人教版八年级下册数学 18.2矩形、菱形的性质定理和判定定理及其证明 习题精选(含答案)
人教版初中数学八年级下册18.2.1矩形(2)《矩形的判定》教案
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“矩形判定在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了矩形的判定方法、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对矩形判定的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
4.相关例题及练习题;
5.课堂小结与作业布置。
二、核心素养目标
1.让学生掌握矩形的判定方法,提高空间想象能力和逻辑推理能力;
2.培养学生运用矩形性质解决实际问题的能力,提高学以致用的素养;
3.培养学生的合作意识和团队精神,提高交流表达能力和问题解决能力;
4.激发学生对数学学科的兴趣,培养良好的数学学习习惯和探究精神。
b.在矩形中,已知对角线长度,求矩形的边长;
c.在实际问题中,如何判断一个图形是否为矩形,并运用矩形性质解决问题。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《矩形的判定》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过需要判断一个图形是否为矩形的情况?”(如判断黑板的形状)这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索矩形判定的奥秘。
人教版八年级数学下册 18.2.2.1菱形的性质 同步练习(包含答案)
人教版八年级数学下册18.2.2.1 菱形的性质同步练习一、选择题(共10小题,3*10=30)1.菱形具有而一般平行四边形不具有的性质是()A.对边相等B.对角相等C.对角线互相平分D.对角线互相垂直2.(2019·贵阳)如图,菱形ABCD的周长是4 cm,∠ABC=60°,那么这个菱形的对角线AC的长是( ) A.1 cm B.2 cm C.3 cm D.4 cm3. 如图,在△ABC中,AB≠AC,D是BC上一点,DE∥AC交AB于点E,DF∥AB交AC于点F,要使四边形AEDF是菱形,只需添加的条件是()A.AD⊥BC B.∠BAD=∠CAD C.BD=DC D.AD=BD4. 如图,在菱形ABCD中,AB=4,∠B=60°,AE⊥BC,AF⊥CD,垂足分别为E,F,连接EF,则△AEF的面积是()A.4 3 B.3 3 C.2 3 D. 35. 如图,菱形ABCD的边AB=8,∠B=60°,P是AB上一点,BP=3,Q是CD边上一动点,将梯形APQD沿直线PQ折叠,A的对应点为A′. 当CA′的长度最小时,CQ的长为()A.5 B.7 C.8 D. 106.如图,在菱形ABCD中,对角线AC,BD相交于点O,BD=6,AC=8,直线OE⊥AB交CD于点F,则AE的长为()A.4B.4.8 C.2.4D.3.27. 已知菱形的周长为4 5 ,两条对角线的和为6,则菱形的面积为( )A .2 B. 5 C .3 D .48. 如图,菱形ABCD 的对角线AC ,BD 交于点O ,AC =4,BD =16,将△ABO 沿点A 到点C 的方向平移,得到△A′B′O′.当点A′与点C 重合时,点A 与点B′之间的距离为( )A .6B .8C .10D .129. 如图,四边形ABCD 是菱形,AC =8,DB =6,DH ⊥AB 于H ,则DH 等于( )A .245B .125C .5D .410.如图,在周长为12的菱形ABCD 中,AE =1,AF =2,若P 为对角线BD 上一动点,则EP +FP 的最小值为( )A .1B .2C .3D .4二.填空题(共8小题,3*8=24)11. 菱形的两条对角线长分别是5和12,则此菱形的边长是_______,面积是_______.12.在菱形ABCD 中,对角线AC 、BD 相交于点O ,若AB =7 cm ,则周长是________cm.13. 如图,在菱形ABCD 中,对角线AC 、BD 相交于点O ,若∠ABC =110°,则∠BAD =________°, ∠ABD =________°,∠BCA =________°.14.如图,已知菱形ABCD的对角线AC,BD交于点O,E为BC的中点,若OE=3,则菱形的周长为_______.15.如图,在菱形ABCD中,对角线AC与BD相交于点O,若AB=2,∠ABC=60°,则BD的长为________.16.如图,四边形ABCD是菱形,O是两条对角线的交点,过点O的三条直线将菱形分成阴影和空白部分,当菱形的两条对角线的长分别为6和8时,阴影部分的面积为_______.17. 如图,四边形ABCD为菱形,A,B两点的坐标分别是(2,0),(0,1),点C,D在坐标轴上,则菱形ABCD的周长等于________.18. 如图,在菱形ABCD中,E是AC的中点,EF∥CB,交AB于点F,如果EF=3,那么菱形ABCD 的周长为________.三.解答题(共7小题,46分)19.(6分) 如图,已知菱形的周长为40 cm,两邻角度数之比为1∶2.(1)求菱形的两条对角线的长;(2)求菱形的面积.20.(6分) 如图,点O是菱形ABCD对角线的交点,DE∥AC,CE∥BD,连接OE.求证:OE=BC.21.(6分) 如图,已知菱形ABCD的对角线相交于点O,延长AB至点E,使BE=AB,连接CE,若∠E=50°,求∠BAO的大小.22.(6分) 已知:如图,在菱形ABCD中,点E、F分别为边CD、AD的中点,连接AE,CF,求证:△ADE≌△CDF.23.(6分) 如图,在菱形ABCD中,点P是BC边上一点,连接AP,点E,F是AP上的两点,连接DE,BF,使得∠AED=∠ABC,∠ABF=∠BPF.求证:(1)△ABF≌△DAE;(2)DE=BF+EF.24.(8分) 如图,菱形ABCD的两条对角线相交于点O,∠DAC=30°,BD=12(1)求∠ABC的度数;(2)求菱形ABCD的面积.25.(8分) 在菱形ABCD中,∠B=60°,点E在边BC上,点F在边CD上.(1)如图①,若E是BC的中点,∠AEF=60°,求证:BE=DF;(2)如图②,若∠EAF=60°,求证:△AEF是等边三角形.参考答案1-5DABBB 6-10 DDCAC11. 6.5,3012. 2813. 70,55,3514. 24 15. 2 316. 1217.4518.2419. 解:(1) ∵四边形ABCD 是菱形,两邻角度数之比为1∶2, ∴∠ABC=∠BAC=60°又∵菱形的周长为40 cm ,AC =AB=10 cm ,BD =2BO=2×AB 2-AO 2 =2×102-52 =10 3 cm(2)S 菱形=12BD·AC =50 3 cm 2 20. 解:∵DE ∥AC ,CE ∥BD ,∴四边形OCED 是平行四边形, ∵四边形ABCD 是菱形,∴AC ⊥BD ,∴∠DOC =90°,∴四边形OCED 是矩形,∴OE =CD ,∵四边形ABCD 是菱形,∴CD =BC ,∴OE =BC21. 解:菱形ABCD 中,AB =BC ,∵BE =AB ,∴BC =BE ,∴∠BCE =∠E =50°,∴∠CBE =180°-50°×2=80°,∵AD ∥BC ,∴∠BAD =∠CBE =80°,∴∠BAO =12×80°=40°. 22. 证明:∵四边形ABCD 是菱形,∴AD =CD ,∵点E 、F 分别为边CD 、AD 的中点,∴AD =2DF ,CD =2DE ,∴DE =DF ,在△ADE 和△CDF 中,⎩⎪⎨⎪⎧AD =CD ,∠ADE =∠CDF ,DE =DF ,∴△ADE ≌△CDF(SAS).23. 证明:(1)∵四边形ABCD 是菱形,∴AB =AD ,AD ∥BC , ∴∠BPA =∠DAE ,∵∠ABC =∠AED ,∴∠BAF =∠ADE ,∵∠ABF =∠BPF ,∠BPA =∠DAE ,∴∠ABF =∠DAE , ∵AB =DA ,∴△ABF ≌△DAE(ASA)(2)∵△ABF ≌△DAE ,∴AE =BF ,DE =AF ,∵AF =AE +EF =BF +EF ,∴DE =BF +EF24. 解:(1)∵菱形ABCD 的两条对角线相交于点O ,∠DAC =30°, ∴∠BAD =2∠DAC =60°,∵AD ∥BC ,∴∠ABC =180°-60°=120°;(2)∵菱形ABCD 的两条对角线相交于点O ,BD =12,∴AC ⊥BD ,DO =12BD =6, 又∵∠DAC =30°,∴AD =2DO =12,∴Rt △AOD 中,AO =122-62=63,∴AC =2AO =123,∴菱形ABCD 的面积=12×AC×BD =12×12×123=72 3. 25. 解:(1)连接AC ,∵四边形ABCD 是菱形,∴AB =BC ,∵∠B =60°,∴△ABC 是等边三角形,∵点E 为BC 的中点,∴AE ⊥BC ,∴∠AEC =90°,∵∠AEF =60°,∴∠FEC =90°-60°=30°,∵∠C =180°-∠B =120°,∠C +∠EFC +∠FEC =180°, ∴∠EFC =30°,∴∠FEC =∠EFC ,∴CE =CF ,∵BC =CD ,∴BC -CE =CD -CF ,即BE =DF(2)连接AC ,由(1)得△ABC 是等边三角形,∴AB =AC , ∵∠BAE +∠EAC =60°,∠EAF =∠CAF +∠EAC =60°,∴∠BAE =∠CAF ,∵四边形ABCD 是菱形,∠B =60°,∴∠ACF =12∠BCD =∠B =60°, ∴△ABE ≌△ACF(ASA),∴AE =AF , 又∵∠EAF =60°,∴△AEF 是等边三角形。
人教版八年级下册数学 18.2.2菱形 同步习题
18.2.2菱形同步习题一.选择题1.菱形ABCD的周长为40cm,它的一条对角线长10cm,则它的另一条对角线长为()A.10cm B.10cm C.5cm D.5cm2.已知平行四边形ABCD,AC,BD是它的两条对角线,那么下列条件中,能判断这个平行四边形为菱形的是()A.∠BAC=∠DCA B.∠BAC=∠DAC C.∠BAC=∠ABD D.∠BAC=∠ADB 3.菱形不具备的性质是()A.对角线一定相等B.对角线互相垂直C.是轴对称图形D.是中心对称图形4.如图,菱形ABCD中,∠D=135°,BE⊥CD于E,交AC于F,FG⊥BC于G.若△BFG的周长为4,则菱形ABCD的面积为()A.4B.8C.16D.165.如图,在菱形ABCD中,E、F分别是AB、CD上的点,且AE=CF,EF与AC相交于点O,连接BO.若∠DAC=36°,则∠OBC的度数为()A.36°B.54°C.64°D.72°6.如图,在菱形ABCD中,AB的垂直平分线交对角线AC于点F,垂足为E,连接DF,若∠BAD=70°,则∠CFD等于()A.50°B.60°C.70°D.80°7.如图,菱形ABCD中,在边AD、BC上分别截取DM=BN,连接MN交AC于点O,连接DO,若∠BAC=20°,则∠ODC的度数为()A.20°B.40°C.50°D.70°8.如图,在菱形ABCD中,AB=5,对角线BD=8,过BD的中点O作AD的垂线,交AD 于点E,交BC于点F,连接DF,则DF的长度为()A.B.C.D.9.如图平行四边形ABCD中,∠A=110°,AD=DC.E,F分别是边AB和BC的中点,EP⊥CD于点P,则∠PEF=()A.35°B.45°C.50°D.55°10.如图,在菱形ABCD中,∠D=120°,AB=2,点E在边BC上,若BE=2EC,则点B 到AE的距离是()A.B.C.D.二.填空题11.如图,在▱ABCD中,点E、F分别在边AD,BC上,且DE=BF,则再添加一个条件:可判定四边形AFCE是菱形.(只添加一个条件)12.在菱形ABCD中,两条对角线相交于点O,且AB=10cm,AC=12cm.则菱形ABCD 的面积是cm2.13.如图,菱形ABCD中,AC和BD交于点O,过点D作DE⊥BC于点E,连接OE,若∠BAC=25°,则∠OED的度数是.14.如图,在菱形ABCD中,AB=5,AC=6.过点D作BA的垂线,交BA的延长线于点E,则线段DE的长为.15.如图,菱形ABCD中,EF是AB的垂直平分线,∠FBC=80°,则∠ACB=°.三.解答题16.如图,在▱ABCD中,∠ABC=60°,BC=2AB,点E、F分别是BC、DA的中点.(1)求证:四边形AECF是菱形;(2)若AB=2,求BD的长.17.如图,在四边形ABCD中,AB∥DC,AB=AD,对角线AC、BD交于点O,AC平分∠BAD,过点C作CE⊥AB交AB的延长线于点E.(1)求证:四边形ABCD是菱形;(2)若AB=5,BD=6,求CE的长.18.如图,菱形ABCD的对角线AC、BD相交于点O,过点D作DE∥AC,且2DE=AC,连接AE交OD于点F,连接DE、OE.(1)求证:AF=EF;(2)已知AB=2,若AB=2DE,求AE的长.参考答案一.选择题1.解:菱形ABCD如右图所示,∵菱形ABCD的周长为40cm,∴AB=BC=CD=AD=10cm;∵对角线BD=10cm,∴BO=DO=5cm;在Rt△ADO中,AO===.∴AD=2AO=.故选:A.2.解:∵四边形ABCD是平行四边形,∴AD∥BC,∴∠DAC=∠ACB,∵∠BAC=∠DAC,∴∠BAC=∠ACB,∴AB=BC,∴四边形ABCD是菱形(邻边相等的平行四边形是菱形)故选:B.3.解:根据菱形的性质可知:菱形的对角线互相垂直平分;菱形既是轴对称图形,又是中心对称图形.进行的对角线相等,而菱形不具备对角线一定相等.故选:A.4.解:∵菱形ABCD中,∠D=135°,∴∠BCD=45°,∵BE⊥CD于E,FG⊥BC于G,∴△BFG与△BEC是等腰直角三角形,∵∠GCF=∠ECF,∠CGF=∠CEF=90°,CF=CF,∴△CGF≌△CEF(AAS),∴FG=FE,CG=CE,设BG=FG=EF=x,∴BF=x,∵△BFG的周长为4,∴x+x+x=4,∴x=4﹣2,∴BE=2,∴BC=BE=4,∴菱形ABCD的面积=4×2=8,故选:B.5.解:∵四边形ABCD是菱形,∴AB=BC=AD=CD,AB∥CD,AD∥BC,∴∠EAO=∠FCO,∠DAC=∠ACB=36°,在△AOE和△COF中,,∴△AOE≌△COF(AAS),∴AO=CO,又∵AB=BC,∴BO⊥AC,∴∠OBC=90°﹣∠ACB=54°,故选:B.6.解:连接BF,如图所示:∵四边形ABCD是菱形,∴∠BAC=∠BAD=×70°=35°,∠BCF=∠DCF=∠BAC,BC=DC,∠ABC=180°﹣∠BAD=180°﹣70°=110°,∵EF是线段AB的垂直平分线,∴AF=BF,∴∠DCF=∠ABF=∠BAC=35°,∴∠CBF=∠ABC﹣∠ABF=110°﹣35°=75°,在△BCF和△DCF中,,∴△BCF≌△DCF(SAS),∴∠CDF=∠CBF=75°,∴∠CFD=180°﹣∠CDF﹣∠DCF=180°﹣75°﹣35°=70°,故选:C.7.解:∵四边形ABCD是菱形,∴AB∥CD,∴∠OAM=∠OCN,在△AOM和△CON中,,∴△AOM≌△CON(AAS),∴OA=OC,∵四边形ABCD是菱形,∴点O为BD与AC的交点,∵∠ACD=∠BAC=20°,∴∠ODC=90°﹣∠ACD=70°.故选:D.8.解:连接AC,如图:∵四边形ABCD是菱形,O是BD的中点,∴OD=OB=BD=4,AD=AB=5,AC⊥BD,∴OA==3,∵OE⊥AD,∴△AOD的面积=AD×OE=OA×OD,∴OE===,同理:OF=,∴EF=OE+OF=,∵DE===,∵EF⊥AD,∴DF===;故选:D.9.解:∵平行四边形ABCD中,AD=DC,∴四边形ABCD为菱形,∴AB=BC,∠ABC=180°﹣∠A=70°,∵E,F分别为AB,BC的中点,∴BE=BF,∠BEF=∠BFE=55°,∵PE⊥AB,∴∠PEB=90°∴∠PEF=90°﹣55°=35°,故选:A.10.解:过点B作BH⊥AE于点H,过点E作EF⊥AB交AB的延长线于点F,∵菱形ABCD中,AB=2,∴BC=2,∵BE=2EC,∴BE=,CE=,∵∠D=120°,∴∠ABE=120°,∴∠EBF=60°,∴BF=BE=,EF=,∴AF=AB+BF=2+=,∴AE===,∵S△ABE=AB•EF,∴BH===.故选:A.二.填空题11.解:添加AE=AF,理由:∵四边形ABCD是平行四边形,∴AD∥BC,且AD=BC,又∵DE=BF,∴AE=FC.∴四边形AFCE是平行四边形.又∵AE=AF,∴四边形AFCE是菱形.故答案为:AE=AF.12.解:∵四边形ABCD为菱形,∴AC⊥BD,OA=OC=AC=6cm,OB=OD,∴OB===8(cm),∴BD=2OB=16cm,∴S菱形ABCD=AC•BD=×12×16=96(cm2).故答案为:96.13.解:∵四边形ABCD是菱形,∠BAC=25°,∴∠ABC=180°﹣25°﹣25°=130°,∴O为BD中点,∠DBE=∠ABC=65°.∵DE⊥BC,在Rt△BDE中,OE=BE=OD,∴∠OEB=∠OBE=65°.∴∠OED=90°﹣65°=25°.故答案为:25°.14.解:∵四边形ABCD是菱形,AB=5,AC=6.∴AB=BC=CD=DA=5,AC⊥BD,OA=OC=3,∴OB===4,∴BD=2OB=8,∵,∴=5DE,解得,DE=,故答案为:.15.解:∵四边形ABCD是菱形,∴AD∥BC,∠DAC=∠BAC,∴∠AFB=∠FBC=80°,∠DAC=∠ACB,∵EF是AB的垂直平分线,∴AF=BF,∴∠F AB=∠FBA=(180°﹣∠AFB)=50°,∴∠DAC=∠BAC=25°,∴∠ACB=25°,故答案为:25.三.解答题16.(1)证明:∵四边形ABCD是平行四边形,∴BC∥AD,BC=AD.∵E,F分别是BC,AD的中点∴BE=CE=BC,AF=AD,∴CE=AF,CE∥AF,∴四边形AECF是平行四边形,∵BC=2AB,∴AB=BE,∵∠ABC=60°,∴△ABE是等边三角形,∴AE=BE=CE,∴平行四边形AECF是菱形;(2)解:作BG⊥AD于G,如图所示:则∠ABG=90°﹣∠ABC=30°,∴AG=AB=1,BG=AG=,∵AD=BC=2AB=4,∴DG=AG+AD=5,∴BD===2.17.(1)证明:∵AB∥CD,∴∠OAB=∠DCA,∵AC为∠DAB的平分线,∴∠OAB=∠DAC,∴∠DCA=∠DAC,∴CD=AD,∵AB∥CD,∴四边形ABCD是平行四边形,∵AD=AB,∴▱ABCD是菱形;(2)解:∵四边形ABCD是菱形,∴OA=OC,BD⊥AC,OB=OD=BD=3,∴OA===4,∴AC=2OA=8,∴菱形ABCD的面积=AC×BD=×8×6=24,∵CE⊥AB,∴菱形ABCD的面积=AB×CE=5CE=24,∴CE=.18.(1)证明:∵四边形ABCD是菱形,∴OA=OC=AC,∵2DE=AC,∴DE=OA,又∵DE∥AC,∴四边形OADE是平行四边形,∴AF=EF;(2)解:连接CE,∵DE∥OC,DE=OC,∴四边形OCED是平行四边形,又∵菱形ABCD,∴AC⊥BD,∴四边形OCED是矩形,∴∠OCE=90°,又∵AB=2DE=AC,∴△ABC为等边三角形,∵在菱形ABCD中,∠ABC=60°,∴AC=AB=2,AO=AC=1,∴在矩形OCED中,CE=OD==,∴在Rt△ACE中,AE==.。
人教版八年级下册数学第18章18.2.2矩形的判定习题课件
精彩一题 12.【中考·兰州】阅读下面材料:
在数学课上,老师请同学们思考如下问题:如图①,我 们把一个四边形ABCD的四边中点E,F,G,H依次连 接起来得到的四边形EFGH是平行四边形吗? 小敏在思考问题时,有如下思路:连接AC.
精彩一题 结合小敏的思路作答: (1)若只改变图①中四边形ABCD的形状(如图②),
习题链接
提示:点击 进入习题
1
相等;相等;互相平 分
2D
6A 7C
3 见习题
4
平行四边形;直角; 四边形
8 见习题 9A
5C
10 见习题
答案显示
习题链接 11 见习题 12 见习题
答案显示
新知基本功
1.对角线__相__等____的平行四边形是矩形; 对角线__相__等____且___互__相__平__分_____的四边形是矩形.
素质一练通
11.如图,在矩形ABCD中,AB=2,BC=5.点E,P分别在 AD,BC上,且DE=BP=1,AP,BE相交于点H,CE, DP相交于点F.
(1)判断△BEC的形状,并说明理由; 解:△BEC是直角三角形,且∠BEC=90°. 理由:∵四边形ABCD是矩形, ∴∠ADC=∠EAB=90°,AD=BC=5,CD=AB=2. ∵DE=1,∴AE=4.
新知基本功
5.【中考·崇左】如图,在矩形ABCD中,AB>BC,点E,
F,G,H分别是边DA,AB,BC,CD的中点,连接EG,
FH,则图中的矩形共有( C )
A.5个
B.8个
C.9个
D.11个
新知基本功
6.【中考·重庆】下列命题正确的是( A ) A.有一个角是直角的平行四边形是矩形 B.四条边相等的四边形是矩形 C.有一组邻边相等的平行四边形是矩形 D.对角线相等的四边形是矩形
人教版八年级下册数学 18.2.2菱形 同步练习(含解析)
∴AC⊥BD,OA=OC= AC= ×4=2,∠BAC= ∠BAD= ×120°=60°,
∴AC=4,∠AOB=90°, ∴∠ABO=30°, ∴AB=2OA=4,OB=2 , ∴BD=2OB=4 ,
7 / 17
知识像烛光,能照亮一个人,也能照亮无数的人。--培根
∴该菱形的面积是: AC•BD= ×4×4
点睛:此题主要考查线段的垂直平分线的性质和菱形的性质,有一定的难度,解答本题时注 意先先连接 BD,BF,这是解答本题的突破口. 6.B 【解析】根据菱形四条边相等的性质可得 AB=AD,OB=OD,根据等腰三角形三线合一的性质 可得 AO⊥BD,即可得 AC⊥BD,所以正确的顺序为③→④→①→②,故选 B. 7.A 【解析】∵四边形 ABCD 是菱形,
点,将△AMN 沿 MN 所在的直线翻折得到△A′MN,连接 A′C,则线段 A′C 长度的最小值是
______.
12.如图,正△AEF 的边长与菱形 ABCD 的边长相等,点 E、F 分别在 BC、CD 上,则∠B 的度 数是_____.
3 / 17
知识像烛光,能照亮一个人,也能照亮无数的人。--培根
A. 24
B. 26
C. 30
D. 48
8.如图,四边形 ABCD 是菱形,对角线 AC,BD 相交于点 O,DH⊥AB 于 H,连接 OH,∠DHO=20°,
则∠CAD 的度数是( )
2 / 17
知识像烛光,能照亮一个人,也能照亮无数的人。--培根
A. 20° B. 25° C. 30° D. 40° 9.如图,依次连接第一个矩形各边的中点得到一个菱形,再依次连接菱形各边的中点得到 第二个矩形,按照此方法继续下去.已知第一个矩形的面积为 1,则第 n 个矩形的面积为 ()
18.2.2.1 菱形的性质-八年级数学下学期同步训练(人教版)(解析版)
§18.2.2.1菱形的性质一、知识导航1.菱形的定义:有一组邻边相等的四边形叫做菱形注意:(1)矩形的定义有两个要素:①是平行四边形;②有一组邻边相等,二者缺一不可;(2)菱形的定义既是它的性质,也是它的判定方法;(3)一组邻边相等的四边形不一定是菱形.2.菱形的性质类别性质符号语言图形边菱形的四条边都相等 四边形ABCD是菱形AB BC CD DA ∴===对角线菱形的两条对角线互相垂直平分,并且每条对角线平分一组对角四边形ABCD是菱形,,,AC BD OA OC OB OD∴⊥==,ABD CBD ADB CDB∠=∠=∠=∠BAC DAC BCA DCA∠=∠=∠=∠对称性矩形是轴对称图形,具有两条对称轴(即对角线所在的直线)3.菱形面积计算(1)平行四边形的面积公式:底×高(2)两条对角线长的积的一半二、重难点突破重点1利用菱形的性质求线段长度例1.菱形的两条对角线长分别为6,8,则它的周长是()A.5B.10C.20D.24【答案】C【分析】根据菱形的对角线互相垂直且平分这一性质解题即可.【详解】解:由于菱形的两条对角线的长为6和8,,∴菱形的周长为:4×5=20,故选:C.【点睛】本题考查菱形的性质,解题的关键是熟练运用菱形的性质,本题属于基础题型.变式1-1如图,菱形ABCD的周长为28,对角线AC,BD交于点O,E为AD的中点,则OE 的长等于()A .2B .3.5C .7D .14【答案】B 【分析】由菱形的周长可求得AB 的长,再利用三角形中位线定理可求得答案0【详解】∵四边形ABCD 为菱形,∴AB 14=⨯28=7,且O 为BD 的中点.∵E 为AD 的中点,∴OE 为△ABD 的中位线,∴OE 12=AB =3.5.故选B .【点睛】本题考查了菱形的性质,由条件确定出OE 为△ABD 的中位线是解题的关键.变式1-2如图,在菱形ABCD 中,AB =5,AC =6,过点D 作DE ⊥BA ,交BA 的延长线于点E ,则线段DE 的长为()A .125B .185C .4D .245【答案】D【分析】利用菱形的面积等于两对角线之积的一半,求解菱形的面积,再利用等面积法求菱形的高DE 即可.【详解】记AC 与BD 的交点为O ,菱形ABCD ,6,AC =,3,,AC BD OA OC OB OD ∴⊥===5,AB = 22534,8,OB BD ∴=-==∴菱形的面积16824,2=⨯⨯=,DE AB ⊥ ∴菱形的面积,AB DE =∙524,DE ∴=24.5DE ∴=故选D .【点睛】本题考查的是菱形的性质,菱形的面积公式,勾股定理.理解菱形的对角线互相垂直平分和学会用等面积法是解题关键.变式1-3如图,在菱形ABCD 中,P 是对角线AC 上一动点,过点P 作PE BC ⊥于点E .PF AB ⊥于点F .若菱形ABCD 的周长为20,面积为24,则PE PF +的值为()A .4B .245C .6D .485【答案】B 【分析】连接BP ,通过菱形ABCD 的周长为20,求出边长,菱形面积为24,求出SABC 的面积,然后利用面积法,SABP +SCBP =SABC ,即可求出PE PF +的值.【详解】连接BP ,∵菱形ABCD 的周长为20,∴AB =BC =20÷4=5,又∵菱形ABCD 的面积为24,∴SABC =24÷2=12,又SABC =SABP +SCBP∴SABP +SCBP =12,∴111222AB PF BC PE += ,重点点拨:当菱形的一个内角为120°或60°时,菱形被其对角线分为4个含30°角的直角三角形;菱形较短的一条对角线将其分成两个等边三角形,因此可利用其性质进行计算.∵AB =BC ,∴()1122AB PE PF += ∵AB =5,∴PE +PF =12×25=245.故选:B.【点睛】本题主要考查菱形的性质,解题关键在于添加辅助线,通过面积法得出等量关系,求出PF +PE 的值.重点2利用菱形的性质求角度例2.如图,菱形ABCD 中,50A ∠=︒,则ADB ∠的度数为()A .65︒B .55︒C .45︒D .25︒【答案】A 【分析】由菱形得到AB=AD ,进而得到∠ADB=∠ABD ,再由三角形内角和定理即可求解.【详解】解:∵四边形ABCD 为菱形,∴AD=AB ,∴∠ADB=∠ABD=(180°-∠A)÷2=(180°-50°)÷2=65°,故选:A .【点睛】本题考查了菱形的性质,菱形的邻边相等,属于基础题,熟练掌握菱形的性质是解决本题的关键.变式2-1如图,菱形ABCD 中,AC 交BD 于点O ,DE BC ⊥于点E ,连接OE ,若50BCD ∠=︒,则OED ∠的度数是()A .35°B .30°C .25°D .20°【答案】C 【分析】根据直角三角形的斜边中线性质可得OE BE OD ==,根据菱形性质可得1652DBE ABC ∠︒=∠=,从而得到OEB ∠度数,再依据90OED OEB -∠︒∠=即可.【详解】∵四边形ABCD 是菱形,∠BCD =50°,∴O 为BD 中点,∠DBE =12∠ABC =65°.∵DE ⊥BC ,∴在Rt △BDE 中,OE =OB =OD ,∴∠OEB =∠OBE =65°.∴∠OED =90°-65°=25°.故选:C .【点睛】本题主要考查了菱形的性质、直角三角形斜边中线的性质,解决这类问题的方法是四边形转化为三角形.变式2-2如图,在菱形ABCD 中,,AE AF 分别垂直平分,BC CD ,垂足分别为,E F ,则EAF∠的度数是()A .90°B .60°C .45°D .30°【答案】B 【分析】根据垂直平分线的性质可得出△ABC 、△ACD 是等边三角形,从而先求得∠B =60°,∠C =120°,在四边形AECF 中,利用四边形的内角和为360°可求出∠EAF 的度数.【详解】解:连接AC ,∵AE垂直平分边BC,∴AB=AC,又∵四边形ABCD是菱形,∴AB=BC,∴AB=AC=BC,∴△ABC是等边三角形,∴∠B=60°,∴∠BCD=120°,又∵AF垂直平分边CD,∴在四边形AECF中,∠EAF=360°-180°-120°=60°.故选B.【点睛】本题考查了菱形的性质及线段垂直平分线的性质,关键是掌握线段垂直平分线上的点到线段两端点的距离相等,及菱形四边形等的性质.变式2-3如图,菱形ABCD的边AB的垂直平分线交AB于点E,交AC于点F,连接DF.当100BAD∠=︒时,则CDF∠=()A.15︒B.30°C.40︒D.50︒【答案】B【分析】连接BF,根据菱形的对角线平分一组对角线可得∠BAC=50°,根据线段垂直平分线上的点到两端点的距离相等可得AF=BF,根据等边对等角可得∠FBA=∠FAB,再根据菱形的邻角互补求出∠ABC,然后求出∠CBF,最后根据菱形的对称性可得∠CDF=∠CBF.【详解】如图,连接BF,在菱形ABCD中,∠BAC=12∠BAD=12×100°=50°,∵EF是AB的垂直平分线,∴∠FBA=∠FAB=50°,∵菱形ABCD的对边AD∥BC,∴∠ABC=180°-∠BAD=180°-100°=80°,∴∠CBF=∠ABC-∠ABF=80°-50°=30°,由菱形的对称性,∠CDF=∠CBF=30°.故选:B.【点睛】本题考查了菱形的性质,线段垂直平分线上的点到两端点的距离相等的性质,等边对等角的性质,熟记各性质是解题的关键.重点3利用菱形的性质计算面积及其应用例3.已知一个菱形的周长是20cm,两条对角线的比是4:3,则这个菱形的面积是()A.12cm2B.24cm2C.48cm2D.96cm2【答案】B【分析】设菱形的对角线分别为8x和6x,首先求出菱形的边长,然后根据勾股定理求出x 的值,最后根据菱形的面积公式求出面积的值.【详解】解:设菱形的对角线分别为8x和6x,已知菱形的周长为20cm,故菱形的边长为5cm,根据菱形的性质可知,菱形的对角线互相垂直平分,即可知(4x)2+(3x)2=25,解得x=1,故菱形的对角线分别为8cm和6cm,所以菱形的面积=12×8×6=24cm2,重点点拨:在菱形中已知边要求角的度数时需要利用矩形的性质和特殊三角形的性质找到角的关系,这些所求角度一般为45°,60°等特殊角度【点睛】本题主要考查菱形的性质的知识点,解答本题的关键是掌握菱形的对角线互相垂直平分,此题比较简单.变式3-1已知菱形的周长为8,两邻角的度数比为1:2,则菱形的面积为()A.B.8C.D.【答案】D【分析】根据菱形的性质和菱形面积公式即可求出结果.【详解】解:如图,∵两邻角度数之比为1:2,两邻角和为180°,∴∠ABC=60°,∠BAD=120°,∵菱形的周长为8,∴边长AB=2,∴菱形的对角线AC=2,BD=2×2sin60°=∴菱形的面积=12 AC•BD=12故选:D.【点睛】本题考查菱形的性质,解题关键是掌握菱形的性质.变式3-2如图,在菱形ABCD中,对角线BD=4,AC=3BD,则菱形ABCD的面积为()A.96B.48C.24D.6【答案】C【分析】根据菱形的面积等于对角线乘积的一半解答.【详解】解:∵BD=4,AC=3BD,∴AC=12,∴菱形ABCD的面积为12AC×BD=11242⨯⨯=24.故选:C.【点睛】本题主要考查菱形的性质,利用对角线求面积的方法,在求菱形的面积中用得较多,需要熟练掌握.重点4利用菱形的性质证明线段相等例4.如图,在菱形ABCD 中,BE ⊥CD 于点E .DF ⊥BC 于点F .求证:BF =DE;【分析】根据菱形的性质得到CB =CD ,根据全等三角形的判定和性质即可得到结论;【详解】证明:∵四边形ABCD 是菱形,∴CB =CD ,∵BE ⊥CD 于点E ,DF ⊥BC 于点F ,∴∠BEC =∠DFC =90°,∵∠C =∠C ,∴△BEC ≌△DFC (AAS ),∴EC =FC ,∴CD -CE =CB -CF∴BF =DE ;【点睛】本题考查了菱形的性质,等腰直角三角形的判定和性质,全等三角形的判定和性质,正确的识别图形是解题的关键.变式4如图,菱形ABCD 的边长为1,=60ABC ∠︒,点E 是边AB 上任意一点(端点除外),线段CE 的垂直平分线交BD ,CE 分别于点F ,G ,AE ,EF 的中点分别为M ,N .求证:AF EF =;重点点拨:菱形的对角线容易作为一个直角三角形的斜边,这样两条对角线的交点也是斜边的中点;菱形的面积等于对角线乘积的一半重点点拨:利用菱形的性质证明边的相等关系时,常常会与全等三角形的性质和判定、等腰(边)三角形的性质和判定相结合【分析】连接CF ,根据垂直平分线的性质和菱形的对称性得到CF=EF 和CF=AF 即可得证;【详解】连接CF ,∵FG 垂直平分CE ,∴CF=EF ,∵四边形ABCD 为菱形,∴A 和C 关于对角线BD 对称,∴CF=AF ,∴AF=EF;【点睛】本题考查了菱形的性质,最短路径,等边三角形的判定和性质,中位线定理,难度一般,题中线段较多,需要理清线段之间的关系.重点5利用菱形的性质证明角相等例5.已知:如图,四边形ABCD 是菱形,F 是AB 上一点,DF 交AC 于E .求证:∠AFD =∠CBE.【分析】根据菱形的性质得出∠BCE =∠DCE ,BC =CD ,AB ∥CD ,推出∠AFD =∠CDE ,证△BCE ≌△DCE ,推出∠CBE =∠CDE 即可.【详解】证明:∵四边形ABCD 是菱形,∴∠BCE =∠DCE ,BC =CD ,AB ∥CD ,∴∠AFD =∠CDE ,在△BCE 和△DCE 中BC CD BCE DCE CE CE =⎧⎪∠=∠⎨⎪=⎩,∴△BCE ≌△DCE ,∴∠CBE =∠CDE ,∵∠AFD =∠CDE ,∴∠AFD =∠CBE .【点睛】考查了菱形的判定与性质以及全等三角形的判定与性质等知识,得出△BCE ≌△DCE 是解题关键.变式5如图,四边形ABCD 是菱形,对角线AC 、BD 相交于点O ,DH ⊥AB 于H ,连接OH ,求证:∠DHO =∠DCO.【分析】根据菱形的对角线互相平分可得OD =OB ,再根据直角三角形斜边上的中线等于斜边的一半可得OH =OB ,然后根据等边对等角求出∠OHB =∠OBH ,根据两直线平行,内错角相等求出∠OBH =∠ODC ,然后根据等角的余角相等证明即可.【详解】证明:∵四边形ABCD 是菱形,∴OD =OB ,∠COD =90°,∵DH ⊥AB ,∴OH =12BD =OB ,∴∠OHB =∠OBH ,又∵AB ∥CD ,∴∠OBH =∠ODC ,在Rt △COD 中,∠ODC +∠DCO =90°,在Rt △DHB 中,∠DHO +∠OHB =90°,∴∠DHO =∠DCO .【点睛】本题考查了菱形的对角线互相垂直平分的性质,直角三角形斜边上的中线等于斜边的一半的性质,以及等角的余角相等,熟记各性质并理清图中角度的关系是解题的关键.难点6菱形中的图形变换问题例6.如图,将菱形纸片ABCD 折叠,使点A 恰好落在菱形的对称中心O 处,折痕为EF .若菱形ABCD 的边长为4,120B ∠=︒,则EF 的值是()A 3B .2C .23D .4【答案】B 【分析】根据菱形的性质证明△ABD 是等边三角形,求得BD=4,再证明EF 是△ABD 的中位线即可得到结论.【详解】解:连接AC ,BD∵四边形ABCD 是菱形,∴AC BD ⊥,BD 平分∠ABC ,4AB BC CD DA ====重点点拨:利用菱形的性质证明角的相等关系时,常常会与全等三角形的性质和判定、等腰(边)三角形的性质和判定相结合∴∠111206022ABD ABC ︒=∠=⨯=︒∵AB AD =∴△ABD 是等边三角形,∴ 4.BD =由折叠的性质得:EF AO ⊥,EF 平分AO ,又∵BD AC ⊥,∴//EF BD∴EF 为△ABD 的中位线,∴122EF BD ==故选:B .【点睛】本题考查了折叠性质,菱形性质,主要考查学生综合运用定理进行推理和计算的能力.变式6-1如图,在菱形纸片ABCD 中,对角线AC 、BD 长分别为16、12,折叠纸片使点A 落在DB 上,折痕交AC 于点P ,则DP 的长为()A .BC .D .【答案】A 【分析】首先设O 点的对应点为E ,连接PE ,由菱形的性质,可求得OD ,OA 与AD 的长,由折叠的性质,根据勾股定理可得方程:即(8-x )2=42+x 2,可求x 的值,由勾股定理可求DP 的长.【详解】解:设O 点的对应点为E ,连接PE ,由折叠的性质可得:PE=OP ,DE=OD ,∵四边形ABCD 是菱形,1111,168,1262222AC BD OA AC OB BD ∴⊥==⨯===⨯=10AD ∴==设OP=x,则PE=x,AE=AD-DE=10-6=4,AP=OA-OP=8-x,在Rt△APE中,AP2=AE2+PE2,即(8-x)2=42+x2,解得:x=3,即OP=3,DP∴===故选A.【点睛】本题考查了折叠的性质、菱形的性质以及勾股定理.此题难度适中,注意掌握辅助线的作法,注意数形结合与方程思想的应用.变式6-2如图,在菱形纸片ABCD中,∠A=60°,P为AB中点.折叠该纸片使点C落在点C′处且点P在DC′上,折痕为DE,则∠CDE的大小为()A.30°B.40°C.45°D.60°【答案】C【分析】连接BD,首先根据∠A=60°,AB=AD,得到△ABD是等边三角形,然后根据等边三角形三线合一的性质得到DP⊥AB,然后根据平行线的性质得到∠CDP=∠APD=90°,最后根据折叠的性质求解即可.【详解】如图,连接BD,∵菱形ABCD中,∠A=60°,AB=AD,∴△ABD是等边三角形,∠ADC=120°,∵点P是AB的中点,∴DP⊥AB,∵CD AB,∴∠CDP=∠APD=90°,∴由折叠的性质可得:∠CDE=12∠CDP=45°.故选:C.【点睛】此题考查了等边三角形的性质和判定,菱形的性质以及折叠的性质等知识,解题的关键是在含有60°内角的菱形中,连接较短的对角线,把菱形分成的两个三角形是等边三角形.难点7菱形中的最值问题例7.如图,点P 是边长为1的菱形ABCD 对角线AC 上的一个动点,点M ,N 分别是AB ,BC 边上的中点,则MP +PN 的最小值是()A .12B .1C 2D .2【答案】B 【分析】先作点M 关于AC 的对称点M ′,连接M ′N 交AC 于P ,此时MP +NP 有最小值.然后证明四边形ABNM ′为平行四边形,即可求出MP +NP =M ′N =AB =1.【详解】如图难点点拨:解决菱形问题的思考方向:①边;②对角线.有60°的特殊角,就可以由菱形的性质构造等边三角形解决问题;有等边三角形,有中点,会出现“三线合一”作点M关于AC的对称点M′,连接M′N交AC于P,此时MP+NP有最小值,最小值为M′N 的长.∵菱形ABCD关于AC对称,M是AB边上的中点,∴M′是AD的中点,又∵N是BC边上的中点,∴AM′∥BN,AM′=BN,∴四边形ABNM′是平行四边形,∴M′N=AB=1,∴MP+NP=M′N=1,即MP+NP的最小值为1,故选B.【点睛】本题主要考查了菱形的性质,以及最小值问题,解题关键在于熟练掌握菱形性质以及求最值的作图方式.变式7如图,在周长为12的菱形ABCD中,AE=1,AF=2,若P为对角线BD上一动点,则EP+FP的最小值为()A.1B.2C.3D.4【答案】C【分析】作F点关于BD的对称点F′,则PF=PF′,连接EF′交BD于点P.∴EP+FP=EP+F′P.由两点之间线段最短可知:当E、P、F′在一条直线上时,EP+FP的值最小,此时EP+FP=EP+F′P=EF′.【详解】∵四边形ABCD为菱形,周长为12,∴AB=BC=CD=DA=3,AB∥CD,∵AF=2,AE=1,∴DF=AE=1,∴四边形AEF′D是平行四边形,∴EF′=AD=3.∴EP+FP的最小值为3.故选C.【点睛】本题主要考查了菱形的性质;轴对称-最短路线问题三、提升训练1.下列结论中,不正确的是()A .对角线互相垂直的平行四边形是菱形B .对角线相等的平行四边形是矩形C .一组对边平行,一组对边相等的四边形是平行四边形D .菱形的面积等于对角线乘积的一半难点点拨:解决线段之和最小问题,一般转化为解决“两点之间,线段最短”问题.“两点一线”型:()minPA PB +“一点两线”型:()min ''''''ABC C AB AC BC A B A C BC A A ∆=++=++=【答案】C【分析】由菱形和矩形的判定得出A 、B 正确,由等腰梯形的判定得出C 不正确,由对角线互相垂直的四边形面积等于对角线乘积的一半,得出D 正确,即可得出结论.【详解】解:A.∵对角线互相垂直的平行四边形是菱形,∴A 正确;B.∵对角线相等的平行四边形是矩形,∴B 正确;C.∵一组对边平行,一组对边相等的四边形可能是平行四边形,也可能是等腰梯形,∴C 不正确;D.∵对角线互相垂直的四边形面积等于对角线乘积的一半,∴D 正确;故选:C【点睛】本题考查了菱形的判定、矩形的判定、平行四边形的判定、等腰梯形的判定以及四边形面积;熟记菱形,矩形和等腰梯形的判定方法是解题的关键.2.如图所示的木制活动衣帽架是由三个全等的菱形构成,根据实际需要可以调节AE 间的距离,若AE 间的距离调节到60cm ,菱形的边长20AB cm =,则DAB ∠的度数是()A .90︒B .100︒C .120︒D .150︒【答案】C 【分析】如图(见解析),先根据菱形的性质可得,//AB BC AD BC =,再根据全等的性质可得1203AC AE cm ==,然后根据等边三角形的判定与性质可得60B ∠=︒,最后根据平行线的性质即可得.【详解】如图,连接AC四边形ABCD 是菱形20,//AB BC cm AD BC∴== 如图所示的木制活动衣帽架是由三个全等的菱形构成,60AE cm =1203AC AE cm ∴==AB BC AC∴==ABC ∴ 是等边三角形60B ∴∠=︒//AD BC180********DAB B ∴∠=︒=∠=︒-︒-︒故选:C .【点睛】本题考查了菱形的性质、等边三角形的判定与性质、平行线的性质等知识点,理解题意,熟练掌握菱形的性质是解题关键.3.如图,在△ABC 中,AD 平分BAC ∠,DE AC ∥交AB 于点E ,DF AB ∥交AC 于点F ,若8AF =,则四边形AEDF 的周长是()A .24B .28C .32D .36【答案】C 【分析】由题意知四边形AEDF 是平行四边形,有BAD ADF ∠=∠,AE DF AF DE ==,,AD 平分BAC ∠,可得BAD CAD ADF ∠=∠=∠,AF DF =,平行四边形AEDF 是菱形,进而计算周长即可.【详解】∵DE AC DF AB∥,∥∴四边形AEDF 是平行四边形∴BAD ADF ∠=∠,AE DF AF DE==,∵AD 平分BAC∠∴BAD CAD ADF∠=∠=∠∴AF DF=∴平行四边形AEDF 是菱形∴432AE DE DF AF AF +++==故选C .【点睛】本题考查了角平分线的性质,平行四边形的判定与性质,菱形的判定.解题的关键在于对知识的灵活运用.4.如图,菱形ABCD 的对角线AC 、BD 的长分别为6和8,则这个菱形的周长是()A .20B .24C .40D .48【答案】A 【分析】由菱形对角线的性质,相互垂直平分即可得出菱形的边长,菱形四边相等即可得出周长.【详解】由菱形对角线性质知,AO =12AC =3,BO =12BD =4,且AO ⊥BO ,则AB =5,故这个菱形的周长L=4AB =20.故选A .【点睛】本题考查了菱形面积的计算,考查了勾股定理在直角三角形中的运用,考查了菱形各边长相等的性质,本题中根据勾股定理计算AB 的长是解题的关键,难度一般.5.如图,四边形ABCD 是菱形,对角线AC ,BD 相交于点O ,DH ⊥AB 于点H ,连接OH ,∠CAD =20°,则∠DHO 的度数是()A .20°B .25°C .30°D .40°【答案】A 【分析】先根据菱形的性质得OD =OB ,AB ∥CD ,BD ⊥AC ,则利用DH ⊥AB 得到DH ⊥CD ,∠DHB=90°,所以OH为Rt△DHB的斜边DB上的中线,得到OH=OD=OB,利用等腰三角形的性质得∠1=∠DHO,然后利用等角的余角相等即可求出∠DHO的度数.【详解】解:∵四边形ABCD是菱形,∴OD=OB,AB∥CD,BD⊥AC,∵DH⊥AB,∴DH⊥CD,∠DHB=90°,∴OH为Rt△DHB的斜边DB上的中线,∴OH=OD=OB,∴∠1=∠DHO,∵DH⊥CD,∴∠1+∠2=90°,∵BD⊥AC,∴∠2+∠DCO=90°,∴∠1=∠DCO,∴∠DHO=∠DCA,∵四边形ABCD是菱形,∴DA=DC,∴∠CAD=∠DCA=20°,∴∠DHO=20°,故选A.【点睛】本题考查菱形的性质,直角三角形斜边中线定理等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.6.如图,四边形ABCD是菱形,AC=8,DB=6,DH⊥AB于H,则DH等于()A.245B.125C.5D.4【答案】A【分析】根据菱形性质求出AO=4,OB=3,∠AOB=90°,根据勾股定理求出AB,再根据菱形的面积公式求出即可.【详解】∵四边形ABCD是菱形,∴AO=OC,BO=OD,AC⊥BD,∵AC=8,DB=6,∴AO=4,OB=3,∠AOB=90°,由勾股定理得:AB5,∵S菱形ABCD=12AC BD AB DE ⨯⨯=⨯,∴18652DH ⨯⨯=⨯,∴DH=24 5,故选:A.【点睛】本题考查了勾股定理和菱形的性质的应用,能根据菱形的性质得出S菱形ABCD=12×AC×BD=AB×DH是解此题的关键.7.如图,菱形ABCD中,∠ABC=135°,DH⊥AB于H,交对角线AC于E,过E作EF⊥AD 于F.若△DEF的周长为2,则菱形ABCD的面积为()A.B C.2D.2【答案】A【分析】根据题意利用菱形的性质,可得AH=DH,再根据等腰直角三角形的判定与性质得出DE EF,再求出DH=DE+EH AB=2.【详解】∵四边形ABCD是菱形,∠ABC=135°,∴∠DAB=45°,∠DAC=∠BAC,且EH⊥AB,EF⊥AD∴EF =EH ,∠ADH =∠DAB =45°∴AH =DH∵∠DAB =45°,DH ⊥AB∴∠ADH =45°,且EF ⊥AD∴∠ADH =∠DEF =45°∴DF =EF ,∴DE EF∵△DEF 的周长为2,∴DE +EF +DF =2∴2EF =2∴EF =2∴EH =2,DE =2,∴DH =DE +EH ∵∠DAB =∠ADH =45°∴AH =DH ,∴AD AH =2∴AB =2∴菱形ABCD 的面积=AB ×DH =故选A .【点睛】此题考查菱形的性质,等腰直角三角形的判定与性质,解题关键在于掌握判定定理.8.如图,菱形ABCD 的边,8AB =,60B ∠= ,P 是AB 上一点,3BP =,Q 是CD 边上一动点,将梯形APQD 沿直线PQ 折叠,A 的对应点'A .当'CA 的长度最小时,'C Q 的长为()A .5B .7C .8D .132【答案】B【分析】作CH AB ⊥于H ,如图,根据菱形的性质可判断ABC ∆为等边三角形,则2CH AB ==4AH BH ==,再利用7CP =勾股定理计算出,再根据折叠的性质得点'A 在以点P 为圆心,PA 为半径的弧上,利用点与圆的位置关系得到当点'A 在PC 上时,'CA 的值最小,然后证明CQ CP =即可.【详解】解:作CH AB ⊥于H ,如图,菱形ABCD 的边8AB =,60B ∠= ,ABC ∆∴为等边三角形,CH AB ∴==,4AH BH ==,3PB = ,1HP ∴=,在Rt CHP ∆中,7CP ==,梯形APQD 沿直线PQ 折叠,A 的对应点'A ,∴点'A 在以点P 为圆心,PA 为半径的弧上,∴当点'A 在PC 上时,'CA 的值最小,APQ CPQ ∴∠=∠,而//CD AB ,APQ CQP ∴∠=∠,CQP CPQ ∴∠=∠,7CQ CP ∴==.故选B .【点睛】考查了菱形的性质:菱形具有平行四边形的一切性质;菱形的四条边都相等;菱形的两条对角线互相垂直,并且每一条对角线平分一组对角.也考查了折叠的性质.解决本题的关键是确定A′在PC 上时CA′的长度最小.9.如图,平行四边形ABCD 中,2AB BC =.AE 平分BAD ∠,交CD 于点E ,点F 为AB 边的中点,AE 与DF 交于点M ,BD 与EP 交于点N ,连接MN .则下列结论:①四边形ADEF 是菱形;②与BFN ∆全等的三角形有5个;③7FMN BCEN S S ∆=四边形;④当FM FN =时,60BAD ∠=︒.其中正确的是()A .①③B .①④C .②③D .②④【答案】B 【分析】①根据四边形ABCD 是平行四边形,可得:AD =BC ,AB =CD ,AB ∥CD ,再由AE 平分∠BAD ,可得出∠AED =∠DAE ,进而推出AF =DE ,即可运用菱形的判定方法证得结论;②根据题目条件可证明△BFN ≌DEN ,其它三角形均不能证明;③根据题目条件可得出12FMN DMN BFNS S S ==,S 菱形BCEF =4S △BFN ,S 四边形BCEN =3S △BFN ,即可判断结论③错误;④由FM =FN 可得出DF =AF =AD ,即△ADF 是等边三角形,可判定结论④正确.【详解】解:①四边形ABCD 是平行四边形,∴AD =BC ,AB =CD ,AB ∥CD ,∵点F 为AB 边的中点,∴AF =12AB ,∵AE 平分∠BAD ,∴∠BAE =∠DAE ,∵AB ∥CD ,∴∠AED =∠BAE ,∴∠AED =∠DAE ,∴AD =DE ,∴BC =DE ,∵AB =2BC .∴BC =12AB ,∴AF =DE ,∵AF ∥DE ,∴四边形ADEF 是平行四边形,∵AD =DE ,∴四边形ADEF 是菱形,故①正确;∵AB ∥CD ,∴∠FBN =∠EDN ,DE =AF =BF ,∠BNF =∠DNE ,∴△BFN ≌DEN (AAS ),能够确定与△BFN 全等的三角形只有1个,故②错误;③∵△BFN ≌DEN ,∴FN =EN ,BN =DN ,∵四边形ADEF 是菱形,∴DM =FM ,∴12FMN DMN BFNS S S == ,同理可证:四边形BCEF 是菱形,∴S 菱形BCEF =4S △BFN ,∴S 四边形BCEN =3S △BFN ,·S △BFN =2S △FMN ,∴S 四边形BCEN =4S △FMN ,故③错误;④当FM =FN 时,∵FN =EN ,EF =AF ,∴AF =2FM ,∵DF =2FM ,∴DF =AF =AD ,∴△ADF 是等边三角形,∴∠BAD =60°,故④正确;故选:B .【点睛】本题是四边形综合题,考查了平行四边形性质,菱形的判定,全等三角形判定和性质,三角形面积和四边形面积,等边三角形判定等,熟练掌握平行四边形的性质和菱形的判定,证明三角形全等是解题的关键.10.已知某菱形的周长为8cm ,高为1cm ,则该菱形的面积为A .22cmB .24cmC .26cmD .28cm 【分析】先利用菱形的性质求出菱形的边长为2,再利用菱形的面积=底⨯高即可【详解】解:菱形的边长:842÷=.菱形的面积:212⨯=.【点睛】本题主要是考题菱形的性质与面积,易出现求面积时不懂的把菱形当作平行四边的面积来求.11.如图,四边形ABCD 是菱形,对角线AC =8cm ,DB =6cm ,DH ⊥AB 于点H ,则DH 的长为【分析】由菱形对角线和边长组成一个直角三角形,由勾股定理可得菱形的边长,再利用面积相等建立等式,进而可求解高DH 的长.【详解】∵四边形ABCD 是菱形,∴AC ⊥BD ,OA =12AC =4cm ,OB =12BD =3cm ,在Rt △AOB 中,OA =4cm ,OB =3cm ,∴AB ,菱形的面积S =12AC •BD =AB •DH ,即12×8×6=5×DH ,解得DH =245cm ,【点睛】本题考查了菱形的性质和菱形的面积,熟练掌握“菱形的对角线互相垂直平分,菱形的面积等于对角线乘积的一半”是解题的关键.12.如图,在菱形纸片ABCD 中,60A ︒∠=,折叠菱形纸片ABCD ,使点C 落在DP (P 为AB 的中点)所在的直线上,得到经过点D 的折痕DE ,则DEC ∠的度数为________.【答案】75°【分析】连接BD ,先证明ABD △为等边三角形,然后根据三线合一定理得到30ADP BDP ∠=∠=o 即可得到90PDC ∠= ,则45CDE PDE ∠=∠=o ,再根据三角形内角和定理求解即可.【详解】连接BD ,∵四边形ABCD 为菱形,∴AD =AB ,60C A ∠==o ∠,AB ∥CD ,∴180A ADC ∠+∠= ,∴120ADC ∠=∵60A ∠= ,∴ABD △为等边三角形,∵P 为AB 的中点,∴DP 为ADB ∠的平分线,即30ADP BDP ∠=∠=o ,∴90PDC ∠= ,由折叠的性质得到45CDE PDE ∠=∠=o ,在DEC 中,()18075DEC CDE C ∠=-∠+∠=o o .故答案为:75°.【点睛】本题主要考查了菱形的性质,等边三角形的性质与判定,折叠的性质,三角形内角和定理,解题的关键在于能够熟练掌握相关知识进行求解.13.如图,在菱形ABCD 中,过点D 分别作DE ⊥AB 于点E ,作DF ⊥BC 于点F .求证:AE =CF.【分析】先由菱形的性质得到AD CD =,A C ∠=∠,再由AAS 证得ADE CDF ∆≅∆,即可得出结论.【详解】证明:∵四边形ABCD 是菱形,AD CD ∴=,A C ∠=∠,DE AB ∵⊥,DF BC ⊥,90AED CFD ∴∠=∠=︒,在ADE ∆和CDF ∆中,AED CFD A C AD CD ∠=∠⎧⎪∠=∠⎨⎪=⎩,()ADE CDF AAS ∴∆≅∆,AE CF ∴=.【点睛】本题考查了菱形的性质、全等三角形的判定与性质等知识;熟练掌握菱形的性质和全等三角形的判定与性质是解题的关键.14.如图,已知菱形ABCD 的对角线相交于点O ,延长AB 至点E ,使BE=AB ,连接CE.(1)求证:BD=EC;(2)若∠E=50°,求∠BAO的大小.【分析】(1)根据菱形的对边平行且相等可得AB=CD,AB//CD,然后证明得到BE=CD,BE//CD,从而证明四边形BECD是平行四边形,再根据平行四边形的对边相等即可得证.(2)根据两直线平行,同位角相等求出∠ABO的度数,再根据菱形的对角线互相垂直可得AC⊥BD,然后根据直角三角形两锐角互余计算即可得解.【详解】(1)∵四边形ABCD是菱形,∴AB=CD,AB//CD.又∵BE=AB,∴BE=CD,BE//CD.∴四边形BECD是平行四边形.∴BD=EC.(2)∵四边形BECD是平行四边形,∴BD//CE,∴∠ABO=∠E=50°.又∵四边形ABCD是菱形,∴AC丄BD.∴∠BAO=90°﹣∠ABO=40°.【点睛】本题主要考查了,勾股定理,矩形的性质,菱形的判定和性质,熟练掌握相关知识点是解题的关键.。
新人教版八下数学18.2.2菱形性质和判定(全)
D
4 1 OA • OB A
O
C
2
4 1 1 AC • 1 BD B
22
2
S菱形ABCD
1 2
AC • BD
你有什么发现?
24
D
S菱形ABCD AB • DE
A
O
C
E B
S菱形ABCD
1 2
AC
•
BD
AB• DE 1 AC • BD 2
2、如图,菱形花坛ABCD的周长为80m, ∠ABC=60度,沿着菱形的对角线修建了 两条小路AC和BD,求两条小路的长和花 坛的面积(分别精确到0.01m和0.1m2 )
∠AOB=∠DOC=∠AOD=∠BOC =90°
∠1=∠2=∠3=∠4 ∠5=∠6=∠7=∠8
等腰三角形有:△ABC △ DBC △ACD △ABD
直角三角形有:Rt△AOB Rt△BOC Rt△COD
全等三角形有: Rt△DOA
Rt△AOB ≌ Rt△BOC≌ Rt△COD ≌ Rt△DOA
△ABD≌△BCD
A
D AB=BC=CD=DA
A
D
B C
四边形ABCD
B
C
菱形ABCD
几何语言 ∵在四边形ABCD中
AB=BC=CD=DA ∴四边形ABCD是菱形
9、如图,顺次连接矩形ABCD各边中点,得到四边形
EFGH,求证:四边形EFGH是菱形。A
E
D
证明:连接AC、BD
F
H
∵四边形ABCD是矩形 B
G
C
∴AC=BD
B
∴DA=DC(菱形的定 在义△) DAC中,又∵AO=CO
∴DB⊥AC,
人教版八年级下册数学第18章18.2.3菱形及其性质习题课件
素质一练通 15.【中考·聊城】如图,在菱形ABCD中,点P是BC边上
一点,连接AP,点E,F是AP上的两点,连接DE, BF,使得∠AED=∠ABC,∠ABF=∠BPF.求证: (1)△ABF≌△DAE;
素质一练通
证明:∵四边形ABCD是菱形, ∴AB=AD,AD∥BC. ∴∠BPA=∠DAE. 又∵∠ABC=∠AED,∴∠BAF=∠ADE. ∵∠ABF=∠BPF,∠BPA=∠DAE, ∴∠ABF=∠DAE. 又∵AB=DA,∴△ABF≌△DAE(ASA).
新知基本功 7.【2021·菏泽】如图,在菱形ABCD中,点M、N分别在AB、
CB上,且∠ADM=∠CDN,求证:BM=BN. 证明:∵四边形ABCD为菱形, ∴AD=CD=AB=BC,∠A=∠C. 在△AMD和△CND中, ∠A=∠C, AD=CD, ∠ADM=∠CDN, ∴△AMD≌△CND(ASA).
新知基本功
4.菱形的_四__条__边___都相等. 例如:边长为3 cm的菱形的周长为__1_2_c_m___.
新知基本功
5.【2021·成都】如图,四边形ABCD是菱形,点E,F分别 在BC,DC边上,添加以下条件不能判定 △ABE≌△ADF的是( C )
A.BE=DF B.∠BAE=∠DAF C.AE=AD D.∠AEB=∠AFD
∴AM=CN,∴AB-AM=BC-CN,即BM=BN.
新知基本功
8.菱形的对角线__互__相__垂__直__平__分___,且每条对角线 平__分__一__组__对__角__.菱形的面积等于两条对角线长的乘积 的_一__半___;对角线所在的直线是菱形的_对__称__轴___.
新知基本功
9.【2021·河南】关于菱形的性质,以下说法不正确的是
人教版数学八年级下《18.2.1矩形》课时练习含答案
八年级下册18.2.1矩形课时练习一.选择题(共15小题)1.一个长方形在平面直角坐标系中三个顶点的坐标为(﹣1,﹣1),(﹣1,2),(3,﹣1),则第四个顶点的坐标为()A.(2,2)B.(3,2)C.(3,3)D.(2,3)答案:B知识点:坐标与图形性质;矩形的性质解析:解答:解:如图可知第四个顶点为:即:(3,2).故选B.分析:本题可在画出图后,根据矩形的性质,得知第四个顶点的横坐标应为3,纵坐标应为2.本题考查学生的动手能力,画出图后可很快得到答案.2.如图,矩形ABCD中,AB=1,AD=2,M是CD的中点,点P在矩形的边上沿A⇒B⇒C⇒M 运动,则△APM的面积y与点P经过的路程x之间的函数关系用图象表示大致是下图中的()A. B.C. D.答案:A知识点:函数的图像;分段函数;矩形的性质解析:解答:解:点P由A到B这一段中,三角形的AP边上的高不变,因而面积是路程x的正比例函数,当P到达B点时,面积达到最大,值是1.在P由B到C这一段,面积随着路程的增大而减小;到达C点,即路程是3时,最小是;由C到M这一段,面积越来越小;当P到达M时,面积最小变成0.因而应选第一个选项.故选A.分析:根据每一段函数的性质,确定其解析式,特别注意根据函数的增减性,以及几个最值点,确定选项比较简单.本题考查了分段函数的画法,是难点,要细心认真.3.如图,矩形ABCD中,AB=3,BC=5.过对角线交点O作OE⊥AC交AD于E,则AE 的长是()A.1.6B.2.5C.3D.3.4答案:D知识点:线段垂直平分线的性质;勾股定理;矩形的性质解析:解答:解:连接EC,由矩形的性质可得AO=CO,又因EO⊥AC,则由线段的垂直平分线的性质可得EC=AE,设AE=x,则ED=AD﹣AE=5﹣x,在Rt△EDC中,根据勾股定理可得EC2=DE2+DC2,即x2=(5﹣x)2+32,解得x=3.4.故选D.分析:利用线段的垂直平分线的性质,得到EC与AE的关系,再由勾股定理计算出AE的长.本题考查了利用线段的垂直平分线的性质.矩形的性质及勾股定理综合解答问题的能力,在解上面关于x的方程时有时出现错误,而误选其它选项.4.一次数学课上,老师请同学们在一张长为18厘米,宽为16厘米的矩形纸板上,剪下一个腰长为10厘米的等腰三角形,且要求等腰三角形的一个顶点与矩形的一个顶点重合,其它两个顶点在矩形的边上,则剪下的等腰三角形的面积为多少平方厘米()A.50B.50或40C.50或40或30D.50或30或20答案:C知识点:等腰三角形的性质;勾股定理;矩形的性质解析:解答:解:如图四边形ABCD是矩形,AD=18cm,AB=16cm;本题可分三种情况:①如图(1):△AEF中,AE=AF=10cm;S△AEF=•AE•AF=50cm2;②如图(2):△AGH中,AG=GH=10cm;在Rt△BGH中,BG=AB﹣AG=16﹣10=6cm;根据勾股定理有:BH=8cm;∴S△AGH=AG•BH=×8×10=40cm2;③如图(3):△AMN中,AM=MN=10cm;在Rt△DMN中,MD=AD﹣AM=18﹣10=8cm;根据勾股定理有DN=6cm;∴S△AMN=AM•DN=×10×6=30cm2.故选C.分析:本题中由于等腰三角形的位置不确定,因此要分三种情况进行讨论求解,①如图(1),②如图(2),③如图(3),分别求得三角形的面积.题主要考查了等腰三角形的性质.矩形的性质.勾股定理等知识,解题的关键在于能够进行正确的讨论.5.菱形具有而矩形不具有性质是()A.对角线相等B.对角线互相平分C.对角线互相垂直D.对角线平分且相等答案:C知识点:菱形的性质;矩形的性质解析:解答:解:A.菱形的对角线不一定相等,矩形的对角线一定相等,故本选项错误;B.菱形和矩形的对角线均互相平分,故本选项错误;C.菱形的对角线互相垂直,而矩形的对角线不一定互相垂直(互相垂直时是正方形),故本选项正确;D.菱形和矩形的对角线均互相平分且相等,故本选项错误.故选C.分析:由于菱形的对角线互相垂直平分,矩形的对角线互相平分且相等,据此进行比较从而得到答案.本题考查矩形与菱形的性质的区别:矩形的对角线互相平分且相等,菱形的对角线互相平分.垂直且平分每一组对角.6.在矩形ABCD中,AB=1,AD=3,AF平分∠DAB,过C点作CE⊥BD于E,延长AF.EC交于点H,下列结论中:①AF=FH;②BO=BF;③CA=CH;④BE=3ED.正确的是()A.②③B.③④C.①②④D.②③④答案:D知识点:矩形的性质;角平分线的性质;等腰三角形的性质;等边三角形的性质。
2020-2021学年人教版八年级下册数学18.2.2菱形 同步练习
18.2.2菱形同步练习一.选择题1.平行四边形、矩形、菱形都具有的性质是()A.对角线相等B.对角线互相平分C.都是轴对称图形D.对角线互相垂直2.菱形ABCD的边长是5cm,一条对角线AC的长是8cm,则此菱形的面积为()A.40cm2B.48cm2C.24cm2D.24cm23.已知菱形的周长是高的8倍,则菱形的两邻角的度数之比为()A.3:1B.4:1C.5:1D.6:14.如图,菱形ABCD中,∠A=50°,DE⊥AB于点E.则∠BDE的度数为()A.25°B.35°C.40°D.50°5.如图,在菱形ABCD中,∠BAD=80°,AB的垂直平分线交对角线AC于点F,垂足为E.连接DF,则∠DFE等于()A.150°B.140°C.130°D.120°6.如图,在菱形ABCD中,AB=5,BD=6,DE⊥AB于点E,则DE的长为()A.4.8B.5C.9.6D.107.如图,菱形ABCD和菱形ECGF的边长分别为4和2,∠B=120°,则图中阴影部分的面积是()A.3B.2C.4D.38.如图,在菱形ABCD中,对角线AC,BD相交于点O,BD=6,AC=8,直线OE⊥AB交CD 于点F,则EF的长为()A.4.8B.C.5D.69.如图,菱形ABCD的对角线相交于点O,AC=12,BD=16,点P为边BC上一点,且P不与B、C重合.过P作PE⊥AC于E,PF⊥BD于F,连接EF,则EF的最小值为()A.4B.4.8C.5D.610.如图,在菱形ABCD中,∠A=60°,E、F分别是AB,AD的中点,DE、BF相交于点G,连接BD,CG.有下列结论:①∠BGD=120°;②BG+DG=CG;③△BDF≌△CGB;④S=AB2;⑤2DE=DC;⑥BF=BC,正确结论的有()个.菱形ABCDA.1B.2C.3D.4二.填空题11.如图,四边形ABCD的对角线AC与BD交于点O,AC⊥BD,且AC平分BD,若添加一个条件,则四边形ABCD为菱形.12.若一个菱形的周长为200cm,一条对角线长为60cm,则它的面积为.13.如图,菱形ABCD的边长AB=3,对角线BD=4,点E,F在BD上,且BE=DF=,连接AE,AF,CE,CF.则四边形AECF的周长为.14.如图,菱形ABCD的对角线AC,BD相交于点O,过点O作OE⊥BC于点E,若AC=6,BD=8,则OE=.15.如图,在菱形ABCD中,∠B=60°,E,H分别为AB,BC的中点,G,F分别为线段HD,CE的中点.若线段FG的长为2,则AB的长为.三.解答题16.如图,在菱形ABCD中,E为对角线BD上一点,且AE=DE,连接CE.(1)求证:CE=DE.(2)当BE=2,CE=1时,求菱形的边长.17.如图,在△ABC中,AD是BC边上的中线,点E是AD的中点,过点A作AF∥BC交BE 的延长线于F,连接CF.(1)求证:△AEF≌△DEB;(2)若∠BAC=90°,求证:四边形ADCF是菱形.18.如图,平行四边形ABCD中,E、F分别为CD、BC上两点,AF平分∠BAE,∠EAD=∠FEC.(1)求证:AB=AE;(2)若∠B=90°,AF与DC的延长线交于点H,求证:四边形ABHE为菱形.参考答案一.选择题1.解:平行四边形的对角线互相平分,而对角线相等、是轴对称图形、互相垂直不一定成立.故平行四边形、矩形、菱形都具有的性质是:对角线互相平分.故选:B.2.解:如图所示:∵菱形ABCD的边长为5cm,对角线AC=8cm,∴AB=5cm,AO=CO=4cm,OB=OD,AC⊥BD,∴OB===3(cm),∴BD=2OB=6cm,∴此菱形的面积为×8×6=24(cm2).故选:D.3.解:如图所示:∵四边形ABCD是菱形,菱形的周长是高的8倍,∴AB=BC=CD=DA=2,∠DAB+∠B=180°,∵AE=1,AE⊥BC,∴AE=AB,∴∠B=30°,∴∠DAB=150°,∴∠DAB:∠B=5:1,故选:C.4.解:∵四边形ABCD是菱形,∠A=50°,∴AD=AB,∴∠ADB=65°,∵DE⊥AB,∴∠ADE=90°﹣50°=40°,∴∠BDE=65°﹣40°=25°,故选:A.5.解:连接BF,如图所示:∵四边形ABCD是菱形,∠BAD=80°,∴∠BAC=∠BAD=×80°=40°,AB=BC=DC,∠BCF=∠DCF=∠BAC=40°,∠ABC=180°﹣∠BAD=100°,∵EF是线段AB的垂直平分线,∴AF=BF,∠AFE=90°﹣∠BAC=50°,∴∠ABF=∠BAC=40°∴∠CBF=∠ABC﹣∠ABF=100°﹣40°=60°,在△BCF和△DCF中,,∴△BCF≌△DCF(SAS),∴∠CDF=∠CBF=60°,∴∠AFD=∠CDF+∠DCF=60°+40°=100°,∴∠DFE=∠AFD+∠AFE=150°;故选:A.6.解:∵四边形ABCD为菱形,∴AO=CO,BO=DO=3,AC⊥BD,∴AO===4,∴AC=8,∴S菱形ABCD=AC•BD=×8×6=24,∵DE⊥AB,∴S菱形ABCD=AB•DE=5DE,∴5DE=24,∴DE==4.8,故选:A.7.解:方法一:如图,连接AC,则AC平行EG,根据平行线间的距离处处相等可知:阴影部分的面积=三角形ECG的面积=菱形ECGF的面积=3.方法二:如图,设AG交CE于点H,∵菱形ABCD的边AB∥CD,∴△GCH∽△GBA,∴CH:AB=GC:GB,即CH:4=2:6,解得CH=,所以,EH=CE﹣CH=2﹣=,∵∠B=120°,∴∠BCD=∠FEC=180°﹣120°=60°,∴点B到CD的距离为4×=6,点F到CE的距离为2×=3,∴阴影部分的面积=S△AEH+S△GEH=××(6+3)=3.故选:D.8.解:∵在菱形ABCD中,BD=6,AC=8,∴OB=BD=3,OA=AC=4,AC⊥BD,∴AB==5,∵S菱形ABCD=AC•BD=AB•EF,即×6×8=5EF,∴EF=4.8.故选:A.9.解:连接OP,∵四边形ABCD是菱形,AC=12,BD=16,∴AC⊥BD,BO=BD=8,OC=AC=6,∴BC===10,∵PE⊥AC,PF⊥BD,AC⊥BD,∴四边形OEPF是矩形,∴FE=OP,∵当OP⊥BC时,OP有最小值,此时S△OBC=OB×OC=BC×OP,∴OP==4.8,∴EF的最小值为4.8,故选:B.10.解:∵四边形ABCD是菱形,∴AB=BC=CD=AD.∠A=∠BCD.∵∠A=60°,∴∠BCD=60°,∴△ABD是等边三角形,△BDC是等边三角形.∴∠ADB=∠ABD=60°,∠CDB=∠CBD=60°.∵E,F分别是AB,AD的中点,∴∠BFD=∠DEB=90°,∴∠GDB=∠GBD=30°,∴∠GDC=∠GBC=90°,DG=BG,∴∠BGD=360°﹣90°﹣90°﹣60°=120°,故①正确;在△CDG和△CBG中,,∴△CDG≌△CBG(SSS),∴∠DGC=∠BGC=60°.∴∠GCD=30°,∴CG=2GD=GD+GD,∴CG=DG+BG.故②正确.∵△GBC为直角三角形,∴CG>BC,∴CG≠BD,∴△BDF与△CGB不全等.故③错误;∵S菱形ABCD=2S△ADB=2×AB•DE=AB•(BE)=AB•AB=AB2,故④错误;∵DE=BE=AB=CD,∴2DE=CD,故⑤正确;∵BD>BF,BD=BC,∴BC>BF,故⑥错误.∴正确的有:①②⑤共三个.故选:C.二.填空题11.解:添加一个条件OA=OC,则四边形ABCD为菱形,理由如下:∵AC平分BD,OA=OC,∴四边形ABCD是平行四边形,又∵AC⊥BD,∴平行四边形ABCD是菱形,故答案为:OA=OC(答案不唯一).12.解:已知AC=60cm,菱形对角线互相垂直平分,∴AO=30cm,又∵菱形ABCD周长为200cm,∴AB=50cm,∴BO===40cm,∴AC=2BO=80cm,∴菱形的面积为×60×80=2400(cm2).故答案为:2400cm2.13.解:如图,连接AC,交BD于O,∵四边形ABCD是菱形,∴AC⊥BD,BO=BD==,在Rt△ABO中,AO===1,又∵BE=,∴EO=﹣=,在Rt△AOE中,AE===,同理可得,CE=CF=AF=,∴四边形AECF的周长4.故答案为:4.14.解:∵菱形ABCD中,AC=6,BD=8,∴OA=OC=AC=3,OB=BD=4,AC⊥BD,∴BC===5,∵OE⊥BC,∴S△OBC=×OB×OC=×BC×OE,∴OE===,故答案为:.15.解:如图,连接CG并延长,交AD于点M,连接EM,∵四边形ABCD为菱形,∠B=60°,∴AD∥BC,∴∠A=120°,∠MGD=∠CGH,∵点G为HD的中点,∴HG=DG,∵∠MGD=∠CGH,∴△MGD≌△CGH(ASA),∴MG=CG,MD=CH=BC=AD,∴点G为MC的中点,点M为AD的中点,∵F,G分别为CE和CM的中点,∴FG是△CEM的中位线,∴FG=EM,∴EM=2FG=4,∵E,M分别为AB和AD的中点,∴AE=AM,∵∠A=120°,∴EM=AE=4,∴AE=4,∴AB=2AE=8.故答案为:8.三.解答题16.(1)证明:∵四边形ABCD是菱形,∴∠ABE=∠CBE,AB=CB,在△ABE和△CBE中,,∴△ABE≌△CBE(SAS),∴AE=CE,∵AE=DE,∴CE=DE;(2)解:如图,连接AC交BD于H,∵四边形ABCD是菱形,∴AH⊥BD,BH=DH,AH=CH,∵CE=DE=AE=1,∴BD=BE+DE=2+1=3,∴BH=BD=,EH=BE﹣BH=2﹣=,在Rt△AHE中,由勾股定理得:AH===,在Rt△AHB中,由勾股定理得:AB===,∴菱形的边长为.17.证明:(1)∵E是AD的中点,∴AE=DE,∵AF∥BC,∴∠AFE=∠DBE,∵∠AEF=∠DEB,∴△AEF≌△DEB;(2)∵△AEF≌△DEB,∴AF=DB,∵AD是BC边上的中线,∴DC=DB,∴AF=DC,∵AF∥DC,∴四边形ADCF是平行四边形,∵∠BAC=90°,AD是BC边上的中线,∴AD=DC,∴▱ADCF是菱形.18.(1)证明:∵∠AEC=∠AEF+∠FEC=∠EAD+∠D,∠EAD=∠FEC,∴∠AEF=∠D,∵四边形ABCD是平行四边形,∴∠B=∠D,∴∠B=∠AEF,∵AF平分∠BAE,∴∠BAF=∠EAF,在△ABF和△AEF中,,∴△ABF≌△AEF(AAS),∴AB=AE;(2)证明:∵四边形ABCD是平行四边形,∴AB∥CD,∴∠BAF=∠EHA,∵∠BAF=∠EAF,∴∠EHA=∠EAF,∴AE=HE,∵AB=AE,∴AB=EH,∴四边形ABHE是平行四边形,又∵AB=AE,∴四边形ABHE为菱形.。
人教版八年级下册数学第18章18.2.4菱形的判定习题课件
提示:点击 进入习题
1 互相垂直;四边形 2D
3 见习题
4
一组邻边相等;四 边形
5C
6A 7D 8C 9 见习题 10 见习题
答案显示
习题链接
11 见习题 12 见习题 13 见习题
答案显示
新知基本功
1.对角线__互__相__垂__直______的平行四边形是菱形; 对角线互相垂直平分的___四__边__形___是菱形.
精彩一题
∵FG⊥BC,∴DE∥BC,∴AC⊥BC,∠CGE=∠GED. ∴∠C=∠DHG=90°. 由F是AD的中点,FG∥AE,易得H是ED的中点. ∴FG是线段ED的垂直平分线. ∴GE=GD,∴∠GDE=∠GED. ∴∠CGE=∠GDE. ∴△ECG≌△GHD(AAS).
精彩一题 (2)小亮同学经过探究发现:AD=AC+EC,请你帮助小亮
新知基本功 (2)顺次连接点P,M,Q,N,求证:四边形PMQN是菱形.
证明:如图所示. 由(1)知△PBE≌△QDE,∴EP=EQ. 同理得△BME≌△DNE. ∴EM=EN. ∴四边形PMQN是平行四边形, 又∵PQ⊥MN,∴四边形PMQN是菱形.
新知基本功
4.有___一__组__邻__边__相__等_____的平行四边形是菱形; 四条边相等的_四__边__形_____是菱形.
精彩一题 13.【中考·泰安】如图,△ABC中,D是AB上一点,
DE⊥AC于点E,F是AD的中点,FG⊥BC于点G,与DE 交于点H,若FG=AF,AG平分∠CAB,连接GE,GD. (1)求证△ECG≌△GHD; 证明:∵AF=FG,∴∠FAG=∠FGA. ∵AG平分∠CAB,∴∠CAG=∠FAG. ∴∠CAG=∠FGA.∴AC∥FG. ∵DE⊥AC,∴FG⊥DE.
人教版数学八年级下册第十八章《18.2.2矩形和菱形的性质与判定》课件
例:如图,在菱形ABCD中,P是BC边上一点,连接AP,E,F是AP边上的两点, 连接DE,BF,使得∠AED=∠ABC,∠ABF=∠BPF.连接CD.
求证:
练习:如图,AE∥BF,AC平分∠BAD,且交BF于点C,BD平分∠ABC, 且交AE于点D,连接CD.求证:四边形ABCD是菱形.
人教版数学八年级下册
18.2.2矩形和菱形的性质与判定
例:如图,在矩形ABCD中,E,F为对角线BD上的两点,DE=EF=FB.
练习:如图,在平行四边形ABCD中,各角的平分线分别交于点E,F,G,H. 求证:四边形EFGH是矩形.
例:如图,在菱形ABCD中,P是BC边上一点,连接AP,E,F是AP边上的两点, 连接DE,BF,使得∠AED=∠ABC,∠ABF=∠BPF.连接CD.
求证:
练习:如图,AE∥BF,AC平分∠BAD,且交BF于点C,BD平分∠ABC, 且交AE于点D,连接CD.求证:四边形ABCD是菱形.
例:如图,在矩形ABCD中,E,F为对角线BD上的两点,DE=EF=FB.
练习:如图,在平行四边形ABCFGH是矩形.
人教版数学八年级下册18.2菱形测试试题
人教版数学八年级下18.2.2 菱形测试题一.选择题(每题 3 分,共 30 分)1.如图,菱形花坛ABCD的边长为6m,∠A=120°,此中由两个正六边形构成的图形部分栽花,则栽花部分图形的周长为()A.12mB.20mC.22mD.24m2.如图,在菱形 ABCD中,对角线 AC 与 BD 交于点 O, OE⊥ AB,垂足为 E,若∠ ADC=130°,则∠ AOE的大小为()A.75 °B.65 °C.55 °D.50 °3.如图,在□ ABCD中, AB=5,AD=6,将□ ABCD沿 AE 翻折后,点 B 恰巧与点 C 重合,则折痕 AE 的长为()A.33B.215C.D.44.菱形不具备的性质是()A.四条边都相等B.对角线相等C.既是轴对称图形,又是中心对称图形D.对角线相互垂直且相互均分5.如图,在菱形ABCD中,对角线AC, BD 交于点 O, E 为 AD 的中点,菱形ABCD的周长为28,则 OE 的长等于()B.4C.7D.146.菱形不具备的性质是()A.四条边都相等B.对角线必定相等C.是轴对称图形D.是中心对称图形7.平面直角坐标系中,四边形 ABCD的极点坐标分别是 A(-3,0),B( 0,2), C(3,0),D ( 0, -2),则四边形 ABCD是()A.矩形B.菱形C.正方形D.梯形8.如图,在菱形 ABCD中,E 是 AC 的中点, EF∥ CB,交 AB 于点 F,假如 EF=3,那么菱形 ABCD 的周长为()A.24B.18C.12D.99.如图,在菱形 ABCD中,∠ B=60°,AB=1,延伸 AD 到点 E,使 DE=AD,延伸 CD到点 F,使DF=CD,连结 AC, CE, EF,AF,则以下描绘正确的选项是()A.四边形 ACEF是平行四边形,它的周长是4B.四边形 ACEF是矩形,它的周长是2+23C.四边形 ACEF是平行四边形,它的周长是43D.四边形 ACEF是矩形,它的周长是4+4310..图,在菱形 ABCD中, AC=62,BD=6,E 是 BC边的中点, P,M 分别是 AC,AB 上的动点,连结 PE, PM,则 PE+PM 的最小值是()A.63B.36C.2二.填空题(每题 3 分,共 18 分)11.如图,四边形ABCD是平行四边形,若AB=,则四边形ABCD是菱形 .【菱形的判断(定义法)】有一组邻边的四边形是菱形.12.菱形 ABCD中,∠ A=60°,其周长为 24cm,则菱形的面积为cm2.13.如图,四边形 ABCD是菱形,,若∠ABO=30°,∠ CBO=,∠ ADO=30°,∠ CDO=30°.结论:菱形的对角线;而且每一条对角线均分一组对角.14.如图,四边形ABCD是平行四边形,AC丄,则四边形ABCD是菱形 .【判断定理一】对角线的平行四边形是菱形.15.如图,四边形ABCD是菱形,若AB=1,则 BC=,CD=,AD=.结论:菱形的四条边都.16.已知菱形的边长为 3,一个内角为 60°,则该菱形的面积是.17.菱形 OACB在平面直角坐标系中的地点如下图,点 C 的坐标是( 6,0),点 A 的纵坐标是 1,则点 B 的坐标为.18.如图,四边形ABCD是平行四边形,若AB=AD,则四边形ABCD是.【菱形】有一组邻边的四边形叫做菱形.三.解答题(共66 分)19 如图,矩形ABCD的对角线AC, BD 交于点 O,且 DE∥ AC, CE∥ BD.(1)求证:四边形 OCED是菱形;(2)若∠ BAC=30°,AC=4,求菱形 OCED的面积 .20.矩形,菱形因为其特别的性质,为拼图供给了方便,因此墙面瓷砖一般设计为矩形,图案也以菱形居多.如图,是一种长 30cm ,宽 20cm 的矩形瓷砖, E、F、G、H 分别是矩形ABCD 各边的中点,暗影部分为淡黄色,中间部分为白色,现有一面长 4.2m ,宽 2.8m 的墙壁准备贴瓷砖.问:这面墙壁最少要贴这类瓷砖多少块?所有贴满瓷砖后,这面墙壁最多会出现多少个面积相等的菱形?此中淡黄色的菱形有多少个?21.如图,菱形ABCD的边长为8,∠ ABC=60°,求对角线AC的长 .22.如图,在△ ABC 中,∠ ABC=90°,点 D 为 AC的中点,过点作BD 的平行线,交 CE的延伸线于点 F,在 AF 的延伸线上截取(1)求证:四边形 BDFG是菱形;(2)若 AC=10, CF=6,求线段 AG 的长度 .C 作 CE⊥ BD 于点 E,过点 A FG=BD,连结 BG、 DF.23.如图,在△ABC中, AD⊥BC 于点 D,点 E、F 分别是 AB、AC 上的点,且 ED∥ AC,DF∥AB,当知足什么条件时,四边形 AEDF是菱形?人教版数学八年级下18.2.2 菱形测试题答案选择题(每题 3 分,共 30 分)1.答案: B.解:如图:∵四边形 ABCD为菱形,且∠ A=120 ,°∴∠ FAE=60. °∵EFGMNH 为正六边形,∴∠ BMG=60 °,∠ AFE=60 ,°MG=GF=AF,∴△ BGM 和△ AEF均为等边三角形,∴E F=AF, BG=MG.∴B G=GF=FA=2,∴正六边形的边长为 2.又∵ 正六边形有一个公共边OE,∴可得两个六边形的周长为 6 × 2+6 × 2-4=20,∴可得栽花部分的图形周长为20m.应选 B.2.如图,在菱形 ABCD中,对角线 AC 与 BD 交于点 O, OE⊥ AB,垂足为 E,若∠ ADC=130°,则∠ AOE的大小为()A.75 °B.65 °C.55 °D.50 °3.答案: D.解:∵翻折后点 B 恰巧与点 C 重合,∴AE⊥ BC, BE=CE.∵BC=AD=6,∴BE=3,∴A E=AB2-BE2=4.应选 D.4.答案: B.解:A.菱形的四条边都相等,不切合题意;B.菱形的对角线相互垂直且均分,不必定相等,切合题意;C.菱形既是轴对称图形,又是中心对称图形,不切合题意;D.菱形的对角线相互垂直且相互均分,不切合题意,应选 B.5.答案: A.解:∵菱形 ABCD的周长为28,∴菱形的边长AB=BC=CD=AD=7.∵四边形 ABCD为菱形,∴B O=OD.又∵ E 为 AD 边的中点,∴OE 为三角形 ABD 的中位线,∴O E=1/2AB=3.5.6.答案: B.解:菱形的四条边都相等,既是轴对称图形,又是中心对称图形,但对角线不必定相等.应选 B.7.答案: B.解:∵A(-3, 0), B( 0,2), C( 3, 0), D( 0,-2),∴AO=CO, DO=BO,∴四边形 ABCD为平行四边形.∵AC⊥BD,∴四边形 ABCD是菱形 .应选 B.8.答案: A.解:∵ E 是 AC 中点,∵E F∥ BC,交 AB 于点 F,∴EF 是△ ABC的中位线,∴E F=12BC,三角形中位线性质∴B C=6,∴菱形 ABCD的周长是 4 × 6=24.菱形的四条边相等应选 A.9.答案: B.解:∵ DE=AD, DF=CD,∴四边形 ACEF是平行四边形 .∵四边形 ABCD为菱形,∠ B=60 ,°∴∠ B=∠D=60 .°∵AD=CD,∠ D=60 ,°∴△ ACD是等边三角形,∴A C=AD=CD=1.∵A E=AD+DE, CF=CD+DF, AD=CD=1∴A E=CF=2.∵四边形 ACEF是平行四边形,AE=CF,∴四边形 ACEF是矩形,∴∠ FAC=90. °在Rt△ ACF中, CF=2, AC=1.∴A F=2AG=3,∴矩形 ACEF的周长为: (1+3)× 2=23+2.应选 B.10答案: C.解:如图,作点 E 对于AC 的对称点E′,过点E′作E′M⊥ AB 于点M ,交AC 于点P,则此时PE+PM 获得最小值 .∵点 E、 E′对于直线AC 对称,∴P E=PE ′.∴PE+PM=PE ′ +PM=E ′ M.∵四边形 ABCD是菱形,∴点 E′在 CD 上,∵A C=62, BD=6,∴AB=(32)2+32=33.∵S 菱形 ABCD=12AC?BD=AB?E ,′M∴12 × 62 ×6=33?EM,′解得:E′M=26.即PE+PM的最小值是 26.应选 C.填空题(每题 3 分,共 18 分)11.答案: AD 或 BC;相等;平行.解:有一组邻边相等的平行四边形叫做菱形,所以若AB=AD 或AB=BC时,四边形ABCD是菱形 .12.答案: 18313.答案: AC⊥ BD; 30°;相互垂直 .解:∵四边形 ABCD是菱形,∴A B=BC=CD=DA,∴点 A、 C 在 BD 上的垂直均分线上,∴AC⊥BD,∴∠ CBO=∠ ABO=30 .°结论:菱形的对角线相互垂直;而且每一条对角线均分一组对角.14.答案: BD;相互垂直 .解:依据对角线相互垂直的平行四边形是菱形可知:当AC⊥ BD 时,四边形ABCD是菱形 .15.答案: 1; 1;1;相等 .解:∵四边形 ABCD是菱形,∴AB=CD, AD=BC,且 AB=BC,∴A B=BC=CD=AD=1,即菱形的四边都相等 .9316.答案:2解:因为菱形的一个内角是60°,所以较短的对角线与菱形的一组邻边构成一个等边三角形,即较短的对角线为3,依据勾股定理可求得较长的对角线的长为33,93则这个菱形的面积 =1/2×3×33=217.答案:( 3, -1) .解:连结AB 交 OC于点 D,∵四边形 ABCD是菱形,∴AB⊥ OC, OD=CD, AD=BD,∵点 C 的坐标是( 6, 0),点 A 的纵坐标是1,∴O C=6, BD=AD=1,∴O D=3,∴点 B 的坐标为( 3, -1).18.答案:菱形;相等;平行.解:有一组邻边相等的平行四边形叫做菱形,所以四边形ABCD是菱形 .解答题(共66 分)19证明:( 1)∵ DE∥ OC,CE∥ OD,∴四边形 OCED是平行四边形 .∵四边形 ABCD是矩形,∴AC=BD, OC=1/2AC,OD=1/2BD,∴OC=OD,∴四边形 OCED是菱形 .(2)在矩形 ABCD中,∠ABC=90°,∠ BAC=30°,AC=4,∴BC=2,∴A B=DC=2 3 .如图:连结OE,交 CD 于点 F.∵四边形 OCED为菱形,∴F为 CD中点,∴O F=1/2BC=1,∴O E=2OF=2,1OE CD1 2 2 3 2 3∴S 菱形 OCED=2220.解:( 1)∵ 墙壁的长为 4.2 米,宽为 2.8 米,∴墙壁的面积为 4.2× 2.8=11.平76方米 .30 厘米 =0.3 米,20 厘米 =0.2 米,同理可得瓷砖的面积为0.3 × 0.2==0.06平方米 .∴起码需要的瓷砖数为11.76/0.06=196 块 .(2)因为矩形中间的菱形各边都相等,当摆出菱形最多时,墙壁的长摆下的瓷砖数为 4.2/0.3=14 个,墙壁的宽摆下的瓷砖为 2.8/0.2=14 个 .每四个和△AHG 全等的三角形构成一个新的菱形,共有三角形数为196×4=784个 .∵周围共有 (14+14)× 4-4=108个三角形不可以构成菱形,∴新构成最多的菱形数为(784-108 )/4=169 个,即淡黄色的菱形有169 个,∴出现的菱形数为196+169=365 个 .∵这些菱形的面积都相等,∴这面墙璧最多会出现365 个面积相等的菱形 .21.解:∵四边形 ABCD是菱形,∴A B=BC.又∵∠ ABC=60°.∴△ ABC是等边三角形.∴A C=AB=8.22.证明:( 1)∵ AG∥ BD, FG=BD,∴四边形 BDFG是平行四边形 .∵CE⊥ BD,∴C F⊥ AG.∵BD、FC分别△ ABC和△ AFC斜边上的中线,∴B D=DF=1/2AC,∴四边形 BDFG是菱形 .(2)∵四边形 BDFG为菱形,∠ ABC=90°,点 D 是 AC的中点,∴G F=DF=1/2AC=5.∵C F⊥ AG,∴AF=AC 2CF 2= 10262=8,∴A G=AF+FG=8+5=13.23.解:当 AB=AC时,四边形AEDF是菱形 .∵DE∥ AC, DF∥AB,∴四边形 AFDE为平行四边形,∠EAD=∠FDA.∵AD⊥ BC, AB=AC,∴AD 是∠ BAC的均分线,∴∠ EAD=∠ FAD,∴∠ FDA=∠ FAD,∴A F=DF(等角平等边 ),∴四边形 AEDF为菱形 (一组邻边相等的平行四边形是菱形).。
人教版八年级数学下册18.2.2 第1课时+菱形的性质 课件
菱形是轴对称图形,它有两条对称轴.
O┐
B
D
C
新知探究
1.下列性质中,菱形具有而矩形不一定具有的是( D ).
A.对角线相等
B.对角线互相平分
C.邻边互相垂直
D.对角线互相垂直
新知探究
2.菱形ABCD的两对角线AC、BD的长为8、6,则其边长
D
为多少?
解:∵四边形ABCD是菱形
18.2.2 菱形的性质
人教版八年级下册
知识回顾
矩形的性质有哪些?
对边平行且相等
四个角都是直角
对角线相等且互相平分
轴对称图形,有两条对称轴
教学目标
1.理解并掌握菱形的概念和性质.
2.能熟练运用菱形性质进行计算和证明.
新知导入
你认识这些生活中常见的图形吗?能找出它们的共同特点吗?
都具有
新知导入
将一张矩形的纸对折,然后沿着图中的虚线剪下,看看打开是个什么
图形,与前面图中特别的四边形一样不?自己动手做一做.
思考
观察得到的四边形的形状,它是一个怎样的四边形呢?
新知探究
根据折叠的情况,得到的四边形的四条边 相等 .
这个四边形叫菱形,什么样的平
行四边形可以成为菱形?四条边
相等吗?
这个四边形四条边都相等,所以这个四边形一定
证明呢?
有一组邻边相等的平行四边形叫做菱形.
已知:如图,在平行四边形ABCD中,AB=AD,对角线AC与
BD相交于点O.
A
求证: AB = BC = CD =AD;
B
D
C
新知探究
已知:如图,在平行四边形ABCD中,AB=AD,对角线AC与
人教版八年级下册数学 18.2.2 菱形 测试题(含答案)
9.①③ ②④⑤ 解析 由“有一个角是直角的平行四边形是矩形”“对角线相等的平行四边形是矩 形”可判定□ABCD 为矩形的条件有①③;“邻边相等的平行四边形是菱形”“对角线互相垂直的平行四 边形是菱形”,另外,对角线平分一组对角的平行四边形也是菱形,由此,判定□ABCD 是菱形的条 件有②④⑤.
19.如图,菱形 ABCD 的边长为 2,BD=2,E、F 分别是边 AD,CD 上的两个动点,且满足 AE+CF=2.
(1)求证:△BDE≌△BCF; (2)判断△BEF 的形状,并说明理由; (3)设△BEF 的面积为 S,求 S 的取值范围.
20.如图,菱形 AB1C1D1 的边长为 1,∠B1=60°;作 AD2⊥B1C1 于点 D2,以 AD2 为一边,作第 二个菱形 AB2C2D2,使∠B2=60°;作 AD3⊥B2C2 于点 D3,以 AD3 为一边,作第三个菱形 AB3C3D3, 使∠B3=60°;……依此类推,这样作的第 n 个菱形 ABnCnDn 的边 ADn 的长是______.
(1)求证:四边形 AECD 是菱形; (2)若点 E 是 AB 的中点,试判断△ABC 的形状,并说明理由. 17.如图,矩形 ABCD 的对角线 AC,BD 相较于点 O,DE∥AC,CE∥BD. (1)求证:四边形 OCED 为菱形. (2)连接 AE,BE,AE 与 BE 相等吗?请说出理由.
知识像烛光,能照亮一个人,也能照亮无数的人。--培根
18.2.2 菱形 测试题
一、选择题
1.对角线互相垂直平分的四边形是( ).
A.平行四边形
B.矩形
C.菱形
D.任意四边形
2.下列命题中,正确的是( ).
A.两邻边相等的四边形是菱形
菱形菱形的判定课件人教版数学八年级下册
所以CE=AE=AC.
又因为AF=CE,所以AF=AE=AC.
7.(丹东)如图,在▱ABCD中,O是AD的中点,连接CO并延长,交BA的延长线于 点E,连接AC,DE.
(1)求证:四边形ACDE是平行四边形. (2)若AB=AC,判断四边形ACDE的形状,并说明理由.
8.(滨州)如图,矩形ABCD的对角线AC,BD相交于点O,BE∥AC, AE∥BD.
第4题图
5.如图,过▱ABCD的对角线交点O作互相垂直的两条直线EG,FH,
与AD,AB,BC,CD分别相交于点E,F,G,H.求证:四边形EFGH是
菱形.
证明:因为四边形ABCD是平行四边形,
所以AD∥BC,OB=OD.
所以∠ODE=∠OBG,∠OED=∠OGB.
所以△EOD≌△GOB.
所以OE=OG.
第十八章 平行四边形
18.2 特殊的平行四边形
菱形——菱形的判定
自主导学
菱形的判定方法: 方法1(定义法):有一组___邻__边___相等的平行四边形是菱形. 方法2:对角线__互__相__垂__直____的平行四边形是菱形. 方法3:四条边___相__等___的四边形是菱形.
探究学习
对角线互相垂直的平行四边形是菱形 【例1】如图,▱ABCD的对角线AC的垂直平分线与 边AD,BC分别相交于点E,F.求证:四边形AFCE是菱 形.
(1)求证:AE=DF.
(2)四边形AEFD能成为菱形吗?若能,求出相应的t值;若不能,请说 明理由.
解:能. 因为∠B=∠DFC=90°, 所以DF∥AB. 又DF=AE, 所以四边形AEFD是平行四边形. 当AD=AE时,四边形AEFD是菱形,即60-4t=2t,解得t=10. 所以当t=10时,四边形AEFD是菱形.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
矩形、菱形的性质定理和判定定理及其证明习题精选矩形的性质和判定1.矩形的两条对角线的夹角为60°,一条对角线与短边的和为15,则短边的和为15,则短边的长是________。
2.如图32-3-1,设矩形ABCD和矩形AEFC的面积分别为S1、S2,则二者的大小关系是:S1____S2。
3.如果矩形一个角的平分线分一边为4 cm和3 cm两部分,那么矩形的周长为_______。
4.现有一张长为40cm, 宽为20 cm的长方形纸片(如图32-3-2所示),要从中剪出长为18 cm,宽为12 cm的长方形纸片,则最多能剪出___张。
5.矩形的一条较短边的长为5 c m,两条对角线的夹角为60°,则它的对角线的长等于_____ cm。
6.如图32-3-3,在矩形ABCD中,CE⊥BD于E,∠DCE:∠ECB=3:1,则∠ACE=____度。
7.下列说法中正确的是( )A.一个角是直角,两条对角线相等的四边形是矩形。
B.一组对边平行且有一个角是直角的四边形是矩形。
C.对角线互相垂直的平行四边开是矩形。
D.一个角是直角且对角线互相平分的四边形是矩形。
8.四边形ABCD的对角线相交于O,在下列条件中,不能说明它为矩形的是()A.AB=CD,AD=BC, BAD=90°B.AO=CO,BO=DO,AC=BDC.∠BAD=∠ABC=90°, ∠BAD+∠ADC=180°D.∠BAD=∠BCD, ∠ABC+∠ADC=180°★菱形的性质和判定9.己知菱形的锐角是60°,边长是20 cm,则较长对角线是_____。
10.菱形两条对角线的长分别为6 cm和8 cm,它的高为______。
11.菱形的一个内角是120°,平分这个内角的一条对角钱长为13 cm,则菱形的周长是____。
12.菱形的一边与两条对角线所构成的两个角的差是32°,则菱形较小的内角是_____。
13.菱形具有而矩形没有的是()A.对角线相等且互补B.对角线互相平分C.一组对边平行,另一组对边想等D.对角线互相垂直。
14.下列命题正确的是()A.对角线相等的四边形是矩形B.对角线互相垂直的四边形是菱形C.对角钱互相平分的四边形是菱形D.对角线相等的平行四边形是矩形★正方形的性质及判定15.如图32-3-4,E是正方形ABCD内一点,如果△ABE为等边三角形,那么∠DCE=____。
16.如图32-3-5,E是正方形ABCD的边BC延长线上一点,且CE=AC,AE交CD于点F,则∠E=____。
17.如图32-3-6,若P是边长1的正方形ABCD内一点且S△ABP=0.4,则S△DCP=____。
18.矩形、菱形、正方形都具有的性质是()A.对角线互相垂直B.对角线互相平分C.对角线平分一组对角D.对角线相等[互动探究,拓展延伸][科学综合](一)新形题19.如图32-3-7,矩形ABCD的对角线AC、BD交于点O,AP∥BD,D P∥AC,AP、DP交于点P,你能判断四边形AODP是什么特殊四边形吗?证明你的结论。
[创新思维]20.如图32-3-8,周长为68的矩形ABCD被分成7个全等的矩形,则矩形ABCD的面积为()A.98B.196C.280D.284(二)课本习题变式题21.(课本P148习题4变式题)己知:如图32-3-9,BD、CD是△ABC的高,F是BC 的中点,G是ED的中点,求证:F G⊥DE。
(三)易错题22.能判定一个四边形是菱形的条件是()A.对角线互相平分且相等B.对角线互相垂直且相等C.对角线互相垂直且对角相等D.对角线互相垂直,且一条对角线平分一组对角(四)难题巧解题23.如图32-3-10,一块在电脑屏幕上出现的矩形色块图,由6个顔色不同的正方形组成,设中间最小的正方形边长为a,求整个矩形色块的面积。
(五)一题多解题24.如图32-3-11所示,平行四边形ABCD的对角线BD的垂直平分线与边AB、CD 分别交于F、E,证明四边形DEBF是菱形。
[迁移运用,落实课标][数学在经济、科技、生活中的应用25.木工师傅在做门时,为了检查是否合乎要求,只需用尺量一下对角线是否相等,就可以做出判断,你知道为什么吗?[自主探究]26.如图32-3-12所示,矩形ABCD的对角线AC、BD交于点O,(1)BO与对角线AC有怎样的数理关系。
(2)如果涂掉AD、OD、CD三条线段,如图(2)这时,BO是Rt △ABC的斜边AC的什么线段?由(1)图能发现什么结论?试用语言描述。
[潜能开发]27.如图32-3-13所示,己知ABC的三边在BC的同侧作等边三角形ABD、BCE、ACF,请回答下列问题:(1)四边形ADEF是什么四边形?(2)当ABC满足什么条件时,四边形ADEF为矩形、菱形?(3)当ABC满足什么条件时,以A、D、E、F为顶点的四边形不存在?[信息处理]28.如图32-3-14所示,有两条笔直的公路BD和EF(宽度不计),从一块矩形的土地ABCD中穿过,已知EF是BD的垂直平分线,BD=40米,EF=30 米,求四边形BEDF的面积。
[开放实践]29.如图,32-3-15所示,张家兄弟要平分这块地,请你用一条直线把它分成面积相等的两部分。
(至少有两种画法)[经典名题,提升自我]30.如果一个四边形的对角线相等,那么顺次连接这个四边形各边中点所得四边形是()]31.(2004 呼和浩特)下列各图形中,是中心对称图形但不一定是轴对称图形的是()A.平行四边形B.菱形C.正方形D.等腰梯形32.如图32-3-16,在菱形ABCD中,BAD=80,AB的垂直平分线交对角线AC于点F、E为垂足,连结DF,则CDF等于()33.用两个边长为a的等边三角形纸片拼成的四边形是()A.等腰梯形B.正方形C.矩形D.菱形[开放实践]34.如图32-3-7所示,矩形ABCD的对角线相交于O,AE平分BAD,交BC于E,CAE=15,那么BOE=_____。
[趣味数学]35.小明爸爸的风筝厂准备购进甲、乙两种规格相同但顔色不同的布料生产一批形状如图32-3-18所示的风筝,点E、F、G、H分别是四边形ABCD各边的中点。
其中阴影部分用甲布料(截剪两各布料时,均不计余料)。
若生产这批风筝需要甲布料30匹,那么需要乙布料()A.15匹B.20匹C.30匹D.60匹参考答案:1.52.=3.22cm或20cm4.35.106.457.D8.D9.20310.24 511.5212.58°13.D14.D15.15°16.22.5°17.0.118.B19.AODP是菱形。
证明:∵A P∥BD,DP∥AC,∴四边形AODP是平行四边形,∵四边形ABCD是矩形,∴OD=12BD,OA=12AC,AC=BD,∴OA=OD,∴Y AODP是菱形。
20.C21.点拨:证明FE=FD,再利用等腰三角形边上的三线合一。
22.错解D 正确答案C23.解:如图,设其中一个正方形边长为X,则其它边长可表示为(如图)x+a,x+2a,x+3a, x+2a+x+3a=x+a+2x, x=4a.矩形邻边长为14a和11a, 矩形色块图面积为14a×11a=143a224.证法1 因为EF垂直平分DB,所以O是Y ABCD的对称中心,所以△DOF和△BOE关于点O对称,故FO=EO。
又已知DO=BO,因而四边形DEBF是平行四边形,又因为EF⊥DB,根据“对角线互相垂直的平行四边形是菱形”可判定四边形DEBF是菱形。
证法2 已知EF垂直平分DB,得O是Y ABCD的对称中心,所以△DOF和△BOE 关于点O 对称,即DF=BE。
双因为EF垂直平分DB。
所以DF=FD,DE=BE,因而得DE=BE=BF=DF,根据“四条边都相等的四边形是菱形”得四边形DEBF是菱形。
25.根据矩形的对角线相等进行判断。
26.解:(1)BO= 12 AC。
(2)BO是RT△ABC的斜边AC边上的中线。
由图(1)得B O=12AC,语言描述:直角三角形斜边上的中线等于斜边上的一半。
27.(1)平行四边形(2)当ABC满足当∠A=150°时,四边形ADEF为矩形;当AB=AC时,为菱形。
(3)当BAC=60°时,四边形ADEF不存在。
28.解:如图,连结DE、BF,因为四边形ABCD是矩形,所以A B∥CD,所以∠ODF=∠OBE,由EF垂直平分BD,得OD=OB,∠DOF=∠BOE=90°,所以△DOF是△BOE 成旋转对称,故DF=BE,所以四边形BEDF是平行四边形,又因为EF是BD的垂直平分线,所以FD=FB,因此BFDE是菱形,所以S菱形BFDE= 12·EF·BD=12×30×40=600(米2)。
29.分割法如图所示:30.C31.A32.D33.D34.75°35.C。