大的双棱镜可得到间距为0.05mm 的条纹。

4、在洛埃镜干涉实验中,光源S1到观察屏的垂直距离为1.5m,光源到洛埃镜的垂直距离为2mm。

洛埃镜长为40cm,置于光源和屏的中央。

(1)确定屏上看见条纹的区域大小;(2)若波长为500nm,条纹间距是多少?在屏上可以看见几条条纹?5、在杨氏干涉实验中,准单色光的波长宽度为0.05nm,平均波长为500nm,问在小孔S1处贴上多厚的玻璃片可使P ’点附近的条纹消失?设玻璃的折射率为1.5。

6、在菲涅耳双面镜的夹角为1’,双面镜交线到光源和屏的距离分别为10cm 和1m 。

设光源发出的光波波长为550nm ,试决定光源的临界宽度和许可宽度。

7、太阳对地球表面的张角约为0.0093rad ,太阳光的平均波长为550nm ,试计算地球表面的相干面积。

8、在平行平板干涉装置中,平板置于空气中,其折射率为1.5,观察望远镜的轴与平板垂直。

试计算从反射光方向和透射光方向观察到的条纹的可见度。

9、在平行平板干涉装置中,若照明光波的波长为600nm ,平板的厚度为 2mm ,折射率为1.5,其下表面涂上高折射率(1.5)材料。

试问:(1)在反射光方向观察到的干涉圆环条纹的中心是亮斑还是暗斑?(2)由中心向外计算,第10个亮环的半径是多少?(f=P P ’20cm)(3)第10个亮环处的条纹间距是多少?10、检验平行平板厚度均匀性的装置中,D是用来限制平板受照面积的光阑。

光的干涉

光的干涉
光的干涉
光是一种电磁波,是人类以 及各种生物生存不可缺少的最 普通的要素,但对它的规律和 本性的认识经历了漫长的过程。
最早以前很容易观察到的光的规律是光的直 线传播,在机械观的作用下,人们认为光是一些 微粒所组成,光线就是这些“光微粒”的运动路 径。很多人以为牛顿是光的微粒说的创始人和坚 持者,但并没有确凿的证据。实际上牛顿已觉察 到许多光现象可能需要用波动来解释,牛顿环就 是一例,不过它当时未能作出这种解释。他的同 代人惠更斯倒是明确地提出了光是一种波动,但 并没有建立起系统的有说服力的理论。直到进入 19世纪,才由托马斯· 杨和菲涅耳从实验和理论上 建立起一套比较完整的光的波动理论,使人们正 确地认识到光就是一种波动,而光的沿直线前进 只是光的传播过程的特殊情形。
分波面与分振幅
相干光
光程
光程差与相位差
透镜无附加光程差
续上
第二节
17-2
wavefront-splitting interference
17-2
杨氏双缝干涉
单色光杨氏双缝干涉规律
P
θ
θ
d<<D D x<<D
1. 光程差
x D tg
r r2 r1
tg sin
(k=0, 1, 2,)

2


光强最大对应明条纹中心位置(明纹条件),光强最 小对应暗条纹中心位置(暗纹条件),在此两者之间 就是我们所看到的不是最明亮也不是最暗的条纹。
杨氏双缝干涉规律
明纹条件: d sin k 或者 =2k
(k=0, 1, 2, )
k 代表明条 纹的级次
暗纹条件:
d sin (2k 1)

光的干涉知识点总结简短

光的干涉知识点总结简短

光的干涉知识点总结简短
光的波动性质
首先,我们需要了解光的波动性质。

光是一种电磁波,它可以在空间中传播。

光波的波长和频率决定了光的颜色和能量。

光波还具有干涉、衍射、偏振等现象,这些都体现了光的波动特性。

干涉的基本原理
在光学中,干涉是指两个或多个光波相遇时产生的相互作用。

干涉的基本原理是光波相遇时会发生叠加,这种叠加会导致光波的强度发生变化。

当两个波峰相遇时,它们会增强彼此的幅度,形成亮条纹;当波峰和波谷相遇时,它们会相互抵消,形成暗条纹。

干涉的分类
根据光波相遇的方式,干涉可以分为两种基本类型:相干干涉和非相干干涉。

相干干涉是指两个光源发出的光波具有一定的相位关系,这种干涉可以产生清晰的干涉条纹。

非相干干涉是指两个光源发出的光波没有固定的相位关系,这种干涉会产生随机的干涉条纹。

干涉的条件
要产生明显的干涉现象,需要满足一定的条件。

首先,光源必须是单色光源,即具有固定的波长和频率;其次,干涉光程差必须小于光波的波长,这样才能产生明显的干涉条纹;最后,光波必须是相干的,即具有固定的相位关系。

干涉的应用
光的干涉在科学研究和工程应用中有着广泛的应用。

例如,在光学仪器中常常利用干涉现象来测量物体的形状和表面质量;在光学显微镜中,干涉技术可以提高显微镜的分辨率;在激光技术中,干涉技术可以用来调节激光的相位和频率。

总结
光的干涉是光学领域中的重要现象,它可以用来研究光波的波动性质和相互作用。

在本文中,我们简要总结了光的波动性质、干涉的基本原理、干涉的分类、干涉的条件和干涉的应用。

希望本文可以帮助大家更好地理解光的干涉现象。

物理 光的干涉

物理 光的干涉

5
杨氏双缝实验, 例杨氏双缝实验,λ=500nm ,在一光路中插入玻 璃片( 点变为4级明纹中心 璃片(n=1.5)后O点变为 级明纹中心。 求:玻 ) 点变为 级明纹中心。 璃片厚度。 璃片厚度。 光程差改变 δ = ne e 解:
s1
s2
(e, n)
x
O
条纹移动 N=4
δ = Nλ 4λ
e= n 1
δ = 2en + 2 kλ = λ
(2k + 1) 2
λ
o
k = 1,2,3 L (明环) 明
暗环) 暗环 k = 0,1,2 L (暗环
R
Q r 2 = R2 ( R e )2 = 2 Re e2 ≈ 2 Re
r ∴ e = 2R
2
λ
r
A
a b
e
λ
∴r =
(2k 1)Rλ 2n kRλ
n
(明纹 明纹) k = 1,2,3L明纹 暗纹) 暗纹 k = 0,1,2L(暗纹
n1 n1
iDBn2AγCe7
薄膜干涉的一般公式 a .b两光线的光程差为: 两光线的光程差为:
δ = n2 ( AB + BC ) n1 AD +( )
e 其中: 其中 AB = BC = cosγ
λ
L
S
2
a
n1 n2 n1
AD = AC sini = 2etgγ sini
i iD b A γγC
劈尖干涉是等厚干涉 劈尖干涉是等厚干涉 等厚
棱边 e = 0
2
为暗纹
15
3.相邻暗(明)纹间的厚度差: 3.相邻暗( 纹间的厚度差: 相邻暗
e = ek+1 ek = (k +1)

物理知识点光的干涉

物理知识点光的干涉

物理知识点光的干涉光的干涉是光学中的重要概念之一,它揭示了光波的波动性质及其产生的干涉现象。

本文将依据物理知识点,对光的干涉进行详细论述。

一、干涉现象的基本原理光的干涉是指两个或多个光波相互叠加所形成的干涉图案。

干涉现象的产生需要满足两个基本条件:光源是相干光源,波长相同。

当光波经过不同路径传播后再次相遇时,它们会相互干涉,产生增强或减弱的干涉效应。

二、双缝干涉1. 双缝干涉的实验装置双缝干涉实验一般采用光源、狭缝、透镜和屏幕等组成。

光源发出的光经狭缝后,形成一个光源光斑,通过透镜聚焦后照射到屏幕上。

2. 双缝干涉的光程差当光波通过两个缝隙后再次相遇时,其传播路径的长度差称为光程差。

光的干涉现象取决于光程差的大小。

3. 双缝干涉的干涉图案双缝干涉的干涉图案呈现出一系列明暗相间的条纹,称为干涉条纹。

该条纹呈现出一定的规律性,可通过干涉公式和级差条件进行分析和计算。

三、杨氏双缝干涉实验1. 杨氏双缝干涉实验的装置杨氏双缝干涉实验是一种经典的干涉实验方法。

实验装置由一束狭缝光源、双缝、透镜和幕板等组成。

2. 杨氏双缝干涉的干涉条纹杨氏干涉条纹呈现出一系列黑白相间的圆环或直线条纹。

根据实验条件和光波的干涉效应,可以通过杨氏双缝干涉公式进行计算。

四、单缝干涉1. 单缝干涉的实验装置单缝干涉实验通常采用单缝光源、单缝和屏幕等组成。

单缝光源发出的光波通过单缝后形成一个光斑,映射到屏幕上形成单缝干涉图样。

2. 单缝干涉的干涉条纹单缝干涉的干涉条纹呈现出明暗相间且中央最亮的中央极大和两侧较暗的暗条纹分布。

单缝干涉的干涉效应可由单缝干涉公式和级差条件加以说明。

五、干涉现象的应用光的干涉在科学研究和实际应用中有着重要的意义。

1. 干涉仪干涉仪是一种基于光的干涉原理设计的精密仪器,常用于光学测量、干涉剖析和光学检测等领域。

2. 光纤通信光纤通信是一种基于光的传输技术。

光波经光纤传输时,可能会产生干涉现象,影响信号传输质量,因此需要进行干涉相关的优化和控制。

光的干涉-精品文档

光的干涉-精品文档

02
光的干涉条件
相干光条件
同一波源
01
干涉光必须来自同一波源,这样波源的相干性会影响干涉条纹
的质量。
频率相同
02
来自同一波源的光线必须具有相同的频率,否则它们将无法产
生干涉。
相位差恒定
03
来自同一波源的光线必须具有恒定的相位差,这意味着它们的
振动方向必须相同。
干涉条纹条件
稳定的干涉条纹
为了获得清晰的干涉条纹,需要 确保光线经过的路程差是恒定的 ,这意味着需要使用稳定的实验 装置和精确的控制光源。
相间的干涉条纹。
应用
分振幅干涉在光学实验、光学测 量等领域也有着广泛的应用,如 测量光学表面的形状、光学元件
的精度等。
迈克尔逊干涉仪
01
定义
迈克尔逊干涉仪是一种利用分振幅干涉原理测量光学表面形状和光学元
件精度的干涉仪。
02 03
原理
迈克尔逊干涉仪通过将一束光波分成两束相干光波,分别经过反射镜后 再次相遇,形成明暗相间的干涉条纹。通过测量干涉条纹的变化,可以 推算出光学表面的形状和光学元件的精度。
光线的平行性
为了使干涉条纹更加明显,需要确 保光线具有平行性,这可以通过使 用聚焦透镜或高亮度的光源来实现 。
03
光的干涉类型
分波面干涉
定义
应用
分波面干涉是指两束或多束相干光波 在空间某一点叠加时,形成明暗相间 的干涉条纹的现象。
分波面干涉在光学实验、光学测量等 领域有着广泛的应用,如测量光学表 面的形状、光学元件的精度等。
全息干涉实验
实验原理
全息干涉实验是一种利用全息技术实现的干涉实验,通过 将一束光分成两束相干光波,然后在全息底片上记录它们 之间的干涉图样。

大学物理光的干涉

大学物理光的干涉

干涉在光谱分析中的应用
干涉滤光片
利用光的干涉原理,设计出具有特定光谱透过率 的滤光片,用于光谱分析和图像增强。
傅里叶变换光谱仪
通过干涉原理,将复杂的光谱分解为简单的干涉 图样,便于分析物质的成分和结构。
原子干涉仪
利用原子在空间中的干涉现象,测量原子波长和 原子能级,用于原子结构和量子力学的研究。
干涉在全息摄影中的应用
大学物理光的干涉
目录
CONTENTS
• 光的干涉基本理论 • 干涉现象的实验验证 • 光的干涉的应用 • 光的干涉的深入研究
01 光的干涉基本理论
CHAPTER
光的波动性
01
光的波动性描述了光在空间中传播的方式,类似于水波在液体 中的传播。
02
光的波动性表现为光在传播过程中产生的振动和波动,这些振
动和波动具有特定的频率和波长。
光的波动性是理解光的干涉、衍射等光学现象的基础。
03
波的干涉
波的干涉是指两个或多个波在空间中相遇时,它们相互叠加产生新的波动现象。
当两个波的相位相同,即它们的振动方向一致时,它们会产生相长干涉,导致波峰 叠加和波谷叠加。
当两个波的相位相反,即它们的振动方向相反时,它们会产生相消干涉,导致波峰 抵消和波谷抵消。
量子通信、量子计算等领域。
03
量子纠缠的实验验证
科学家们通过实验验证了光子纠缠现象的存在,如著02
03
光的相干性
光的偏振
干涉现象的产生是由于两束光的 波前相干,即它们的相位差恒定。
光波的电场和磁场在垂直于传播 方向上的振动方向称为光的偏振 态。
光子纠缠现象
01
光子纠缠
当两个或多个光子相互作用后,它们的状态变得相互关联,即一个光子

物理光学-第2章 光的干涉

物理光学-第2章 光的干涉


m = 0,1,2, … 明条纹 ,半波长的偶数倍 m = 0,1,2, …暗条纹,半波长的奇数倍
λ
6、观察等倾干涉的实验装置 、
23
7、透射光的干涉: 、透射光的干涉:
对于同一厚度的薄膜, 对于同一厚度的薄膜,在某一方向观 察到某一波长对应反射光相干相长, 察到某一波长对应反射光相干相长, 则该波长在对应方向的透射光一定相 干相消。因为要满足能量守恒。 干相消。因为要满足能量守恒。 增透膜、增反膜用在光学仪器的镜头上, 增透膜、增反膜用在光学仪器的镜头上,就 是根据这个道理。 是根据这个道理。
E * = ae i1 e iω1t + be i 2 e iω 2t
= I 1 + I 2 + 2a bcos[(ω1 ω 2 )t + δ ]
I = I1 + I 2 + a bcosδ
6
2.1 光波的叠加
讨论-两个光波就能产生干涉的条件: I = I1 + I 2 + a b cosδ ⑴两个光波的频率相同; ⑵位相差不随时间变化,或者位相差随时间的改变 量远小于毫弧度(rad); ⑶两个光波的偏振状态不正交。
x = x m +1 x m =
λd 0
D
I = I 1 + I 2 + 2 I 1 I 2 cos δ
双缝干涉条纹是与双缝平行的一组明暗相间彼 此等间距的直条纹,上下对称。 此等间距的直条纹,上下对称。
15
六、光强分布
I = I1 + I 2 ± 2 I1 I 2 cos δ
I1 = I 2
I = 4 I1 cos 2 (δ 2)
12
三、双缝干涉的光程差

光的干涉知识点

光的干涉知识点

光的干涉是光学中的一个重要现象,它描述了两个或多个光波在空间中相遇时相互叠加,形成新的光强分布的现象。

以下是一些关于光的干涉的基本知识点:
1. 相干性:要产生光的干涉现象,入射到同一区域的光波必须满足相干条件,即它们的振动方向一致、频率相同(或频率差恒定),且相位差稳定或可预测。

2. 分波前干涉与分振幅干涉:
- 分波前干涉:如杨氏双缝干涉实验,光源通过两个非常接近的小缝隙后,产生的两个子波源发出的光波在空间某点相遇,由于路程差引起相位差,从而形成明暗相间的干涉条纹。

- 分振幅干涉:例如薄膜干涉,光在通过厚度不均匀的薄膜前后两次反射形成的两束相干光相遇干涉,也会形成明暗相间的干涉条纹。

3. 相长干涉与相消干涉:
- 相长干涉:当两束相干光波在同一点的相位差为整数倍的波长时,它们的振幅相加,合振幅最大,对应的地方会出现亮纹(强度最大)。

- 相消干涉:当两束相干光波在同一点的相位差为半整数
倍的波长时,它们的振幅互相抵消,合振幅最小,对应的地方会出现暗纹(强度几乎为零)。

4. 迈克尔逊干涉仪:是一种精密测量光程差和进行精密干涉测量的重要仪器,可以观察到极其微小的变化所引起的干涉条纹移动。

5. 等厚干涉与等倾干涉:菲涅耳双棱镜干涉属于等倾干涉,而牛顿环实验则属于等厚干涉。

6. 全息照相:利用光的干涉原理记录物体光波的全部信息,包括振幅和相位,能够再现立体图像,是干涉技术的重要应用之一。

以上只是光的干涉部分基础知识,其理论和应用广泛深入于物理学、光学工程、计量学、激光技术等领域。

大学物理光的干涉详解(二)

大学物理光的干涉详解(二)

大学物理光的干涉详解(二)引言:光的干涉是光学中一种重要的现象,它在许多领域都有广泛的应用。

本文将对大学物理光的干涉进行详细的解析,以帮助读者更好地理解和应用光的干涉现象。

正文:一、双缝干涉1. 构造双缝干涉实验装置的基本原理2. 双缝干涉的条件和特点3. 双缝干涉的干涉条纹及其解释4. 双缝干涉的应用:衍射光栅的原理和工作方式5. 双缝干涉实验的注意事项与常见误差分析二、单缝干涉1. 单缝干涉实验的基本原理2. 单缝干涉的条件和特点3. 单缝干涉的干涉条纹及其解释4. 单缝干涉的应用:干涉测量与像差的消除5. 单缝干涉实验的注意事项与常见误差分析三、牛顿环干涉1. 牛顿环干涉实验的基本原理2. 牛顿环干涉的条件和特点3. 牛顿环干涉的干涉条纹及其解释4. 牛顿环干涉的应用:薄膜的测量与分析5. 牛顿环干涉实验的注意事项与常见误差分析四、薄膜干涉1. 薄膜干涉实验的基本原理2. 薄膜干涉的条件和特点3. 薄膜干涉的干涉条纹及其解释4. 薄膜干涉的应用:反射镜、透射镜和干涉滤光片的工作原理5. 薄膜干涉实验的注意事项与常见误差分析五、光栅干涉1. 光栅干涉实验的基本原理2. 光栅干涉的条件和特点3. 光栅干涉的干涉条纹及其解释4. 光栅干涉的应用:光谱仪的工作原理与光谱分析5. 光栅干涉实验的注意事项与常见误差分析总结:通过对大学物理光的干涉的详细解析,我们深入理解了双缝干涉、单缝干涉、牛顿环干涉、薄膜干涉和光栅干涉的原理、特点、干涉条纹和应用。

这些知识对于我们理解光的行为、进行精确测量和应用于实际中都具有重要意义。

在进行干涉实验时,我们需要注意实验装置的搭建和调整,以及可能出现的误差来源,以确保准确的实验结果。

《大学物理》-光的干涉

《大学物理》-光的干涉
第22章
光的干涉
针孔的衍射
二、光的衍射现象的分类
单缝衍射
不同波长光的单缝衍射条纹照片
白光, a = 0.4 mm
方孔衍射
等厚干涉
双缝干涉
增透膜
网格衍射
一、光的本性
1、微粒说与波动说之争
牛顿的微粒说: 光是由光源发出的微粒流。
惠更斯的波动说: 光是一种波动。
2、 光的电磁本性
夹角变小,条纹变宽, 条纹向右移动
夹角变小,条纹变宽, 条纹向右移动
夹角变小,条纹变宽, 条纹向右移动
夹角变小,条纹变宽, 条纹向右移动
夹角变小,条纹变宽, 条纹向右移动
夹角变小,条纹变宽, 条纹向右移动
夹角变小,条纹变宽, 条纹向右移动
夹角变小,条纹变宽, 条纹向右移动
夹角变小,条纹变宽, 条纹向右移动
解: P 点为七级明纹位置
r2 r1 7
插入云母后,P点为零级明纹
r2 r1 d nd 0
d r1
s1
r2
s2
P 0
7 dn 1
d 7 7 55001010 6.6 106 m
n 1 1.58 1
三 薄膜干涉
1 等倾干涉
一、倾斜入射*
光程差:
n2 ( AB BC ) n1 AD n1
: :
c : 2
(b c)
(a d
2
b) :a
x1 x2
0.495cm 10mm
4.95mm
明纹的位置 d sin k
2
s1
s 2*
a
Mb
d xk k
abc 2
K=3, K=4, K=5,
x3=5.05mm x4=7.07mm x5=9.09mm

光的干涉知识点总结

光的干涉知识点总结

第二章 光的干涉 知识点总结2.1.1 光的干涉现象两束(或多束)光在相遇的区域内产生相干叠加,各点的光强不同于各光波单独作用所产生的 光强之和,形成稳定的明暗交替或彩色条纹的现象 ,称为光的干涉现象。

2.1.2 干涉原理注:波的叠加原理和独立性原理成立于线性介质中 ,本书主要讨论的就是线性介质中的情况 . (1)光波的独立传播原理当两列波或多列波在同一波场中传播时, 每一列波的传播方式都不因其他波的存在而受到影 响,每列波仍然保持原有的特性(频率、波长、振动方向、传播方向等) (2)光波的叠加原理在两列或多列波的交叠区域, 波场中某点的振动等于各个波单独存在时在该点所产生振动之 和。

波叠加例子用到的数学技巧: (1)(2)注: 叠加结果为光波复振幅的矢量和,而非强度和。

分为相干叠加(叠加场的光强不等于参与叠加的波的强度和 )和非相干叠加(叠加场的光强等 于参与叠加的波的强度和). 2.1.3 波叠加的相干条件I (r ) = (E 1 + E 2 ) . (E 1 + E 2 ) 2= I 1 (r ) + I 2 (r ) + 2 E 1 . E 2干涉项: 2 E 1 . E2= E 10 . E 20 {cos(k 1 + k 2 ) . r + (Q 20 +Q 10 ) 一 (O 2 + O 1 )t +相干条件:E 10 . E 20 士 0 (干涉项不为零)O 2 = O 1 (为了获得稳定的叠加分布)Q 20 一 Q 10 = 常数 (为了使干涉场强不随时间变化)2.1.4 干涉场的衬比度 1.两束平行光的干涉场(学会推导) (1)两束平行光的干涉场cos(k 2 一 k 1 ) . r + (Q 20 一 Q 10 ) 一 (O 2 一 O 1 )t }干涉场强分布:I (x , y ) = (U 1 (x , y ) +U 2 (x , y ))(U 1 (x , y ) +U 2 (x , y ))*= I 1 + I 2 + 2 I 1I 2 cos 编Q1(,x x , y y )-k A 1(i k n s i 11p 1s i 0n ) 92x (x +(,y 00=-2i )(-k sin92x +p 20)亮度最大值处: 亮度最小值处: 条纹间距公式空间频率:(2)定义衬比度 Y = (I M - I m ) (I M + I m ) 以参与相干叠加的两个光场参数表示:2 I I I + I 衬比度的物理意义 1.光强起伏I(r 一) = I 0 (1 + Y cos Ap(r 一)2.相干度Y = 1 完全相干Y = 0 完全非相干0 < Y < 1 部分相干ƒ2AA=2.2 分波前干涉2.2.1 普通光源实现相干叠加的方法 (1)普通光源特性• 发光断续性 • 相位无序性• 各点源发光的独立性根源:微观上持续发光时间 τ 0 有限。

物理 光的干涉

物理 光的干涉

6
获得相干光的方法 分波阵面法 在点光源发出的光
波的波阵面上分割 出两部分次光源
S1 S S2
分振幅法
把面光源射到透明薄膜上的光束分离为两部分
I入
I反
I 入 = I反 + I 透
I透
反射光,折射光能量不同, 反射光,折射光能量不同,且 能量与振幅有关——分振幅 能量与振幅有关 分振幅
7
三、杨氏双缝干涉 1 实验装置和干涉图样
波粒二象性
几何光学 光学 物理光学
波动光学 量子光学
干 涉 现 象
光的干涉 光的衍射 光的偏振
两列相干波在某一区域相遇时, 两列相干波在某一区域相遇时,使某些地方的振动 始终加强,使另一些地方的振动始终减弱, 始终加强,使另一些地方的振动始终减弱,结果使 波的强度形成稳定分布
2
11光的干涉 光的干涉
e= n1
a
c
b
F
A、B、C 的位相 相同, 点会聚, 相同,在F点会聚, 点会聚 互相加强
A、B、C 各点到 点的光程都相等。 各点到F点的光程都相等 点的光程都相等。 解 释 AaF比BbF经过的几何路程长,但BbF在透镜中 比 经过的几何路程长, 经过的几何路程长 在透镜中 经过的路程比AaF长,透镜折射率大于 ,折算 经过的路程比 长 透镜折射率大于1, 成光程, AaF的光程与 成光程, 的光程与BbF的光程相等。 的光程相等。 的光程与 的光程相等
S1

d
S
S2
D x = λ d
D
13
2、菲涅耳双面镜实验. 、菲涅耳双面镜实验 S1、S2为两个虚光源S
光栏
M1
S1
x
C
M2

初中物理光学部分光的干涉和衍射现象的原理及应用

初中物理光学部分光的干涉和衍射现象的原理及应用

初中物理光学部分光的干涉和衍射现象的原理及应用光的干涉和衍射是光学中重要的现象之一,它们揭示了光的波动性质,并且在现实生活中有许多应用。

本文将介绍光的干涉和衍射现象的原理以及一些常见的应用。

1. 光的干涉原理干涉是指两个或多个光波相互作用时产生的光强叠加现象。

光的干涉可以分为两类:相长干涉和相消干涉。

(1)相长干涉:当两束光的波峰与波峰相遇,或者波谷与波谷相遇时,光的干涉会增强,形成明纹。

(2)相消干涉:当两束光的波峰与波谷相遇时,光的干涉会相互抵消,形成暗纹。

2. 光的衍射原理光的衍射是指光通过一个小孔或者绕过障碍物时发生偏离直线传播的现象。

光的衍射在日常生活中经常会遇到,比如光经过窗户的缝隙后产生的条纹。

光的衍射可以解释为光波在传播过程中受到障碍物或小孔的影响,光波在障碍物或小孔边缘会发生弯曲,从而使得光线被扩散。

3. 干涉和衍射现象的应用干涉和衍射现象在生活和科学研究中有广泛的应用。

(1)干涉仪器:光的干涉现象可以用来制造干涉仪器,如Michelson干涉仪、Young双缝干涉仪等。

这些干涉仪器可以用来测量光的波长、薄膜的厚度等物理量。

(2)光栅:光栅是一种具有大量平行排列的狭缝或透明条纹的光学元件。

通过光栅的衍射现象,我们可以分析光的频谱成分,广泛应用于光谱学、光通信等领域。

(3)应用于减薄膜:利用光的反射和透射的干涉现象,可以检测和测量材料的薄膜厚度,广泛应用于光学薄膜领域。

(4)显微镜:光的干涉和衍射现象在显微镜中起到重要作用,它们可以提高显微镜的分辨率,使得更细微的结构能够被观察到。

(5)光波导技术:光波导器件利用光的干涉和衍射现象,可以在光纤中进行光的传输和调制,广泛应用于通信、激光器等光电子学领域。

综上所述,光的干涉和衍射现象是光学的基本原理之一,揭示了光的波动性质。

这些现象的应用广泛,涉及到物理测量、激光技术、通信等各个领域。

对于初中物理学习者来说,理解和掌握光的干涉和衍射原理,有助于培养兴趣和提高学习成绩。

大学物理-光的干涉和衍射

大学物理-光的干涉和衍射

(k = 0,1,2,......) 1 ± (k + )λ 暗纹 2
± kλ
明纹
12
r1
s1 s
x p
K=2 K=1 K=0 K=-1
x
*
d s2
r2
L
o
图20-4
K=-2
建立坐标系,将条纹位置用坐标x来表达最方便. 来表达最方便. 建立坐标系,将条纹位置用坐标 来表达最方便 r12=L2+(x-d/2)2, r22=L2+(x+d/2)2 考虑到Ld, r1+r2≈2L,于是明暗纹条件可写为 考虑到 于是明暗纹条件可写为
例题20-1 双缝间的距离 双缝间的距离d=0.25mm,双缝到屏幕的 例题 双缝到屏幕的 距离L=50cm,用波长 用波长4000~7000的白光照射双缝, 的白光照射双缝, 距离 用波长 的白光照射双缝 求第2级明纹彩色带 级明纹彩色带(第 级光谱 的宽度. 级光谱)的宽度 求第 级明纹彩色带 第2级光谱 的宽度. 所求第2级明纹彩色带 级明纹彩色带(光 解 所求第 级明纹彩色带 光 k=2 x 的宽度实际上是7000的第 级 的第2级 谱)的宽度实际上是 的宽度实际上是 的第 亮纹和4000的的第 级亮纹之间 的的第2级亮纹之间 亮纹和 的的第 k=1 的距离d. 的距离 . k=0 Lλ Lλ 明纹坐标为 x = k k=-1 d 代入:d=0.25mm, L=500mm, λ2=7×10-4mm , 代入: × 得 λ1= 4 ×10-4mm得: x =1.2mm
光程差
δ=
± kλ
1 ± (k + )λ 2
明纹 暗纹
(k = 0,1,2,......)
9
4.薄透镜不产生附加程差

大学物理 光的干涉2 (薄膜干涉)

大学物理  光的干涉2 (薄膜干涉)

照像机对此波长反射小,可在照像机镜头上镀一层氟化镁MgF2 薄膜,已知氟化镁的折射率 n=1.38 ,玻璃的折射率n=1.55.
求:氟化镁薄膜的最小厚度. 解:两条反射光干涉减弱条件
r1
r2
2nd (2k 1) 2
增透膜的最小厚度
k 1,2,
d
550 d 100nm 4n 4 1.38
光线垂直入射
i 0
入射光
反射光1 反射光2
d
2k 2 2n2 d 2 (2k 1 ) 2
k 1,2, 相长干涉 k 1,2, 相消干涉
2
2k k 1,2, 相长干涉 2 2 2d n2 n12 sin 2 i 2 (2k 1 ) k 1,2, 相消干涉 2
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
例1(教材P19
例22.5)为测量一细金属丝的直径d,按
图办法形成空气劈尖,用单色光照射形成等厚干涉条纹, 用读数显微镜测出干涉明条纹的间距,就可以算出d。
已知单色光波长为589.3 nm,测量结果是:金属丝与劈
解:设空气的折射率为 n1 1.00 油膜和玻璃的折射率分别为 n2 1.30 和 n3 1.50
在油膜上下表面的反射光都有相位突变,所以, 0
反射光光程差干涉极小时,应有:
1 2en2 2k 1 k 2 2
7

设 1 500 nm 对应 k 级干涉极小,

物理光学-第二章(仅)习题

物理光学-第二章(仅)习题

物理光学习题库——光的干涉部分一、选择题1. 下列哪一个干涉现象不属于分振幅干涉?A. 薄膜干涉B.迈克尔逊干涉C.杨氏双缝干涉D.马赫-曾德干涉2. 平行平板的等倾干涉图样定域在A. 无穷远B.平板上界面C.平板下界面D.自由空间3. 在双缝干涉试验中,两条缝的宽度原来是相等的,若其中一缝的宽度略变窄,则A.干涉条纹间距变宽B. 干涉条纹间距变窄C.不再发生干涉现象D. 干涉条纹间距不变,但原来极小处强度不再为04. 在杨氏双缝干涉实验中,相邻亮条纹和相邻暗条纹的间隔与下列的哪一种因素无关?A.光波波长B.屏幕到双缝的距离C. 干涉级次D. 双缝间隔5. 一束波长为λ的单色光从空气中垂直入射到折射率为n的透明薄膜上,要使反射光得到干涉加强,薄膜厚度应为A.λ/4B.λ/4nC. λ/2D. λ/2n6. 在白炽灯入射的牛顿环中,同级圆环中相应于颜色蓝到红的空间位置是A.由里向外B.由外向里C. 不变D. 随机变化7. 一个光学平板玻璃A与待测工件B之间形成空气劈尖,用波长为500nm的单色光垂直照明,看到的反射光干涉条纹弯曲部分的顶点恰好与其右边条纹的直线部分的切线相切,则工件的上表面缺陷是A.不平处为凸起,最大高度为250nmB.不平处为凸起,最大高度为500nmC.不平处为凹槽,最大高度为250nmD. 不平处为凹槽,最大高度为500nm8. 在单色光照明下,轴线对称的杨氏干涉双孔装置中,单孔屏与双孔屏的间距为1m,双孔屏与观察屏的间距为2m,装置满足远场、傍轴近似条件,屏上出现对比度K=0.1的等间隔干涉条纹,现将双孔屏沿横向向上平移1mm,则A. 干涉条纹向下平移2mmB. 干涉条纹向上平移2mmC. 干涉条纹向上平移3mmD. 干涉条纹不移动9. F-P腔内间距h增加时,其自由光谱范围ΔλA. 恒定不变B. 增加C. 下降D. =010. 把一平凸透镜放在平玻璃板上,构成牛顿环装置,当平凸透镜慢慢向上平移时,由反射光形成的牛顿环A. 向中心收缩,条纹间隔不变B. 向中心收缩,环心呈明暗交替变化C. 向外扩张,环心呈明暗交替变化D. 向外扩张,条纹间隔变大11. 在迈克尔逊干涉仪的一条光路中,垂直光线方向放入折射率为n、厚度为h的透明介质片,放入后,两路光束光程差的改变量为A. 2(n-1)hB. 2nhC. nhD. (n-1)h12. 在楔形平板的双光束干涉实验中,下列说法正确的是A. 楔角越小,条纹间隔越宽;B. 楔角一定时,照射波长越长,条纹间隔越宽C. 局部高度变化越大,条纹变形越严重D. 形成的干涉属于分波前干涉13. 若把牛顿环装置(都是用折射率为1.52的玻璃制成的)由空气搬入折射率为1.33的水中,则干涉条纹会A. 不变B. 变密集C.变稀疏D.不确定14. 若想观察到非定域干涉条纹,则应选择A. 单色扩展光源B.单色点光源C.15. 将一金属丝置于两块玻璃平板之间,构成如图所示的结构,当在A点施加一个均匀增加的力F时,下列说法正确的是A.条纹间隔逐渐增大B.条纹数量逐渐变多C.干涉条纹级次D.条纹向级次低的方向移动16. 由A、B两只结构相同的激光器发出的激光具有非常接近的强度、波长及偏振方向,这两束激光A. 相干B.不相干C.可能相干D.无法确定17. 下列干涉现象不属于分振幅干涉的是A. 薄膜干涉B.迈克尔逊干涉C. 马赫-增德尔干涉D.菲涅尔双棱镜干涉18. 有关平行平板的多光束干涉,下列说法正确的是A. 干涉形成的条件是在平板的内表面镀增透膜B.透射场的特点是在全亮的背景上得到极细锐的暗纹C.膜层的反射率越低,透射场的亮纹越细锐D. 透射场亮纹的光强等于入射光强19.镀于玻璃表面的单层增透膜,为了使增透效果好,膜层材料的折射率应该()A.大于玻璃折射率B.等于玻璃折射率C.介于玻璃折射率与空气折射率之间D. 等于空气折射率E. 小于空气折射率二、填空题1. 干涉条纹对比度表达式为,其取值范围是,两列相干简谐波叠加时,两列波的振幅比为1:3时,则干涉条纹对比度为。

《光的干涉》课件

《光的干涉》课件
实验原理:当光波入射到薄膜表面时 ,反射光和透射光会发生干涉,形成
特定的干涉条纹。
实验步骤
1. 制备不同厚度的薄膜样品。
2. 将光源对准薄膜,使光波入射到薄 膜表面。
3. 观察薄膜表面的干涉条纹,分析干 涉现象与薄膜厚度的关系。
迈克尔逊干涉仪
实验目的:利用迈克尔逊干涉仪观察不同波长的光的干 涉现象。 实验步骤
2. 将不同波长的光源依次对准迈克尔逊干涉仪。
实验原理:迈克尔逊干涉仪通过分束器将一束光分为两 束,分别经过反射镜后回到分束器,形成干涉。
1. 调整迈克尔逊干涉仪,确保光路正确。
3. 观察不同波长光的干涉条纹,分析干涉现象与波长 的关系。
04
光的干涉的应用
光学干涉测量技术
干涉仪的基本原理
干涉仪利用光的干涉现象来测量长度、角度、折射率等物理量。干涉仪的精度极高,可以达到纳米级 别。
光的波动性是指光以波的形式传播, 具有振幅、频率和相位等波动特征。
光的干涉是光波动性的具体表现之一 ,当两束或多束相干光波相遇时,它 们会相互叠加产生加强或减弱的现象 。
波的叠加原理
波的叠加原理是物理学中的基本原理之一,当两列波相遇时,它们会相互叠加, 形成新的波形。
在光的干涉中,当两束相干光波相遇时,它们的光程差决定了干涉加强或减弱的 位置。
多功能性
光学干涉技术将向多功能化发展,实现同时进行 多种参数的测量和多维度的信息获取。
光学干涉技术的挑战与机遇
挑战
光学干涉技术面临着测量精度、 稳定性、实时性等方面的挑战, 需要不断改进和完善技术方法。
机遇
随着科技的不断进步和应用需求 的增加,光学干涉技术在科学研 究、工业生产、医疗等领域的应 用前景将更加广阔。

物理光学光的干涉与干涉的条件

物理光学光的干涉与干涉的条件

物理光学光的干涉与干涉的条件光的干涉是指两个或多个波源发出的光波相互叠加而产生的干涉现象。

干涉是光的波动性质的重要体现,它不仅深刻地揭示了光的波动本质,而且在科学研究和技术应用中有着广泛的应用。

在光的干涉过程中,我们需要满足一定的条件才能够观察到干涉现象,本文将重点介绍物理光学光的干涉与干涉的条件。

干涉的条件是什么呢?首先,我们来看一下什么是光的干涉。

光的干涉是指两条或多条光波相遇并叠加形成干涉图样的现象。

当两个光波相遇时,它们的振动方向、频率和相位都会发生改变,从而产生干涉现象。

只有在特定的条件下,干涉现象才会显现出来。

1. 条纹明暗交替的条件光的干涉现象是由于两列光波相遇后产生的,要使干涉现象显著,我们需要满足以下条件:(1) 相干光源:干涉产生的条件之一是光源必须是相干光源。

相干光源是指两列光波的相位关系保持恒定,且频率相同的光波。

例如,激光就是一种相干光源,而太阳光则不是相干光源。

相干光源是观察干涉现象的基础。

(2) 光程差:光程差是指从两个波源出发到达某一点的光波所经过的路径长度差。

若光程差为整数倍的波长(即nλ,n为整数),则两列光波将会同相干地叠加,出现明纹现象。

若光程差为半波长的奇数倍(即(2n-1)λ/2,n为整数),则光波将会发生相消干涉,出现暗纹现象。

2. 干涉条纹的形成当满足光的干涉条件时,我们将会观察到干涉条纹的形成。

干涉条纹是指由波的叠加所形成的一系列明暗相间的条纹。

干涉条纹的形成主要受到以下几个因素的影响:(1) 入射光的频率:入射光的频率决定了波长和振动频率,它们直接影响干涉条纹的形态和间距。

(2) 入射光的角度:入射光的角度决定了光波的光程差,不同的入射角度将产生不同形状的干涉条纹。

(3) 光的波长:光的波长决定了光波的频率和传播速度,直接影响波的相位差和干涉条纹的间距。

总结起来,物理光学光的干涉与干涉的条件包括相干光源、合适的光程差以及入射光的频率、角度和波长等因素。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

两束光干涉的光强公式
E1 acos(1t 1 ) aei1 ei1t
E2 b cos(2t 2 ) bei2 ei2t
I E E *
E E1 E2
ae
i1
e
i1t
be
i 2
e
i 2t
E* aei1 e i1t bei2 e i2t
3
2.1 光波的叠加
2.1.2 两束光干涉的条件
两束光的干涉现象
1801年,杨氏巧妙地设计了一种把单个波阵面分解为两个 波阵面以锁定两个光源之间的相位差的方法来研究光的干涉现 象。杨氏用叠加原理解释了干涉现象,在历史上第一次测定了 光的波长,为光的波动学说的确立奠定了基础。
4
2.1 光波的叠加

x max m
, m 0,1,2
I I1 I 2 2 I1I 2
(2)暗条纹
1 (m ) 0 , m 0,1,2 2
K0
2
1 1 (m )0 (m ) 2 0 2 2
I min I1 I 2 2 I1 I 2

2 1
( 02 01 ) ( 22 11 )
同一光源的两个不同部分发出的光也是不相干

1

0
2 I 1 I 2 cos dt 0
8

产生干涉的要求: ①两光波频率相同; ②两光波在相遇处振动方向相同; ③两光波在相遇处有固定不变的相位差。 获得相干光源的办法 就是把一个波列的光分成一束或几束波,然后再令 其重合而产生稳定的干涉效应。
干涉、衍射、偏振
• 光的量子理论——粒子性:
黑体辐射、光电效应、康普顿效应
2
2.1 光波的叠加


2.1.1 概述
两束光的干涉现象 肥皂泡和水面上的油膜所呈现出的美丽色彩就 是干 涉的结果。再如,把两片玻璃擦干净以后 再贴 在一起并压紧,有的地方就会出现不规则 的彩 色条纹,也是光波干涉的结果。 光波的特征参数 振幅; 相位; 偏振; 波长
11
三、双缝干涉的光程差
1 0
2
一般情况,r2 >> d n(S 0 S1 S1 P) n(S 0 S 2 S 2 P) 2 1
0 n(S0 S1 S 1 P) n(S0 S 2 S 2 P)
S 0 S1 S 0 S 2
I 4I1 cos2 ( 2)
6
0,2 ,4
,3 ,5
I1 I 2
2.1.3 获得相干光的方法
等光强双光束干涉的光强分布

nl
1 k0
k0
7
坐标↔光程差↔位相差↔光程↔光强
2.1.3 获得相干光的方法
两个光源发出的光波为什么不相干
I E E * a 2 b 2 2a bcos(1 2 )t
I1 I 2 2a bcos(1 2 )t
I I1 I 2 a bcos
5
2.1 光波的叠加

讨论-两个光波就能产生干涉的条件: I I1 I 2 a bcos
13
k0 D nx (2m 1) d0
x min
d0 (2m 1) (m 0,1,2) D 2
五、干涉条纹的特点
明条纹 暗条纹
x max m
x min
d 0
D
x
I
, m 0,1,2
d0 (2m 1) (m 0,1,2) D 2
条纹间距
x xm1 xm
d 0
D
I I1 I 2 2 I1 I 2 cos
生理光学:三原色原理
材料力学:杨氏弹性模量
考古学 :破译古埃及石碑上的文字
10
二、杨氏双逢干涉的实验装置
1801年,杨氏巧妙地设计了一种把单个波阵面分解为两个 波阵面以锁定两个光源之间的相位差的方法来研究光的干涉现 象。杨氏用叠加原理解释了干涉现象,在历史上第一次测定了 光的波长,为光的波动学说的确立奠定了基础。
⑴两个光波的频率相同; ⑵位相差不随时间变化,或者位相差随时间的改变 量远小于毫弧度(rad); ⑶两个光波的偏振状态不正交。
I I1 I 2 2 I1 I 2 cos


1 2
I max I1 I 2 2 I1 I 2
I min I1 I 2 2 I1 I 2
第2章 光的干涉
一、光学的研究内容
二、光的两种学说


产生干涉的条件; 等倾干涉和等厚干涉; 光场的相干性; 多光束干涉的特点及其应用
牛顿的微粒说
光是由发光物体发出的遵循力学规律 的粒子流。
惠更斯的波动说
光是机械波,在弹性介质“以 太”中传播。
1
第2章 光的干涉
三、光的本性
• 光的电磁理论——波动性:
xD n d0
0

四、干涉条纹的位置
I I1 I 2 2 I1 I 2 cos
D I I1 I 2 2 I1 I 2 cos(R nx) d0
x I
(1)明条纹
d 0
DLeabharlann k0 D k 0 nxmax 0,2 ,4 , 2m d0
D nx d0
n(S1 P S 2 P)
0
n( S 0 S1 S1 P)
2 0
2
0
n( S 0 S 2 S 2 P )
d 2 d1

2
2 xD d1 d 2
2 xD d0
12
d 0 x, d 0 D
n( d 2 d 1 )

2.1.3 获得相干光的方法
分波阵面法 分振幅法 两束满足相干条件的光称为相干光 相应的光源称为相干光源
9

相干光与相干光源

2.2 分波面的双光束干涉
2.2.1双缝干涉
一、杨氏简介
托马斯· 杨(Thomas Young)
英国物理学家、医生和考古学家,光的 波动说的奠基人之一
波动光学:杨氏双缝干涉实验
相关文档
最新文档