非参数统计 PPT课件
合集下载
非参数统计课件
什么是假设 检验?
假设检验用来判断 一个统计假设在给 定数据下是否成立。
非参数假设 检验的基本 思想
非参数假设检验不
依赖于总体参数的
具体分布。
U检验
U检验是一种常见的 非参数假设检验方 法。
KolmogorovSmirnov检验
KolmogorovSmirnov检验用来检 验样本是否符合给 定分布。
什么是核密度估计?
核密度估计是一种估计概率密度函数
概率密度函数和密度函数的区
2
的非参数方法。
别
概率密度函数是连续随机变量的密度
函数,而密度函数是离散随机变量的
3
高斯核密度估计
密度函数。
高斯核密度估计使用高斯核函数来估
计概率密度函数。
交叉验证方法
4
交叉验证方法可以用来选择合适的核 函数带宽。
分析?
回归分析用来建立变量之间的依赖关系。
Nadaraya-Watson核回归
Nadaraya-Watson核回归通过核函数加权来 估计回归函数。
非参数回归分析的基本思想
非参数回归分析不需要对回归函数做具体的 形式假设。
局部加权回归
局部加权回归在核回归的基础上引入了距离 权重来进一步提高估计精度。
非参数统计ppt课件
# 非参数统计PPT课件 ## 简介 - 什么是非参数统计? - 非参数统计和参数统计的区别
统计分布
什么是统计分布?
统计分布描述随机变量的不确定性和可能性。
常见的统计分布
包括正态分布、二项分布、泊松分布等。
经验分布函数
经验分布函数用样本数据来近似未知总体分布函数。
核密度估计
1
总结
1
非参数统计讲义通用课件
假设检验方法
总结词
假设检验方法用于检验一个关于总体 参数的假设是否成立。
详细描述
假设检验方法包括提出假设、构造检 验统计量、确定临界值和做出决策等 步骤。常见的假设检验方法有t检验、 卡方检验、F检验等,用于判断样本数 据是否支持假设。
关联性分析方法
总结词
关联性分析方法用于研究变量之间的相关性。
02
非参数统计方法
描述性统计方法
总结词
描述性统计方法用于收集、整理、描述数据,并从数据中提取有意义的信息。
详细描述
描述性统计方法包括数据的收集、整理、描述和可视化,例如均值、中位数、 众数、标准差等统计量,以及直方图、箱线图等图形化表示。这些方法可以帮 助我们了解数据的分布、中心趋势和离散程度。
非数统计与机器学习算法的结 合将有助于解决复杂的数据分析 问题。
02
与大数据技术的融 合
非参数统计将借助大数据技术处 理海量数据,挖掘数据背后的规 律和模式。
03
与社会科学研究的 互动
非参数统计方法将为社会科学研 究提供更有效的研究工具和方法 。
决策树分析方法
总结词
决策树分析方法是一种基于树形结构的非参 数统计学习方法。
详细描述
决策树分析方法通过递归地将数据集划分为 更小的子集,构建出一棵决策树。决策树的 每个节点表示一个特征属性上的判断条件, 每个分支代表一个可能的属性值,每个叶子 节点表示一个分类结果。决策树分析可以帮 助我们进行分类、预测和特征选择等任务。
非参数统计的发展趋势
多元化发展
非参数统计将不断拓展其应用领域,从传统的医学、生物 、经济领域向金融、环境、社会学等领域延伸。
01
算法优化
随着计算能力的提升,非参数统计的算 法将进一步优化,提高计算效率和准确 性。
非参数统计讲义通用课件
案例分析
通过实际案例展示如何使用Python进行非 参数统计,包括分布拟合、假设检验和模 型选择等步骤。
SPSS实现
SPSS简介
SPSS(Statistical Package for the Social Sciences) 是一款流行的社会科学统计 软件。
操作界面
SPSS的非参数统计功能通常 在“分析”菜单下的“非参 数检验”选项中,用户可以 通过直观的界面进行操作。
聚类分析方法在数据挖掘、 市场细分等领域有广泛应用, 可以帮助我们发现数据的内 在结构和模式。
异常值检测方法
• 异常值检测方法用于识别和剔除数据中的异常值,提高数据分析的准确性和可靠性。
• 常见的异常值检测方法包括基于统计的方法、基于距离的方法、基于密度的方等。 • 基于统计的方法利用统计学原理,如z分数、IQR等,判断数据是否为异常值;基于距离的方法通过计算对象与其它对象的距离来判断是否为异常值;基于密度的方法则根据对象周围的密度变化来判断是否
解释性较差
相对于参数统计,非参数统计结果通 常较为抽象,难以直接解释其具体含 义。
假设检验能力较弱
非参数统计在假设检验方面的能力相 对较弱,对于确定性的结论和预测不 如参数统计准确。
如何克服非参数统计的局限性
01
02
03
04
利用高效计算方法
采用并行计算、分布式计算等 高效计算方法,提高非参数统
计的计算效率和准确性。
描述性统计方法在数据分析中起到基 础作用,为后续的统计推断提供数据 基础和初步分析结果。
假设检验方法
假设检验方法是一种统计推断 方法,通过提出假设并对其进
行检验,判断假设是否成立。
假设检验方法包括参数检验和 非参数检验,其中非参数检验 不依赖于总体分布的具体形式,
通过实际案例展示如何使用Python进行非 参数统计,包括分布拟合、假设检验和模 型选择等步骤。
SPSS实现
SPSS简介
SPSS(Statistical Package for the Social Sciences) 是一款流行的社会科学统计 软件。
操作界面
SPSS的非参数统计功能通常 在“分析”菜单下的“非参 数检验”选项中,用户可以 通过直观的界面进行操作。
聚类分析方法在数据挖掘、 市场细分等领域有广泛应用, 可以帮助我们发现数据的内 在结构和模式。
异常值检测方法
• 异常值检测方法用于识别和剔除数据中的异常值,提高数据分析的准确性和可靠性。
• 常见的异常值检测方法包括基于统计的方法、基于距离的方法、基于密度的方等。 • 基于统计的方法利用统计学原理,如z分数、IQR等,判断数据是否为异常值;基于距离的方法通过计算对象与其它对象的距离来判断是否为异常值;基于密度的方法则根据对象周围的密度变化来判断是否
解释性较差
相对于参数统计,非参数统计结果通 常较为抽象,难以直接解释其具体含 义。
假设检验能力较弱
非参数统计在假设检验方面的能力相 对较弱,对于确定性的结论和预测不 如参数统计准确。
如何克服非参数统计的局限性
01
02
03
04
利用高效计算方法
采用并行计算、分布式计算等 高效计算方法,提高非参数统
计的计算效率和准确性。
描述性统计方法在数据分析中起到基 础作用,为后续的统计推断提供数据 基础和初步分析结果。
假设检验方法
假设检验方法是一种统计推断 方法,通过提出假设并对其进
行检验,判断假设是否成立。
假设检验方法包括参数检验和 非参数检验,其中非参数检验 不依赖于总体分布的具体形式,
非参数统计概述课件
对数据量要求较高
对于小样本数据,非参数统计 方法可能无法提供稳定和可靠
的结果。
04
非参数统计与其他统计方 法的比较
与参数统计的比较
非参数统计
不依赖于特定的概率分布模型,灵活 性更强,能适应多种数据类型和分布 。
参数统计
基于特定的概率分布模型,需要对模 型假设进行验证,适用范围相对有限 。
与贝叶斯统计的比较
02
大数据为非参数统计提供了丰富 的数据资源和计算能力,有助于 发现更多隐藏在数据中的信息和 规律,推动非参数统计的发展。
非参数统计与其他学科的交叉研究
非参数统计与计算机科学、数学、物 理学、生物学等学科的交叉研究有助 于拓展非参数统计的应用领域和理论 框架。
不同学科的交叉融合可以促进非参数 统计的创新和发展,推动其在各个领 域的实际应用。
在秩次相关性检验中,变量值被转换为秩次,然后使用秩 次计算相关系数(如Spearman或Kendall秩次相关系数 )。这种方法适用于非正态分布的数据,且不受数据异常 值的影响。
分布拟合检验
分布拟合检验是一种非参数统计方法,用于检验数据是否符合特定的概率分布。
分布拟合检验通过比较数据的实际分布与理论分布的统计量(如Kolmogorov-Smirnov、 Anderson-Darling等),来评估数据是否符合特定的概率分布。这种方法在统计学中广泛应用于模 型的假设检验和数据的探索分析。
特点
灵活性、稳健性、无分布假设、 适用于多样本数据等。
与参数统计的区别
01
02而参数统计 则依赖于特定的分布假设 。
方法
非参数统计通常采用中位 数、四分位数等统计量, 而参数统计则采用平均数 、方差等统计量。
应用范围
对于小样本数据,非参数统计 方法可能无法提供稳定和可靠
的结果。
04
非参数统计与其他统计方 法的比较
与参数统计的比较
非参数统计
不依赖于特定的概率分布模型,灵活 性更强,能适应多种数据类型和分布 。
参数统计
基于特定的概率分布模型,需要对模 型假设进行验证,适用范围相对有限 。
与贝叶斯统计的比较
02
大数据为非参数统计提供了丰富 的数据资源和计算能力,有助于 发现更多隐藏在数据中的信息和 规律,推动非参数统计的发展。
非参数统计与其他学科的交叉研究
非参数统计与计算机科学、数学、物 理学、生物学等学科的交叉研究有助 于拓展非参数统计的应用领域和理论 框架。
不同学科的交叉融合可以促进非参数 统计的创新和发展,推动其在各个领 域的实际应用。
在秩次相关性检验中,变量值被转换为秩次,然后使用秩 次计算相关系数(如Spearman或Kendall秩次相关系数 )。这种方法适用于非正态分布的数据,且不受数据异常 值的影响。
分布拟合检验
分布拟合检验是一种非参数统计方法,用于检验数据是否符合特定的概率分布。
分布拟合检验通过比较数据的实际分布与理论分布的统计量(如Kolmogorov-Smirnov、 Anderson-Darling等),来评估数据是否符合特定的概率分布。这种方法在统计学中广泛应用于模 型的假设检验和数据的探索分析。
特点
灵活性、稳健性、无分布假设、 适用于多样本数据等。
与参数统计的区别
01
02而参数统计 则依赖于特定的分布假设 。
方法
非参数统计通常采用中位 数、四分位数等统计量, 而参数统计则采用平均数 、方差等统计量。
应用范围
常用非参数统计方法课件
信息,为企业制定营销策略提供依据。
案例二:秩和检验在医学研究中的应用
总结词
秩和检验用于医学研究中,可以比较不同组 别间的数据,判断是否存在显著差异。
详细描述
秩和检验是一种非参数统计方法,适用于等 级数据和连续数据混合的情况。在医学研究 中,经常需要比较不同组别间的数据,例如 比较不同药物治疗效果、不同手术方法的效 果等。秩和检验可以综合考虑数据的分布特 征和数量差异,给出更为准确的结论,判断 不同组别间是否存在显著差异。
多个独立样本比较
非参数统计方法可以用于比较多个独 立样本的分布是否存在显著差异,例 如Kruskal-Wallis H 检验。
配对样本比较
配对样本比较
非参数统计方法可以用于比较配对样 本的分布是否相同,例如Wilcoxon signed-rank 检验。
相关样本比较
非参数统计方法可以用于比较相关样 本的分布是否存在相关性,例如 Spearman秩相关系数。
采取相应措施进行调整和改进。
案例五:符号检验在金融数据分析中的应用
总结词
符号检验用于金融数据分析中,可以比较不同时间段 内的数据变化趋势,判断市场走势。
详细描述
符号检验是一种非参数统计方法,适用于分析连续数 据的变化趋势。在金融数据分析中,符号检验常用于 比较不同时间段内的股票价格、交易量等数据的变化 趋势。通过计算数据的符号变化次数和期望值,利用 符号检验进行统计分析,可以判断市场走势是否发生 显著变化,为投资者提供决策依据。
03统计
非参数统计方法可以用于描述数 据的分布、集中趋势和离散程度 ,例如中位数、四分位数、众数 等。
数据可视化
非参数统计方法可以与数据可视 化技术结合,例如直方图、箱线 图等,帮助我们直观地了解数据 分布和异常值。
案例二:秩和检验在医学研究中的应用
总结词
秩和检验用于医学研究中,可以比较不同组 别间的数据,判断是否存在显著差异。
详细描述
秩和检验是一种非参数统计方法,适用于等 级数据和连续数据混合的情况。在医学研究 中,经常需要比较不同组别间的数据,例如 比较不同药物治疗效果、不同手术方法的效 果等。秩和检验可以综合考虑数据的分布特 征和数量差异,给出更为准确的结论,判断 不同组别间是否存在显著差异。
多个独立样本比较
非参数统计方法可以用于比较多个独 立样本的分布是否存在显著差异,例 如Kruskal-Wallis H 检验。
配对样本比较
配对样本比较
非参数统计方法可以用于比较配对样 本的分布是否相同,例如Wilcoxon signed-rank 检验。
相关样本比较
非参数统计方法可以用于比较相关样 本的分布是否存在相关性,例如 Spearman秩相关系数。
采取相应措施进行调整和改进。
案例五:符号检验在金融数据分析中的应用
总结词
符号检验用于金融数据分析中,可以比较不同时间段 内的数据变化趋势,判断市场走势。
详细描述
符号检验是一种非参数统计方法,适用于分析连续数 据的变化趋势。在金融数据分析中,符号检验常用于 比较不同时间段内的股票价格、交易量等数据的变化 趋势。通过计算数据的符号变化次数和期望值,利用 符号检验进行统计分析,可以判断市场走势是否发生 显著变化,为投资者提供决策依据。
03统计
非参数统计方法可以用于描述数 据的分布、集中趋势和离散程度 ,例如中位数、四分位数、众数 等。
数据可视化
非参数统计方法可以与数据可视 化技术结合,例如直方图、箱线 图等,帮助我们直观地了解数据 分布和异常值。
非参数统计法PPT课件
36.2
-12.8 -8
9
44.1
45.2
-1.1
-2
10
399.8 404.1 -4.3
-4
11
25.9
39.3
-13.4 -9.5
12
535.6 544.8 -9.2
-5
T- =5.8 T+-=8
•为什么要用 非参数检验?
SPSS
6
S tati sti c s
d
N
Valid
Missing
Sk ewness
参数统计——检验效率较高,但使用条件较严格. 非参数统计——由于对资料无特殊要求,因此适用
范围广,资料收集和分析比较简便。但统计效率 较低(β较大)。 选择: 首先考虑参数检验,当条件不符,才选择非参数 统计方法。
.
3
(四) 非参数统计适用情况
(1)偏态分布资料; (2)总体分布不明资料; (3)数据一端或两端有未确定值; (4)等级资料; (5)方差不齐资料。
.
8
结果判断:
(1)查表法:当n<25时,查T界值表(符号秩和检验 用),得:
T0.05,11= 10~56,( T0.01, 11 = 5~61) 若T+或T-:落在范围内,则P>0.05;
落在范围外, 则P<0.05;
等于界值, 则P=0.05。
.
9
(2)正态近似法: 若 n>25时, 可近似认为T分布逼近正态分布。
温州医学院环境与公共卫生学院温州医学院环境与公共卫生学院一非参数统计一非参数统计不依赖于总体分布形式不须考虑被研究对象为何不依赖于总体分布形式不须考虑被研究对象为何种分布及分布是否已知不是参数间的比较而是种分布及分布是否已知不是参数间的比较而是用于分布之间的比较
非参数统计分析ppt课件
因为D=0.1865,大于这个临界值,所以原假设不成立 即两个省农民企业家的文化程度分布存在着显著差别。
(注:大样本时α=0.05和α=0.01的界值分别是1.36和1.63, )
5
该定理认为,当样本容量充分大时,把样本观察量分成K类,每一类实际出现的次数 用f0 表示,其理论次数用fe表示,则 2 统计量为:
D Max S ( x ) F ( x ) n n
查找K-S表,根据给定的显著性水平得到临界值dn; 当D< dn时,接受原假设;反之,则拒绝原假设。 例1:公共汽车按计划每15分钟通过某一站点,但由于受到各种不可预测因素的影
响,可能出现晚到和早到的现象。现通过一天的随机观察(共20次),获得 如下表一系列数据。请检验公共汽车通过某一站点的时间是否服从于 u=1.6,б =3的正态分布。
解:H0:消费者对五种类型的汽车的偏爱程度没有显著差别(即服从均匀分布) H1:消费者对五种类型的汽车的偏爱程度有显著差别(即不服从均匀分布)
2 2 2 ( f f ) (2 1 0 2 0 0 ) (2 2 3 2 0 0 ) 2 0 e 1 3 6 .4 fe 2 0 0 2 0 0 i 1 k 2 在 5 % 条 件 下 , 经 查 表 得 临 界 值 : ) 9 .4 8 8 0 .0 5 (4
1
2
经验分布函数 () f/ n F ( X ) f/ m Fx
1 1
2 2
1 2( F (x )F x )
58 109 156 200 222 236
31 77 130 203 254 274
0.2458 0.4619 0.6610 0.8475 0.9408 1.0000
《非参数统计》课件
核密度估计
详细讲解核密度估计方法, 可用于估计未知分布函数 的概率密度函数。
K近邻算法
介绍K近邻算法在非参数统 计中的应用,用于分类和 估计未知函数。
常用方法本 的中位数差异,对于不 符合正态分布的数据非 常有用。
Kruskal-Wallis检验
一种非参数方法,用于 比较多个独立样本的总 体分布,可以替代方差 分析。
介绍常用于非参数统计的软件和工具,帮助读者选择适合自己的数据分析工具。
3 Q&A
解答读者在非参数统计方面的疑问和问题,提供进一步的讨论和交流。
总结
1 非参数统计的优势和劣势总结
总结非参数统计方法和传统参数统计方法的优势和劣势,帮助选择合适的分析方法。
2 非参数统计的前景和未来发展方向
讨论非参数统计的前景和未来的发展方向,以及可能的研究方向。
附录
1 参考文献
提供相关参考文献,方便读者进一步学习非参数统计的理论和应用。
2 常用软件和工具介绍
Mann-Whitney U检 验
非参数的秩和检验方法, 用于比较两个独立样本 的总体分布。
实例应用
医疗领域的应用
展示非参数统计在医疗研究 中的应用,如临床试验和数 据分析。
社会调查中的应用
探讨非参数统计在社会调查 和民意调查中的应用,如对 人口统计数据的分析。
金融风险评估中的应用
介绍非参数统计在金融领域 中的应用,如风险评估和市 场预测。
《非参数统计》PPT课件
非参数统计是一门关于数据分析的重要领域,本课件将介绍非参数统计的基 本原理、常用方法和实例应用,以及其在医疗、社会调查和金融方面的应用。
简介
非参数统计是一种不基于总体概率分布的统计方法,适用于各种数据类型,具有广泛的应用场景 和灵活性。
非参数统计分析教学课件
Python
介绍
Python是一种通用编程语 言,因其易读性和易用性 而被广泛用于数据分析和 科学计算。
特点
Python拥有强大的科学计 算库,如NumPy、 Pandas和SciPy等,可进 行数据清洗、统分析等 多种任务。
教程资源
Python的在线教程和书籍 资源丰富,同时还有大量 的科学计算社区和论坛可 供交流。
数据流处理
数据流处理技术可以实时处理大规模数据,为非参数统计分析提供 新的可能性。
云计算
云计算平台可以提供弹性可扩展的计算资源,方便非参数统计分析 的进行。
THANKS
感谢观看
洗和校验。
高维数据的非参数统计分析挑战
维度诅咒
高维数据可能导致传统的非参数统计分析方法失 效,需要开发新的方法。
数据稀疏性
高维数据可能导致数据稀疏,使得统计分析结果 不稳定。
特征选择
高维数据需要进行特征选择,以减少噪声和冗余 ,提高分析效率。
大数据处理技术在非参数统计分析中的应用前景
并行计算
利用并行计算技术可以提高非参数统计分析的效率和准确性。
应用场景与优势
应用场景
适用于数据类型复杂、分布不明确或 数据量较小的情况;例如,生物医学 研究、金融数据分析、社会学调查等 领域。
优势
能够更好地揭示数据的内在结构和关 系;对数据的假设较少,避免过度拟 合和误判;同时具有较高的灵活性和 普适性,能够适用于多种场景。
02
CATALOGUE
非参数统计方法
聚类分析
01
聚类分析是一种非参数统计方法 ,用于将相似的对象归为同一类 ,将不相似的对象归为不同类。
02
聚类分析通过计算对象之间的距 离或相似性来将它们分组,常见 的聚类分析方法有层次聚类、K均 值聚类和DBSCAN聚类等。
《非参数统计分析》PPT课件
0.011014 0.034733 3.263554 -3.207570 0.928736 -0.043640 3.458105
9.061568 0.010772
此数据的正态性检验是非正态。
非参数统计归纳起来有如下的三点优点:
1. 对总体的假定少; 2. 可以处理许多有问题数据,比如污染的正 态分布,有奇异值的情形;
组别 1 1 1 1 1 2 1 1 1 1
2
负债率 80 80 82 82 83 84 84 86 91 91 93
秩
12 13 14 15 16 17 18 19 20 21 22
组别 2 2 1 1 1 2 2 2 2 2
2
如果我们将12家工业企业的秩相加是94,其平均秩是7.88,将 10家商业企业的秩相加得159,其平均秩为15.9,这就给我们一个 可以考虑的信息,两种企业的资产负债是有差异的。他们的平均秩 不同。
然而,在实际生活中,那种对总体分布的假定并不是 能随便做出的。有时,数据并不是来自所假定分布的总体。 或者数据根本不是来自一个总体,数据因为种种原因被严 重污染。这样,在假定总体分布的情况下进行推断的做法 就可能产生错误的结论。于是,人们希望在不假定总体分 布的情况下,尽量从数据本身来获得所需要的信息。这就 是非参数统计的宗旨。因为非参数统计方法不利用关于总 体分布的相关信息,所以,就是在对于总体分布的任何信 息都没有的情况下,它也能很容易而又较为可靠地获得结 论。这时非参数方法往往优于参数方法。在台湾这种方法 称为“无母数统计”,即不知到总体信息的统计方法。
120
Series: JUNZHI
Sample 1 1000
100
Observations 1000
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
非参数统计
目录
第一章 绪论 第二章 S-Plus基础 第三章单一样本的推断问题 第四章两样本位置和尺度检验 第五章多总体的统计检验 第六章分类数据的关联分析 第七章秩相关分析和秩回归
第一章 绪 论
主要内容
1. 统计的实践 2. 非参数统计方法简介 3. 参数统计过程与非参数统计的比较 4. 非参数统计的历史 5. 必要的准备知识
3. 参数统计与非参数统计比较
非参数检验的优点
对总体假定较少,有广泛的适用 性,结果稳定性较好。
1. 假定较少 2. 不需要对总体参数的假定
3. 与参数结果接近
针对几乎所有类型的数据形态。 容易计算
在计算机盛行之前就已经1. 可能会浪费一些信息
特别当数据可以使用参数模型的时候。 Example: Converting Data From Ratio to Ordinal Scale
Pitman于1948年回答了非参数统计方法相对于 参数方法来说的相对效率方面的问题;
非参数统计的历史(续)
60年代中后期,Cox和Ferguson最早将非参数方法应 用于生存分析。 70年代到80年代,非参数统计借助计算机技术和大量 计算获得更稳健的估计和预测,以P.J.Huber以及 F.Hampel为代表的统计学家从计算技术的实现角度, 为衡量估计量的稳定性提出了新准则。 90年代有关非参数统计的研究和应用主要集中在非参 数回归和非参数密度估计领域,其中较有代表性的人 物是Silverman和J. Fan。
Frequency
25 30 29 34 24 25 13 32 24 30 32 37
9.5 14.0 12.0 21.0 7.5 9.5 2.0 17.5 7.5 14.0 17.5 24.0
5
4
3
2 Std. Dev = 9.17 Mean = 14.8 0 0.0 5.0 10.0 15.0 20.0 25.0 N = 15.00
3. 有很强的假定
Example: 正态分布
4. 例子: Z Test, t Test, 2 Test
一个例子:
对两组学生进行语法测试,如何比较两 组学生的成绩是否存在差异?
原始数据
秩
Histogram
For GROUP= Group2
6
Histogram
44 33 22 8 47 31 40 30 33 35 18 21 35 28 22 26.0 19.5 5.5 1.0 27.0 16.0 25.0 14.0 19.5 22.5 3.0 4.0 22.5 11.0 5.5
2. 大样本手算相当麻烦
3. 一些表不易得到
本学期内容结构体系
第一章 S-Plus 基础
第二章 非参数统计基础
第三章 单一总体的 统计推断
第四章 两总体位置 和尺度推断
第五章 多总体位置 和尺度推断
第六章 定性数据的 独立性
第七章 定量数据的相 关性和回归
第八章 非参数密度估计
第九章 非参数回归
1. 统计的实践
我们周围的世界
符号和数据就是整个世界。 数据繁衍,信息匮乏:观察数据激增,设计数据 细分。 数据的复杂性和不确定性的特点更为突出。 数据分析方法和手段不足。
统计的方法论
就方法论而言,统计分析主要解决两方面的 问题:
寻找数据内部差异中共同的特征。 寻找数据之间本质的差异。
2. 数据的形态各异
定量数据
定序数据
Example: Good-Better-Best
名义数据
Example: Male-Female
3.例子: Wilcoxon Rank Sum Test/Run Test
F, F, F, F, F, F, F, F, M, M, M, M, M, M, M F, M, F, M, F, M, F, M, F, M, F, M, F, M, F
统计分析的目标是从数据中发现比数据本身 更为有用的知识
2. 非参数统计方法简介
参数方法
定义:样本被视为从分布族的某个参数族抽取出来的 总体的代表,而未知的仅仅是总体分布具体的参数值, 推断问题就转化为对分布族的若干个未知参数的估计 问题,用样本对这些参数做出估计或者进行某种形式 的假设检验,这类推断方法称为参数方法。 比如: (1)研究保险公司的索赔请求数时,可能假定索赔请求 数来自泊松分布P(a);
(2)研究化肥对农作物产量的影响效果时,平均意义 之下,每测量单元(可能是)产量服从正态分布 N(a,b).
一个典型的参数检验过程
1. 总体参数
Example: Population Mean
2. 假定数据的形态为
Whole Numbers or Fractions
Example: Height in Inches (72, 60.5, 54.7)
非参数统计的主要内容
内容 非参数检验 中位数检验 秩和检验 符号检验 Wilcoxon 检验 Kruskal-Wallis 检验 Friedman检验 Spearman秩相关 Kolmogorov-Smirnov 相应的参数检验
2独立样本
2 配对样本 /单一样本 >2独立样本 两因素 相关性检验 分布的检验
1
For GROUP= Group1
6
5
RANK of SCORE
4
3
2 Std. Dev = 6.28 Mean = 13.0 0 0.0 5.0 10.0 15.0 20.0 25.0 N = 12.00
Frequency
1
RANK of SCORE
非参数检验过程
1.不涉及总体的分布
Example: Probability Distributions, Independence
独立样本t检验
成对样本 t-检验 单一因素ANOVA 双因素ANOVA Pearson相关性检验
4. 非参数统计的历史
非参数统计的历史
非参数统计的形成主要归功于20世纪40年代~ 50年代化学家F.Wilcoxon等人的工作。 Wilcoxon于1945年提出两样本秩和检验,1947 年Mann和Whitney二人将结果推广到两组样 本量不等的一般情况;
目录
第一章 绪论 第二章 S-Plus基础 第三章单一样本的推断问题 第四章两样本位置和尺度检验 第五章多总体的统计检验 第六章分类数据的关联分析 第七章秩相关分析和秩回归
第一章 绪 论
主要内容
1. 统计的实践 2. 非参数统计方法简介 3. 参数统计过程与非参数统计的比较 4. 非参数统计的历史 5. 必要的准备知识
3. 参数统计与非参数统计比较
非参数检验的优点
对总体假定较少,有广泛的适用 性,结果稳定性较好。
1. 假定较少 2. 不需要对总体参数的假定
3. 与参数结果接近
针对几乎所有类型的数据形态。 容易计算
在计算机盛行之前就已经1. 可能会浪费一些信息
特别当数据可以使用参数模型的时候。 Example: Converting Data From Ratio to Ordinal Scale
Pitman于1948年回答了非参数统计方法相对于 参数方法来说的相对效率方面的问题;
非参数统计的历史(续)
60年代中后期,Cox和Ferguson最早将非参数方法应 用于生存分析。 70年代到80年代,非参数统计借助计算机技术和大量 计算获得更稳健的估计和预测,以P.J.Huber以及 F.Hampel为代表的统计学家从计算技术的实现角度, 为衡量估计量的稳定性提出了新准则。 90年代有关非参数统计的研究和应用主要集中在非参 数回归和非参数密度估计领域,其中较有代表性的人 物是Silverman和J. Fan。
Frequency
25 30 29 34 24 25 13 32 24 30 32 37
9.5 14.0 12.0 21.0 7.5 9.5 2.0 17.5 7.5 14.0 17.5 24.0
5
4
3
2 Std. Dev = 9.17 Mean = 14.8 0 0.0 5.0 10.0 15.0 20.0 25.0 N = 15.00
3. 有很强的假定
Example: 正态分布
4. 例子: Z Test, t Test, 2 Test
一个例子:
对两组学生进行语法测试,如何比较两 组学生的成绩是否存在差异?
原始数据
秩
Histogram
For GROUP= Group2
6
Histogram
44 33 22 8 47 31 40 30 33 35 18 21 35 28 22 26.0 19.5 5.5 1.0 27.0 16.0 25.0 14.0 19.5 22.5 3.0 4.0 22.5 11.0 5.5
2. 大样本手算相当麻烦
3. 一些表不易得到
本学期内容结构体系
第一章 S-Plus 基础
第二章 非参数统计基础
第三章 单一总体的 统计推断
第四章 两总体位置 和尺度推断
第五章 多总体位置 和尺度推断
第六章 定性数据的 独立性
第七章 定量数据的相 关性和回归
第八章 非参数密度估计
第九章 非参数回归
1. 统计的实践
我们周围的世界
符号和数据就是整个世界。 数据繁衍,信息匮乏:观察数据激增,设计数据 细分。 数据的复杂性和不确定性的特点更为突出。 数据分析方法和手段不足。
统计的方法论
就方法论而言,统计分析主要解决两方面的 问题:
寻找数据内部差异中共同的特征。 寻找数据之间本质的差异。
2. 数据的形态各异
定量数据
定序数据
Example: Good-Better-Best
名义数据
Example: Male-Female
3.例子: Wilcoxon Rank Sum Test/Run Test
F, F, F, F, F, F, F, F, M, M, M, M, M, M, M F, M, F, M, F, M, F, M, F, M, F, M, F, M, F
统计分析的目标是从数据中发现比数据本身 更为有用的知识
2. 非参数统计方法简介
参数方法
定义:样本被视为从分布族的某个参数族抽取出来的 总体的代表,而未知的仅仅是总体分布具体的参数值, 推断问题就转化为对分布族的若干个未知参数的估计 问题,用样本对这些参数做出估计或者进行某种形式 的假设检验,这类推断方法称为参数方法。 比如: (1)研究保险公司的索赔请求数时,可能假定索赔请求 数来自泊松分布P(a);
(2)研究化肥对农作物产量的影响效果时,平均意义 之下,每测量单元(可能是)产量服从正态分布 N(a,b).
一个典型的参数检验过程
1. 总体参数
Example: Population Mean
2. 假定数据的形态为
Whole Numbers or Fractions
Example: Height in Inches (72, 60.5, 54.7)
非参数统计的主要内容
内容 非参数检验 中位数检验 秩和检验 符号检验 Wilcoxon 检验 Kruskal-Wallis 检验 Friedman检验 Spearman秩相关 Kolmogorov-Smirnov 相应的参数检验
2独立样本
2 配对样本 /单一样本 >2独立样本 两因素 相关性检验 分布的检验
1
For GROUP= Group1
6
5
RANK of SCORE
4
3
2 Std. Dev = 6.28 Mean = 13.0 0 0.0 5.0 10.0 15.0 20.0 25.0 N = 12.00
Frequency
1
RANK of SCORE
非参数检验过程
1.不涉及总体的分布
Example: Probability Distributions, Independence
独立样本t检验
成对样本 t-检验 单一因素ANOVA 双因素ANOVA Pearson相关性检验
4. 非参数统计的历史
非参数统计的历史
非参数统计的形成主要归功于20世纪40年代~ 50年代化学家F.Wilcoxon等人的工作。 Wilcoxon于1945年提出两样本秩和检验,1947 年Mann和Whitney二人将结果推广到两组样 本量不等的一般情况;