矩量法在电磁散射问题中应用的发展

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

矩量法在电磁散射问题中应用的发展

摘要:

电磁散射问题是电磁学中的一个重要研究领域,研究电磁波的散射机理以及计算其散射场强的大小与分布,具有十分重要的实际意义。矩量法作为一种有效的数值计算方法在其中有着广泛的应用。但作为一种计算方法它也有着自己的缺陷,为了解决这些问题,人们提出了各种方案,矩量法在这个过程中也获得了很大的发展。

关键词:电磁散射,矩量法(MoM)

MoM(Method of Moments)原本是一种近似求解线性算子方程的方法,通过它可以将算子方程转化为一矩阵方程,进而通过求解此矩阵方程得到最终的近似解。MoM最早是由两位数学家L. V. Kantorovich和V. I.Krylov提出的,后来由K.K.Mei引入计算电磁学,最终被R.F. Harryington在其著作《计算电磁场中的矩量法》中加以系统描述。利用矩量法求解电磁问题的主要优点是:它严格地计算了各个子系统间的互耦,而算法本身又从根本上保证了误差系统总体最小而不产生数值色散。如今MoM被广泛应用于计算电磁学中,虽然它不能处理电大尺寸目标的电磁问题,但基于MoM的各种加速方法仍受到极大重视,如多层快速多极子方法MLMFA等。[1]

电磁散射问题是电磁学中的一个重要研究领域,研究电磁波的散射机理以及计算其散射场强的大小与分布,具有十分重要的实际意义。

在实际生活中,遇到的散射目标往往不仅具有复杂的几何形状,而且构成的材料也各不相同。因此对复杂目标的电磁散射特性进行快速、高效的分析,具有重要的理论意义和实用价值。

电磁散射问题只有在相对简单的情况下才可以用严格的解析法来求解,比如对极少数形状规则的物体。对于电大物体,可以用高频近似方法,例如几何光学法(GO)、物理光学法(PO)、几何绕射理论(GTD)、物理绕射理论(PTD)、一致性几何绕射理论(UTD)、复射线法(CT)等来求解散射场。反之,对于电小物体,可以用准静态场来进行分析。介乎这两者之间的物体,一般采用数值方法。

目前分析电磁散射问题的数值方法主要有微分方程法和积分方程法。微分方程法有有限差分法(FDM)、时域有限差分法(FDTD)、频域有限差分法(FDFD)、时域平面波法(PWTD)、时域多分辨分析法(MRTD)、有限元法(FEM)、传输线矩阵法(TLM)等,积分方程法有表面积分方程法(SIEM)、矩量法(MOM)、边界元法(BEM)、体积分方程法(VIEM)、快速多极子法(FMM)、时域积分方程法(IETD)等。这些方法各有优缺点,有的是为了避免矩阵求逆,有的是为了加快收敛,有的是为了提高精度,还有的是为了减少贮存等。它们被广泛应用于求解复杂的工程电磁场问题中。

应用微分方程法求解电磁散射问题时,由于散射体的外空间为无限大,需要人为设置截断边界使求解区域有限,这种截断边界的引入会导致非物理的反射现象。矩量法是一种将连续方程离散化成代数方程组的方法,经常被看作数值“精确解”。它既适用于电磁场积分方程又适用于微分方程,由于已经有有效的数值

计算方法求解微分方程,所以目前矩量法大都用来求解积分方程。由于此方法能解决边界比较复杂的一些问题,因而得到了广泛的应用。

如2008年,李西敏等人对传统低阶矩量法(MoM)几何建模复杂、计算量大等缺点,采用高阶矩量法和双线性表面技术对介质体电磁散射问题进行了研究[2]。2009年,麻军就矩量法及其并行计算方法在粗糙面以及复杂目标的电磁散射中的应用开展了系统的理论研究工作,利用矩量法及其并行计算方法研究了一维、二维粗糙面,三维复杂目标电磁散射特性以及一维粗糙面与二维目标的复合电磁散射特性[3]。2010年,耿方志等人对三维复杂电大尺寸金属目标,在传统MoM—PO混合法的基础上,引入基于射线密度归一化(RDN)概念的射线弹跳法(SBR),计算电大PO区域内部的多次反射影响,从而得到一种新的MoM.SBR/PO混合方法,该方法区别于大部分改进的MoM—P0混合法对P0区域内多次反射贡献的处理,避免了迭代物理光学法涉及的多次矩阵相乘问题[4]。

需要注意的是,虽然矩量法中求解阻抗矩阵的表达式较为简单,但其计算工作量很大,对于以积分方程为基础的离散方程,其系数矩阵通常为满矩阵,所有元素都需大量的数值计算。尤其随着目标电尺寸的增大,矩量法得到的系数矩阵将迅速增大,这将给计算机内存和CPU带来沉重的负担。

为了克服这些困难,人们对传统矩量法进行了一些改进,提出了一些快速、有效的方法,如(1)快速多极子方法(FMM)和多层快速多极子方法(MLFMM),(2)阻抗矩阵局部化(IML)方法和压缩或稀疏化阻抗矩阵的小波分解法,(3)基于快速Fourier变换的CG—FFT法、稀疏矩阵规则网格(SMCG)法和自适应积分法(AIM),来降低计算机内存和计算量的需求。在这些快速分析方法中,需要的计算量和内存分别降为D(NlogW)和0(N),N为未知变量数。但是,这些改进的方法仍然受传统矩量法离散尺寸的限制。

采用整域基函数代替分域基函数可以降低矩量法系数矩阵的维数。然而,在绝大多数情况下,难以找到合适的整域基函数。为此,近年来,人们又相继开展了一些基于部分域(子域或块)概念来降低矩阵维数的研究,如多层矩量法(MMM)、子域多层法(SMA)、合成基函数(SBF)法等。这些方法通过对问题的部分域进行分析来构造宏基函数,宏基函数的域比传统矩量法的大,因此可以降低未知变量数。这几种方法是通过迭代的方式递归地修正互耦项来改进解的收敛性。特征基函数法(CBFM)是近两年提出来的一种新的求解电磁散射问题的有效方法。

[5]

可以看出,矩量法自提出以来在电磁散射问题中取得了广泛的应用。虽然它在实际应用中受到计算量的限制,但是为了克服这些问题人们做了许多工作,它依然是非常实用的一种方法。

参考文献:

[1] 李茁. 复杂电磁问题的算法研究与软件实现[D]. 南京:东南大学,2009:21-22.

[2] 李西敏,童创明,付树洪. 介质体电磁散射的矩量法快速求解[J]. 系统工程与

电子技术,2008,30(3),470-471

[3] 麻军. 矩量法及其并行计算在粗糙面和目标电磁散射中的应用[D]. 西安:西

安电子科技大学,2009: 1-5

[4] 耿方志,彭世蕤,秦开兵,潘英锋,孙宏伟. 一种新的计算复杂目标电磁散

射的MoM-SBR/PO混合法[J]. 计算物理,2010,27(2),269-270

[5] 张奕. 特征基函数法及其在电磁散射中的应用[D]. 安徽:安徽大学,2005:

3-4

相关文档
最新文档