第4章 空间力系
第4章空间力系分解
合力的大小
FR ( Fx )2 ( Fy )2 ( Fz )2
Fx 方向余弦 cos( FR , i ) FR
Fy Fz cos( FR , j ) cos( FR , k ) FR FR
7
空间汇交力系的合力等于各分力的矢量和,合力的作用 线通过汇交点.
M 为合力偶矩矢,等于各分力偶矩矢的矢量和。
25
力偶系的合成(与汇交力系的计算完全相同)
合力偶矩矢
M Mi
M x Mix M y Miy Mz Miz
M M xi M y j Mzk
合矢量投影定理:Βιβλιοθήκη 合力偶矩矢的大小和方向余弦:
M
M M M
2 2 ix iy iz
2
M ix cos M
cos
M iy M
M iz cos M
26
空间力偶系平衡的充分必要条件是:合力偶矩矢等于零。
为代数量
z
即:力对轴之矩,等于力在垂直于
该轴的平面上的投影对轴与平面交 点之矩。 O x
y
特殊情况:
1、力与轴平行,矩为零。 2、力与轴相交,矩为零。
即: 力与轴位于同一平面内时,力对轴之矩为零。 16
合力矩定理
空间任意力系的合力对于任一轴的矩等于力系中所有各 力对于该轴的矩的代数和。(用于求力矩)
B
F
F
rBA rA
A
M rBA F
rB
O
23
2、空间力偶等效定理
作用在同一刚体上的两个力偶,如果力偶矩矢相等, 则它们彼此等效。
第四章空间力系
(4-19a)
' FR F2'
F R F1 F 2 Fn Fi
(4-3) (4-4)
或 其中
xi yi
F R F xi i Fyi j Fzi k
F , F , F
zi
为合力 FR 沿x、y、z轴的投影。
(4-5) (4-6)
空间汇交力系平衡的必要和充分条件是该力系的合力等于零。 由此得
y
方向 cos(MO , i ) M x (Fi ) MO
§4-4 空间任意力系向一点的简化●主矢和主矩 二、空间任意力系的简化结果分析 ' 1. FR 0, M O 0 简化结果:合力偶 合力偶矩矢
M O M O (Fi )
主矩与简化中心的位置无关
2、空间力偶的三要素:
(1)大小: M Fd (2)方位:垂直力偶作用面
(3)指向:力偶的转向
§4-3 空间力偶
3、空间力偶的性质: (1)力偶中两力在任意坐标轴投影的代数和为零; (2)力偶对任意点取矩都等于力偶矩,不因矩心的改变而改变; (3)只要保持力偶矩不变,力偶可在其作用面内任意移转, 且可以同时改变力偶中力的大小与力偶臂的长短,对刚
正负号规定:从坐标轴正向看,逆时针转向为正,反之为负。
§4-2 力对点的矩和力对轴的矩
例4-3 已知:F , l , a, 求: Mx F ,My F ,Mz F 解:将力 F 分解如图
理论力学 第四章 空间力系
r FR = 0
∑F = 0
x
∑F = 0
y
称为空间汇交力系的平衡方程. 称为空间汇交力系的平衡方程. 空间汇交力系平衡的充要条件:该力系中所有 空间汇交力系平衡的充要条件: 充要条件 各力在三个坐标轴上的投影的代数和分别为零. 各力在三个坐标轴上的投影的代数和分别为零.
例 题 1
求: 绳的拉力和墙体的约束反力 。
=
=
F = F′ = F2 1 1
= F2′ = F3 = F3′
= =
定位矢量 滑移矢量 自由矢量 力偶矩矢是自由矢量 力偶矩相等的力偶等效 (5)力偶没有合力,力偶只能由力偶来平衡. 力偶没有合力,力偶只能由力偶来平衡.
3.空间力偶系的合成与平衡条件
=
=
r r r r r r r r r M 1 = r1 × F1 , M 2 = r2 × F2 ,......, M n = rn × Fn
A
P
c a y
i
j k
O
MO ( P ) = r × P = 0 b 0 0 0 P = Pbi
(2)利用力矩关系
x
α
b
M OA ( P ) = M O ( P ) cos α = Pab a 2 + b2 + c 2
MO(P)
例 题 4
已知:OA=OB=OC =b, OA⊥OB⊥OC. 已知: 求: F 对OA边的中点 之矩在 方向的投影。 边的中点D之矩在 方向的投影。 力 边的中点 之矩在AC方向的投影
3、力对点的矩与力对过该点的轴的矩的关系 r r r r M x ( F ) = M x ( Fx ) + M x ( Fy ) + M x ( Fz ) = Fz ⋅ y − Fy ⋅ z
第四章:空间力系
第四章空间力系一、要求1、能熟练地计算力在空间直角坐标轴上的投影和力对轴之矩。
2、对空间力偶的性质及其作用效应要有清晰的理解。
3、了解空间力系向一点简化的方法和结果。
4、能应用平衡条件求解空间汇交力系、空间任意力系、空间平行力系的平衡问题。
5、能正确地画出各种常见空间约束的约束反力。
二、重点、难点1、本章重点:力在空间直角坐标轴上的投影和力对轴之矩。
空间汇交力系、空间任意力系、空间平行力系的平衡方程的应用。
各种常见的空间约束及约束反力。
2、本章难点:空间矢量的运算,空间结构的几何关系与立体图。
三、学习指导1、空间力系的基本问题及其研究方法空间力系研究的基本问题仍然是静力学的三个基本问题,即:物体的受力分析、力系的等效替换和力系的平衡条件。
空间力系是力系中最普遍的情形,其它各种力系都是它的特殊情形。
按由浅入深、由特殊到一般的认识规律研究空间力系,是从理论上对静力学作一个系统而完整的总结。
与平面力系的研究方法相似,这里也采用力向一点平移的方法将空间任意力系分解为空间汇交力系和空间力偶系,再应用这两个力系的合成方法来简化原力系,然后根据简化结果推导出平衡条件。
由于空间力系各力作用线分布在空间,因而使问题复杂化。
出现了力在坐标轴上的二次投影法、力对轴的矩以及用向量表示力对点的矩和力偶矩等新问题,简化的结果和平衡方程也复杂了。
2、各类力系的平衡方程各类力系的独立的平衡方程的数目不变。
但是平衡方程的形式可以改变。
上表列出的是一般用形式。
解题指导1、对于解力在直角坐标轴上投影或力沿直角坐标轴分解这类问题,重要的是确定力在空间的位置。
一般解题的思路如下:(1)认清题意,仔细查看结构(或机构)的立体图,它由哪些部件组成,各部件在空间的位置,以及它们和坐标轴的关系。
(2)认清力的作用线在结构(或机构)的哪个平面内,寻找它与坐标面的交角,然后找力与坐标平面的夹角及力与坐标轴的夹角。
(3)考虑用一次投影或二次投影的方法求解。
理论力学 第4章-空间力系
第四章 空间力系
§4-1空间汇交力系
一 空间汇交力系的合成: 1)单 个 力 沿 坐 标 轴 的 分 解 : a)力 的 平 行 六 面 体 法 则 力 的 大 小 : X=Fcosα Y=Fcosβ Z = Fcosγ 力 的 方 向 : 与 x ,y,z 方 向 相 同 为 正 与 x ,y ,z 方 向 相 反 为 负
d) 空 间 汇 交 力 系 的 合 成 :合 力 QQ定 理 . 合力大小: R= ( ∑ X)2 + ( ∑ Y ) 2 + ( ∑ Z ) 2 合 力 方 向 :方 向 余 弦
§4-2 力对轴之矩和力对点之矩
1. 力偶矩矢: 空间力偶对刚体作用矢的效果取 决于以下三个因数
大小:|M|=Fd 转向:右手定则确定 作用面方位:力偶作用面法线所在的空间位置
2. 列空间一般力系平衡方程:
∑x = 0:
T1 + t1 + (T2 + t2 )sinθ + X A + XB = 0
∑ y = 0:
∑M
x
ZA + Z B (T2 + t) θ = 0 cos
பைடு நூலகம்
= 0 : Z B 2b (T1 + T2 ) cos θ b = 0
∑M
∑M
y
= 0 : t1 R + T2 cos θ r T1 R t2 cos θ r = 0
= 0 : (T1 + t2 )b (T2 + t2 ) sin θ b X B 2b = 0
静力学-第4章 空间基本力系
FCD
45
A
y
45
FCE
FBC
x
2. 再选取C点为研究对象,它的受力图如图所示。 这是一空间汇交力系,作直角坐标系Axy,
把力系中各力投影到Axy平面和Az轴上。
先列出对Az轴的投影方程
Fz 0,
F B c C 6 o 0 F s A C F C c D o F C s c Eo 0 s
F A C F A D F A s Bi F n 0
3.联立求解。
FABFAC FAD 3sFin
负号表示三杆都受压力。
44
例题
空间基本力系
4.取球铰链B为研究对象,列平衡方程。
Fx 0, F Bs Ci3n 0 F Bs Di3n 0 0
Fx 3kN , Fy 4kN , Fz 5kN 所以力 F 的大小为
F Fx2Fy2Fz252kN
力 F 的方向余弦及 与坐标轴的夹角为
cos F, i 3 0 .424
52
cos F, j 4 0 .566
52
cos F, k 5 0 .707
40
例题
空间基本力系
例题8
解:
建立如图坐标系Bxyz, 其 中 y 轴 平 分 ∠ CBD 。 由 于 ABCD是 正 交 锥 ,所 以 AB与y 轴 的夹角为θ。
41
例题
空间基本力系
例题8
力F 在坐标面Oxy上投影
1.取球铰链A为研究对 象,受力分析如图。
为求各力在轴x,y上 的投影,可先向坐标面 Oxy上投影,然后再向轴 上投影。
此力系在Axy平面上投影为一平面汇交 力系,其中:
理论力学 第四章 空间力系
12
单位:N·m
2.力对轴的矩
力对轴之矩合力矩定理:各力对任一轴之矩等于各分力对同一轴之矩的 代数和。
例:将Fxy再分解为Fx、Fy,根据合力矩定理则有:
Mz( F ) MO( Fxy ) MO( Fx ) MO( Fy ) xFy yFx
即:FR Fi 0
FR
Fx2 Fy2 Fz2
空间汇交力系的平衡方程
Fx 0 Fy 0
Fz 0
6
例题
如图所起重机,已知CE=EB=DE,角α=30o ,CDB平面与水平面 间的夹角∠EBF= 30o ,重物G=10 kN。如不计起重杆的重量,试求起 重杆所受的力和绳子的拉力。
XYZ
mO (F) (yZ zY ) i (zX xZ) j (xY yX) k
11
§4.3力对轴的矩
1.当力作用面 Z轴时: MZ(F ) M0 F F h
Z
2.当力作用面 Z轴时: M z (F) Mo (Fxy ) Fxy h
F
力与轴相交或与轴平行(力与轴在同一平面内),力对该轴的矩为零.
7
例题
解: 1. 取杆AB与重物为研究对象,受力分析如图。
zD
F2
E
C F 30o
B
F1
α
FA G
A
y
x
其侧视图为
z
E F1
F 30o
B
α
FA G
A
y
8
例 题 4-3
2. 列平衡方程。
zD
F2
E
C F 30o
B
F1
Fx 0,
F1 sin 45 F2 sin 45 0
第4章空间力系
FRy Fy
FRz Fz
cos FRx
FR
cos FRz
2、空间汇交力系的平衡条件
FR
cos FRy
FR
FRx Fx 0
FRy Fy 0
FRz Fz 0
光滑球铰链 A
Fz
Fy Fx
Fz
Fy Fx
例4-1 图示为用起重
杆吊起重物。起重杆的
A端用球铰链固定在地 面上,而B端则用绳CB 和DB拉住,两绳分别
上面三式联立,解得 F1=F2=3.54 kN FA=8.66 kN
例 :结构如图所示,杆重不计,已知力P, 求两杆的内力和绳BD的拉力。
z D
z D
C
F3
C
A
B
x
P
y A
y F2
F1
B
x
P
§4-2 空间力对点之矩和对轴之矩
一、力对点之矩
矢量
r
的矩
O
A
Mo( A) r A, Mo r A sin
i1
i1
z
M
Fz
FR
Mz
Fy
y
y
x
Fx
x
Mx
My
2、空间任意力系的简化结果分析
空间任意力系 {F1, F2,, Fn} {FR, MO} 简化结果
1、 FR 0, MO 0
平衡
2、FR 0, MO 0
合力
3、FR 0, MO 0 4、FR 0, MO 0
合力偶 ?
(1) FR 0, MO 0, FRMO
1、空间任意力系的简化
Fn An
o A2
A1 F2
F1
Fn'
力学第四章空间力系
§4-3 空间任意力系的平衡方程
解 取折杆为研究对象,画受力图如图所示,选直角坐 标系0xyz,列平衡方程
Fx = 0
FOx = 0
Fy = 0
FOy = 0
Fz = 0
FOz F = 0
Mx F = 0 MOx Fb = 0
§4-3 空间任意力系的平衡方程
平衡基本方程
空间任意力系平衡的充分必要条件:
各力在各坐标轴上的投影代数和分别等于零; 各力对各坐标轴的矩的代数和分别等于零
即:
Fx = 0
Fy = 0
Fz = 0
MxF = 0 M y F = 0 Mz F = 0
§4-3 空间任意力系的平衡方程
§4-3 空间任意力系的平衡方程
例4-5 用空间平衡力系的平面解法重解例4-4 解 重物匀速上升,鼓轮作匀速转动,即处于平衡姿态。取鼓轮为研究 对象。将力G和Q平移到轴线上,分别作垂直平面、水平平面和侧垂直
平面(图a、b、c)的受力图。
a)
c) b)
§4-3 空间任意力系的平衡方程
由(图a、b、 c),列平衡方程。
§4-2 力对轴之矩
力对轴之矩(N·m):度量力使物体绕轴的转动效应
M z (F ) = M O (Fxy ) = Fxyd
结论:力对某轴之矩是力使物体绕该轴 转动效应的度量,其大小等于力对垂直 于某轴平面内力对O点(即某轴在该面 的投影点)之矩。
力对轴之矩的符规定:
§4-2 力对轴之矩
例4-1 图示力F作用在圆轮的平面内,设力F作用线距z轴 距离为d。试计算力F对z轴之矩。
符号规定:从投影的起点到终点的方向与相应坐标轴 正向一致的就取正号;反之,就取负号。
第4章空间力系
12
理论力学电子教案 C 机械工业出版社
力矩矢旳模等于力旳大小与矩心到力作用线垂直 距离旳乘积,即
mO (F ) F d 2OAB面积
假如r 矩心O到力F作用点A旳矢径,则矢积旳模等 于三角形OAB面积旳两倍,其方向与MO(F)旳方向相同, 故力矩矢也能够表达为
力对//它旳轴旳矩为零。 即力F与轴共面时,力 对轴之矩为零。
z
Fz
O
xy
dA
F
B
Fxy
14
理论力学电子教案 C 机械工业出版社
力矩关系定理
[证]任取一点O,并过O点作
z MO(F)
O
xy
B
F
A
B
A Fxy
一轴z,力F对点O之矩MO(F) 垂直于 所在平面,其模为
M O (F ) 2ΔOAB
力F对z轴之矩为
即合力在某一坐标轴上旳投影,等于力系中全部各
力在同一轴上投影旳代数和,这就是空间汇交力系旳合
力投影定理。
合力FR旳大小和方向余弦分别为
FR FR2x FR2y FR2z ( Fx )2 ( Fy )2 ( Fz )2
cos FRx Fx ,
FR
FR
cos FRy Fy ,
FR
假设方向相反,即两杆均受压力。
11
理论力学电子教案 C 机械工业出版社
§ 4.2 力对点旳矩与力对轴旳矩
4.2.1 力对点旳矩 空间力系中,力对于某一点旳作用效应不但与力
矩旳大小和转向有关,还与力矩平面旳方位有关。 所 以空间力对点旳矩必须用力矩矢MO(F)表达。
B
理论力学 第四章 空间力系
第四章空间力系本章将研究空间力系的简化和平衡条件。
工程中常见物体所受各力的作用线并不都在同一平面内,而是空司分布的,例如车床主轴、起重设备、高压输电线塔和飞机的起落架等结构。
设计这些结构时,需用空间力系的平衡条件进行计算。
与平面力系一样,空间力系可以分为空间汇交力系、空司力偶系和空间任意力系来研究。
§4-1 空间汇交力系1.力在直角坐标轴上的投影和力沿直角坐标轴的分解若已知力F与正交坐标系Oxyz三轴间的夹角分别为α、β、γ,如图4-1所示,则力在三个轴上的投影等于力F的大小乘以与各轴夹角的余弦,即X=cosαY=cosβ (4-1)Z=cosγ当力与坐标轴Ox、Oy间的夹角不易确定时,可把力先投影到坐标平面Oxy上,得到力,然后再把这个力投影到x、y轴上。
在图4-2中,已知角γ和,则力在三个坐标轴上的投影分别为X=sinγcosY=sinγsin (4-2)Z=cosγ若以、、表示力F沿直角坐标轴x、y、z的正交分量,以i、j、k分别表示沿x、y、z坐标轴方向的单位矢量,如图4-3所示,则图4-2=++=X i+Y j+Z k (4-3)由此,力在坐标轴上的投影和力沿坐标轴的正交分矢量间的关系可表示为:=X i,=Y j,=Z k (4-4)如果己知力F在正交轴系Oxyz的三个投影,则力F的大小和方向余弦为=cos(,i)=cos(,j)= (4-5)cos(,k)=例4-1图4-4所示的圆柱斜齿轮,其上受啮合力的作用。
已知斜齿轮的齿倾角(螺旋角) β和压力角α,试求力沿x、y和z轴的分力。
解:先将力向z轴和Oxy平面投影,得Z=-sinα=cosα再将力向x、y轴投影,得X=-sinβ=-cosαsinβY=-cosβ=-cosαcosβ则沿各轴的分力为=-cosαsinβi,=-cosαcosβj,=-sinαk式中i、j、k为沿x、y、z轴的单位矢量,负号表明各分力与轴的正向相反。
第4章空间力系
第4章 空间力系4.1〖学习基本要求〗本章介绍了空间汇交力系、空间力偶系、空间任意力系的简化与平衡问题。
1、在理解空间力在直角坐标系上的投影与分力的基础上,掌握空间汇交力系的简化结果及平衡方程;2、在理解空间力矩和力偶的基础上,掌握空间力偶系的合成结果及平衡条件;3、在理解空间问题中力的平移定理的基础上,掌握空间任意力系向一点的简化结果计算。
4、掌握空间任意力系的平衡方程,能解决比较简单的空间任意力系平衡问题。
4.2〖要点分析〗1、空间汇交力系的合成根据力的合成的平行四边形法则,空间汇交力系也一定可以合成为一个合力,合力作用点在汇交点,并且等于力系中各分力的矢量和,即∑==+++=ni i n 121R F F F F F (4.1)合力在x 、y 、z 轴的投影为⎪⎪⎭⎪⎪⎬⎫=+⋅⋅⋅++==+⋅⋅⋅++==+⋅⋅⋅++=∑∑∑i n i n i n X Z Z Z Z Y Y Y Y Y X X X X X 212121 (4.2) 合力矢F R 的大小和方向的计算∑∑∑++=++=222222)()()(i i i Rz Ry Rx R Z Y X F F F F (4.3) RR R F Z F Y F X ===γβαcos ,cos ,cos (4.4) 2、空间汇交力系的平衡空间汇交力系平衡的必要与充分条件为:该合力等于零,平衡方程通常可写成∑∑∑===000i i i Z Y X , , (4.5)【说明】①空间汇交力系的合成也可以用几何法,但画空间的力多边形很不方便,在实用上均采用解析法。
②解析法的基础是力在坐标轴上的投影。
③投影轴可任意选取,只要三轴不共面且任何两根不平行。
④空间汇交力系独立的平衡方程有三个,最多可求解三个未知量。
⑤当空间汇交力系平衡时,它与任何平面上的投影力系也平衡。
3、空间力偶系的合成任意个空间力偶可以合成为一个合力偶,合力偶矩矢等于各分力偶矩矢的矢量和。
理论力学课件 第四章 空间力系
MO (FR ) MO (F1) MO (F2 )
证明:
z F1
FR
rA
F2
O
y
x
MO (FR ) rA F1 rA F2
MO (FR ) MO (F1) MO (F2 )
11
【例4-2】已知力F位于圆盘C处的切平面内,尺寸与角度如图所示,求 力F对x, y, z轴的力矩。
[M O (F )]x yFz zFy [M O (F )] y zFx xFz [M O (F )]z xFy yFx
8
4.2.2 力对轴之矩
力对轴之矩是力使刚体绕该轴转动效应的度量,力对轴之矩是一个 代数量,其绝对值等于该力在垂直于该轴的平面上的投影对于这个平 面与该轴的交点之矩,如图所示的力F对轴z的矩可表示为
解:力F在三个坐标轴上的投影为
Fx Fcos60cos30
3F 4
Fy
Fcos60sin30
1 4
F
Fz
Fsin60
3F 2
而力作用点的坐标分别为
h
x rsin30 1 r 2
y rcos30 3 r 2
zh
z B
rO
60 F Fz C Fxy
A
30Fx
y
Fxy
x
Fy
12
代入力对轴之矩计算公式,可得力对三个坐标轴的矩分别为
M z (F ) M O (Fxy ) Fxy d
z
b
F
a
O y
d
b'
x
a' Fxy
z
Fz
B
A Fx
F Fy
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Ai
A1 + A2
yC =
yi Ai = A1 y1 + A2 y2 = 25.37mm
Ai
A1 + A2
(2)负面积法
将该图形看成是一个大矩形I减去一个小矩
形II。它们的形心位置分别为C 1(xl,yl)、 C2 (x2,y2)。其面积分别为A1和A2。根据图 形分析可知,
x1=20mm , y1=30mm , A1=40 × 60=2400mm2
M z (F ) = M O (Fxy ) = Fxyd
结论:力对某轴之矩是力使物体绕该轴 转动效应的度量,其大小等于力对垂直 于某轴平面内力对O点(即某轴在该面 的投影点)之矩。
力对轴之矩的符号规定:
空间力系合力矩定理:
M FR = M F1 + M F2 + + M Fn
= M Байду номын сангаасi
x2=30mm , y2=38mm , A2=20 × 44=880mm2
则有:
xC =
xi Ai = A1x1 A2x2 = 14.21mm
Ai
A1 A2
yC =
yi Ai = A1 y1 A2 y2 = 25.37mm
Ai
A1 A2
习题参考解答或提示
二次投影法
力F 在三个轴上的投影分别为
Fx = F sin γcos φ Fy = F sin γsin φ Fz = F cos γ
F = Fx2 + Fy2 + Fz2
cosa = Fx F cos b = Fy F cos g = Fz F
§4-2 力对轴之矩
力对轴之矩(N·m):度量力使物体绕轴的转动效应
Sx=∑yi△Ai= ∑yi△Ai= ycA,Sx 称为图形对x轴的静矩
结论 :
若某轴通过图形的形心,则图形 对该轴的静矩必为零;反之,若 图形对某轴的静矩为零,则该轴 必通过图形的形心。
➢对称法求重心 对于均质物体,若在几何体上具有对称面、对称轴或对称点,则物 体的重心或形心也必在此对称面、对称轴或对称点上。
G
h = FB l G
组合图形的形心 有些平面图形可以看成是由几个简单形状的平面图形组成的组合图 形,计算时可将组合组合图形分割成几个简单形状图形,并确定每 个简单形状的平面图形的形心,就可确定整个平面图形的形心。
例4-5 试求图示平面图形的形心位置(单位:mm)。
解:该题可用两种方法求解
(1)分割法
空间任意力系:各力的作用线在空间任意分布的力系。
亦称空间一般力系
F Fr
轮轴所受的力系
§4-1 力在空间直角坐标轴上的投影
直线投影法
有一空间力F,取空间直角
坐标系如图 力F 在坐标轴上的投影
Fx = ±Fcosa Fy = ±Fcosb Fz =± Fcosg
符号规定:从投影的起点到终点的方向与相应坐标轴 正向一致的就取正号;反之,就取负号。
§4-3 空间任意力系的平衡方程
平衡基本方程
空间任意力系平衡的充分必要条件:
各力在各坐标轴上的投影代数和分别等于零; 各力对各坐标轴的矩的代数和分别等于零
即:
Fx = 0
Fy = 0
Fz = 0
MxF = 0 M y F = 0 Mz F = 0
例4-3 起重绞车如图所示。已知α=20°, r=10cm, R=20cm,G=10kN。试求重物匀速上升时支座A和B的 反力及齿轮所受的力Q(力Q在垂直于轴的平面内与
xC =
Gi xi = Gi
Gi xi G
yC =
Gi yi = Gi
Gi yi G
zC =
Gi zi = Gi
Gi zi G
对于均质物体,若用ρ表示其密度,△V表示微体积, 则得物体的重心坐标公式为
xdV
xC =
xiVi = V
V
V
ydV
yC =
yiVi = V
V
V
zdV
如图所示将该图形分解成两个矩形I和II, 它们的形心位置分别为C 1(xl,yl)、
C2 (x2,y2)。其面积分别为A1和A2。得
x1=10mm , y1=10mm , A1=20 × 44=880mm2
x2=20mm , y2=8mm , A2=16 × 40=640mm2
则有:
xC =
xi Ai = A1x1 + A2x2 = 14.21mm
§4-4 重心和形心
重心和形心的概念
重心 任何物体都可视为由许多微小部分所组成,每一微小部分上都 作用一个指向地球中心的力,这些引力原本应是一空间汇交力系,但 由于地球的半径比所研究物体的尺寸大得多,故可认为这些力为一空 间平行力系(如图)。此力系的合力G为物体的重力,并称重力的作用 点C为物体的重心。
zC =
ziVi = V
V
V
➢ 平面图形的形心
均质物体的重心就是其形心。
均质薄平板,若δ表示其厚度,△A表示
微体面积,得其形心的坐标公式为 (平
面图形的形心坐标的计算式 )
xdA
xC =
xiAi = A
A
A
ydA
yC =
yiAi = A
A
A
记Sy=∑xi△Ai= xcA,则Sy称为图 形对y轴的静矩
➢实验法 对于外形较复杂的物体确定重心可用实验法。
悬挂法 外形较复杂的均质薄平板常用此法求重心(或形心)。
先以板上一点A来悬挂此板,其重心必位于点A的铅垂线AB上;再 将板悬于另一点D,则重心又必位于点D的铅垂线DE上。交点C即为 此平板的重心(形心)。
称重法
称出物体的重量G 固定物体,一端支于固 定点A,另一端支于秤上 量出两支点间的水平距离l 读出磅秤上的读数FB
水平方向的切线成α角,α=20°)。
解 重物匀速上升,鼓轮作匀速转动,即处于平衡姿态。取鼓轮为研究 对象。将力G和Q平移到轴线上,分别作垂直平面、水平平面和侧垂直
平面(图a、b、c)的受力图。
a)
c) b)
由(图a、b、 c),列平衡方程。
MAP = 0
X =0
30G + 60Qsina 70P = 0 FAz + FBz Q sin a = 0
力F对轴的矩等于分力Fx和FZ对同 一轴的矩的代数和
力对平行自身的轴的矩为零
M x F = M x Fx = Fx AB + CD = Fl + acosa M y F = M y Fz = Fz BC = Fl cosa M z F = M z Fx = Fx AB + CD = Fl + asina
对刚体而言,物体的重心是一个不变的点。
形心 物体几何形状的中心点称为形心。
均质规则的刚体,其重心和形心在同一点上
重心和平面图形形心的确定
重心和形心可以利用相关计算公式确定。但多数情况下可以凭经验判定。
➢利用相关计算公式确定重心
如图所示,设物体重力作用点的坐标为G(zc,yc,zc), 得物体的重心坐标公式为
空间力系若有合力FR,则合力对某轴的矩 等于各分力对该轴的矩的代数和。
例4-1手柄ABCE在平面Axy内的D处作用一个力F,如图 5—7所示,它在垂直于y轴的平面内偏离铅垂线的角度为 α。如果CD=a,杆BC平行于x轴,杆CE平行y轴,AB和
BC的长度都等于l。试求力F 对x、y和z三轴的矩。
解:将F沿坐标轴分解为Fx和Fy
第四章 空 间 力 系
空间力系:物体所受各力的作用线不在同一平面内的力系 主要研究内容
力在空间直角坐标轴上的投影 力对轴之矩 空间任意力系的平衡方程 重心和形心
空间力系的三种形式:
空间汇交力系:各力的作用线汇交于一点的力系。 空间平行力系:各力的作用线彼此平行的力系。
作用于节点A上的力系
三轮起重机所受的力系
MAP = 0 Y = 0
60Q cosa 70 FBy = 0
Q cosa + FAy + FBy = 0
MoP = 0
QRcosa G = 0
FBz = 5.85kN FAz = 5.97 kN FBy = 4.29kN FAy = 0.71kN
空间平衡力系的平面解法
平面解法:在机械工程中,常把空间的 受力图投影到三个坐标平面上,画出三 个视图(主视、俯视、侧视图),这样, 就得到三个平面力系,分别列出他们的 平衡方程,同样可以解出所求的未知量。 这种将空间力系的平衡问题转化为三个 坐标平面内的平面力系的平衡问题的讨 论方法,就称为空间平衡力系。