高中数学必修三3.2.2课件

合集下载

人教B版高中数学必修三课件3.2.2概率的一般加法公式

人教B版高中数学必修三课件3.2.2概率的一般加法公式
在本例中,因为A∩B≠○, 所以P(A∪B) ≠P(A)+P(B).
我们在古典概型的情况下推导概率的一 般加法公式。
设A,B是Ω的两个事件,容易看出 A∪B中基本事件的个数等于A中基本事 件的个数加上B中基本事件的个数减去 A∩B中基本事件的个数。所以
P(A∪B)= —A—∪—B—中—基—本—事—件—的—个—数— Ω中基本事件的总数
4
7.从1,2,3,4,5五个数字中,任意有放 回地连续抽取三个数字,则三个数字完全 不同的概率是____12_25____.
8.从1,2,3,…,9 这9个数字中任取2个
数字, (1)2个数字都是奇数的概率为___5___;
18
(2)2个数字之和为偶数的概率为__4___.
9
9.连续掷3枚硬币,观察落地后这3枚硬币 出现正面还是反面. (1)写出这个试验的基本事件空间; (2)求这个试验的基本事件的总数; (3)“恰有两枚正面向上”这一事件包含 哪几个基本事件?
1.一枚硬币连掷3次,只有一次出现正面
的概率是( A )
3
A. 8
C. 1
3
2
B.
3
D. 1
4
2.从分别写有A、B、C、D、E的5张卡片
中,任取2张,这2张卡片上的字母恰好是
按字母顺序相邻的概率为( B )
1
A. 5
3
C. 10
2
B. 5 D. 7
10
3.在第1、3、4、5、8路公共汽车都要停靠
是英语翻译或是日语翻译。
—31—09
例6. 100个产品中有93个产品长度合格, 90个产品重量合格,其中长度、重量都合 格的有85个。现从中任取一产品,记 A=“产品长度合格”,B=“产品重量合 格”,求产品的长度、重量至少有一个合 格的概率。

新教材高中数学第三章函数3.2.2零点的存在性及其近似值的求法课件新人教B版必修17

新教材高中数学第三章函数3.2.2零点的存在性及其近似值的求法课件新人教B版必修17

【解析】设f(x)=x3+x2-2x-1, 则f(-2)=-1<0,f(-1)=1>0, f(0)=-1<0,f(1)=-1<0,f(2)=7>0, 所以f(-2)·f(-1)<0,f(-1)·f(0)<0,
f(1)·f(2)<0,所以∃x1∈(-2,-1),x2∈(-1,0), x3∈(1,2),f(x1)=0,f(x2)=0,f(x3)=0. 则f(x)在(-2,-1),(-1,0),(1,2)内均有零点,即 ①②③正确. 答案:①②③
【解析】1.选C.对于函数f(x)=x3-2x-1, 因为f(1)=-2<0,f(2)=3>0,f(1.5)=-5 <0,
8
因此∃x0∈(1.5,2),f(x0)=0. 所以下一个有根区间是(1.5,2).
2.选D.由表格可得,f(1.625)·f(1.75)<0, 那么∃x0∈(1.625,1.75),f(x0)=0, 所以函数f(x)的零点在(1.625,1.75)之间, 又1.75-1.625=0.125<2×0.1=0.2, 所以方程的零点可以取 1.625 1.75 1.687 5.
2
(2)×.如f(x)=x2在区间(-1,1)上有f(-1)f(1) =1×1=1>0,但是在区间(-1,1)上有零点0. (3)×.函数需满足在区间[a,b]上连续不断且 f(a)·f(b)<0,才能用二分法求零点.
2.下列图像表示的函数中没有零点的是 ( )
【解析】选A.B,C,D的图像均与x轴有交点,故函数 均有零点,A的图像与x轴没有交点,故函数没有零点.
2.下列函数的零点不能用二分法求解的是 ( )
A.f(x)=x3-1

2021学年高中数学第3章概率32古典概型321古典概型322整数值随机数randomnumber

2021学年高中数学第3章概率32古典概型321古典概型322整数值随机数randomnumber

19
0.35 [ 抛 掷 这 枚 硬 币 三 次 恰 有 两 次 正 面 朝 上 的 有 010,010,100,100,010,001,100 共 7 组,则抛掷这枚硬币三次恰有两次 正面朝上的概率可以为270=0.35.]
20
合作 探究 释疑 难
21
基本事件及其计数问题
【例 1】 连续掷 3 枚硬币,观察落地后 3 枚硬币是正面向上还 是反面向上.
(1)写出这个试验的所有基本事件; (2)“恰有两枚正面向上”这一事件包含哪几个基本事件?
22
[解] (1)由树形图表示如下:
23
试验的所有基本事件为(正,正,正),(正,正,反),(正,反, 正),(正,反,反),(反,正,正),(反,正,反),(反,反,正),(反, 反,反).
(2)“恰有两枚正面朝上”包含以下 3 个基本事件:(正,正,反), (正,反,正),(反,正,正).
(2)若把所取出卡片的标号之和作为基本事件,则共有多少个基 本事件?是古典概型吗?
(3)求所取卡片标号之和小于 4 的概率.
30
思路点拨:先列举出基本事件,紧扣古典概型的特点加以判断, 再用古典概型概率公式求相应概率.
31
[解] (1)基本事件为(红 1,红 2),(红 1,红 3),(红 1,蓝 1),(红 1,蓝 2),(红 2,红 3),(红 2,蓝 1),(红 2,蓝 2),(红 3,蓝 1),(红 3,蓝 2),(蓝 1,蓝 2)共 10 种,由于基本事件个数有限,且每个基 本事件发生的可能性相同,所以是古典概型.
3.理解用模拟方法估计概率的实质, 率,提升数学抽象素养.
会用模拟方法估计概率.(重点)
4
自主 预习 探新 知

高中数学第三章概率321古典概型322概率的一般加法公式(选学)课件新人教B版必修3

高中数学第三章概率321古典概型322概率的一般加法公式(选学)课件新人教B版必修3

(2)下列是古典概型的是( ) A.任意抛掷两枚骰子,所得点数之和作为基本事件 B.求任意的一个正整数平方的个位数字是 1 的概率,将取出的正整数作为基本 事件 C.从甲地到乙地共 n 条路线,求某人正好选中最短路线的概率 D.抛掷一枚质地均匀的硬币首次出现正面为止
【精彩点拨】 结合基本事件及古典概型的定义进行判断,基本事件是最小的 随机事件,而古典概型具有两个特征——有限性和等可能性.
探究 2 基本事件的表示方法有哪些? 【提示】 写出所有的基本事件可采用的方法较多,例如列表法、坐标系法、 树状图法,但不论采用哪种方法,都要按一定的顺序进行,做到不重不漏.
探究点3 古典概型的特征 探究 3 古典概型有何特点?何为非古典概型?
【答案】 (1)A (2)C
名师指津 1.基本事件具有以下特点:①不可能再分为更小的随机事件;②两个基本事件 不可能同时发生. 2.判断随机试验是否为古典概型,关键是抓住古典概型的两个特征——有限性 和等可能性,二者缺一不可.
[再练一题] 1.下列试验是古典概型的为________. ①从 6 名同学中选出 4 人参加数学竞赛,每人被选中的可能性大小; ②同时掷两颗骰子,点数和为 6 的概率; ③近三天中有一天降雨的概率; ④10 人站成一排,其中甲、乙相邻的概率. 【解析】 ①②④是古典概型,因为符合古典概型的定义和特点.③不是古典 概型,因为不符合等可能性,降雨受多方面因素影响.
[再练一题] 4.在对 200 家公司的最新调查中发现,40%的公司在大力研究广告效果,50% 的公司在进行短期销售预测,而 30%的公司在从事这两项研究.假设从这 200 家公 司中任选一家,记事件 A 为“该公司在研究广告效果”,记事件 B 为“该公司在 进行短期销售预测”,求 P(A),P(B),P(A∪B). 解 P(A)=40%=0.4,P(B)=50%=0.5, 又已知 P(A∩B)=30%=0.3, ∴P(A∪B)=P(A)+P(B)-P(A∩B)=0.4+0.5-0.3=0.6.

高中高中数学第三章概率3.2.1古典概型3.2.2整数值随机数randomnumbers的产生课件新人教A版必修3

高中高中数学第三章概率3.2.1古典概型3.2.2整数值随机数randomnumbers的产生课件新人教A版必修3

组随机数:
5727 0293 7140 9857 0347
4373 8636 9647 1417 4698
0371 6233 2616 8045 6011
3661 9597 7424 6710 4281
据此估计,该射击运动员射击4次至少击中3次的概率为
.
答案: 3 4
课堂探究·素养提升
题型一 基本事件的计数
错解:从 5 台中任取 2 台,所有结果共有 5×4=20(种),记事件 A 为“一台甲型 另一台乙型”,甲型从 3 台中取 1 台,乙型从 2 台中取 1 台.故其结果共有 3×2=6(种).所以 P(A)= 6 = 3 .
20 10
纠错:错误的原因是重复计算了试验所得结果总数,其实,从5台中任取2台, 按顺序(x,y)记录结果,x有5种可能,y有4种可能,但(x,y)和(y,x)是相同 的,所以试验的所有结果应是5×4÷2=10(种).
(2)特点
①任何两个基本事件是
的;
②任何事件(除不可能事件互)斥都可以表示成基本事件的
.

2.古典概型
(1)定义
具有以下两个特点的概率模型称为古典概率模型,简称古典概型.
①试验中所有可能出现的基本事件只有
个;
②每个基本事件出现的可能性
有. 限
(2)古典概型的概率公式
相等
对于古典概型,任何事件的概率为
P(A)=
.
A包含的基本事件的个数 基本事件的总数
探究:从所有整数中任取一个数的试验中“抽取一个整数”是古典概型吗? 提示:不是,因为有无数个基本事件,所以不是古典概型.
【拓展延伸】 求古典概型概率的步骤 (1)先判断是否为古典概型; (2)确定基本事件的总数n; (3)确定事件A包含的基本事件个数m;

人教版高中数学必修三教材用书第三章概率3.22(整数值)随机数(randomnumbers)的产生

人教版高中数学必修三教材用书第三章概率3.22(整数值)随机数(randomnumbers)的产生

3.2.2(整数值)随机数(random numbers)的产生随机数的产生[导入新知]1.随机数的产生(1)标号:把n个大小、形状相同的小球分别标上1,2,3,…,n;(2)搅拌:放入一个袋中,把它们充分搅拌;(3)摸取:从中摸出一个.这个球上的数就称为从1~n之间的随机整数,简称随机数.2.伪随机数的产生(1)规则:依照确定算法;(2)特点:具有周期性(周期很长);(3)性质:它们具有类似随机数的性质.计算机或计算器产生的随机数并不是真正的随机数,我们称为伪随机数.[化解疑难]对随机数的理解计算器或计算机产生的整数随机数是按照确定的算法产生的数,具有周期性(周期很长),它们具有类似随机数的性质,不是真正的随机数,称为伪随机数.即使是这样,由于计算器或计算机省时省力,并且速度非常快,我们还是把计算器或计算机产生的伪随机数近似地看成随机数.产生随机数的方法[导入新知]1.利用计算器产生随机数的操作方法用计算器的随机函数RANDI(a,b)或计算机的随机函数RANDBETWEEN(a,b)可以产生从整数a到整数b的取整数值的随机数.例如,用计算器产生1到25之间的取整数值的随机数,方法如下:2.利用计算机产生随机数的操作程序每个具有统计功能的软件都有随机函数,以Excel软件为例,打开Excel软件,执行下面的步骤:(1)选定A1格,键入“=RANDBETWEEN(0,1)”,按Enter键,则在此格中的数是随机产生的0或1.(2)选定A1格,按Ctrl+C快捷键,然后选定要随机产生0,1的格,比如A2至A100,按Ctrl+V快捷键,则在A2至A100的数均为随机产生的0或1,这样相当于做了100次随机试验.(3)选定C1格,键入频数函数“=FREQUENCY(A1∶A100,0.5)”,按Enter键,则此格中的数是统计A1至A100中,比0.5小的数的个数,即0出现的频数.(4)选定D1格,键入“=1-C1/100”,按Enter键,在此格中的数是这100次试验中出现1的频率.[化解疑难]计算机模拟试验的优点用频率估计概率时,需做大量的重复试验,费时费力,并且有些试验具有破坏性,有些试验无法真正进行.因此利用计算机进行随机模拟试验就成为一种很重要的替代方法,它可以在短时间内多次重复地来做试验,不需要对试验进行具体操作,可以广泛应用到各个领域.随机数的产生方法[例1]某校高一年级共有20个班1 200名学生,期末考试时,如何把学生随机地分配到40个考场中去?[解]第一步,n=1;第二步,用RANDI(1,1 200)产生一个[1,1 200]内的整数随机数x表示学生的座号;第三步,执行第二步,再产生一个座号,若此座号与以前产生的座号重复,则执行第二步,否则n=n+1;第四步,如果n≤1 200,则重复执行第三步,否则执行第五步;第五步,按座号的大小排列,作为考号(不足四位的前面添上“0”,补足位数),程序结束.[类题通法]产生随机数需要注意的两个问题(1)利用抽签法时,所设计的试验要切实保证任何一个数被抽到的可能性是相等的,这是试验成功的基础.(关键词:等可能)(2)利用计算器或计算机产生随机数时,由于不同型号的计算器产生随机数的方法可能会有所不同,故需特别注意操作步骤与顺序的正确性,具体操作需严格参照其说明书.(关键词:步骤与顺序)[活学活用]用随机模拟方法抛掷一枚均匀的硬币100次,产生计算机统计这100次试验中“出现正面朝上”随机数.解:利用计算机统计频数和频率,用Excel 演示.(1)选定C1格,键入频数函数“=FREQUENCY(A1:A100,0.5)”,按Enter 键,则此格中的数是统计A1至A100中比0.5小的数的个数,即0出现的频数,也就是反面朝上的频数;(2)选定D1格,键入“=1-C1/100”,按Enter 键,在此格中的数是这100次试验中出现1的频率,即正面朝上的频率. 利用随机模拟法估计概率[例2] (1)已知某运动员每次投篮命中的概率低于40%,现采用随机模拟的方法估计该运动员三次投篮恰有两次命中的概率:先由计算器产生0到9之间取整数值的随机数,指定1,2,3,4表示命中,5,6,7,8,9,0表示不命中;再以每三个随机数为一组,代表三次投篮的结果.经随机模拟产生了20组随机数:907 966 191 925 271 932 812 458 569683 431 257 393 027 556 488 730 113537 989据此估计,该运动员三次投篮恰有两次命中的概率为( )A .0.35B .C .0.20D .(2)种植某种树苗,成活率是0.9.若种植该种树苗5棵,用随机模拟方法估计恰好4棵成活的概率.[解析] (1)选B 由题意知模拟三次投篮的结果,经随机模拟产生了20组随机数,在20组随机数中表示三次投篮恰有两次命中的有191,271,932,812,393,共5组随机数,∴所求概率为520=14=0.25. (2)利用计算器或计算机产生0到9之间取整数值的随机数,我们用0代表不成活,1至9的数字代表成活,这样可以体现成活率是0.9.因为种植5棵,所以每5个随机数作为一组,可产生30组随机数,如下所示:698016609777124229617423531516297472494557558652587413023224374454434433315271202178258555610174524144134922017036283005949765617334783166243034401117这就相当于做了30次试验,在这些数组中,如果恰有一个0,则表示恰有4棵成活,共有9组这样的数,于是我们得到种植5棵这样的树苗恰有4棵成活的概率近似为9=0.3.30 [类题通法]利用随机模拟估计概率应关注三点用整数随机数模拟试验估计概率时,首先要确定随机数的范围和用哪些数代表不同的试验结果.我们可以从以下三方面考虑:(1)当试验的基本事件等可能时,基本事件总数即为产生随机数的范围,每个随机数代表一个基本事件;(2)研究等可能事件的概率时,用按比例分配的方法确定表示各个结果的数字个数及总个数;(3)当每次试验结果需要n个随机数表示时,要把n个随机数作为一组来处理,此时一定要注意每组中的随机数字能否重复.[活学活用]甲、乙两支篮球队进行一局比赛,甲获胜的概率为0.6,若采用三局两胜制举行一次比赛,现采用随机模拟的方法估计乙获胜的概率.先利用计算器或计算机生成0到9之间取整数值的随机数,用0,1,2,3,4,5表示甲获胜;6,7,8,9表示乙获胜,这样能体现甲获胜的概率为0.6.因为采用三局两胜制,所以每3个随机数作为一组.例如,产生30组随机数:034 743 738 636 964 736 614 698 637 162332 616 804 560 111 410 959 774 246 762428 114 572 042 533 237 322 707 360 751据此估计乙获胜的概率为________.解析:产生30组随机数,就相当于做了30次试验.如果6,7,8,9中恰有2个或3个数出现,就表示乙获胜,它们分别是738,636,964,736,698,637,616,959,774,762,707.共11个.所以采用三局两胜制,乙获胜的概率约为1130≈0.367. 答案:[典例] 通过模拟试验,产生了20组随机数:6830 3013 7055 7430 7740 4422 78842604 3346 0952 6807 9706 5774 57256576 5929 9768 6071 9138 6754如果恰有三个数在1,2,3,4,5,6中,表示恰有三次击中目标,则四次射击中恰有三次击中目标的概率约为________.[解析] 表示三次击中目标分别是3013,2604,5725,6576,6754,共5组数,而随机数总共20组,所以所求的概率近似为520=25%. [答案] 25%[易错防范]1.由题意可知,数字1,2,3,4,5,6代表击中,若不能正确理解各数字的意义,则容易导致题目错解.2.解决此类题目时正确设计试验,准确理解随机数的意义是解题的基础和关键.[成功破障]天气预报说,在今后的三天中,每一天下雨的概率均为40%,用随机模拟的方法估计这三天中恰有两天下雨的概率.可利用计算机产生0到9之间的整数值的随机数,如果我们用1,2,3,4表示下雨,用5,6,7,8,9,0表示不下雨,顺次产生的随机数如下:907 966 191 925 271 932 812 458569 683 631 257 393 027 556 488730 113 137 989 则这三天中恰有两天下雨的概率约为( )A.1320B .720 C.920 D .1120 解析:选B 由题意知模拟三天中恰有两天下雨的结果,经随机模拟产生了20组随机数,在20组随机数中表示三天中恰有两天下雨的有:191,271,932,812,631,393,137,共7组随机数,∴所求概率为720.[随堂即时演练]1.利用抛硬币产生随机数1和2,出现正面表示产生的随机数为1,出现反面表示产生的随机数为2.小王抛两次,则出现的随机数之和为3的概率为( )A.12B .13 C.14D .15解析:选A 抛掷硬币两次,产生的随机数的情况有(1,1),(1,2),(2,1),(2,2)共四种,其中随机数之和为3的情况有(1,2),(2,1)两种,故所求概率为24=12. 2.已知某射击运动员每次击中目标的概率都是0.8.现采用随机模拟的方法估计该运动员射击4次,至少击中3次的概率:先由计算器算出0~9之间取整数值的随机数,指定0,1表示没有击中目标,2,3,4,5,6,7,8,9表示击中目标;因为射击4次,故以每4个随机数为一组,代表射击4次的结果.经随机模拟产生了20组随机数:5727 0293 7140 9857 03474373 8636 9647 1417 46980371 6233 2616 8045 60113661 9597 7424 6710 4281据此估计,该射击运动员射击4次至少击中3次的概率为( )A .0.85B .0.819 2C .0.8D . 解析:选D 该射击运动员射击4次至少击中3次,考虑该事件的对立事件,故看这20组数据中含有0和1的个数多少,含有2个或2个以上的有5组数,故所求概率为1520=0.75. 3.一个正方体,它的表面涂满了红色,在它的每个面上切两刀,可得27个小正方体,从中任取一个它恰有一个面涂有红色的概率是________.解析:恰有一个面涂有红色在每一个侧面上只有一个,共有6个,故所求概率为29. 答案:294.从1,2,3,4,5这5个数中任取两个,则这两个数正好相差1的概率是________.解析:从5个数中任取两个,共有10种取法,两个数相差1的有1,2;2,3;3,4;4,5四种,故所求概率为410=25. 答案:255.盒中有大小、形状相同的5只白球2只黑球,用随机模拟法求下列事件的概率:(1)任取一球,得到白球;(2)任取三球,都是白球.解:用1,2,3,4,5表示白球,6,7表示黑球.(1)步骤:①利用计算器或计算机产生1到7的整数随机数,每一个数一组,统计组数n ;②统计这n 组数中小于6的组数m ;③任取一球,得到白球的概率估计值是m n .(2)步骤:①利用计算器或计算机产生1到7的整数随机数,每三个数一组,统计组数n ;②统计这n 组数中,每个数字均小于6的组数m ;③任取三球,都是白球的概率估计值是m n. [课时达标检测]一、选择题1.袋子中有四个小球,分别写有“巴”“西”“奥”“运”四个字,有放回地从中任取一个小球,取到“奥”就停止.用随机模拟的方法估计直到第二次才停止的概率:先由计算器产生1到4之间取整数值的随机数,且用1,2,3,4表示取出的小球上分别写有“巴”“西”“奥”“运”四个字,以每两个随机数为一组,代表两次的结果,经随机模拟产生了20组随机数:13 24 12 32 43 14 24 32 31 2123 13 32 21 24 42 13 32 21 34据此估计,直到第二次才停止概率为( )A.15B.14C.13D.12答案:B2.用计算机模拟随机掷骰子的试验,估计出现2点的概率,下列步骤中不.正确的是( ) A .用计算器的随机函数RANDI(1,7)或计算机的随机函数RANDBETWEEN(1,7)产生6个不同的1到6之间取整数值的随机数x ,如果x =2,我们认为出现2点B .我们通常用计数器n 记录做了多少次掷骰子试验,用计数器m 记录其中有多少次出现2点,置n =0,m =0C .出现2点,则m 的值加1,即m =m +1;否则m 的值保持不变D .程序结束.出现2点的频率作为概率的近似值答案:A3.从3名男生和2名女生中任选3人参加演讲比赛,则这三人中恰有一名男生的概率是( )A.310B.35C.25D.13答案:A4.从2,4,6,8,10这5个数中任取3个,则这三个数能成为三角形三边的概率是( ) A.25B.710C.310D.35 答案:C5.甲、乙两人一起去游济南趵突泉公园,他们约定,各自独立地从1号到6号景点中任选4个进行游览,每个景点参观1小时,则最后一小时他们同在一个景点的概率是( )A.136B.19C.536D.16 答案:D二、填空题6.某汽车站每天均有3辆开往省城的分为上、中、下等级的客车,某天袁先生准备在该汽车站乘车前往省城办事,但他不知道客车的车况,也不知道发车顺序.为了尽可能乘上上等车,他采取如下策略:先放过一辆,如果第二辆比第一辆好则上第二辆,否则上第三辆.则他乘上上等车的概率为________.解析:共有6种发车顺序:①上、中、下;②上、下、中;③中、上、下;④中、下、上;⑤下、中、上;⑥下、上、中(其中画横线的表示袁先生所乘的车),所以他乘坐上等车的概率为36=12. 答案:127.某小组有五名学生,其中三名女生、两名男生,现从这个小组中任意选出两名分别担任正、副组长,则正组长是男生的概率是________.解析:从五名学生中任选两名,有10种情况,再分别担任正、副组长,共有20个基本事件,其中正组长是男生的事件有8种,则正组长是男生的概率是820=25. 答案:258.现有五个球分别记为A ,B ,C ,D ,E ,随机取出三球放进三个盒子,每个盒子只能放一个球,则D 或E 在盒中的概率是________.解析:从5个球中取3个,有10种取法,再把3个球放入3个盒子,有6种放法,基本事件有60个,D 和E 都不在盒中含6个基本事件,则D 或E 在盒中的概率P =1-660=910. 答案:910三、解答题9.袋中有五张卡片,其中红色卡片三张,标号分别为1,2,3;蓝色卡片两张,标号分别为1,2.(1)从以上五张卡片中任取两张,求这两张卡片颜色不同且标号之和小于4的概率;(2)向袋中再放入一张标号为0的绿色卡片,从这六张卡片中任取两张,求这两张卡片颜色不同且标号之和小于4的概率.解:(1)从五张卡片中任取两张的所有可能情况有如下10种:红1红2,红1红3,红1蓝1,红1蓝2,红2红3,红2蓝1,红2蓝2,红3蓝1,红3蓝2,蓝1蓝2.其中两张卡片的颜色不同且标号之和小于4的有3种情况,故所求的概率为P =310. (2)加入一张标号为0的绿色卡片后,从六张卡片中任取两张,除上面的10种情况外,多出5种情况:红1绿0,红2绿0,红3绿0,蓝1绿0,蓝2绿0,即共有15种情况,其中颜色不同且标号之和小于4的有8种情况,所以概率为P =815.10.甲盒中有红、黑、白三种颜色的球各3个,乙盒子中有黄、黑、白三种颜色的球各2个,从两个盒子中各取1个球.(1)求取出的两个球是不同颜色的概率;(2)请设计一种随机模拟的方法,来近似计算(1)中取出两个球是不同颜色的概率(写出模拟的步骤).解:(1)设A 表示“取出的两球是相同颜色”,B 表示“取出的两球是不同颜色”.则事件A 的概率为:P (A )=3×2+3×29×6=29. 由于事件A 与事件B 是对立事件,所以事件B 的概率为:P (B )=1-P (A )=1-29=79. (2)随机模拟的步骤:第1步:利用抽签法或计算机(计算器)产生1~3和2~4两组取整数值的随机数,每组各有N 个随机数.用“1”表示取到红球,用“2”表示取到黑球,用“3”表示取到白球,用“4”表示取到黄球.第2步:统计两组对应的N 对随机数中,每对中两个数字不同的对数n .第3步:计算n N 的值,则n N就是取出的两个球是不同颜色的概率的近似值. 11.先后随机投掷2枚正方体骰子,其中x 表示第1枚骰子出现的点数,y 表示第2枚骰子出现的点数.(1)求点P (x ,y )在直线y =x -1上的概率;(2)求点P (x ,y )满足y 2<4x 的概率.解:(1)每颗骰子出现的点数都有6种情况,所以基本事件总数为6×6=36个.记“点P (x ,y )在直线y =x -1上”为事件A ,A 有5个基本事件:A ={(2,1),(3,2),(4,3),(5,4),(6,5)},∴P (A )=536. (2)记“点P (x ,y )满足y 2<4x ”为事件B ,则事件B 有17个基本事件:当x =1时,y =1;当x =2时,y =1,2;当x =3时,y =1,2,3;当x =4时,y =1,2,3;当x =5时,y =1,2,3,4;当x=6时,y=1,2,3,4.∴P(B)=1736.。

高中数学人教A版必修三课件3.2.2古典概型 (整数值)随机数的产生2

高中数学人教A版必修三课件3.2.2古典概型 (整数值)随机数的产生2
模拟实验最终得到的概率值不一定是相同的.
课堂篇探究学习
探究一
探究二
探究三
思维辨析
当堂检测
变式训练2从甲、乙、丙、丁4人中,任选3人参加志愿者活动,请
用随机模拟的方法估计甲被选中的概率.
解:用1,2,3,4分别表示甲、乙、丙、丁四人.
利用计算器或计算机产生1到4之间的随机数,每三个一组,每组
中数不重复,得到n组数,统计这n组数中含有1的组数m,则估计甲被
机产生的0或1,这样我们就很快就得到了100个随机产生的0,1,相当
于做了100次随机实验.
4.如果需要统计抛掷一枚质地均匀的骰子30次时各面朝上的频
数,但是没有骰子,你有什么办法得到实验的结果?
提示由计算器或计算机产生30个1~6之间的随机数.
课前篇自主预习
5.一般地,如果一个古典概型的基本事件总数为n,在没有实验条
321230
就相当于做了25次实验,在每组数中,如果恰有3个或3个以上的
数是0,则表示至少答对3道题,它们分别是
001003,030032,210010,112000,共有4组数,由此可得该同学6道选择
4
题至少答对3道的概率近似为 =0.16.
25
课堂篇探究学习
探究一
探究二
探究三
思维辨析
当堂检测
反思感悟如果事件A在每次实验中产生的概率都相等,那么可以

③则任取一球,得到白球的概率近似为 .
(2)步骤:
①利用计算器或计算机产生1到7之间的整数随机数,每三个数一
组(每组中数不重复),统计组数为n';
②统计这n组数中,每组三个数字均小于6的组数m';

③则任取三球,都是白球的概率近似为 .

【成才之路】14-2015学年高中数学 3.2.2(整数值)随机数(random numbers)随的产生课件 新人教A版必修3

【成才之路】14-2015学年高中数学 3.2.2(整数值)随机数(random numbers)随的产生课件 新人教A版必修3

用随机模拟法估计概率
种植某种树苗,成活率为0.9,请采用随机模拟 的方法估计该树苗种植5棵恰好4棵成活的概率.写出模拟试验 的过程,并求出所求概率.
[ 解析 ] (1) 先由计算机随机函数 RANDBETWEEN(0,9) , 或计算器的随机函数RANDI(0,9)产生0到9之间取整数值的随机
数,指定1至9的数字代表成活,0代表不成活,再以每5个随机
2 .抛掷一枚骰子 5 次,若正面向上用随机数 0 表示,反面 向上用随机数 1表示,下面表示 5次抛掷恰有 3次正面向上的是 ( ) A.1 0 0 1 1 B.1 1 0 0 1
C.0 0 1 1 0
[答案] C
D.1 0 1 1 1
3.在两个袋子中,分别装有4个编号为1、2、3、4的白球 和黑球,从每个袋子中取出一球,则两个球的编号之和为4的 概率为( 1 A.16 5 C.16
[特别提醒]
应用计算器或计算机要特别注意遵照产生随
机数的方法来进行,切记不可随意改变其步骤顺序和操作程 序,否则会出现错误.
用随机模拟方法抛掷一枚均匀的硬币 100 次,产生计算机
统计这100次试验中“出现正面朝上”随机数. [解析] 利用计算机统计频数和频率,用Excel演示. (1) 选 定 Cl 格 , 键 入 频 数 函 数 “ = FREQUENCY(A1 : A100,0.5)” ,按 Enter 键,则此格中的数是统计 A1 至 A100 中比 0.5小的数的个数,即0出现的频数,也就是反面朝上的频数. (2) 选定 D1 格,键入 “ = 1 - Cl/100” ,按 Enter 键,在此格 中的数是这100次试验中出现1的频率,即正面朝上的频率.
新知导学 1.整数随机数的产生 计算器或计算机产生的整数随机数是依照确定的算法产生 的数,具有周期性(周期很长),它们具有类似随机数的性质, 伪随机数 .即使是这样,由于计算 不是真正的随机数,称为__________ 器或计算机省时省力,并且速度非常快,我们还是把计算器或 计算机产生的伪随机数近似地看成随机数.

高中数学 3.2.2对数函数(一)配套课件 苏教版必修1

高中数学 3.2.2对数函数(一)配套课件 苏教版必修1

小结 此题主要利用对数函数 y=logax 的定义域为(0,+∞) 求解.
第八页,共27页。
研一研•问题探究、课堂(kètáng)更高 效
跟踪训练 1 求下列函数的定义域: (1)y=log3(1-x);(2)y=log12x;(3)y=log71-13x;
(4)y= log3x.
解 (1)由 1-x>0 得 x<1,
第二十二页,共27页。
研一研•问题探究(tànjiū)、课堂更高 效
3.2.2(一)
跟踪训练 3 函数 y=loga(x-1)(a>0 且 a≠1)的反函数的图象经过点 (1,4),求 a 的值.
解 根据反函数的概念,知函数 y=loga(x-1)(a>0 且 a≠1)的图象经 过点(4,1), ∴1=loga3,∴a=3.
2
图象的过程,观察图象,并指出这两个函数有哪些相同性质
和不同性质?
答 作图步骤: ①列表, ②描点,③用平滑曲线连接.过程
如下: x

1 4
1 2
1
2
4…
y=log2x … -2 -1 0 1 2 …
y= log1 x … 2 1 0 -1 -2 … 2
第十一页,共27页。
研一研•问题探究(tànjiū)、课堂更高 效
所以它在(0,+∞)上是增函数,于是 log23.4<log28.5; (2)考虑对数函数 y=log0.3x,因为它的底数 0<0.3<1,
所以它在(0,+∞)上是减函数,于是 log0.31.8>log0.32.7;
(3)当 a>1 时,y=logax 在(0,+∞)上是增函数,
于是 loga5.1<loga5.9;

高中数学第三章直线与方程3.2.2直线的两点式方程课件【新人教A版】

高中数学第三章直线与方程3.2.2直线的两点式方程课件【新人教A版】

(A)1
(B)-1
(C)7
(D)-7
4.(中点坐标公式)若已知A(1,2)及AB中点(2,3),则B点的坐标是 答案:(3,4) 5.(直线两点式方程)经过点A(3,2),B(4,3)的直线方程是 答案:x-y-1=0 .
.
课堂探究
题型一 直线的两点式方程
【教师备用】
1.直线的两点式方程运用条件是什么?
综上,直线 l 的方程为 y=
1 x 或 x+y=6 或 x-y=2. 2
题型三 直线方程的应用
【例 3】 直线过点 P(
4 ,2)且与 x 轴、y 轴的正半轴分别交于 A、B 两点,O 为坐 3
标原点,是否存在这样的直线分别满足下列条件: (1)△AOB 的周长为 12; (2)△AOB 的面积为 6. 若存在,求出直线的方程;若不存在,请说明理由.
三边所在直线的方程.
解:由两点式,直线 AB 方程为
0 1
y 1
=
x3 ,即 x+4y+1=0. 1 3
同理,直线 BC 方程为 即 2x+y-5=0. 直线 AC 方程为 即 3x-2y+3=0.
y 3 x 1 = , 1 3 3 1
y 3 x 1 = , 0 3 1 1
由直线方程的截距式得直线 l 的方程为
x y + =1,即 x+4y-8=0. 8 2
【思维激活】 (2015日照一中月考)过A(1,4)且在两坐标轴上的截距的绝对值相等 的直线共有 条.
解析:一条是截距为0,一条是截距相等(不为0),一条是截距互为相反 数(不为0)共三条. 答案:3
【备用例1】 (2015青岛一中联考)已知直线l在x轴上的截距比在y轴上的截距大1, 且过定点(6,-2),求直线l的方程.

高中数学(人教版A版必修三)配套课件3.2.2(整数值)随机数(random numbers)的产生

高中数学(人教版A版必修三)配套课件3.2.2(整数值)随机数(random numbers)的产生

超级记忆法-记忆规律
记忆中
选择恰当的记忆数量
魔力之七:美国心理学家约翰·米勒曾对短时记忆的广 度进行过比较精准的测定:通常情况下一个人的记忆 广度为7±2项内容。
超级记忆法-记忆规律
TIP1:我们可以选择恰当的记忆数量——7组之内! TIP2:很多我们觉得比较容易背的古诗词,大多不超过七个字,很大程度上也 是因为在“魔力之七”范围内的缘故。我们可以把要记忆的内容拆解组合控制 在7组之内(每一组不代表只有一个字哦,这7组中的每一组容量可适当加大)。 TIP3:比如我们记忆一个手机号码18820568803,如果一个一组的记忆,我 们就要记11组,而如果我们拆解一下,按照188-2056-8803,我们就只需要 记忆3组就可以了,记忆效率也会大大提高。
答案
1 2345
4.抛掷两枚均匀的正方体骰子,用随机模拟方法估计出现点数之和为10
的概率时,产生的整数随机数中,每几个数字为一组( B )
A.1
B.2
C.10
D.12
答案
1 2345
5.通过模拟试验产生了20组随机数:
6830 3013 7055 7430 7740 4422 7884 2604 3346 0952
费曼学习法
费曼学习法--简介
理查德·菲利普斯·费曼 (Richard PhillipsFeynman)
费曼学习法出自著名物理学家费曼,他曾获的 1965年诺贝尔物理学奖,费曼不仅是一名杰出的 物理学家,并且是一位伟大的教育家,他能用很 简单的语言解释很复杂的概念,让其他人能够快 速理解,实际上,他在学习新东西的时候,也会 不断的研究思考,直到研究的概念能被自己直观 轻松的理解,这也是这个学习法命名的由来!
为啥总是听懂了, 但不会做,做不好?

人教A版高中数学必修三第三章3.2.2(整数值)随机数(randomnumbers)的产生教学课件

人教A版高中数学必修三第三章3.2.2(整数值)随机数(randomnumbers)的产生教学课件
【例2】天气预报说,在今后的三天中,每一天下 雨的概率均为40%.这三天中恰有两天下雨的概率 大概是多少? 用三天中恰有两天下雨的频率估计概率
分析:
大量的实验
每次的实验的结果中同时含有三天是否下雨的情况(三 个数据)
每天是否下雨的情况 (满足40%条件)
用三天中恰有两天下雨的频率估计概率
以其中表示恰有两天下雨的随机数(0,1,2,3,)的 频率,作为这三天中恰有两天下雨的概率的近似值.
么表示一次投篮命中的数可以指定为( C ).
A.0,2,4,6,8 B.1,3,5,7,8,9 C.0,1,2,3,4,8,9 D.1,2,3,4,5,7,8,9
目标检测设计
2.请你用TI-nspire CAS图形计算器产生区间 [0,1]上的均匀随机数.
则需应用的函数是:____r_a_n_d_(__) _____
3.对于古典概型,任何事件A产生的概率为:
【问题1】将一个骰子掷1次,
1
(1)“向上一面出现1点”的概率是多少? 6
(2)如果将一个骰子掷1000次,
1000
“向上一面出现1点”的次数大约是多少? 6
167
(3)如果用实验的方法估计掷1次骰子“向上
一面出现1点”的概率,怎么做?
方法:通过大量重复掷骰子的实验,反复计算
【例2】天气预报说,在今后的三天中,每一天下雨的概
率均为40%.这三天中恰有两天下雨的概率大概是多少?
(1) 设计 利用计算器产生0~9之间的(整数值)随机数 概率模型 约定用0、1、2、3表示下雨,4、5、6、7、8、
9表示不下雨以体现下雨的概率是40%.
模拟三天的下雨情况:连续产生三个随机数为
便签本:→菜单 →5:概率 →4:随机

3.2.2-奇偶性课件-2025届高三数学一轮复习

3.2.2-奇偶性课件-2025届高三数学一轮复习

A)
A.单调递增,且最大值为f −2
B.单调递增,且最大值为f −3
C.单调递减,且最大值为f −2
D.单调递减,且最大值为f −3
【解析】任取−3 ≤ x1 < x2 ≤ −2,
∴ 2 ≤ −x2 < −x1 ≤ 3,
又函数f x 在区间[2,3]上单调递增,
∴ f −x2 < f −x1 .
∵ 函数f x 为奇函数,
D.若f x 是定义域为的奇函数,则f 0 = 0
)
【解析】对任意x ∈ ,满足f −x = f x ,f x x ∈ 才是偶函数,仅凭两个特殊
的函数值相等不足以判定函数的奇偶性,故A错误.
当f x x ∈ 是偶函数时,∀x ∈ ,f −x = f x ,因此f −2 = f 2 成立,故B正确.
x2
+
a
x
x ≠ 0, a ∈ ;
【解析】当a = 0时,f x = x 2 为偶函数.
当a ≠ 0时,f x =
x2
+
a
x
x ≠ 0 ,取x = ±1,
得f −1 + f 1 = 2 ≠ 0,f −1 − f 1 = −2a ≠ 0,
即f −1 ≠ −f 1 ,f −1 ≠ f 1 ,
∴ 函数f x 既不是奇函数也不是偶函数.
D.h x =
f x
2−g x
是奇函数
【解析】对于A,h x = f x + g x = 4 − x 2 + x − 2 = 4 − x 2 + 2 − x,
x ∈ [−2,2],h −x = 4 − x 2 + 2 + x,由于h −x ≠ h x ,h −x ≠ −h x ,所以h x

高中数学第三章不等式3.2均值不等式课件新人教B版必修

高中数学第三章不等式3.2均值不等式课件新人教B版必修

式模型,再使用.
探究一
探究二
探究三
探究四
探究五
思维辨析 当堂检测
1.将本例
3
中所证的不等式左边改为“������������2
+
������2 ������
+
���������2��� ”,其他均不变,
又将如何证明呢?
探究一
探究二
探究三
探究四
探究五
思维辨析 当堂检测
证明:∵a,b,c,������������2
探究一
探究二
探究三
探究四
探究五
思维辨析 当堂检测
变式训练 1 已知 x<2,求函数 f(x)=x+������4-2的最大值. 解:∵x<2,∴2-x>0,
∴f(x)=x+������4-2=-
(2-������)
+
4 2-������
+2
≤-2
(2-������)
4 2-������
+2=-2,



二、均值定理
【问题思考】
1.填空:
(1)如果 a,b>0,那么������+2������ ≥ ������������,当且仅当 a=b 时,等号成立.这也 叫基本不等式.
(2)对任意两个正实数 a,b,数������+2������叫做 a,b 的算术平均值,数 ������������ 叫做 a,b 的几何平均值,故均值定理用语言叙述是两个正实数的算术
,
������+������ 2
,
������������, 1������+21������,b 的大小.

高中数学3.2.2直线的两点式方程课件新人教A版必修

高中数学3.2.2直线的两点式方程课件新人教A版必修

解:(1)由直线的两点式方程得
y 2 x3 . 12 2 8 3
即为2x-y-4=0,这就是直线AB的方程.
(2)∵点C(-2,a)在直线AB上, ∴2×(-2)-a-4=0.∴a=-8.
题型二 直线的截距式方程 例2:直线l过点P(-6,3),且它在x轴上的截距是它在y轴上截距 的3倍,求直线l的方程. 分析:设直线l在y轴上的截距为b,则在x轴上的截距为3b.因 为截距可正,可负,可为零,所以应分b=0和b≠0两种情况解 答.
说明:直线的截距式方程不能表示与坐标轴垂直或过原点的 直线.
题型一 直线的两点式方程 例1:已知三角形的三个顶点A(-2,2),B(3,2),C(3,0),求这个三
角形的三边所在直线的方程以及AC边上的高线所在直线的
方程. 分析:求直线的方程时要选好方程的形式,要注意方程的适 用范围.
解:如右图,直线AC过点
10.已知直线与两坐标轴围成的三角形面积为3,且在两坐标轴
上的截距之和为5,求这样的直线有几条?
1 x y | ab | 3 解 : 设直线方程为 1,由题意得 2 a b a b 5. ab 6 ab 6 即 或 a b 5 a b 5.
ab 6 a 3 a 2 由 得 或 a b 5 b 2 b 3 ab 6 a 6 a 1 由 得 或 a b 5 b 1 b 6 故所求直线有4条.
11.(2010·安徽文4)过点(1,0)且与直线x-2y-2=0平行的直线 方程为( ) B.x-2y+1=0 D.x+2y-1=0 A.x-2y-1=0 C.2x+y-2=0
易错探究 例4:已知直线l经过点(3,-2),且在两坐标轴上的截距相等,求 直线l的方程. 错解:错解1:由于直线l的截距相等,故直线l的斜率为±1. 若k=1,则直线方程为:y+2=x-3, 即为x-y-5=0; 若k=-1,则直线方程为:y+2=-(x-3),

3.2.2函数的奇偶性课件(人教版)

3.2.2函数的奇偶性课件(人教版)
特点吗?
中心对称图形

函数图象的美
思考:下列函数图象的美是否也具这样的特点?
() = 2
() = 2 − ||
图象关于y轴对称
你能用符号语言精确地描述这些特征吗?
新知探究
用几何画板探究下列函数的函数值特征
() = 2
() = 2 − ||
(3)几何特征: 函数图象关于y轴对称.
新知探究
用几何画板探究下列函数的函数值特征
() =
() =
1

图像关于原点对称
奇函数的概念和特征
奇函数的概念和特征
一般地,设函数()的定义域为
,如果∀ ∈ ,都有 − ∈ 且
(−) = (),
那么函数()就叫做偶函数
函数图象关于原点对称.
概念理解
函数f(x)=x2, x∈[-2,2]是偶函数吗? 函数g(x)=x2, x∈[-1,2]是偶函数吗?
y
y
4
4
3
3
2
2
1
–3 –2 –1
o
–1

1
2
1
–1
3
o
x
整体性质
奇偶函数的定义域关于原点对称
–1
1
2
3
x

判断函数为奇偶函数的前提条件
图象法判断奇偶性
根据奇偶性,
偶函数的特征:
(1)定义域特征:定义域关于原点对称.
(2)代数特征: f(-x)=f(x)
(3)几何特征: 函数图象关于y轴对称.
一般地,设函数()的定义域为
,如果∀ ∈ ,都有 − ∈
且(−) = −(),
那么函数()就叫做奇函数

高中数学新人教A版选择性必修第一册3.2.2双曲线的简单几何性质课件

高中数学新人教A版选择性必修第一册3.2.2双曲线的简单几何性质课件
A.m≥√2 或m≤-√2 B. 一2≤m≤√2且m≠0
C.m ∈R
D.-√2≤m≤√2
【答案】D [ 由
由题意知1—m²=0,
解得一 √2≤m≤√2.]
得(1—m²)x²—2mx—2=0,
4. 如图为一座高100米的双曲线冷却塔外壳的简化三视图(忽略
壁厚),其底面直径大于上底直径,已知其外壳主视图与左视图中 的曲线均为双曲线,高度为100m, 俯视图为三个同心圆,其半径
解:设点M(x,y), 由题知
即 整理得:
请你将例5与椭圆一节中的例6比较,你有什么发现?
例6、 过双曲线 求IABI.
的右焦点F₂, 倾斜角为30度的直线交双曲线于A,B两点,
分析:求弦长问题有两种方法: 法 一:如果交点坐标易求,可直接用两点间距离公 式代入求弦长;
法二:但有时为了简化计算,常设而不求,运用韦达 定理来处理.
A.y²—3x²=36 C.3y²—x²=36
B.x²—3y²=36 D.3x²-y²=36
பைடு நூலகம்
【答案】A [椭圆4

则双曲线的焦点在y 轴上,c=4√3,
线的方程为y²-3x²=36.]
焦点为(0,±4 √3),离心率为 从而a=6,b²=12, 故所求双曲
3 .直线y=mx+1 与双曲线x²—y²=1 有公共点,则m 的取值范围是( )
,
即 3x+4y-5=0.
课堂小结
1.掌握双曲线的简单几何性质. 2.双曲线方程的简单应用. 3.理解直线与双曲线的位置关系.
谢谢大家
人教A 版选择性必修第一册
对称性 对称轴:x轴、y轴;对称中心:坐标原点
顶点坐标
性轴 质
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

方法点评:抛掷两枚骰子,相当于产生两个 1 到 6 的随机 数,因而我们可以产生随机数,然后两个一组进行分组,每组 第一个数表示第一枚骰子的点数,第二个数表示第二枚骰子的 点数.
3.随机数的应用 用整数随机数模拟试验估计概率时:①确定随机数的范围
和用哪些数代表不同的试验结果;②每次试验结果中需要 n 个 随机数表示时,要把 n 个随机数作为一组来处理(注意考查每组 中随机数字是否重复).
典例剖析 题型一 随机数的产生方法 【例 1】 一个学生在一次竞赛中要回答的 9 道题是这样产 生的:从 20 道物理题中随机抽 4 道;从 15 道化学题中随机抽 3 道;从 12 道生物题中随机抽 2 道.使用合适的方法确定这个学 生所要回答的三门学科的题的序号(物理题的编号为 1~20,化 学题的编号为 21~35,生物题的编号为 36~47).
2.伪随机数的产生方法 计算机或计算器产生的随机数是依照确定算法产生的数, 具有周期性(周期很长),它们具有类似随机数的性质.计算机或 计算器产生的并不是真正的随机数, 我们称它们为伪随机数, 随机数表就是用计算机产生的随机数表格.随机数表中每个位 置上出现哪一个数字是等可能的. 如上面我们从全班 50 名学生中抽取 8 名学生的方法,也可 以用随机数表法选取.我们可以用随机函数产生 1~50 间的 8 个随机数(排除后面产生的与前面相同的数)来作为抽取 8 名学 生的号码.
例如,我们从全班 50 名学生中抽取 8 名学生进行“观看足 球比赛的喜爱程度”的调查时,我们可以把 50 个分别标有 1,2,…,49,50 的大小、形状完全相同的小球,放入一个袋中, 从中抽取 8 个,就相应地对这 8 名学生进行调查(抽取前先把全 班同学编号为 1,2,3,…,49,50),这实际上就是简单随机抽样中 的“抽签法”.
思路点拨:利用 RANDI 函数. 【解析】用计算器的随机函数 RANDI(1,20)或计算机的随机 函数 RANDBETWEEN(1,20)产生 4 个不同的 1 到 20 之间的整数 随机数(如果有一个重复,重新产生一个);再用计算器的随机函 数 RANDI(21,35)或计算机的随机函数 RANDBETWEEN(21,35) 产生 3 个不同的 21 到 35 之间的整数随机数;用计算器的随机 函 数 RANDI(36,47) 或 计 算 机 的 随 机 函 数 RANDBETWEEN(36,47)产生 2 个不同的 36 到 47 之间的整数随 机数,就得到 9 道题的题号.
1.某校高一全年级共 25 个班 1 200 人,期末考试时如何把 学生分配到 40 个考场中去?
【解析】要把 1 200 人分到 40 个考场中去,每个考场 30 人,首先要把全体学生按一定顺序排成一列,然后从 1 号到 30 号去第 1 考场,31 号到 60 号去第 2 考场……人数太多,如果用 随机数表法给每个学生找一个考试号,太费时费力,我们可以 用随机函数给每一个学生一个随机号数,然后再按号数用计算 机排序即可.
1112 A.3 B.4 C.2 D.3
【答案】C
4.在利用整数随机数进行随机模拟试验中,a 到 b 之间的
1 每个整数出现的可能性是_b_-__a_+__1_.
要点阐释 1.随机数产生的背景及方法 (1)随机试验花费大量的人力物力,需要一种新的便捷方式, 这样就用计算器或计算机产生你指定的两个整数之间的取整数 值的随机数.
(2)如果我们把 25 个大小、形状完全相同的小球分别标上 1,2,3,…,24,25,放入一个袋中,把它们充分搅拌,然后从中 摸出一个球.这个球上的数就称为随机数.这样我们就可以得 到 1 至 25 间的随机整数,由于小球大小、形状完全相同,因而 每个球被摸出是等可能的,因而每个随机数的产生都是等可能 的.
1 111 A.10 B.8 C.6 D.5
【答案】D
2.从 3 台甲型彩电和 2 台乙型彩电中任选 2 台,其中两个 品牌的彩电都齐全的概率是( )
1234 A.5 B.5 C.5 D.5
【答案】C
3.从数字 1,2,3,4 中任取两个不同数字构成一个两位数,则 这个两位数大于 30 的概率为( )
2.随机模拟估计概率的步骤是怎样的?
【答案】 (1)建立概率模型; (2)进行模拟试验:可用计算器或计算机进行模拟试验; (3)统计试验结果.
预习测评 1.密码锁的密码有 3 位数字,每位上的数可以是 1,3,5,7,9 中的一个.某人忘了密码中最后一位,则随意拨动最后一位号 码正好能开锁的概率是( )
(1)按班级、学号顺序把学生档案输入计算机. (2)用随机函数 RANDBETWEEN(1,1 200)按顺序给每个学 生一个随机数(每人的都不同). (3)使用计算机排序功能按随机数从小到大排列,即可得到 考试号从 1 到 1 200 人的考试序号.(注:1ቤተ መጻሕፍቲ ባይዱ号应为 0001,2 号应 为 0002,用 0 补足位数,前面再加上有关信息号码即可)
题型二 设计模拟试验估计概率 【例 2】 同时抛掷两枚骰子,计算都是 1 点的概率.设计 一个试验,随机模拟上述概率.
思路点拨:设计模拟试验―→产生随机数―→估算所求概 率.
【解析】利用计算器或计算机产生 1 到 6 之间的取整数值 的随机数,两个随机数作为一组,统计随机数总组数 N 及其中 两个随机数都是 1 的组数 N1,则频率NN1即为抛掷两枚骰子都是 1 点的概率的近似值.
欢迎来到数学课堂
自学导引 整数随机数的应用 利用计算器或计算机产生的随机数来做模拟试验,通过模 拟试验得到的___频__率___来估计__概__率____,这种用计算器或计算 机模拟试验的方法称为随机模拟方法或蒙特卡罗方法.
自主探究 1.随机数的产生方法主要有哪些?它们有什么区别?
【答案】 (1)常用的随机数的产生方法主要有抽签法,利用计算器和 利用计算机. (2)利用摸球或抽签得到的数是真正意义上的随机数,用计 算器或计算机得到的是伪随机数.
相关文档
最新文档