大学物理《力学5·刚体定轴转动》复习题及答案

合集下载

《大学物理》刚体力学练习题及答案解析

《大学物理》刚体力学练习题及答案解析

《大学物理》刚体力学练习题及答案解析一、选择题1.刚体对轴的转动惯量,与哪个因素无关 [ C ](A)刚体的质量(B)刚体质量的空间分布(C)刚体的转动速度(D)刚体转轴的位置2.有两个力作用在一个有固定轴的刚体上. [ B ](1)这两个力都平行于轴作用时,它们对轴的合力矩一定是零;(2)这两个力都垂直于轴作用时,它们对轴的合力矩可能是零;(3)这两个力的合力为零时,它们对轴的合力矩也一定是零;(4)当这两个力对轴的合力矩为零时,它们的合力也一定是零.在上述说法中,(A)只有(1)是正确的;(B) (1)、(2) 正确, (3)、(4)错误;(C) (1)、(2)、(3)都正确, (4)错误;(D) (1)、(2)、(3)、(4)都正确.3.均匀细棒OA可绕通过其一端O而与棒垂直的水平固定光滑轴转动,今使棒从水平位置由静止开始自由下落,在棒摆动到竖立位置的过程中,下述说法哪一种是正确的[ A ](A) 角速度从小到大,角加速度从大到小;(B) 角速度从小到大,角加速度从小到大;(C) 角速度从大到小,角加速度从大到小;(D) 角速度从大到小,角加速度从小到大.4.如图所示,圆锥摆的小球在水平面内作匀速率圆周运动,小球和地球所组成的系统,下列哪些物理量守恒( C )(A)动量守恒,角动量守恒(B)动量和机械能守恒(C)角动量和机械能守恒(D)动量,角动量,机械能守恒5.一圆盘绕通过盘心且垂直于盘面的水平轴转动,轴间摩擦不计,如图射来两个质量相同,速度大小相同、方向相反并在一条直线上的子弹,它们同时射入圆盘并且留在盘内,在子弹射入后的瞬间,对于圆盘和子弹系统的角动量L以及圆盘的角速度ω则有( B )(A)L不变,ω增大(B)L不变,ω减小(C)L变大,ω不变(D)两者均不变6.一花样滑冰者,开始自转时,其动能为20021ωJ E =。

然后他将手臂收回,转动惯量减少为原来的1/3,此时他的角速度变为ω,动能变为E ,则下列关系正确的是( D ) (A )00,3E E ==ωω (B )003,31E E ==ωω (C )00,3E E ==ωω (D )003,3E E ==ωω1C 2.B ,3.A ,4.C ,5.B ,6.D二、填空1.当刚体受到的合外力的力矩为零时,刚体具有将保持静止的状态或_____________状态,把刚体的这一性质叫刚体___________。

2010大学物理学——5.刚体的转动

2010大学物理学——5.刚体的转动

c a b
(2) 刚体的定轴转动
刚体上各点都绕同一转轴作不同半径 圆周运动, 的 圆周运动 , 且在相同时间内转过相 同的角度(角速度相同 角速度相同)。 同的角度 角速度相同 。
at v an
o
θ
v vv
s
S = Rθ v = Rω at = Rα 2 an = Rω
R
dθ ω = dt 2 α = dω = d θ 2 dt dt
= 6bt −12ct
2
Note:
角速度的矢量表示法: 角速度的矢量表示法:
ω
v
大小: 大小:ω 方向: 转轴 转轴, 方向://转轴 符合右手螺旋
ω
r⊥
v
v v
v v v 线速度: 线速度:v = ω × r
验证: 验证:
v r O
v v ω×r
大小: 大小: r⊥ ω 方向: 方向: 圆周切向
§5.5 转动中的功和能 (Rotational Work and Energy) 1.力矩的功 力矩的功
v F ⊥
F⊥t
ω
对于θ →θ +dθ,有
例5-8 已知:圆盘转动惯量J,初角速度ω0 已知:圆盘转动惯量 , 阻力矩M=-kω (k为正的常量 为正的常量) 阻力矩 为正的常量 所需的时间. 求:角速度从ω0变为ω0/2所需的时间 所需的时间 dω 转动定律: 解:转动定律: − kω = J dt t ω0 / 2 dω k → ∫ − dt = ∫ 0 ω0 J ω k ω /2 J ln 2 →− t = (ln ω) ω →t = J k [思考 思考] 思考
2
dm ∫
2
O
R
= mR

大学物理刚体习题

大学物理刚体习题

大学物理刚体习题(总13页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--习 题第三章 刚体的转动刚体的定轴转动47. 一定滑轮半径为R ,质量为M ,用一质量不计的绳绕在滑轮上,另一端系一质量为m 的物体并由静止释放,这时滑轮的角加速度为1β,若不系物体而用一力F = mg 拉绳子使滑轮转动,这时角加速度为2β,这时有()1β2β()1β2β (C )1β2β(D )无法判断 分析由转动定律M I β=本题中I 不变β的大小完全取决于M 的大小而 M TR =系物体m 时 : T mg <不系物体而用一力F = mg 时: TF mg ==因此力矩变大所以有12ββ<mF选49.一飞轮的转动惯量为J ,t = 0时角速度为0ω,轮子在转动过程中受到一力矩2ωk M-=,则当转动角速度为0/3ω时的角加速度β = 从0ω到0/3ω飞轮转动经过的时间t ∆= 解: (1) 求β当0/3ω时, 20()3M k ω=-由 M J β=, 可得此时 209k MJ J ωβ==-(2) d M J J dt ωβ== 2d k J dt ωω-=分离变量,两边积分32td kdt Jωωωω-=⎰⎰解得: 02J t k ω∆=50.长为l 的均匀直棒可绕其下端与棒垂直的水平光滑轴在竖直平面内转动。

抬起一端使与水平夹角为60=θ,棒对轴的转动惯量为231ml J =,由静止释放直棒,则t = 0时棒的β=?;水平位置时的β=?这时的ω=(1)求β 据转动定律M J β=, MJβ= 0t =时, cos 602lM mg =︒水平位置时, 2lM mg =代入MJβ=,可别解得034glβ= 和 32g l β= (2)求ωd d d d M J J J J dt d dt d ωωθωβωθθ====将cos 2l M mg θ=和213J ml =代入化简并积分得, 0033cos 2g d d l ωπθθωω=⎰⎰ 60可求得332g l ω=(本题还可用动能定律机械能守恒方便求解ω)2211sin 60223l mg ml ω︒=⋅ 332g lω⇒=51.一飞轮以min /600rev 的转速转动,其转动惯量为25.2m kg J ⋅=,以恒定力矩使飞轮在一分钟内停止转动,求该力矩M 。

刚体定轴转动

刚体定轴转动
刚体定轴转动
1.刚体的转动 刚体的转动 在圆盘上任意取一个质元 切向速度: 切向速度:
ω
c
vi = ωri = θri
mi , ri
r i
mi
r ai = ωri = θi = αri 切向加速度: 切向加速度:
角加速度rad
s2
由于质元是任取的,所以刚体上各质元的v 由于质元是任取的,所以刚体上各质元的v、a一般 角加速度α 不同,但角量(角位移θ、角速度ω 、角加速度α)都 不同, 角位移θ 角速度ω 相同,所以描述刚体定轴转动用角量最方便 用角量最方便。 相同,所以描述刚体定轴转动用角量最方便。
刚体定轴 转动定律 对 比 牛顿第二定律
dLc = d (I cω ) = I dω = I α Mc = c c dt dt dt
dp d(mv) dv F= = =m =ma dt dt dt
刚体定轴转动定律在转动问题中的地位相当于质 刚体定轴转动定律在转动问题中的地位相当于质 点运动中牛顿第二定律 牛顿第二定律的 点运动中牛顿第二定律的,各物理量间存在明显的 对应关系。 对应关系。
刚体定轴转动
1
安徽工业大学 数理学院 刘畅
2. 刚体的转动动能和转动惯量 刚体的转动动能 转动动能和 1 2 1 2 2 质元 mi的动能 Eki = mivi = miω ri m i 2 2 r c i 总动能 Ek = ∑Eki 2 1 ω 2 2 2 = ∑ miω ri = ∑miri 2 2 1 I—转动惯量 = Ic ω2 2 单个质点绕定轴转动的转动惯量 单个质点绕定轴转动的转动惯量 I = mr 2 质量连续分布的刚体的转动惯量 I = r dm
dt 若 M =0LΒιβλιοθήκη M =dL∫

刚体的定轴转动习题

刚体的定轴转动习题
WENKU DESIGN
WENKU DESIGN
2023-2026
ONE
KEEP VIEW
刚体的定轴转动习
WENKU DESIGN
WENKU DESIGN
WENKU
REPORTING
https://
CATALOGUE
目 录
• 刚体定轴转动的基本概念 • 刚体定轴转动的力学分析 • 刚体定轴转动的运动分析 • 刚体定轴转动的习题解析 • 刚体定轴转动的实际应用案例
PART 03
刚体定轴转动的运动分析
刚体的角速度与角加速度
角速度
描述刚体转动快慢的物理量,用ω表 示。单位是弧度/秒(rad/s)。
角加速度
描述刚体转动角速度变化快慢的物理 量,用α表示。单
转动轨迹
刚体转动的路径是一个圆或椭圆,其形 状取决于刚体的质量和转动轴的位置。
PART 04
刚体定轴转动的习题解析
简单习题解析
题目
一个质量为m,半径为R的 圆盘,以边缘某点为轴, 以角速度ω做定轴转动, 求圆盘的动量。
解析
根据动量的定义,圆盘的 动量P=mv=mrω,其中r 是质点到转动轴的距离, m是质量,v是线速度,ω 是角速度。
题目
一质量为m的杆,长度为l, 一端固定,绕另一端点做 定轴转动,求杆的转动惯 量。
航空航天器姿态调整中的应用
01
02
03
卫星轨道调整
卫星在轨道调整过程中, 通过刚体定轴转动实现姿 态的调整,从而改变推进 力的方向。
飞机飞行控制
飞机飞行过程中,通过刚 体定轴转动实现舵面的操 纵,从而调整飞行姿态和 方向。
火箭发射
火箭发射过程中,通过刚 体定轴转动实现发动机的 转向和稳定。

上海理工大学 大学物理 第五章_刚体力学答案

上海理工大学 大学物理 第五章_刚体力学答案

一、选择题[ C ] 1、基础训练(2)一轻绳跨过一具有水平光滑轴、质量为M 的定滑轮,绳的两端分别悬有质量为m 1和m 2的物体(m 1<m 2),如图5-7所示.绳与轮之间无相对滑动.若某时刻滑轮沿逆时针方向转动,则绳中的张力(A) 处处相等. (B) 左边大于右边. (C) 右边大于左边. (D) 哪边大无法判断.参考答案:逆时针转动时角速度方向垂直于纸面向外, 由于(m 1<m 2),实际上滑轮在作减速转动,角加速度方向垂直纸面向内,所以,由转动定律21()T T R J β-=可得:21T T >[ B ] 2、基础训练(5)如图5-9所示,一静止的均匀细棒,长为L 、质量为M ,可绕通过棒的端点且垂直于棒长的光滑固定轴O 在水平面内转动,转动惯量为231ML .一质量为m 、速率为v 的子弹在水平面内沿与棒垂直的方向射出并穿出棒的自由端,设穿过棒后子弹的速率为v 21,则此时棒的角速度应为(A)MLm v . (B)MLm 23v . (C)MLm 35v . (D)MLm 47v .图5-9[ C ] 3、基础训练(7)一圆盘正绕垂直于盘面的水平光滑固定轴O 转动,如图5-11射来两个质量相同,速度大小相同,方向相反并在一条直线上的子弹,子弹射入圆盘并且留在盘内,则子弹射入后的瞬间,圆盘的角速度 (A) 增大. (B) 不变. (C) 减小. (D) 不能确定.图5-7m图5-11v21v俯视图[ C ] 4、自测提高(2)将细绳绕在一个具有水平光滑轴的飞轮边缘上,现在在绳端挂一质量为m 的重物,飞轮的角加速度为 .如果以拉力2mg 代替重物拉绳时,飞轮的角加速度将(A) 小于 . (B) 大于 ,小于2 . (C) 大于2 . (D) 等于2 .[ A ] 5、自测提高(7)质量为m 的小孩站在半径为R 的水平平台边缘上.平台可以绕通过其中心的竖直光滑固定轴自由转动,转动惯量为J .平台和小孩开始时均静止.当小孩突然以相对于地面为v 的速率在台边缘沿逆时针转向走动时,则此平台相对地面旋转的角速度和旋转方向分别为(A) ⎪⎭⎫ ⎝⎛=R J mR v 2ω,顺时针. (B) ⎪⎭⎫⎝⎛=R J mR v 2ω,逆时针.(C) ⎪⎭⎫ ⎝⎛+=R mR J mR v 22ω,顺时针. (D) ⎪⎭⎫⎝⎛+=R mR J mR v 22ω,逆时针.二、填空题6、基础训练(8)绕定轴转动的飞轮均匀地减速,t =0时角速度为05rad ω=,t =20s 时角速度为00.8ωω=,则飞轮的角加速度β=-0.05 rad/s 2 ,t =0到 t =100 s 时间内飞轮所转过的角度θ= 250rad .7、基础训练(9)一长为l ,质量可以忽略的直杆,可绕通过其一端的水平光滑轴在竖直平面内作定轴转动,在杆的另一端固定着一质量为m 的小球,如图5-12所示.现将杆由水平位置无初转速地释放.则杆刚被释放时的角加速度β0= g/l ,杆与水平方向夹角为60°时的角加速度β= g/2l .图 5-128、基础训练(10)如图5-13所示,P 、Q 、R 和S 是附于刚性轻质细杆上的质量分别为4m 、3m 、2m 和m 的四个质点,PQ =QR =RS =l ,则系统对O O '轴的转动惯量为 50ml 2 。

第5章 刚体的定轴转动 习题解答

第5章 刚体的定轴转动 习题解答

对飞轮,由转动定律,有 式中负号表示摩擦力的力矩方向与角速度 方向相反。
联立解得

以 F 100 N 等代入上式,得
Fr R 2 (l1 l2 ) F J mRl1
5-1
第 5 章 刚体的定轴转动

2 0.40 (0.50 0.75) 40 100 rad s 2 60 0.25 0.50 3 t
由以上诸式求得角加速度

(2)
Rm1 rm2 g I m1 R 2 m2 r 2 0.2 2 0.1 2

1 1 10 0.202 4 0.102 2 0.202 2 0.102 2 2
9.8 6.13 rad s 2
T2 m2 r m2 g 2 0.10 6.13 2 9.8 20.8N T1 m1 g m1 R 2 9.8 2 0.2. 6.13 17.1N v 2a1h 2 Rh 2 6.13 0.2 2 2.21 m s 1
M M f J 1

t1
。移去力矩 M 后,根据转动定律,有
M f J 2
2
联立解得此转轮的转动惯量
0 t2
J
M 20 17.36 kg m 2 1 1 1 100 2 1 60 10 100 t1 t2
v0
6(2 3 3m M l J l 1M (1 2 ) (1 ) 2 ml 2 3m 12 m
(2) 由①式求得相碰时小球受到的冲量为:
I Fdt mv mv mv0
负号说明所受冲量的方向与初速度方向相反。

大学物理上练习册 第2章《刚体定轴转动》答案-2013

大学物理上练习册 第2章《刚体定轴转动》答案-2013

第2章 刚体定轴转动一、选择题1(B),2(B),3(C),4(C),5(C) 二、填空题(1). 62.5 1.67s (2). 4.0 rad/ (3). 0.25 kg ·m 2(4). mgl μ21参考解:M =⎰M d =()mgl r r l gm l μμ21d /0=⎰(5). 2E 0三、计算题1. 如图所示,半径为r 1=0.3 m 的A 轮通过皮带被半径为r 2=0.75 m 的B 轮带动,B 轮以匀角加速度π rad /s 2由静止起动,轮与皮带间无滑动发生.试求A 轮达到转速3000 rev/min 所需要的时间.解:设A 、B 轮的角加速度分别为βA 和βB ,由于两轮边缘的切向加速度相同, a t = βA r 1 = βB r 2则 βA = βB r 2 / r 1 A 轮角速度达到ω所需时间为()75.03.060/2300021⨯π⨯π⨯===r r t B Aβωβωs =40 s2.一砂轮直径为1 m 质量为50 kg ,以 900 rev / min 的转速转动.撤去动力后,一工件以 200 N 的正压力作用在轮边缘上,使砂轮在11.8 s 内停止.求砂轮和工件间的摩擦系数.(砂轮轴的摩擦可忽略不计,砂轮绕轴的转动惯量为21mR 2,其中m 和R 分别为砂轮的质量和半径).解:R = 0.5 m ,ω0 = 900 rev/min = 30π rad/s ,根据转动定律 M = -J β ① 这里 M = -μNR ②μ为摩擦系数,N 为正压力,221mR J =. ③ 设在时刻t 砂轮开始停转,则有: 00=+=t t βωω从而得 β=-ω0 / t ④将②、③、④式代入①式,得 )/(2102t mR NR ωμ-=- ∴ m =μR ω0 / (2Nt )≈0.5r1. 有一半径为R 的圆形平板平放在水平桌面上,平板与水平桌面的摩擦系数为μ,若平板绕通过其中心且垂直板面的固定轴以角速度ω0开始旋转,它将在旋转几圈后停止?(已知圆形平板的转动惯量221mR J =,其中m 为圆形平板的质量)解:在r 处的宽度为d r 的环带面积上摩擦力矩为r r r R mgM d 2d 2⋅π⋅π=μ总摩擦力矩 mgR M M R μ32d 0==⎰故平板角加速度 β =M /J设停止前转数为n ,则转角 θ = 2πn由 J /Mn π==4220θβω可得 g R MJ n μωωπ16/342020=π=2. 一转动惯量为J 的圆盘绕一固定轴转动,起初角速度为ω0.设它所受阻力矩与转动角速度成正比,即M =-k ω (k 为正的常数),求圆盘的角速度从ω0变为021ω时所需的时间.解:根据转动定律: J d ω / d t = -k ω ∴ t J kd d -=ωω两边积分:⎰⎰-=t t J k02/d d 100ωωωω得 ln2 = kt / J∴ t =(J ln2) / k5.一质量为m 的物体悬于一条轻绳的一端,绳另一端绕在一轮轴的轴上,如图所示.轴水平且垂直于轮轴面,其半径为r ,整个装置架在光滑的固定轴承之上.当物体从静止释放后,在时间t 内下降了一段距离S .试求整个轮轴的转动惯量(用m 、r 、t 和S 表示).解:设绳子对物体(或绳子对轮轴)的拉力为T ,则根据牛顿运动定律和转动定律得:mg ­T =ma ① T r =J β ② 由运动学关系有: a = r β ③ 由①、②、③式解得: J =m ( g -a ) r 2 / a ④ 又根据已知条件 v 0=0 ∴ S =221at , a =2S / t 2 ⑤将⑤式代入④式得:J =mr 2(Sgt22-1)3.如图所示,设两重物的质量分别为m 1和m 2,且m 1>m 2,定滑轮的半径为r ,对转轴的转动惯量为J ,轻绳与滑轮间无滑动,滑轮轴上摩擦不计.设开始时系统静止,试求t 时刻滑轮的角速度. 解:作示力图.两重物加速度大小a 相同,方向如图.m 1g -T 1=m 1a T 2-m 2g =m 2a 设滑轮的角加速度为β,则 (T 1-T 2)r =J β 且有 a =r β 由以上四式消去T 1,T 2得: ()()J r m m gr m m ++-=22121β 开始时系统静止,故t 时刻滑轮的角速度.()()Jrm m grt m m t ++-==22121 βω7.一根放在水平光滑桌面上的匀质棒,可绕通过其一端的竖直固定光滑轴O 转动.棒的质量为m = 1.5 kg ,长度为l = 1.0 m ,对轴的转动惯量为J = 231ml .初始时棒静止.今有一水平运动的子弹垂直地射入棒的另一端,并留在棒中,如图所示.子弹的质量为m '= 0.020 kg ,速率为v = 400 m ·s -1.试问:(1) 棒开始和子弹一起转动时角速度ω有多大?(2) 若棒转动时受到大小为M r = 4.0 N ·m 的恒定阻力矩作用,棒能转过多大的角度θ?解:(1) 角动量守恒:ω⎪⎭⎫ ⎝⎛'+='2231l m ml l m v ∴ l m m m ⎪⎭⎫ ⎝⎛'+'=31vω=15.4 rad ·s -1(2) 由转动定律,得: -M r =(231ml +2l m ')β0-ω 2=2βθ∴ rM l m m 23122ωθ⎪⎭⎫ ⎝⎛'+==15.4 rad8.如图所示,A 和B 两飞轮的轴杆在同一中心线上,设两轮的转动惯量分别为 J =10 kg ·m 2 和 J =20 kg ·m 2.开始时,A 轮转速为600 rev/min ,B 轮静止.C 为摩擦啮合器,其转动惯量可忽略不计.A 、B 分别与C 的左、右两个组件相连,当C 的左右组件啮合时,B 轮得到加速而A 轮减速,直到两轮的转速相等为止.设轴光滑,求: mm , lOm '(1) 两轮啮合后的转速n ; (2) 两轮各自所受的冲量矩.解:(1) 选择A 、B 两轮为系统,啮合过程中只有内力矩作用,故系统角动量守恒J A ωA +J B ωB = (J A +J B )ω,又ωB =0得: ω ≈ J A ωA / (J A +J B ) = 20.9 rad / s 转速 ≈n 200 rev/min (2) A 轮受的冲量矩⎰t MAd = J A (J A +J B ) = -4.19×10 2 N ·m ·s负号表示与A ωϖ方向相反. B 轮受的冲量矩⎰t MBd = J B (ω - 0) = 4.19×102 N ·m ·s方向与A ωϖ相同.4.一匀质细棒长为2L ,质量为m ,以与棒长方向相垂直的速度v 0在光滑水平面内平动时,与前方一固定的光滑支点O 发生完全非弹性碰撞.碰撞点位于棒中心的一侧L 21处,如图所示.求棒在碰撞后的瞬时绕O 点转动的角速度ω.(细棒绕通过其端点且与其垂直的轴转动时的转动惯量为231ml ,式中的m 和l 分别为棒的质量和长度.)解:碰撞前瞬时,杆对O 点的角动量为L m L x x x x L L 0202/002/30021d d v v v v ==-⎰⎰ρρρ式中ρ为杆的线密度.碰撞后瞬时,杆对O 点的角动量为ωωω2221272141234331mL L m L m J =⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛=因碰撞前后角动量守恒,所以 L m mL 022112/7v =ω ∴ ω = 6v 0 / (7L)10. 空心圆环可绕光滑的竖直固定轴AC 自由转动,转动惯量为J 0,环的半径为R ,初始时环的角速度为ω0.质量为m 的小球静止在环内最高处A 点,由于某种微小干扰,小球沿环向下滑动,问小球滑到与环心O 在同一高度的B 点和环的最低处的C 点时,环的角速度及小球相对于环的速度各为多大?(设环的内壁和小球都是光滑的,小球可视为质点,环截面半径r <<R .)解:选小球和环为系统.运动过程中所受合外力矩为零,角动量守恒.对地球、小球和环系统机械能守恒.取过环心的水平面为势能零点.小球到B 点时: J 0ω0=(J 0+mR 2)ω ①2121()22220200212121BR m J mgR J v ++=+ωωω ② 式中v B 表示小球在B 点时相对于地面的竖直分速度,也等于它相对于环的速度.由式①得:ω=J 0ω 0 / (J 0 + mR 2) 1分代入式②得222002J mR RJ gR B ++=ωv 当小球滑到C 点时,由角动量守恒定律,系统的角速度又回复至ω0,又由机械能守恒定律知,小球在C 的动能完全由重力势能转换而来.即: ()R mg m C 2212=v , gR C 4=v 四 研讨题1. 计算一个刚体对某转轴的转动惯量时,一般能不能认为它的质量集中于其质心,成为一质点,然后计算这个质点对该轴的转动惯量?为什么?举例说明你的结论。

大学物理 习题课(刚体)

大学物理 习题课(刚体)

J1r1r2 10 2 2 2 J1r2 J 2 r1
11、质量为m,长为 l的均匀棒,如图, 若用水平力打击在离轴下 y 处,作用时 Ry 间为t 求:轴反力
解:轴反力设为 Rx Ry d 由转动定律: yF J y dt yF t t 为作用时间 F 得到: J 由质心运动定理: l d l 2 切向: F Rx m 法向: R y mg m 2 dt 2 2 2 2 3y 9 F y (t ) R 于是得到: x (1 ) F R y m g 2l 2l 3 m
10
r1
r2
解: 受力分析: 无竖直方向上的运动
10
o1
N1
f
r1
N2
r2
N1 f m1 g N 2 f m2 g
以O1点为参考点, 计算系统的外力矩:
o2
f
m1 g
m2 g
M ( N2 m2 g )(r1 r2 )
f (r1 r2 ) 0
作用在系统上的外力矩不为0,故系统的角动量不守恒。 只能用转动定律做此题。
r
at r
在R处:
R
at R
(2)用一根绳连接两个或多个刚体
B
C
M 2 o2 R 2
o1R1 M1
D
A
m2
m1
• 同一根绳上各点的切向加速度相同;线速度也相同;
a t A a t B a t C a t D
A B C D
• 跨过有质量的圆盘两边的绳子中的张力不相等;
TA TB TD
但 TB TC
B
C
M 2 o2 R 2
o1R1 M1

大学物理第五章刚体力学

大学物理第五章刚体力学

v0
3
4J
4Ml
mv
例3 、如图所示,将单摆和一等长的匀质直杆悬挂在 同一点,杆的质量m与单摆的摆锤相等。开始时直杆
自然下垂,将单摆的摆锤拉到高度h0,令它自静止状
态下垂,于铅垂位置和直杆作弹性碰撞。求碰撞后直杆
下端达到的高度h。
l l
m
ho
h’
a
解:碰撞前单摆摆锤的速度为
c hc
h=3h0/2
b
L
mv
v o m o• L
(A) 2v 3L
(B) 4v 5L
(C) 6v 7L
8v (D) 9L
以顺时针为转动正方向
两小球与细杆组成的系统 对竖直固定轴角动量守恒
L
mv
v o m o• L
由 Lmv+Lmv=2mL2+J
及 J= mL2/3
可知正确答案为 [ C ]
6.如图所示,一均匀 细杆长为 l ,质量为 m,平放在摩擦系数
速度。
用功能定理重解该题
取起始位置为零势能参考点 O
0 mgl sin / 2 1 J2
2
A mg
3g sin
l
?棒端A的速度 vA 3gl sin
例2.已知:均匀直杆m,长为l,初始水平静止,
轴光滑,AO4l 。 求:杆下摆角后,角速度 ?
解:杆+地球系统, ∵只有重力作功,∴ E守恒。
1 (1 ml 2 ) 2 1 mgl(1 cos )
23
2
3
arccos23
例4、一飞轮以角速度0绕轴旋转,飞轮对轴的
转动惯量为J1,另一静止飞轮突然被啮合到同一 个轴上,该飞轮对轴的转动惯量为前者的两倍。 啮合后整个系统的角速度 (1/3)0 .

《大学物理》刚体的转动练习题及答案

《大学物理》刚体的转动练习题及答案

《大学物理》刚体的转动练习题及答案一、简答题:1、为什么刚体绕定轴转动的动能的改变只与外力矩有关,而与内力矩无关?答案:对刚体,由于刚体内各质点间相对位移始终为零,内力总是成对出现,每对内力大小相等,方向相反,在一直线上,故内力矩做功之和一定为零,故刚体绕定轴转动的动能的改变与内力矩无关。

2、简述刚体定轴转动的角动量守恒定律并给出其数学表达式?答案:刚体定轴转动时,若所受合外力矩为零或不受外力矩,则刚体的角动量保持不变。

3、下列物理量中,哪些量与原点的选择有关:(1) 速度,(2) 位矢,(3) 位移,(4) 角动量,(5) 动量 答案:与原点有关的物理量为:位矢,角动量。

4、质量、半径相同的两个圆盘,第一个质量分布均匀,第二个大部分质量分布在盘边缘,当它们以相同的角速度绕通过盘中心的轴转动时,哪个盘的转动动能大?为什么?答案:第二个盘的动能大。

因为由刚体转动动能221ωJ E k =知,在角速度一样时,转动惯量大的动能大;又因为2121mR J =,22mR J ≈,第二个转动惯量较大,所以转动动能较大。

5、在某一瞬时,刚体在一外力矩作用下,其角速度可以为零吗? 其角加速度可以为零吗?答案:由刚体转动定律αJ M =,知,在某一瞬时,刚体在一外力矩作用下,其角加速度不可以为零;由dtd ωα=,有⎰+=t dt 00αωω,可知其角速度此时可以为零。

6、写出刚体绕定轴转动的转动定律文字表达与数学表达式?答案:刚体绕定轴转动的转动定律:刚体绕定轴转动时,刚体的角加速度与它所受的合外力矩成正比,与刚体的转动惯量成反比。

表达式为:αJ M =。

7、简述刚体定轴转动时的特点有哪些, 常用哪些物理量来描述刚体的转动?答案:刚体定轴转动的特点:转轴相对参照系固定,刚体内所有点都具有相同的角位移、角速度、角加速度;质点在垂直转轴的平面内运动,且作圆周运动。

刚体的转动通常用转动惯量J 、力矩M 、角加速度α、角动量L 等来描述。

大学物理03章试题库刚体的定轴转动

大学物理03章试题库刚体的定轴转动

《大学物理》试题库管理系统内容第三章 刚体的定轴转动1 题号:03001 第03章 题型:选择题 难易程度:较难试题: 某刚体绕定轴作匀变速转动,对刚体上距转轴为r 处的任一质元的法向加速度n a 和切向加速度τa 来说正确的是( ).A.n a 的大小变化,τa 的大小保持恒定B.n a 的大小保持恒定,τa 的大小变化C.n a 、τa 的大小均随时间变化D.n a 、τa 的大小均保持不变 答案: A2 题号:03002 第03章 题型:选择题 难易程度:适中试题: 有A 、B 两个半径相同、质量也相同的细环,其中A 环的质量分布均匀,而B 环的质量分布不均匀.若两环对过环心且与环面垂直轴的转动惯量分别为B A J J 和,则( ).A. B A J J =B. B A J J >C. B A J J <D. 无法确定B A J J 和的相对大小 答案: A3 题号:03003 第03章 题型:选择题 难易程度:适中试题: 一轻绳绕在具有水平转轴的定滑轮上,绳下端挂一物体,物体的质量为m ,此时滑轮的角加速度为β,若将物体取下,而用大小等于mg 、方向向下的力拉绳子,则滑轮的角加速度将( ).A.变大B.不变C.变小D.无法确定 答案: A试题: 一人张开双臂手握哑铃坐在转椅上,让转椅转动起来,若此后无外力矩作用,则当此人收回双臂时,人和转椅这一系统的( ).A.系统的角动量保持不变B.角动量加大C.转速和转动动能变化不清楚D.转速加大,转动动能不变 答案: A5 题号:03005 第03章 题型:选择题 难易程度:较难试题: 某力学系统由两个质点组成,它们之间仅有引力作用.若两质点所受外力的矢量和为零,则此力学系统( ).A.动量守恒,但机械能和角动量是否守恒不能确定B.动量和角动量守恒,但机械能是否守恒不能确定C.动量、机械能守恒,但角动量是否守恒不能确定D.动量、机械能以及对某一转轴的角动量一定守恒 答案: A6 题号:03006 第03章 题型:选择题 难易程度:较难试题: 如图所示,两个质量均为m 、半径均为R 的匀质圆盘形滑轮的两端,用轻绳分别系着质量为m 和2m 的小物块.若系统从静止释放,则释放后两滑轮之间绳内的张力为( ).A.mg 811 B.mg 23C.mg 21 D.mg答案: A试题: 某质点受的力为kx e F F -=0,若质点从静止开始运动(即,0=x 时0=v ),则该质点所能达到的最大动能为( ).A.k F 0 B. k eF0 C. k e kF 0 D. 0kF 答案: A8 题号:03008 第03章 题型:选择题 难易程度:适中试题: 如图所示,在水平光滑的圆盘上,有一质量为m 的质点,拴在一根穿过圆盘中心光滑小孔的轻绳上.开始时质点离中心的距离为r ,并以角速度转动.今以均匀速率向下拉绳,将质点拉至离中心2r 处时,拉力做的功为( ).A.2223ωmr B. 2225ωmr C.2227ωmr D. 2221ωmr 答案: A9 题号:03009 第03章 题型:选择题 难易程度:适中试题: 已知地球的质量为m ,太阳的质量为M ,地心与日心的距离为R ,引力常数为G ,则地球绕太阳作圆周运动的角动量为( ).A.GMR mB.R G MmC.R GMmD.RGMm 2 答案: A10 题号:03010 第03章 题型:选择题 难易程度:适中F ϖrm试题: 卫星绕地球做椭圆运动,地心为椭圆的一个焦点,在运动过程中,下列叙述中正确的是().A.角动量守恒B.动量守恒C.机械能不守恒D.动量和角动量都不守恒答案: A11 题号:03011 第03章题型:选择题难易程度:适中试题: 三个完全相同的轮子可绕一公共轴转动,角速度的大小都相同,但其中一轮的转动方向与另外两轮的转动方向相反.若使三个轮子靠近啮合在一起,则系统的动能与原来三个轮子的总动能相比为().A.减小到1/9B.减小到1/3C.增大9倍D.增大3倍答案: A12 题号:03012 第03章题型:选择题难易程度:较难试题: 下列说法中,错误的是().A.对于给定的刚体而言,他的质量和形状是一定的,则其转动惯量也是唯一确定的M=,其中M、J和β均是对同一转轴而言的B.刚体定轴转动的转动定律为βJC.刚体的转动动能等于刚体上各质元的动能之和D.刚体作定轴转动时,其上各点的角速度相同而线速度不同答案: A13 题号:03013 第03章题型:选择题难易程度:适中试题: 下列说法中,正确的是().A.作用在定轴转动刚体上的合力矩越大,刚体转动的角加速度越大B.作用在定轴转动刚体上的合力矩越大,刚体转动的角速度就越大C.作用在定轴转动刚体上的合力矩为零,刚体转动的角速度就为零D.作用在定轴转动刚体上的合力越大,刚体转动的角加速度就越大 答案: A14 题号:03014 第03章 题型:选择题 难易程度:难试题: 轮圈半径为R 、其质量M 均匀分布在轮缘上,长为R 、质量为m 的匀质辐条固定在轮心和轮缘间,辐条共有2N 根.今若将辐条数减少N 根,但保持轮对通过轮心、垂直于轮平面轴的转动惯量不变,则轮圈的质量应为( ).A.M m N +3 B.M m N +6 C.M m N +12 D. M m N +32 答案: A15 题号:03015 第03章 题型:选择题 难易程度:适中 试题: 如图一质量为m 的匀质杆长为l ,绕铅直轴O O '成θ角转动,其转动惯量为( ).A.θ22sin 31mlB.231mlC.θ22sin 41ml D.2121ml 答案: A16 题号:03016 第03章 题型:选择题 难易程度:适中 试题: 如图一质量为m 的匀质杆长为l ,绕铅直轴O O '成θ角转动,则匀质杆所受的合外力矩为( ).A.θsin 21mgl B.θcos 21mgl C.θsin mgl D.θcos mgl 答案: A17 题号:03017 第03章 题型:选择题 难易程度:适中 试题: 如图一质量为m 的匀质杆长为l ,绕铅直轴O O '成θ角转动,则匀质杆的角动量为( ).A.θω22sin 31mlB.ω231mlC.ω2121ml D.θω22sin 41ml 答案: A18 题号:03018 第03章 题型:选择题 难易程度:难 O O '成θ角转试题: 如图一质量为m 的匀质杆长为l ,绕铅直轴动,则匀质杆的角加速度为( ).A.θsin 23l g B.lg θsin 23C.l g θsin 32D.θsin 32l g 答案: A19 题号:03019 第03章 题型:选择题 难易程度:难试题: 如图所示,两根长度和质量分别相等的细杆分别绕着光滑的水平轴1O 和2O 转动,设他们自水平位置从静止释放时,角加速度分别为1β和2β,则二者角加速度之间的关系为( ).1Ol O32lA. 21ββ=B.21ββ>C. 21ββ<D.不能确定 答案: A20 题号:03020 第03章 题型:选择题 难易程度:难试题: 如图所示,光滑的水平桌面上有一长为2l 、质量为m 的匀质细杆,可绕通过中点O 、且与杆垂直的竖直轴自由转动,开始时细杆静止.现有一质量为m 的小球,沿桌面正对着杆的一端,以速度v ρ运动,并与杆的A 端碰撞后与杆粘在一起转动,则这一系统碰撞后的转动角速度为( ).A.lv43 B. l v 2C.l v 32 D. lv54 答案: A21 题号:03021 第03章 题型:填空题 难易程度:容易 试题: 刚体是一理想模型,他虽然有一定的形状和大小,但形状和大小永远保持 . 答案: 不变22 题号:03022 第03章 题型:填空题 难易程度:容易 试题: 刚体定轴转动的运动方程的表示式是 . 答案: )(t θθ=23 题号:03023 第03章 题型:填空题 难易程度:较难 试题: 把不涉及转动的原因,只研究如何描述刚体的定轴转动的问题称为 .Ol 2 mv ρmA答案: 刚体定轴转动运动学24 题号:03024 第03章 题型:填空题 难易程度:较难 试题: 把研究刚体定轴转动原因的问题称为 . 答案: 刚体定轴转动的动力学25 题号:03025 第03章 题型:填空题 难易程度:适中试题: 刚体的转动惯量取决于刚体的总质量、质量分布和 等三个因素. 答案: 转轴的位置26 题号:03026 第03章 题型:填空题 难易程度:较难试题: 一飞轮以1min rad 300-⋅的转速转动,转动惯量为2m kg 5⋅,现施加一恒定的制动力矩,使飞轮在2s 内停止转动,则该恒定制动力矩的大小为 . 答案: m N ⋅=5.78M27 题号:03027 第03章 题型:填空题 难易程度:适中 试题: 如图所示,质量为1m 和2m 的均匀细棒长度均为2l ,在两棒对接处嵌有一质量为m 的小球,对过A 的轴而言,若2222141127121ml l m l m J A ++=,则B J 为 . 答案:2222141127121ml l m l m ++ 28 题号:03028 第03章 题型:填空题 难易程度:较难试题: 质量为m 的匀质细杆,长为l ,以角速度ω绕过杆的端点且垂直于杆的水平轴转动,则杆的动量大小为 .答案:ωml 21A B29 题号:03029 第03章 题型:填空题 难易程度:适中试题: 质量为m 的匀质细杆,长为l ,以角速度ω绕过杆的端点且垂直于杆的水平轴转动,则杆绕转动轴的动能为 .答案:2261ωml 30 题号:03030 第03章 题型:填空题 难易程度:适中试题: 质量为m 的匀质细杆,长为l ,以角速度ω绕过杆的端点且垂直于杆的水平轴转动,则杆绕转动轴的角动量大小为 .答案: ω231ml31 题号:03031 第03章 题型:填空题 难易程度:适中试题: 若飞轮从静止开始作匀加速转动,在最初2min 转了3600转,则飞轮的角加速度为 . 答案: 2s rad -⋅=14.3β32 题号:03032 第03章 题型:填空题 难易程度:较难试题: 若飞轮从静止开始作匀加速转动,在最初1min 转了3600转,则飞轮在第50秒末的角速度为 . 答案: 1s rad -⋅=314ω33 题号:03033 第03章 题型:填空题 难易程度:适中 试题: 若某飞轮绕其中心轴转动的运动方程为t t t 4223+-=θ,其中θ的单位为rad ,t 的单位为s ,则飞轮在第2秒末的角加速度为 . 答案: 2s rad -⋅=12β34 题号:03034 第03章 题型:填空题 难易程度:较难试题: 若某飞轮绕其中心轴转动的运动方程为t t t 4223+-=θ,其中θ的单位为rad ,t 的单位为s ,则飞轮从s 2=t 到s 4=t 这段时间内的平均角加速度为 . 答案: 2s rad -⋅=12β35 题号:03035 第03章 题型:填空题 难易程度:较难试题: 若质量为m 、半径为R 的匀质薄圆盘绕过中心且与盘面垂直轴的转动惯量为221mR ,则质量为m 、半径为R 、高度为h 的匀质圆柱体绕过中心且与端面垂直轴的转动惯量为 .答案:221mR 36 题号:03036 第03章 题型:填空题 难易程度:适中试题: 一转动惯量为J 的刚体绕某固定轴转动,当他在外力矩M ρ的作用下,角速度从1ω变为2ω,则该刚体在此过程)(21t t →中所受的冲量矩⎰21t t dt M ρ等于 . 答案: 12ωωJ J -37 题号:03037 第03章 题型:填空题 难易程度:适中试题: 一转动惯量为J 的刚体绕某固定轴转动,当他在外力矩M ρ的作用下,角速度从1ω变为2ω,则该刚体在此过程)(21θθ→中力矩所做的功⎰21θθθMd 等于 .答案:21222121ωωJ J - 38 题号:03038 第03章 题型:填空题 难易程度:容易试题: 刚体角动量守恒的条件为 . 答案: 0=外M ρ39 题号:03039 第03章 题型:填空题 难易程度:较难试题: 一质量为m 的粒子,相对于坐标原点处于j y i x r ρρρ+=点,速度为j v i v v y x ρρρ+=,则该质点相对于坐标原点的角动量为 . 答案: k yv xv m L x y ρρ)(-=40 题号:03040 第03章 题型:填空题 难易程度:适中试题: 一飞轮的转动惯量为J ,0=t 时角速度为0ω,此后飞轮经历一制动过程,受到的阻力矩的大小与角速度成正比,即ωk M -=,式中k 为正的常量.当3ωω=时,飞轮的角加速度为 .答案: Jk 30ωβ-= 41 题号:03041 第03章 题型:计算题 难易程度:适中 试题: 一条缆索绕过一个定滑轮拉动升降机,如图所示.滑轮的半径为m 5.0=r ,如果升降机从静止开始以加速度2s m 4.0-⋅=a 匀加速上升,求:(1)滑轮的角加速度;(2)开始上升后t = 5s 末滑轮的角速度; (3)在这5秒内滑轮转过的圈数;(4)开始上升后s 1='t 末滑轮边缘上一点的加速度(假定缆索和滑轮之间不打滑).答案: 为了图示清晰,将滑轮放大为如图所示.a ρv ρ(1)由于升降机的加速度和滑轮边缘上的一点的切向加速度相等,所以滑轮的角加速度为2s rad 8.0-⋅===rar a τβ (2)由于00=ω,所以5秒末滑轮的角速度为1s rad 0.4-⋅==t βω(3)在这5秒内滑轮转过的角度为rad 10212==t βθ 所以在这5秒内滑轮转过的圈数为圈6.1210==πN(4)结合题意,由图可以看出2s m 4.0-⋅==a a τ2222s m 32.0-⋅===t r r a n βω由此可得滑轮边缘上一点在升降机开始上升后s 1='t 时的加速度为222s m 51.0-⋅=+='τa a a n这个加速度的方向与滑轮边缘的切线方向的夹角为117.384.032.0tan tan =⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫⎝⎛=--ταa a n 42 题号:03042 第03章 题型:计算题 难易程度:难 试题: 一绳跨过定滑轮,两端分别系有质量分别为m 和M 的物体,且m M >.滑轮可看作是质量均匀分布的圆盘,其质量为m ',半径为R有摩擦,滑轮转动时受到了摩擦阻力矩阻M 且与滑轮间无相对滑动.求物体的加速度及绳中的张力. 答案: 由于滑轮有质量,所以不得不考虑滑轮的转动惯性;在转动过程中滑轮还受到阻力矩的作用,在滑轮绕轴作加速转动时,它必须受到两侧绳子的拉力所产生的力矩,以便克服转动惯性与阻力矩的作用,因此滑轮两a ρ1a侧绳子中的拉力一定不相等.设两侧绳子中的拉力分别为1T 和2T ,则滑轮及两侧物体的受力如图所示,其中11T T '=,22T T '=(作用力与反作用力大小相等).因为m M >,所以左侧物体上升,右侧物体下降.设其加速度分别为1a 和2a ,据题意可知,绳子不可伸长,则21a a =,令它们为a .滑轮以顺时针转动,设其角加速度为β,则摩擦阻力矩阻M 的指向为逆时针方向,如图所示.对于上下作平动的两物体,可以视为质点,由牛顿第二运动定律得⎩⎨⎧=-=-Ma T Mg M mamg T m 21:对:对 (1) 滑轮作定轴转动,受到的外力矩分别为R T 2'和R T 1'及阻M (轴对滑轮的支持力N 通过了转轴,其力矩为零).若以顺时针方向转的力矩为正,逆时针转的方向为负,则由刚体定轴转动的转动定律得ββ⎪⎭⎫⎝⎛'==--21221R m J M R T R T 阻 (2)据题意可知,绳与滑轮间无相对滑动,所以滑轮边缘上一点的切向加速度和物体的加速度相等,即βτR a a == (3)联立(1)、(2)、(3)三个方程,得2)(m m M R M g m M a '++--=阻2)22()(1m m M R mM mg m M a g m T '++-'+=+=阻2)22()(2m m M R MM Mg m m a g M T '+++'+=-=阻43 题号:03043 第03章 题型:计算题 难易程度:适中试题: 求长为L ,质量为m 的均匀细棒AB 的转动惯量.(1)对于通过棒的一端与棒垂直的轴;(2)对于通过棒的中点与棒垂直的轴. 答案: (1)如图所示,以过A 端垂直于棒的o o '为轴,沿棒长方向为x 轴,原点在轴上,在棒上取一长度元dx ,则这一长度元的质量为dx Lmdm =,所以202231mL dx L m x dm x J L m =⎪⎭⎫ ⎝⎛==⎰⎰端点(2)同理,如图所示,以过中点垂直于棒的o o '为轴,沿棒长方向为x 轴,原点在轴上,在棒上取一长度元dx ,因此22222121mL dx L m x dm x J L L m=⎪⎭⎫ ⎝⎛==⎰⎰-中点 由此可见,对于同一均匀细棒,转轴的位置不同,棒的转动惯量不同. 44 题号:03044 第03章 题型:计算题 难易程度:容易试题: 试求质量为m 、半径为R 的匀质圆盘对垂直于平面且过中心轴的转动惯量. 答案: 已知条件如图所示.由于质量连续分布,所以220222mR dl R m R dm R J Rm=⎪⎭⎫ ⎝⎛==⎰⎰ππ 45 题号:03045 第03章 题型:计算题 难易程度:适中试题: 试求质量为m 、半径为R 的匀质圆环对垂直于平面且过中心轴的转动惯量.o AA dm答案: 已知条件如图所示.由于质量连续分布,设圆盘的厚度为l ,则圆盘的质量密度为lR m2πρ=.因圆盘可以看成是许多有厚度的圆环组成,所以()ρππρl R ldr r r dm r J R m 4022212=⋅⋅==⎰⎰代入圆盘的质量密度,得221mR J =46 题号:03046 第03章 题型:计算题 难易程度:较难试题: 如图所示,一质量为M 、半径为R 的匀质圆盘形滑轮,可绕一无摩擦的水平轴转动.圆盘上绕有质量可不计的绳子,绳子一端固定在滑轮上,另一端悬挂一质量为m 的物体,问物体由静止落下h 高度时,物体的速率为多少答案: 法一 用牛顿第二运动定律及转动定律求解.受力分析如图所示,对物体m 用牛顿第二运动定律得ma T mg =- (1)对匀质圆盘形滑轮用转动定律有βJ R T =' (2)物体下降的加速度的大小就是转动时滑轮边缘上切向加速度,所以βR a = (3)又由牛顿第三运动定律得T T '=(4)物体m 落下h 高度时的速率为lah v 2= (5)因为221MR J =,所以联立以上(1)、(2)、(3)、(4)和(5)式,可得物体m 落下h 高度时的速率为mM mghv 22+=(小于物体自由下落的速率gh 2).解法二 利用动能定理求解.如图所示,对于物体m 利用质点的动能定理有222121mv mv Th mgh -=- (6) 其中0v 和v 是物体的初速度和末速度.对于滑轮利用刚体定轴转动的转动定理有222121ωωθJ J TR -=∆ (7) 其中θ∆是在拉力矩TR 的作用下滑轮转过的角度,0ω和ω是滑轮的初角速度和末角速度.由于滑轮和绳子间无相对滑动,所以物体落下的距离应等于滑轮边缘上任意一点所经过的弧长,即θ∆=R h .又因为00=v ,00=ω,R v ω=,221MR J =,所以联立(6)和(7)式,可得物体m 落下h 高度时的速率为mM mghv 22+=.解法三 利用机械能守恒定律求解.若把滑轮、物体和地球看成一个系统,则在物体落下、滑轮转动的过程中,绳子的拉力T 对物体做负功(Th -),T '对滑轮做正功(Th )即内力做功的代数和为零,所以系统的机械能守恒.若把系统开始运动而还没有运动时的状态作为初始状态,系统在物体落下高度h 时的状态作为末状态,则0212121222=-+⎪⎭⎫ ⎝⎛⋅⎪⎭⎫ ⎝⎛mgh mv R v MR 所以物体m 落下h 高度时的速率为mM mghv 22+=.47 题号:03047 第03章 题型:计算题 难易程度:容易试题: 哈雷慧星绕太阳运行的轨道是一个椭圆,如图所示,它离太阳最近的距离是m 1075.810⨯=近日r ,此时速率为-14s m 1046.5⋅⨯=近日v ;它离太阳最远时的速率为-12s m 1008.9⋅⨯=远日v ,这时它离太阳的距离?远日=r答案: 彗星受太阳引力的作用,而引力通过了太阳,所以对太阳的力矩为零,故彗星在运行的过程中角动量守恒.于是有远日远日近日近日v r v r ρρρρ⨯=⨯因为远日远日近日近日,v r v r ρρρρ⊥⊥,所以有远日近日近日远日v v r r =代入数据,得m 1026.512⨯=远日r48 题号:03048 第03章 题型:计算题 难易程度:较难试题: 如图所示,一个长为l 、质量为M 的匀质杆可绕支点o 自由转动.一质量为m 、速率为v 的子弹以与水平方向成060角的方向射入杆内距支点为a 处,使杆的偏转角为030.问子弹的初速率为多少答案: 把子弹和匀质杆作为一个系统,由于该系统所受的外力有重力及轴对杆的约束力,在子弹射入杆的极短过程中,重力和约束力都通过了转轴o ,因此它们对转轴的力矩均为零,故该系统的角动量守恒.设ρ子弹射入杆后与杆一同前进的角速度为ω,则碰撞前的角动量等于碰撞后的角动量,即()ω⎪⎭⎫⎝⎛+=2203160cos ma Ml a v m子弹在射入杆后与杆一起摆动的过程中只有重力做功,所以由子弹、杆和地球组成的系统机械能守恒,因此有()()022230cos 1230cos 13121-⋅+-=⎪⎭⎫ ⎝⎛+l Mg mga ma Ml ω 联立上述这两个方程得子弹的初速率为()()22326322ma Ml ma Ml g mav ++-=49 题号:03049 第03章 题型:计算题 难易程度:较难试题: 如图所示,一根质量为M 、长为2 l 的均匀细棒,可以在竖直平面内绕通过其中心的光滑水平轴转动,开始时细棒静止于水平位置.今有一质量为m 的小球,以速度u ρ垂直向下落到了棒的端点,设小球与棒的碰撞为完全弹性碰撞.试求碰撞后小球的回跳速度v ρ及棒绕轴转动的角速度ω.答案: 以棒和小球组成的系统为研究对象,则该系统所受的外力有小球的重力、棒的重力和轴给予棒的支持力, 后两者的作用线都通过了转轴,对轴的力矩为零.由于碰撞时间极短,碰撞的冲力矩远大于小球所受的重力矩,所以小球对轴的力矩可忽略不计.分析可知所取系统的角动量守恒.由于碰撞前棒处于静止状态,所以碰撞前系统的角动量就是小球的角动量lmu . 由于碰撞后小球以速度v 回跳,其角动量为lmv ;棒获得的角速度为ω,棒的角动量为()ωω22312121Ml l M =⎥⎦⎤⎢⎣⎡.所以碰撞后系统的角动量为ω231Ml lmv +.由角动量守恒定律得omuω231Ml lmv lmu += (1) 注意:上式中u ,v 这两个速度是以其代数量来表示.以碰撞前小球运动的方向为正,即0>u ;碰撞后小球回跳,u 与v 的方向必然相反,应该有0<v .由题意知,碰撞是完全弹性碰撞,所以碰撞前后系统的动能守恒,即222231212121ω⎪⎭⎫⎝⎛+=Ml mv mu (2) 联立(1)和(2)式,可得小球的速度为u Mm Mm v +-=33棒的角速度为luM m m ⋅+=36ω讨论:由于碰撞后小球回跳,所以v 与u 的方向不同,而0>u ,则0<v .从结果可以看出,要保证0<v ,则必须保证m M 3>.否则,若M m 31≥,无论如何,碰撞后小球也不能回跳,杂耍运动员特别注意这一点.50 题号:03050 第03章 题型:计算题 难易程度:较难试题: 如图所示,一长为l 、质量为m 的匀质细棒竖直放置,其下端与一固定铰链o 相连结,并可绕其转动.由于此竖直放置的细棒处于非稳定平衡状态,当其受到微小扰动时,细棒将在重力的作用下由静止开始绕铰链o 转动.试计算细棒转到与竖直位置成θ角时的角加速度和角速度.答案: 法一 利用定轴转动的转动定律求解.分析受力如图所示,其中G ρ为细棒所受的重力、N ρ为铰链给细棒的约束力.由于约束力N ρ始终通过转轴,所以其作用力矩为零;铰链与细棒之间的摩擦力矩题中没有给定可认为不存在.又由于细棒为匀质细棒,所以重力G ρ的作用点在细棒中心.故由定轴转动的转动定律可得βθ⎪⎭⎫ ⎝⎛=231sin 21ml mgl 因此细棒转过θ角时的角加速度为θβsin 23lg=由角加速度的定义可得θθθωsin 23lgdt d d d =⋅ 整理可得θθωωd l g d ⎪⎭⎫⎝⎛=sin 23 由于0=t 时,0=θ,0=ω;而t t =时,θθ=,ωω=.所以上式两边取积分有θθωωθω⎰⎰⎪⎭⎫⎝⎛=0sin 23d l g d 因此细棒转过θ角时的角速度为()θωcos 13-=lg解法二 利用机械能守恒定律求解.以细棒和地球组成的系统为研究对象,由于细棒所受的重力为保守内力,铰链给细棒的约束力不做功,铰链与细棒之间的摩擦力题中没有给定可认为不存在,因此系统的机械能守恒.于是有()223121cos 12ωθ⎪⎭⎫ ⎝⎛=-⋅ml l mg 因此细棒转过θ角时的角速度为()θωcos 13-=lg此时的角加速度为θωβsin 23lgdt d ==解法三 利用定轴转动的动能定理求解.铰链的约束力对细棒不做功,摩擦力矩没有给定可以认为不存在,只有重力矩做功,所以对于细棒而言,合外力所做的功就是重力矩所做的功,即()θθθθθθcos 121sin 200-=⎪⎭⎫⎝⎛==⎰⎰mgl d l mg Md W由定轴转动的动能定理得()223121cos 121ωθ⎪⎭⎫ ⎝⎛=-ml mgl 因此细棒转过θ角时的角速度为()θωcos 13-=lg此时的角加速度为θωβsin 23lgdt d ==51 题号:03051 第03章 题型:计算题 难易程度:适中试题: 如图所示,在光滑的水平面上有一长为l 、质量为m 的匀质细棒以与棒长方向相互垂直的速度v ρ向前平动,平动中与一固定在桌面上的钉子o 相碰撞,碰撞后,细棒将绕点o 转动,试求其转动的角速度.答案: 由于细棒在光滑的水平面上运动,所以细棒与钉子o 碰撞的过程中遵守角动量守恒定律,则碰撞后碰撞前L L =对于转轴o 而言:⎪⎭⎫⎝⎛=4l mv L 碰撞前方向垂直于纸面向外;ωω⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛-+==242l l m J J L o 中心轴碰撞后ωω2224874121ml l m ml =⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛+=方向垂直于纸面向外.所以有ω24874ml l mv =⎪⎭⎫⎝⎛ 故细棒碰撞后绕轴o 转动的角速度为lv712=ω 52 题号:03052 第03章 题型:计算题 难易程度:适中试题: 如图所示,在光滑的水平面上有一劲度系数为k 的轻质弹簧,它的一端固定,另一端系一质量为M 的滑块.最初滑块静止时,弹簧处于自然长度0l .现有一质量为m 的子弹以速度0v 沿水平方向并垂直于弹簧轴线射向滑块且留在其中,滑块在水平面内滑动.当滑块被拉伸到长度为l 时,求滑块速度的大小和方向.答案: 此题的物理过程有两个,第一个过程为子弹与滑块的碰撞过程.在该过程中子弹与滑块组成的系统所受的合外力为零,所以系统的动量守恒.于是有()V m M mv +=0第二个过程为滑块与子弹一起,以共同的速度V 在弹簧的约束下运动的过程.在该过程中弹簧的弹力不断增大,但始终通过转轴o ,它的力矩为零,所以角动量守恒;与此同时若以子弹、滑块、弹簧和地球组成的系统为研究对象,则该过程也满足机械能守恒定律.因此有()()θsin 0v m M l V m M +=+()()()2022212121l l k v m M V m M -++=+ 其中θ为滑块运动方向与弹簧轴线方向之间的夹角.联立以上三个方程可得滑块速度的大小和方向分别为()m M l l k m M mv v +--⎪⎪⎭⎫⎝⎛+=2020 ()()⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎥⎥⎦⎤⎢⎢⎣⎡+--⎪⎪⎭⎫ ⎝⎛++=--212020001sin m M l l k m M mv m M l l mv θ 53 题号:03053 第03章 题型:计算题 难易程度:适中试题: 一飞轮半径r = 1m ,以转速1min r 1500-⋅=n 转动,受制动均匀减速,经s 50=t 后静止.试求:(1)角加速度β和从制动开始到静止这段时间飞轮转过的转数N ;(2)制动开始后s 25=t 时飞轮的角速度ω;(3)在s 25=t 时飞轮边缘上一点的速度和加速度.答案: (1)角加速度20s rad 14.35060150014.325020-⋅-=⨯⨯-=-=-=ntπωωβ从制动开始到静止这段时间飞轮转过的转数62514.325014.3215060150014.322212220=⨯⨯⨯-⨯⨯⨯=+=∆=πβωπθtt N 圈(2)制动开始后s 25=t 时飞轮的角速度10s rad 5.782514.360150014.322-⋅=⨯-⨯⨯=+=+=t n t βπβωω (3)在s 25=t 时飞轮边缘上一点的速度和加速度分别为11s m 5.78s m )15.78()(--⋅=⋅⨯==τττωρρρρr v ()()τβωττρρρρρr n r a n a a n +=+=2()[]()232s m )14.31016.6(14.315.78-⋅-⨯=⨯-+⨯=ττρρρρn r n54 题号:03054 第03章 题型:计算题 难易程度:适中试题: 如图所示.细棒的长为l ,设转轴通过棒上离中心距离为d 的一点并与棒垂直.求棒对此轴的转动惯量o J '.试说明这一转动惯ol量o J '与棒对过棒中心并与此轴平行的转轴的转动惯量o J 之间的关系(此为平行轴定理).答案: 如图所示,以过o '点垂直于棒的直线为轴,沿棒长方向为x '轴,原点在o '点处,在棒上取一长度元x d ',则()⎰'='mo dm x J 2()⎰⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛+-⎪⎭⎫ ⎝⎛''=d l d l x d lm x 22222121md ml +=所以o J '与o J 之间的关系为2md J J o o +='55 题号:03055 第03章 题型:计算题 难易程度:适中试题: 如图所示.两物体的质量分别为1m 和2m ,滑轮的转动惯量为J ,半径为r .若2m 与桌面的摩擦系数为μ,设绳子与滑轮间无相对滑动,试求系统的加速度a 的大小及绳子中张力1T 和2T 的大小.答案: 分析受力如题图所示.21m m 和设其加速度分别为1a 和2a ,则由牛顿运动定律得22221111⎩⎨⎧=-=-a m g m T a m T g m μ 滑轮作定轴转动,则由转动定律有βJ r T r T =-21由于绳子与滑轮间无相对滑动,所以r a a a β===21d ox 'x 1。

第五章 刚体力学参考答案

第五章  刚体力学参考答案

一、选择题[ C ]1、如图所示,A 、B 为两个相同的绕着轻绳的定滑轮.A 滑轮挂一质量为M 的物体,B 滑轮受拉力F ,而 且F =Mg .设A 、B 两滑轮的角加速度分别为βA 和βB ,不计滑轮轴的摩擦,则有(A) βA =βB . (B) βA >βB .(C) βA <βB . (D) 开始时βA =βB ,以后βA <βB .图5-18参考答案:设定滑轮半径为R,转动惯量为J ,如图所示,据刚体定轴转动定律M=Jβ有: 对B :FR=MgR= J βB .对A :Mg-T=Ma TR=J βA, a=R βA, 可推出:βA <βB[ D ]2、如图5-8所示,一质量为m 的匀质细杆AB ,A 端靠在粗糙的竖直墙壁上,B 端置于粗糙水平地面上而静止.杆身与竖直方向成θ角,则A 端对墙壁的压力大小(A) 为 41mg cos θ. (B)为21mg tg θ.(C) 为 mg sin θ. (D) 不能唯一确定.[ C ]3、一圆盘正绕垂直于盘面的水平光滑固定轴O 转动,如图5-11射来两个质量相同,速度大小相同,方向相反并在一条直线上的子弹,子弹射入圆盘并且留在盘内,则子弹射入后的瞬间,圆盘的角速度ω (A) 增大. (B) 不变. (C) 减小. (D) 不能确定.图5-8mm图5-11参考答案:把三者看作同一系统时,系统所受合外力矩为零, 系统角动量守恒。

设L 为每一子弹相对固定轴O 的角动量大小.故由角动量守恒定律得: J ω0+L-L=(J+J 子弹) ω ω <ω0[ A ]4、质量为m 的小孩站在半径为R 的水平平台边缘上.平台可以绕通过其中心的竖直光滑固定轴自由转动,转动惯量为J .平台和小孩开始时均静止.当小孩突然以相对于地面为v 的速率在台边缘沿逆时针转向走动时,则此平台相对地面旋转的角速度和旋转方向分别为 (A) ⎪⎭⎫⎝⎛=RJ mR v 2ω,顺时针. (B) ⎪⎭⎫⎝⎛=RJ mR v2ω,逆时针. (C) ⎪⎭⎫⎝⎛+=R mRJ mRv 22ω,顺时针. (D) ⎪⎭⎫⎝⎛+=R mR J mR v 22ω,逆时针.参考答案:视小孩与平台为一个系统,该系统所受的外力矩为零,系统角动量守恒: 0=Rmv-J ω 可得结论。

大学物理-刚体的定轴转动-习题和答案

大学物理-刚体的定轴转动-习题和答案

第4章 刚体的定轴转动 习题及答案1.刚体绕一定轴作匀变速转动,刚体上任一点是否有切向加速度?是否有法向加速度?切向和法向加速度的大小是否随时间变化?答:当刚体作匀变速转动时,角加速度β不变。

刚体上任一点都作匀变速圆周运动,因此该点速率在均匀变化,v l ω=,所以一定有切向加速度t a l β=,其大小不变。

又因该点速度的方向变化,所以一定有法向加速度2n a l ω=,由于角速度变化,所以法向加速度的大小也在变化。

2. 刚体绕定轴转动的转动定律和质点系的动量矩定理是什么关系?答:刚体是一个特殊的质点系,它应遵守质点系的动量矩定理,当刚体绕定轴Z 转动时,动量矩定理的形式为zz dL M dt=,z M 表示刚体对Z 轴的合外力矩,z L 表示刚体对Z 轴的动量矩。

()2z i i L m l I ωω==∑,其中()2i i I m l =∑,代表刚体对定轴的转动惯量,所以()z z dL d d M I I I dt dt dtωωβ====。

既 z M I β=。

所以刚体定轴转动的转动定律是质点系的动量矩定理在刚体绕定轴转动时的具体表现形式,及质点系的动量矩定理用于刚体时在刚体转轴方向的分量表达式。

3.两个半径相同的轮子,质量相同,但一个轮子的质量聚集在边缘附近,另一个轮子的质量分布比较均匀,试问:(1)如果它们的角动量相同,哪个轮子转得快?(2)如果它们的角速度相同,哪个轮子的角动量大?答:(1)由于L I ω=,而转动惯量与质量分布有关,半径、质量均相同的轮子,质量聚集在边缘附近的轮子的转动惯量大,故角速度小,转得慢,质量分布比较均匀的轮子转得快;(2)如果它们的角速度相同,则质量聚集在边缘附近的轮子角动量大。

4.一圆形台面可绕中心轴无摩擦地转动,有一玩具车相对台面由静止启动,绕轴作圆周运动,问平台如何运动?如小汽车突然刹车,此过程角动量是否守恒?动量是否守恒?能量是否守恒?答:玩具车相对台面由静止启动,绕轴作圆周运动时,平台将沿相反方向转动;小汽车突然刹车过程满足角动量守恒,而能量和动量均不守恒。

《大学物理》复习题库

《大学物理》复习题库

《大学物理》复习题库大学物理习题 班级: 姓名: 学号: 成绩:刚体定轴转动(Ⅰ)一、选择题1.如图所示,A 、B 为两个相同的绕着轻绳的定滑轮。

A 滑轮挂一质量为M 的物体,B 滑轮受拉力F ,而且F =Mg 。

设A 、B 两滑轮的角加速度分别为βA 和βB ,不计滑轮轴的摩擦,则有 (A) βA =βB ; (B) βA >βB ;(C) βA <βB ; (D) 开始时βA =βB ,以后βA <β B 。

[ ]2.均匀细棒OA 可绕通过其一端O 而与棒垂直的水平固定光滑轴转动,如图所示。

今使棒从水平位置由静止开始自由下落,在棒摆动到竖直位置的过程中,下述说法哪一种是正确的? (A) 角速度从小到大,角加速度从大到小; (B) 角速度从小到大,角加速度从小到大; (C) 角速度从大到小,角加速度从大到小; (D) 角速度从大到小,角加速度从小到大。

[ ]3.关于刚体对轴的转动惯量,下列说法中正确的是 (A) 只取决于刚体的质量,与质量的空间分布和轴的位置无关; (B) 取决于刚体的质量和质量的空间分布,与轴的位置无关; (C) 取决于刚体的质量、质量的空间分布和轴的位置;(D) 只取决于转轴的位置,与刚体的质量和质量的空间分布无关。

[ ] 二、填空题4.质量为m 的质点以速度v沿一直线运动,则它对直线外垂直距离为d 的一点的角动量大小是____ __ __。

5.一飞轮以600 rev/min 的转速旋转,转动惯量为2.5 kg ·m 2,现加一恒定的制动力矩使飞轮在1 s 内停止转动,则该恒定制动力矩的大小M =_________。

6.如图所示,P 、Q 、R 和S 是附于刚性轻质细杆上的质量分别为4m 、3m 、2m 和m 的四个质点,PQ =QR =RS =l ,则系统对O O 轴的转动惯量为__________。

S ′三、计算题7.一长为1 m 的均匀直棒可绕过其一端且与棒垂直的水平光滑固定轴转动。

05刚体的定轴转动习题解答

05刚体的定轴转动习题解答

05刚体的定轴转动习题解答05刚体的定轴转动习题解答第五章刚体的定轴转动一选择题1. 一绕定轴转动的刚体,某时刻的角速度为ω,角加速度为α,则其转动加快的依据是:()A. α > 0B. ω > 0,α > 0C. ω < 0,α > 0D. ω > 0,α < 0解:答案是B。

2. 用铅和铁两种金属制成两个均质圆盘,质量相等且具有相同的厚度,则它们对过盘心且垂直盘面的轴的转动惯量。

()A. 相等;B. 铅盘的大;C. 铁盘的大;D. 无法确定谁大谁小解:答案是C 。

简要提示:铅的密度大,所以其半径小,圆盘的转动惯量为:2/2 Mr J =。

3. 一轻绳绕在半径为r 的重滑轮上,轮对轴的转动惯量为J ,一是以力F 向下拉绳使轮转动;二是以重量等于F 的重物挂在绳上使之转动,若两种情况使轮边缘获得的切向加速度分别为a 1和a 2,则有:()A. a 1 = a 2B. a 1 > a 2C. a 1< a 2D. 无法确定解:答案是B 。

简要提示:(1) 由定轴转动定律,1αJ Fr =和11αr a =,得:JFra /21=(2) 受力分析得:===-2222ααr a J Tr ma T mg ,其中m 为重物的质量,T 为绳子的张力。

得:)/(222mr J Fr a +=,所以a 1 > a 2。

4. 一半径为R ,质量为m 的圆柱体,在切向力F 作用下由静止开始绕轴线作定轴转动,则在2秒内F 对柱体所作功为:()A. 4 F 2/ mB. 2 F 2 / mC. F 2 / mD. F 2 / 2 m 解:答案是A 。

简要提示:由定轴转动定律:α221MR FR =,得:mRFt 4212==?αθ 所以:mFM W /42=?=θ5. 一电唱机的转盘正以ω 0的角速度转动,其转动惯量为J 1,现将一转动惯量为J 2的唱片置于转盘上,则共同转动的角速度应为:()A .0211ωJJ J+ B .0121ωJJJ + C .021ωJ JD .012ωJ J解:答案是A 。

《大学物理》第三章 刚体的定轴转动

《大学物理》第三章    刚体的定轴转动

P
t
=
1 2
ω J 2 自
t
=
ω J 2 自 2P
=
2×105× (30π)
2×736×103
2
=
1.21×103s
(2) ω进 = 1度 秒 = 0.0175rad/s
ω进 =
M
Jω自
M = Jω进ω自
M = 2×105×0.0175×30π= 3.3×105 N返回.m退出
3-14 在如图所示的回转仪中,转盘的 质量为 0.15kg , 绕其轴线的转动惯量为: 1.50×10-4 kg.m2 ,架子的质量为 0.03kg, 由转盘与架子组成的系统被支持在一个支柱 的尖端O,尖端O到转盘中心的距离为0.04 m , 当转盘以一定角速度ω 绕其轴旋转时, 它便在水平面内以1/6 rev/s的转速进动。
为25cm,轴的一端 A用一根链条挂起,如
果原来轴在水平位置,并使轮子以ω自=12 rad/s的角速度旋转,方向如图所示,求:
(1)该轮自转的角动量;
(2)作用于轴上的外力矩;
(3)系统的进动角速度, ω
并判断进动方向。
AO
B
R
l 返回 退出
解:
(1)
J
=
m
R
2

=
5×(0.25 )2
ω
= 0.313 kg.m2
a
=
m
1+
m m
1g 2+
J
r2
T1 =
m 1g (m 2+ J m 1+m 2 + J
r 2) r2
T2 =
m 1m 2g m 1+m 2 + J

《大学物理》第五章刚体的定轴转动

《大学物理》第五章刚体的定轴转动

偏转角为30°。问子弹的初速度为多少。
o
解: 角动量守恒:
30°
mva 1 Ml 2 ma 2
la
3
v
机械能守恒:
1 1 Ml 2 ma 2 2 mga1 cos 30 Mg l 1 cos 30
23
2
v 1 g 2 3 Ml 2ma Ml 2 3ma 2 ma 6
刚体可以看成是很多质元组成的质点系,且在外力 作用下,各个质元的相对位置保持不变。 因此,刚体的运动规律,可通过把牛顿运动定律应 用到这种特殊的质点系上得到。
3
2.刚体的运动
平动:刚体在运动过程中,其上任意两点的连线 始终保持平行。
刚体的平动可看做刚体质心 的运动。
转动:刚体中所有的点都绕同一直线做圆周运动. 转动又分定轴转动和非定轴转动 .
r2dm
L
r2 dl
L
(线质量分布)
12
3 平行轴定理
如果刚体的一个轴与过质 心轴平行并相距d,则质量 为 m 的刚体绕该轴的转动 惯量,等于刚体绕过质心 轴的转动惯量与 md2 之和:
J z Jc md 2
请同学们自己证明平行轴定理的。
提示:利用余弦定理 ri2 ri '2 d 2 2dxi 13
hc hi
若A外+ A内非=0
Ep=0
则Ek +Ep =常量。
例13 一均质细杆可绕一水平轴旋转,开始时处于 水平位置,然后让它自由下落。求: ( )
解 方法一 动能定理
M mg L cos
2
W
Md
mg
L cosd
0
0
2
mg L sin
2
θ

大学物理习题册及解答(第二版)第四章-刚体的定轴转动

大学物理习题册及解答(第二版)第四章-刚体的定轴转动

上环可以自由在纸面内外摆动。求此时圆环摆的转动惯量。 O
(*)(3)求两种小摆动的周期。哪种摆动的周期较长?
R C
解:(1)圆环放在刀口上O,以环中 心的平衡位置C点的为坐标原点。Z轴
J zc MR2
O
P
ŷ

x
指向读者。圆环绕Z轴的转动惯量为
Z
R
由平行轴定理,关于刀口的转动惯量为 J zo J zc MR 2 2MR 2
m(l a) J
杆摆动过程机械能守恒
J 1 Ml2 3
1 J 2 Mg l (1 cos )
2
2
解得小球碰前速率为 Ml
2gl sin
m(l a) 3 2
5.一轻绳绕过一半径R,质量为M/4的滑轮。质量为M的人抓住绳 子的一端,而绳子另一端系一质量为M/2的重物,如图。求当人相 对于绳匀速上爬时,重物上升的加速度是多少?
解:选人、滑轮、与重物为系统,系统所受对滑轮轴的
外力矩为
1 MgR

物2
设u为人相对绳的匀速度,为重物上升的
速度。则该系统对滑轮轴的角动量为
L M R M (u )R (1 M R2 ) 13 MR MRu
2
24
8
据转动定律
du 0 dt
dL dt
a
即 1 MgR d (13 MR MRu)
6. 一飞轮以角速度0绕光滑固定轴旋转,飞轮对轴的转动惯 量为J1;另一静止飞轮突然和上述转动的飞轮啮合,绕同一转 轴转动,该飞轮对轴的转动惯量为前者的二倍.啮合后整个系
统的角速度 / 3 0
7.一长为l,质量可以忽略的直杆,可绕通过其一端的 水平光滑轴在竖直平面内作定轴转动,在杆的另一端固 定着一质量为m的小球,如图所示.现将杆由水平位置 无初转速地释放.则杆刚被释放时的角加速度a0 _ , 杆与水平方向夹角为60°时的角加速度a_
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

方法二:由角动量定理 :
0 — 10s : 10 — 90s :
( M M r ) t1 J 1 0 ( M r t2 ) 0 J 1


① t2 ② t1 得
解得 : J M t1 t2 / 1 (t1 t1) 54kg m2
M t1 t2 J 1 (t1 t1)
大学物理《力学·刚体定轴转动》 复习题及答案
1.一轻绳跨过一具有水平光滑轴、质量为 M的定滑轮,绳的两端分别悬有质量m1 和 m2 的物体 (m1< m2),如图所示.绳与 轮之间无相对滑动,某时刻滑轮沿逆时针 方于左边. (D) 无法判断.
m, r
m
m, r
2m
解:2mg T 1 2ma

1 (T 1 T 2 )r m r2 ② 2 1 (T 2 T 3 )r m r2 ③ 2 ④ T 3 mg ma
a r
T '2
T3
T2
T '1


T '3
T1

得a g / 4,
T 3 11mg / 3
mR 2 v 2 J mR R
, 顺时针方向
, 逆时针方向 , 顺时针方向
, 逆时针方向 [ ]
mR 2 v J R
mR 2 v 2 J mR R
4.一圆盘绕过盘心且与盘面垂直的轴 o 以 角速度 按图示方向转动,若如图所示的 情况那样,将两个大小相等方向相反但不 在同一条直线的力 F 沿盘面同时作用到 盘上,则盘的角速度
解:取人和盘为系统,
M外 0
系统的角动量守恒.
R/2 R
o

v
(1)开始系统的角动量为
1 1 R 2 m 0 M R 0 2 2
1 2 1 m R mE M R2 ME 后来: 4 2
2
mE ME mM
R/2 R
M M r J 1

1 1 t1

移去力矩后, — 90s内有 : 0
Mr J 2 ③ 0 1 2 t 2 ④
由 ② 得 1 1 / t1 ,
④ 得 2 1 / t2 分别代入 ① 与 ③,
然后两式相减得: 30 10 90 M t1 t2 J 54kg m2 1 t1 t2 5 (10 90 )
0
14.质量为 m1、长为 l 的均匀细杆, 静止平放在滑动摩擦系数为 m 的水 平桌面上,它可绕过其端点 o 且与桌 面垂直的固定光滑轴转动,另有一水 平运动的质量 m2为的小滑块,从侧 面垂直与杆的另一端 A 相碰撞,设碰 撞时间极短,已知小滑块在碰撞前后 的速度分别为 v1 和 v2 ,方向如图所 示,求碰撞后从细杆开始转动到停止 转动过程所需时间,(已知杆绕点 o 的转动惯量 J= ml2/ 3 )

o
m1
[
m2
]
2.均匀细棒 oA 可绕通过其一端 o 而与棒 垂直的水平固定光滑轴转动,如图所示.今 使棒从水平位置由静止开始自由下落,在 棒摆动到竖直位置的过程中,下列情况哪 一种说法是正确的? (A) 角速度从小到大,角加速度从大到小. (B) 角速度从小到大,角加速度从小到大. A o (C) 角速度从大到小, 角加速度从大到小. (D) 角速度从大到小, 角加速度从小到大. [ ]
21M R 0 / 40
2
o

v
M R2 2v 2 ME M R ME / 2 40 R
ME (21R 0 2v) / 21R
(2)若要 ME 0, 则要21R 0 2 0,
得v 21R0 / 2
l 0

在恒力矩M r 作用下, 1 转动t时间停止, m
由角动量定理得:
1 M r dt 0 m1 l2 3
l 0

联立方程 ①、②、③ 解得: t 2 m2 (v1 v2 ) / m m1 g
15.如图所示,一个质量为 m 的物体与绕在定滑轮上 的绳子相联,绳子的质量 可以忽略,它与定滑轮之 间无滑动.假设定滑轮质 量为 M、半径为 R ,其转 动惯量为 MR2/2 ,试求 该物体由静止开始下落的 过程中,下落速度与时间 的关系.
R
M
m
解:根据牛顿定律和转动定律列方程 (1) 对物体: mg T ma
TR J 对滑轮: 运动学关系: a R 将(1)、(2)、(3) 是联立得:
(2) (3)

R
T M mg
a
a mg/(m M / 2)
v0 0
v at mgt/(m M / 2)
-1
1 2
17、在半径为 R 的具有光滑竖直固定中 心轴的水平圆盘上,有一人静止站立在距 转轴为 R/2 处,人的质量是圆盘质量的 1/10,开始时盘载人相对地面以角速度 0 匀速转动,然后此人垂直圆盘半径相对于 盘以速率 v 沿与盘转动相反方向作圆周运 动, 已知圆盘对中心轴的转动惯量为 MR2 / 2,人可视为质点,求: (1)圆盘对地的角速度。 (2)欲使圆盘对地静止,人沿着 R/2 圆周 对圆盘的速度 v 的大小及方向?
3. 质量 m 为的小孩站在半径为 R、转动 惯量为 J 的可以自由转动的水平平台边缘 上 (平台可以无摩擦地绕通过中心的竖直 轴转动).平台和小孩开始时均静止. 当小孩 突然一相对地面为 v 的速率沿台边缘逆时 针走动时,则此平台相对地面旋转的角速 度为
(A)
(B) (C) (D)
mR 2 v J R
12.一轻绳跨过两个质量为 m、半径为 r 的均匀圆盘状定滑轮,绳的两端分别挂着质 量为 2m 和 m 的重物,如图所示,绳与滑轮 间无相对滑动,滑轮轴光滑,两个定滑轮的 转动惯量均为 mr2/2, 将由两个定滑轮以 及质量为 2m 和 m 的重物组成的系统从 静止释放,求重物的加速度和两滑轮之间绳 内的张力。
mg
2mg
13.如图所示,一均匀 细杆长为 l ,质量为 m,平放在摩擦系数 为 m 的水平桌面上, 设开始时杆以角速 度 0 绕过中心 o 且 垂直与桌面的轴转 动,试求:(1)作用 在杆的摩擦力矩; (2)经过多长时间 杆才会停止转动。
0
m, l o
m
解: )dM m dm g r (1 m m dr g r m, l o l m m rdr m l m 1 l/2 M dM 20 m rdr mmgl l 4 (2)由角动量定理: Mt J J 0 J 0 J 0 0 l t M 3mg
(B)动量守恒,动能不守恒。
(C)角动量守恒,动能不守恒。
(D)角动量不守恒,动能守恒。
[ ]
• 刚体定轴转动选择题答案: CAAACCBBC
10.一轻绳绕过一定滑轮,滑轮 轴光滑,滑轮的质量为 M/4,均 匀分布在其边远上,绳子 A 端 有一质量为 M的人抓住了绳 端,而在绳的另一端 B 系了一 质量为 M /4 的重物,如图。 已知滑轮对 o 轴的转动惯量 J=MR2/4 ,设人从静止开始以 相对绳匀速向上爬时,绳与滑 轮间无相对滑动,求 B 端重物 上升的加速度?
A B
解:受力分析如图 由题意 a人=aB=a
由牛顿第二定律 由转动定律 : 对滑轮 :
人 : Mg T 2 Ma

1 1 B : T 1 Mg Ma ② 4 4
1 (T 2 T 1) R J M R2 4

③ T2 A
o
T1
附加 : a R ④
Mg
B
1 Mg 4
(A) (C)
2v 3L 6v 7L
4v (B) 5L 8v (D) 9L
m v
v
m
o
[ ]
7.一块方板,可以其一边为轴自由转动.最 初板自由下垂.今有一小团粘土,垂直板面 撞击方板并粘在板上,对粘土和方板系统, 如果忽略空气阻力,在碰撞中守恒的量是: (A)动能. (B)绕木板转轴的角动量. (C)机械能. (D)动量. [ ]
k
J
m
1 2 解: (1)mgx k x , 2
( 2)k x 0 mg ,
2mg 0.49m x k
x 0 mg / k 0.245m
1 1 1 2 2 2 mg x 0 m v0 J 0 k x 0 2 2 2
k(m J / R2) mg v0
1.3m s
6.光滑的水平桌面上, 有一长为 2L、质量 为 m 的匀质细杆,可绕过其中点且垂直于 杆的竖直光滑固定轴自由转动,其转动惯 量为 mL2/3, 起初杆静止,桌面上有两个质 量均为 m 的小球,各自在垂直于杆的方向 上,正对着杆的一端,以相同速率 v 相向运 动,当两个小球同时与杆的两个端点发生 完全非弹性碰撞后,与杆粘在一起转动,则 这一系统碰撞后的转动角速度应为: m v o v o m
a
联立① ② ③ ④求解
1 a g 2
11.以 30N· 的恒力矩作用在有固定轴 m 的飞轮上,在 10s 内飞轮的转速由零增大 到5rad/s , 此时移去该力矩,飞轮因摩擦力 距的作用经 90s 而停止,试计算此飞轮对 其固定轴的转动惯量。 解:方法一: 在恒力矩和摩察力矩作 用下, — 10s内有 0
(A)必然增大;(B)必然减少; (C)不会改变;(D)如何变化,不能确定。

F
O
F
[ ]
5.一个人站在有光滑固定转轴的转动平台 上,双臂伸直水平地举起二哑铃,在该人把 此二哑铃水平收缩到胸前的过程中,人、 哑铃与转动平台组成的系统的
相关文档
最新文档