勾股定理的逆定理(1)ppt课件
合集下载
勾股定理的逆定理-完整版课件
一、探究勾股定理的逆定理:
2、实验探究: (1)画一画:下列各组数中的两数平方和等于第三数的平方,分别以这些数 为边长画出三角形(单位:cm),它们是直角三角形吗? ① 2.5,6,6.5; ② 6,8,10. (2)量一量:用量角器分别测量上述各三角形的最大角的度数. (3)想一想:请判断这些三角形的形状,并提出猜想.
PQ=16×1.5=24,PR=12×1.5=18,QR=30. ∵24²+18²=30², 即PQ²+PR²=QR², ∴△PQR为直角三角形,即∠QPR=90°. ∵∠1=45°, ∴∠2=45°,即“海天”号沿西北方向航行.
练习4、如图,如图,南北向MN为我国领域,即MN以西为我国领海,以东 为公海.上午9时50分,我反走私A艇发现正东方向有一走私艇C以13海里/时的 速度偷偷向我领海开来,便立即通知正在MN线上巡逻的我国反走私艇B.已知 A、C两艇的距离是13海里,A、B两艇的距离是5海里;反走私艇B测得离C艇 的距离是12海里.若走私艇C的速度不变,最早会在什么时间进入我国领海?
2
2
∴BE= AB•BC60.
B
AC 13
.
在Rt△BCE中,由勾股定理得,
N
∴CE= BC 2BE 2 12 2(60 )2144
13 13
∴最早进入时间≈0.85小时=51分钟.
.
9时50分+51分=10时41分.
答:走私艇最早在10时41分进入我国领海.
五、课堂小结:
1、利用勾股定理的逆定理判定是否为直角三角形的一般步骤: ①确定最大边长c; ②计算a2+b2和c2的值, 若a2+b2=c2,则此三角形是直角三角形; 若a2+b2<c2,则此三角形是钝角三角形; 若a2+b2>c2,则此三角形是锐角三角形. 2、互逆命题表明两个命题在形式上的关系,将一个命题的题设和结论互换 即可得到它的逆命题,当原命题成立时,它的逆命题不一定成立,即互逆 的两个命题不一定同真或同假. 3、已知一三角形的三边的长度时,首先应对该三角形进行判断,判断最长 边的平方是否等于其余两边的平方和,如何满足这一条件则此三角形为直 角三角形.
勾股定理的逆定理ppt课件
数学 八年级上册 SK
第
勾股定理
3
章
3.2 勾股定理的逆定理
-
3.2 勾股定理的逆定理
探究与应用
探 活动1 探索并应用勾股定理的逆定理,体会“数”与
究
“形”的内在联系
与
应 [思考探究]
用 1.写出“直角三角形两条直角边的平方和等于斜边的平方”
的逆命题.
解:如果一个三角形的两条边的平方和等于第三边的平方,那么
是钝角三角形;如果a2+b2>c2,那么这个三角形是锐角三角形.
探 究
[概括新知]
与 勾股定理的逆定理:如果三角形的三边长分别为a,b,c,且a2+
应
用 b2=c2,那么这个三角形是直角三角形.
探 归纳 勾股定理与勾股定理的逆定理的联系与区别
究
与
勾股定理
勾股定理的逆定理
应 用
在Rt△ABC中,∠C=90°, 在△ABC中,BC=a,AC=b, 条件
例2 C [解析] A项,82+52≠172,不能构成直角三角形,故不 是勾股数,不符合题意; B项,1.5,2,2.5不都是正整数,故不是勾股数,不符合题意; C项,52+122=132,且5,12,13都是正整数,故是勾股数,符合题 意; D项,32+42≠62,不能构成直角三角形,故不是勾股数,不符合 题意. 故选C.
根据勾股定理,可得A'B'2=a2+b2.
因为AB2=a2+b2,
所以A'B'2=AB2,所以A'B'=AB.
根据“SSS”,可证△ABC≌△A'B'C'.
于是,∠C=∠C'=90°,
第
勾股定理
3
章
3.2 勾股定理的逆定理
-
3.2 勾股定理的逆定理
探究与应用
探 活动1 探索并应用勾股定理的逆定理,体会“数”与
究
“形”的内在联系
与
应 [思考探究]
用 1.写出“直角三角形两条直角边的平方和等于斜边的平方”
的逆命题.
解:如果一个三角形的两条边的平方和等于第三边的平方,那么
是钝角三角形;如果a2+b2>c2,那么这个三角形是锐角三角形.
探 究
[概括新知]
与 勾股定理的逆定理:如果三角形的三边长分别为a,b,c,且a2+
应
用 b2=c2,那么这个三角形是直角三角形.
探 归纳 勾股定理与勾股定理的逆定理的联系与区别
究
与
勾股定理
勾股定理的逆定理
应 用
在Rt△ABC中,∠C=90°, 在△ABC中,BC=a,AC=b, 条件
例2 C [解析] A项,82+52≠172,不能构成直角三角形,故不 是勾股数,不符合题意; B项,1.5,2,2.5不都是正整数,故不是勾股数,不符合题意; C项,52+122=132,且5,12,13都是正整数,故是勾股数,符合题 意; D项,32+42≠62,不能构成直角三角形,故不是勾股数,不符合 题意. 故选C.
根据勾股定理,可得A'B'2=a2+b2.
因为AB2=a2+b2,
所以A'B'2=AB2,所以A'B'=AB.
根据“SSS”,可证△ABC≌△A'B'C'.
于是,∠C=∠C'=90°,
勾股定理的逆定理课件
详细描述
在勾股定理的逆定理的证明中,反证 法是通过假设三角形不是直角三角形 ,然后利用勾股定理的逆定理推导出 矛盾的结论,从而证明三角形一定是 直角三角形。
证明方法二:直接证明法
总结词
直接证明法是一种直接根据已知 条件和定理,通过逻辑推理得到 结论的证明方法。
详细描述
在勾股定理的逆定理的证明中, 直接证明法是通过直接利用勾股 定理的条件和结论,推导出三角 形一定是直角三角形。
对于任意的整数a、b、c,都存在无穷多 个整数x、y、z,满足x²+y²=z²,且x、y 、z互质。
勾股定理的逆定理与欧几里得公设的关系
勾股定理的逆定理是 欧几里得公设的一个 推论。
勾股定理的逆定理证 明了欧几里得公设的 正确性。
欧几里得公设是勾股 定理逆定理的基础。
05 勾股定理的逆定理的挑战 和问题
勾股数的性质
唯一性
对于任何一个正整数n,都存在唯 一的一组整数a、b、c,满足 n=a²+b²=c²。
自然数性
勾股数的三边长可以都是自然数。
无穷多性
对于任意正整数n,都存在无穷多个 勾股数。
勾股数的扩展
广义勾股数
如果三个整数的平方和等于另一个整数 的平方,则这三个数被称为广义勾股数 。
VS
勾股数的组合
勾股定理的逆定理课件
目录
• 勾股定理的逆定理的概述 • 勾股定理的逆定理的证明 • 勾股定理的逆定理的应用 • 勾股定理的逆定理的扩展 • 勾股定理的逆定理的挑战和问题 • 勾股定理的逆定理的案例分析
01 勾股定理的逆定理的概述
什么是勾股定理的逆定理
勾股定理的逆定理定义
如果一个三角形的三条边满足两边的平方和等于第三边的平方,那么这个三角形 是直角三角形。
在勾股定理的逆定理的证明中,反证 法是通过假设三角形不是直角三角形 ,然后利用勾股定理的逆定理推导出 矛盾的结论,从而证明三角形一定是 直角三角形。
证明方法二:直接证明法
总结词
直接证明法是一种直接根据已知 条件和定理,通过逻辑推理得到 结论的证明方法。
详细描述
在勾股定理的逆定理的证明中, 直接证明法是通过直接利用勾股 定理的条件和结论,推导出三角 形一定是直角三角形。
对于任意的整数a、b、c,都存在无穷多 个整数x、y、z,满足x²+y²=z²,且x、y 、z互质。
勾股定理的逆定理与欧几里得公设的关系
勾股定理的逆定理是 欧几里得公设的一个 推论。
勾股定理的逆定理证 明了欧几里得公设的 正确性。
欧几里得公设是勾股 定理逆定理的基础。
05 勾股定理的逆定理的挑战 和问题
勾股数的性质
唯一性
对于任何一个正整数n,都存在唯 一的一组整数a、b、c,满足 n=a²+b²=c²。
自然数性
勾股数的三边长可以都是自然数。
无穷多性
对于任意正整数n,都存在无穷多个 勾股数。
勾股数的扩展
广义勾股数
如果三个整数的平方和等于另一个整数 的平方,则这三个数被称为广义勾股数 。
VS
勾股数的组合
勾股定理的逆定理课件
目录
• 勾股定理的逆定理的概述 • 勾股定理的逆定理的证明 • 勾股定理的逆定理的应用 • 勾股定理的逆定理的扩展 • 勾股定理的逆定理的挑战和问题 • 勾股定理的逆定理的案例分析
01 勾股定理的逆定理的概述
什么是勾股定理的逆定理
勾股定理的逆定理定义
如果一个三角形的三条边满足两边的平方和等于第三边的平方,那么这个三角形 是直角三角形。
1勾股定理的应用PPT课件(华师大版)
分析:由于车宽1.6米,所以卡车能否
通过,只要比较距厂门中线0.8米处的
高度与车高即可.如图所示,点D在离厂
门中线0.8米处,且CD⊥AB,与地面相
交于点H.
讲授新课
解:在Rt△OCD中,由勾股定理,可得
CD OC 2 OD2 12 0.82 0.6,
CH=CD+DH=0.6+2.3=2.9>2.5.
的芦苇,它高出水面1尺,如果把这根芦苇垂直拉向岸边,它的顶端恰好到达岸
边的水面,请问这个水池的深度和这根芦苇的长度各是多少?
解: 设水池的水深AC为x尺,则这根芦苇长为AD=AB=(x+1)尺,
在直角三角形ABC中,BC=5尺
由勾股定理得:BC2+AC2=AB2
即
52+x2=(x+1)2
25+x2= x2+2x+1,
可见高度上有0.4米的余量,因此卡
车能通过厂门.
讲授新课
2、有一根高为16米的电线杆在A处断裂,如图所示,电线杆的
顶部C落在离电线杆底部B处8米远的地方,求电线杆断裂处A到
地面的距离.
根据题意可知在Rt△ABC中,
∠ABC =90°,BC=8米,AB+
AC=16米.若设AB=x米,则
AC=(16-x)米,然后根据勾股定理
90°.∴S四边形ABCD=S△ABC+S△ACD= AB·BC+
AC·AD= ×4×3+ ×5×12=36.
∵36×30=1080(元),
∴这块地全部种草的费用是1080元.
讲授新课
练一练
1、一辆装满货物的卡车,其外形高2.5米,宽1.6米,要开进厂门形状如图所示
青岛版数学八下7.4《勾股定理的逆定理》PPT教学课件1
6. 四边形ABCD中已知AB=3, BC=4, CD=12, DA=13, 且∠ABC=900,求这个四 D 边形的面积.
A
B
C
7: 一个零件的形状如左图所示,按规定这个零 件中∠A和∠DBC都应为直角。工人师傅量得这 个零件各边尺寸如右图所示,这个 零件符合要求 吗?
C D 13 C
D
4 5 12 B
必做题:课本P60,习题7.4 第1、2、4 题。
选做题:习题7.4 第6题。
思考题:习题7.4 第8题
小结:
勾股定理的逆定理
如果三角形的三边长a,b,c满足a2 +b2=c2 , 那么这个三角形是直角三角形 满足a2 +b2=c2的三个正整数,称为勾股数
在∆ABC中, a,b,c为三边长,其中 c为最大边, 若a2 +b2=c2, 则∆ABC为直角三角形; 若a2 +b2>c2, 则∆ABC为锐角三角形; 若a2 +b2<c2, 则∆ABC为钝角三角形.
再见
激励学生学习的名言警句 51关于学习或励志的名言警句 1百川东到海,何时复西归;少壮不努力,老大徒伤悲。 意思是:时间像江河东流入海,一去不复返;人在年轻时不努力学习,年龄大了一事无成,那就只好悲伤、后悔。出自《汉乐府•长歌行》 2 成人不自在,自在不成人。 意思是:人要有所成就,”必须刻苦努力,不可放任自流。出自(宋)罗大经《鹤林玉露引•朱熹小简》 3 读书百遍,其义自见。 意思是:能把一本书读过百遍,其中的含义自然就领会了。出自《三国志•魏书》。 4 读书破万卷,下笔如有神。 意思是:读书多了,下笔写文章就如有神助。出自(唐)杜甫《奉赠韦左丞丈二十二韵》。 5 大志非才不就,大才非学不成。 意思是:没有才,宏伟的志向就不能实现;不学习,就不能成大才。出自6(明)郑心材《郑敬中摘语》。 6 非学无以广才,非志无以成学。 意思是:不学习便无法增长才于,没有志向就难于取得学业上的成功。出自《诸葛亮集•诫子书》。 7发愤忘食,乐以忘忧,不知老之将至。 意思是;下决心学习,连吃饭也忘记了;有所心得便高兴得忘记了忧愁,不知道老年就要逼近了。出自《论语•述而》。 8功崇惟志,业广惟勤;惟克果断,乃罔后艰。 意思是:取得伟大的功业,由于有伟大的志向;完成伟大的功业,在于辛勤不懈地工作;办事果断,没有后患。出自《尚书•周官》。 9 积财千万,不如薄技在身。 意思是:积累许许多多的财富,不如学习一种小小的技术。出自《颜氏家训•勉学》。 10 立志言为本,修身行乃先。 意思是:人的立志,语言忠实是它的根本;修养自已的品德,应以行动为先。出自(唐)吴叔达《言行相顾》。 11 莫等闲白了少年头,空悲切。 意思是:不要虚度年华,不然到了满头白发之时,只有徒叹奈何了。出自(宋)岳飞《满江红》。 12 人品、学问,俱成于志气;无志气人,一事做不得。 意思是:一个人之所以具有高尚的品德,渊博的学问,都是由于他有志气;没有志气的人,什么事也做不成。出自(清)申居郧《西岩赘语》。 13 山积而高,泽积而长。 意思是。山是由土石日积月累而高耸起来的,长江大河是由点滴之水长期积聚而成的。比喻知识、业绩都是由少到多,由小到大长期积累、创造而成功的。出自(唐)刘禹锡《唐故监察御史赠尚书右仆射王公神道碑铭》。 14为学之道,必本于思。思则得知,不思则不得也。 意思是:学习必须以思考为根本,思考就能得到知识,不思考就得不到知识。出自(宋)晁说之〈晁氏客语〉 15为学正如撑上水船,一蒿不可放缓。 意思是:作学问就象撑着逆水的船,连一蒿也不能放松。比喻学习不要自满,要坚持有恒。 16 为学须先立志。 意思是:作学问首先应当立志。出自〈朱熹语录〉 17 学者不患立志不高,患不足以继之耳;不患立言不善,患不足以践之耳。 意思是:作学问的人不怕志向立得不高,就怕不能持之以恒;不怕作品里的话说得不漂亮,就怕自己不照着做。出自 〈薛方山记述•上篇〉 18学者大不宜志小气轻,志小则易足,易足则无进;气轻则以未知为已知,未学为已学。 意思是:学习要树立大志,没有大志就容易自满,自满了就不易有长进了。学习要有勇气,缺乏勇气,不懂的东西会自以为已经懂了,没有学到的东西会以为已经学到。出自《近思录集注》卷二。 19学不博者,不能守约;志不笃者,不能力行。 意思是:学识不广博,就不能得其要领;志向不笃诚,就不能努力去做。出自(宋)杨时《二程粹言•论学》。 20学贵知疑,小疑则小进,大疑则大进。 意思是:学习贵在懂得提出疑问。有小疑问得到解决,总能有小进步;有大疑问得到解决,就能有大进步。出自《格言联壁•学问类》。
《勾股定理的逆定理》PPT课件(第1课时)
的逆定理,这个三角形是直角三角形,且∠C是直角. (2)∵132+142=365,152=225,∴132+142≠152,不符合勾股定
理的逆定理,∴这个三角形不是直角三角形.
总结:根据勾股定理的逆定理,判断一个三角形是不是直角三 角形,只要看两条较小边长的平方和是否等于最大边长的平方.
巩固练习
D
在Rt△CEF中,得EF2=CE2+CF2=a2+4a2=5a2.
在Rt△ADF中,得AF2=AD2+DF2=16a2+4a2=20a2.
在△AEF中,AE2=EF2+AF2,∴△AEF为直角三角形,且AE为
斜边.∴∠AFE=90°,即AF⊥EF.
课堂小结
勾股定理 的逆定理
内容 作用 注意
如果三角形的三边长a 、b 、c满
下列各组线段中,能够组成直角三角形的一组是( D )
A. 1,2,3
B. 2,3,4
C. 4,5,6
D. 1, 2, 3 C
满足下列条件的三角形中,不是直角三角形的是( C )
A.三个内角比为1:2:1
C.三边之比为 3 : 2 : 5
B. 三边之比为1:2: 5 D. 三个内角比为1:2:3
探究新知 考 点 2 勾股定理的逆定理和乘法公式判断三角形
b
根据勾股定理,则有 A1B1 2=B1C1 2+C1A1 2=a2+b2. B
B
∵a2+b2=c2, ∴A1B1 =c, ∴AB=A1B1.
A1
在△ABC和△A1B1C 1中,
aC
BC=B1C1,
b
CA=C1A1, AB=A1B1.
B1 a C1
∴∆ABC ≌ ∆A1B1C1. ∠C=∠ C1 =90°.
理的逆定理,∴这个三角形不是直角三角形.
总结:根据勾股定理的逆定理,判断一个三角形是不是直角三 角形,只要看两条较小边长的平方和是否等于最大边长的平方.
巩固练习
D
在Rt△CEF中,得EF2=CE2+CF2=a2+4a2=5a2.
在Rt△ADF中,得AF2=AD2+DF2=16a2+4a2=20a2.
在△AEF中,AE2=EF2+AF2,∴△AEF为直角三角形,且AE为
斜边.∴∠AFE=90°,即AF⊥EF.
课堂小结
勾股定理 的逆定理
内容 作用 注意
如果三角形的三边长a 、b 、c满
下列各组线段中,能够组成直角三角形的一组是( D )
A. 1,2,3
B. 2,3,4
C. 4,5,6
D. 1, 2, 3 C
满足下列条件的三角形中,不是直角三角形的是( C )
A.三个内角比为1:2:1
C.三边之比为 3 : 2 : 5
B. 三边之比为1:2: 5 D. 三个内角比为1:2:3
探究新知 考 点 2 勾股定理的逆定理和乘法公式判断三角形
b
根据勾股定理,则有 A1B1 2=B1C1 2+C1A1 2=a2+b2. B
B
∵a2+b2=c2, ∴A1B1 =c, ∴AB=A1B1.
A1
在△ABC和△A1B1C 1中,
aC
BC=B1C1,
b
CA=C1A1, AB=A1B1.
B1 a C1
∴∆ABC ≌ ∆A1B1C1. ∠C=∠ C1 =90°.
【教学课件】《勾股定理的逆定理+第1课时》精品教学课件
(1) a=7,b=24,c=25; (2) a=7,b=8,c=11.
解: (1) ∵最大边是c=25, c²=625,a²+b²=7²+24²=625, ∴a²+b²=c². ∴ △ABC是直角三角形,最大边c所对的角是直角.
(2) ∵最大边是c=11, c²=121,a²+b²=7²+8²=113, ∴a²+b²≠c². ∴ △ABC不是直角三角形.
证明猜想 已知:如图,在△ABC中,AB=c,BC=a,AC=b,a2+b2=c2. 求证:△ABC是直角三角形.
△ABC是直角三角形
∠C是直角
构造两直角边分别为 a,b的Rt△A′B′C′
△ABC ≌ △A′B′C′
∠C=∠C ′=90°
A
c
b
B
a
C
创设情境 探究新知 应用新知 巩固新知 课堂小结 布置作业
∴ △ABC是直角三角形.
创设情境 探究新知 应用新知 巩固新知 课堂小结 布置作业
勾股定理的逆定理
如果三角形两边的平方和等于第三边的平方,那么这个三
勾
角形是直角三角形.
股
定
勾股定理与其逆定理的关系
A
理
勾股定理与其逆定理是互逆定理.
c
b
的
勾股定理
逆
直角三角形
a²+b²=c² B a C
勾股定理的逆定理
操作 请你动手画一画吧.用圆规、直尺作△ABC,使得AB=5,AC=4, BC=3,如图,量一量∠C,它是90°吗?
(1)画射线AM,然后以点A为圆心,AB长为半径画弧,交射线AM于点B; (2)分别以点A,B为圆心,线段AC、BC长为半径画弧,两弧相交于点C;
解: (1) ∵最大边是c=25, c²=625,a²+b²=7²+24²=625, ∴a²+b²=c². ∴ △ABC是直角三角形,最大边c所对的角是直角.
(2) ∵最大边是c=11, c²=121,a²+b²=7²+8²=113, ∴a²+b²≠c². ∴ △ABC不是直角三角形.
证明猜想 已知:如图,在△ABC中,AB=c,BC=a,AC=b,a2+b2=c2. 求证:△ABC是直角三角形.
△ABC是直角三角形
∠C是直角
构造两直角边分别为 a,b的Rt△A′B′C′
△ABC ≌ △A′B′C′
∠C=∠C ′=90°
A
c
b
B
a
C
创设情境 探究新知 应用新知 巩固新知 课堂小结 布置作业
∴ △ABC是直角三角形.
创设情境 探究新知 应用新知 巩固新知 课堂小结 布置作业
勾股定理的逆定理
如果三角形两边的平方和等于第三边的平方,那么这个三
勾
角形是直角三角形.
股
定
勾股定理与其逆定理的关系
A
理
勾股定理与其逆定理是互逆定理.
c
b
的
勾股定理
逆
直角三角形
a²+b²=c² B a C
勾股定理的逆定理
操作 请你动手画一画吧.用圆规、直尺作△ABC,使得AB=5,AC=4, BC=3,如图,量一量∠C,它是90°吗?
(1)画射线AM,然后以点A为圆心,AB长为半径画弧,交射线AM于点B; (2)分别以点A,B为圆心,线段AC、BC长为半径画弧,两弧相交于点C;
人教版八年级下册数学:17.2.2-勾股定理的逆定理课件
过了2秒后行驶了50米,此时测得小汽车与车速检测仪
间的距离为40米. 问:2秒后小汽车在车速检测仪的哪
个方向?这辆小汽车超速了吗?
小汽车在车 速检测仪的2秒后
你觉的此题解对了吗?
50米
小汽车
北偏西60° 方向 25米/秒=90千米/时 40米 >70千米/时∴小汽车超速了
30米 北 30°
60°
车速检测仪
∠B=90°
B
答:C在B地的正北方向.
13cm
A 12cm
2、有一电子跳蚤从坐标原点O出发向正东方向跳1cm,
又向南跳2cm,再向西跳3cm,然后又跳回原点,问电
子跳蚤跳回原点的运动方向是怎样的?所跳距离是多
少厘米?
y
电子跳蚤跳回原点 的运动方向是
东北方向;
所跳距离是 2 2 厘
米.
O1 x
22 2 2 2
(1)类似这样的关系6,8,10;9,12,15是否 也是勾股数?如何验证?
(2)通过对以上勾股数的研究,你有什么样的 猜想?
结论:若a,b,c是一组勾股数,那么ak,bk,ck (k为正整数)也是一组勾股数.
北
Q
30
R S 东 12×1.5=1485° 16×1.5=24 P
港口
解:根据题意画图,如图所示:
N
PQ=16×1.5=24
Q
PR=12×1.5=18
30
S
QR=30 ∵242+182=302,
R
16×1.5=24
12×1.5=18 45°45°
即 PQ2+PR2=QR2 ∴∠QPR=900
P
E
3
3、小明向东走80m后,又向某一方向走60m后,再沿
新人教版初中数学八年级下册17.2.1 勾股定理的逆定理
8.(2018·南通)下列长度的三条线段能组成直角三角形的是( A )
A.3,4,5
B.2,3,4
C.4,6,7
D.5,11,12
9.(2019·益阳)已知 M,N 是线段 AB 上的两点,AM=MN=2, NB=1,以点 A 为圆心,AN 长为半径画弧;再以点 B 为圆 心,BM 长为半径画弧,两弧交于点 C,连接 AC,BC,则△ABC 一定是( ) A.锐角三角形 B.直角三角形 C.钝角三角形 D.等腰三角形
答案显示
1.如果两个命题的题设和结论刚好相反,那么这样的两个命题 叫做__互__逆___命__题___,如果把其中一个命题叫做原命题,那么 另一个叫做它的__逆__命__题____.
2.一般地,如果一个定理的逆命题经过证明是正确的,那么它 也是一个定理,称这两个定理互为_逆__定___理__.
3.下列命题的逆命题正确的是( A ) A.两条直线平行,内错角相等 B.若两个实数相等,则它们的绝对值相等 C.全等三角形的对应角相等 D.若两个实数相等,则它们的平方也相等
17.(2019·河北)已知:整式 A=(n2-1)2+(2n)2,整式 B>0. 尝试 化简整式 A. 解:A=(n2-1)2+(2n)2=n4-2n2+1+4n2=n4+2n2+1 =(n2+1)2.
发现 A=B2,求整式 B. 解:∵A=B2,B>0,∴B=n2+1.
联想 由上可知,B2=(n2-1)2+(2n)2,当 n>1 时,n2-1,2n,
(30°,60°,45°)的和的形式; (2)用旋转法将△CPB 绕点 C 顺时针旋转 90°到△CP′A 的位置.
解:如图,将△CPB 绕点 C 顺时针旋转 90°得△CP′A,则 P′C =PC=2,P′A=PB=1,∠BPC=∠AP′C,连接 PP′. 因为∠PCP′=90°,所以 PP′2=22+22=8. 又因为 P′A=1,PA=3, 所以 PP′2+P′A2=8+1=9,PA2=9. 所以 PP′2+P′A2=PA2. 所以∠AP′P=90°. 易知∠CP′P=45°, 所以∠BPC=∠AP′C=∠AP′P+∠CP′P=90°+45°=135°.
勾股定理的逆定理- 完整版课件
2.如果一个定理的逆命题经过证明是正确的,那 么它也是一个定理,称其为原定理的逆定理, 这两个定理称为互逆定理.
例1 判断下列命题的真假,写出逆命题,并判断逆命题 的真假: (1)如果两条直线相交,那么它们只有一个交点; (2)如果a>b,那么a2>b2; (3)如果两个数互为相反数,那么它们的和为零; (4)如果ab<0,那么a>0,b<0.
分析:根据勾股定理及其逆定理,判断一个三角形是不是直 角三角形,只要看两条较小边长的平方和是否等于最 大边长的平方.
解:(1)因为 152+82=225+64=289,172 = 289,所以152 +82 =172 ,
根据勾股定理的逆定理,这个三角形是直角三角形. (2)因为132+142=169+196=365,152=225,所以132+142≠
(3)逆命题:三个角对应相等的两个三角形全等. 逆命题不成立.
(4)逆命题:角的平分线上的点到角两边的距离相 等.逆命题成立.
2 已知下列命题:①若a>b,则ac>bc;②若a=1,
则 a =a;③内错角相等.其中原命题与逆命题
均为真命题的个数是( A )
A.0
B.1
C.2
D.3
3 下列定理中,没有逆定理的是( C ) A.直角三角形的两锐角互余 B.若三角形三边长a,b,c (其中a<c,b<c) 满足a2+b2=c2,则该三角形是直角三角形 C.全等三角形的对应角相等 D.互为相反数的两数之和为0
总结
确定勾股数的方法:首先看这三个数是否是正整 数;然后看较小两个数的平方和是否等于最大数的平 方,记住常见的勾股数(3,4,5;5,12,13;8,15, 17;7,24,25)可以提高解题速度.
八年级数学下册教学课件《勾股定理的逆定理》
勾股定理的逆定理
活动一:引用故事,导入新课
【故事导入】
据说,古埃及人用右图的方法画直 角:把一根长绳打上等距离的 13 个结, 然后以 3 个结间距、4 个结间距、5 个 结间距的长度为边长,用木桩钉成一个 三角形,其中一个角便是直角.
你知道为什么吗?今天我们就来学习其中的原因.
活动二:问题引入,自主探究
B
C a
① A′
c b
直角三角形吗?
B′
C′
a
②
根据勾股定理,A′B′2 = B′C′2 + A′C′2 = a2 + b2 = c2. ∴ A′B′ = c .在△ABC 和△A′B′C′ 中,
A c
b
BC = a = B′C′,AC = b = A′C′, AB = c = A′B′, ∴△ABC ≌△ A′B′C′(SSS). ∴∠C=∠C′=90°,
探究点 1 勾股定理的逆定理
类似古埃及人画直角的故事,我们准备三根绳子来模仿 操作,看看能否得到和古埃及人相同的结果.
(1)让一根绳子的一端与 0 刻度线重合,分别在 3 cm,
7 cm,12 cm 处做标记,得到长度分别为 3 cm,4 cm,5 cm
的三段,然后以这三段为边围成一个三角形,量量看是不是
求四边形 ABCD 的面积.
解:∵AD = 8,AB = 6,BD = 10,CD = 26,BC = 24,
∴ AB2 +AD2 = BD2, BD2 +BC2 = CD2 .
∴△ABD 和△BDC 都是直角三角形,
且∠A = 90°,∠DBC = 90°.
∴ S四边形ABCD = S△ABD + S△BDC =
活动一:引用故事,导入新课
【故事导入】
据说,古埃及人用右图的方法画直 角:把一根长绳打上等距离的 13 个结, 然后以 3 个结间距、4 个结间距、5 个 结间距的长度为边长,用木桩钉成一个 三角形,其中一个角便是直角.
你知道为什么吗?今天我们就来学习其中的原因.
活动二:问题引入,自主探究
B
C a
① A′
c b
直角三角形吗?
B′
C′
a
②
根据勾股定理,A′B′2 = B′C′2 + A′C′2 = a2 + b2 = c2. ∴ A′B′ = c .在△ABC 和△A′B′C′ 中,
A c
b
BC = a = B′C′,AC = b = A′C′, AB = c = A′B′, ∴△ABC ≌△ A′B′C′(SSS). ∴∠C=∠C′=90°,
探究点 1 勾股定理的逆定理
类似古埃及人画直角的故事,我们准备三根绳子来模仿 操作,看看能否得到和古埃及人相同的结果.
(1)让一根绳子的一端与 0 刻度线重合,分别在 3 cm,
7 cm,12 cm 处做标记,得到长度分别为 3 cm,4 cm,5 cm
的三段,然后以这三段为边围成一个三角形,量量看是不是
求四边形 ABCD 的面积.
解:∵AD = 8,AB = 6,BD = 10,CD = 26,BC = 24,
∴ AB2 +AD2 = BD2, BD2 +BC2 = CD2 .
∴△ABD 和△BDC 都是直角三角形,
且∠A = 90°,∠DBC = 90°.
∴ S四边形ABCD = S△ABD + S△BDC =
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
它是一个定理,这两个定理称为互逆定理,其中一
个定理称另一个定理的逆定理. 我们已经学习了一些互逆的定理,如: (1)勾股定理及其逆定理;(2)两直线平行,内错角相等; (3) 内错角相等,两直线平行. (4)角的平分线的性质与判定; (5)线段的垂直平分线的性质与判定.
定理应用
例1 判断由a、b、c组成的三角形是不是直角三角形:
八年级
下册
勾股定理的逆定理 (第1课时)
课件说明
课题内容
勾股定理的逆定理证明及简单应用;原命题、逆 命题的概念及相互关系.
学习目标
理解勾股定理的逆定理. 了解互逆命题、互逆定理.
创设情境,提出问题
• 问题1: 你能说出勾股定理吗?并指出定理的题设和结论.
勾股定理的题设:直角 三角形的两直角边长分 别为a, b,斜 边长为c,结论:a 2 b 2 c 2
课堂练习
1 判断由a、b、c组成的三角形是不是直角三角形:
(1) a=6.5 , b =7.5 , c=4 (2) a=11 , b =60 , c=61
8 10 3a , b 2, c 3 3 3 1 4a 3 , b 2, c 4 4 4
2、 已知a,b,c为△ABC的三边,且 满足
a 5
2
b 12 c 2 26c 169 0
试判断△ABC的形状.
课堂小结
(1)勾股定理的逆定理的内容是什么?
(2)原命题、逆命题之间的关系.
(3)用什么方法证明勾股定理的逆定理?
布置作业
教科书第33页练习1,2题,习题17.2第4,5题.
目标检测设计
1.以长度分别为下列各组数的线段为边,能构成直 角三角形的有哪些?
形.
根据勾股定理,这个三角形不是三角
定理应用
解:因为a c b,
a c 1 ( 3) 4, b 2 4
2 2 2 2 2 2
所以b a c ,
2 2 2
所以这个三角形是直角三角形.
练习:同学们还知道哪些勾股数?请完成以下未完成的 勾股数. (1)3, 4, (2)6, 8, (3)7, 24, (4)5, 12, (5)9, 12, , , , , .
(1) 1 , 2 , 3 (2) 6 , 8 , 14 (3) 2, 1.5 , 2.5
4
2,
2,
3
目标检测设计
2.说出下列命题的逆命题,这些命题的逆命题是真
命题吗? (1)两条直线平行,内错角相等
(2)对顶角相等
(3)线段垂直平分线上的点到线段两端点的距离相等
目标检测设计 3. 已知:如图,四边形 ABCD 中,∠ B = 900 , AB = 3 , BC = 4 , CD = 12 , AD = 13, 求四边形 ABCD的面积?
问题3:把勾股定理记着命题1,上面的结论作为命题2. 命题1和命题2的题设和结论分别是什么? 问题4:命题1和命题2的题设和结论有着什么的关系? 两个命题的题设和结论正好相反,象这样的两个命题 叫做互逆命题,如果其中一个叫原命题,那么另一个就 叫做它的逆命题.
归纳概念
如果三角形的三边长a、b、c满足
(1) a=15 , b =8 , c=17 (2) a=13 , b =14 , c=15
分析:根据勾股定理的逆定理,一个三角形中两条较小边长的平方 和等于最大边长的平方,那么这个三角形是直角三角形
定理应用
解(1)152+82=225+64=289 172=289 ∴ 152+82=172 ∴这个三角形是直角三角形 (2)132+142=169+196=365 152=225 因为132+142≠152,
• 追问1: 你能把勾股定理的题设与结论交换得到一个新的命 题吗? • 追问2: “如果三角形三边长a、b、c满足, a2
b2 c 2
那么这个三角形是直角三角形.”能否把它作为判定直角三角 形的依据呢?本节课我们一起来研究这个问题.
实验观察
古埃及人曾用下面的方法得到直角
实验观察
用13个等距的结,把一根绳子分 成等长的12段,然后以3个结,4 个结,5个结的长度为边长,用 木桩钉成一个三角形,其中一 个角便是直角。
a
C
c
b
B
A′
a
C′
b
B′
勾股定理逆定理的证明
在△ ABC和△ A’B’C’中 BC=a=B’C’
CA=b=C’A’
AB=c=A’B’ ∴ △ ABC ≌△ A’B’C’(SSS) ∴ ∠ C= ∠ C/=90° 则 △ ABC是直角三角形 (直角三角形的定义)
定理与逆定理
如果一个定理的逆命题经过证明是真命题,那么
C B
D
A
三角形”吗?
勾股定理逆定理的证明
已知:在△ABC中,AB=c BC=a CA=b 且a2+b2=c2 A 求证:△ ABC是直角三角形. 证明:画一个△A’B’C’,使 ∠ C’=90°,B’C’=a, C’A’=b ∵ ∠ C/=900 ∴ A’B’2= a2+b2 ∵ a2+b2=c2 ∴ A’B’ 2=c2 ∵ 边长取正值 ∴ A’B’ =c
(2)量一量:用量角器分别测量上述各三角形的 最大角的度数. (3)想一想:判断这些三角形的形状,提出猜想.
实验操作 提出猜想
问题2 由上面几个例子你发现了什么吗?请以命题的 形式说出你的观点!
命题2 如果三角形的三边长a、b、c满足
a2 + b 2 = c 2
那么这个三角形是直角三角形。ቤተ መጻሕፍቲ ባይዱ
归纳概念
问题2:按照这种做法真能得 到一个直角三角形吗?
实验观察
5
3
4 追问:这个三角形的三条边有什么关系吗? 3 + 4 = 5
2 2 2
实验操作 提出猜想 动手画一画
(1)下列各组数中两个数的平方和等于第三个数的平 方,分别以这些数为边长(单位:cm)画三角形:
①2.5,6,6.5;②4,7.5,8.5.
2 a
+
2 b
=
2 c
那么这个三角形是直角三角形。
勾股定理
互逆命题
如果直角三角形两直角边分别为a,b, 斜边为c,那么有a2 + b2 = c2
• 问题5 :请同学们举出一些互逆命题,并思考:是否原命题 正确,它的逆命题也正确呢?举例说明. • 追问1: 在我们大家举出的互逆命题中原命题和逆命题都成吗? • 问题6 : 原命题正确,它的逆命题不一定正确.那么勾股定理 的逆命题正确吗?如果你认为是真确的,你能证明这个命题 “如果三角形的三边长、b、c满足,那么这个三角形是直角