第四章 非晶态结构与性质

合集下载

第四章非晶态结构与性质

第四章非晶态结构与性质

第四章⾮晶态结构与性质第四章⾮晶态结构与性质内容提要熔体和玻璃体是物质另外两种聚集状态。

相对于晶体⽽⾔,熔体和玻璃体中质点排列具有不规则性,⾄少在长距离范围结构具有⽆序性,因此,这类材料属于⾮晶态材料。

从认识论⾓度看,本章将从晶体中质点的周期性规则形排列过渡到质点微观排列的⾮周期性、⾮规则性来认识⾮晶态材料的结构和性质。

熔体特指加热到较⾼温度才能液化的物质的液体,即较⾼熔点物质的液体。

熔体快速冷却则变成玻璃体。

因此,熔体和玻璃体是相互联系、性质相近的两种聚集状态,这两种聚集状态的研究对理解⽆机材料的形成和性质有着重要的作⽤。

传统玻璃的整个⽣产过程就是熔体和玻璃体的转化过程。

在其他⽆机材料(如陶瓷、耐⽕材料、⽔泥等)的⽣产过程中⼀般也都会出现⼀定数量的⾼温熔融相,常温下以玻璃相存在于各晶相之间,其含量及性质对这些材料的形成过程及制品性能都有重要影响。

如⽔泥⾏业,⾼温液相的性质(如粘度、表⾯张⼒)常常决定⽔泥烧成的难易程度和质量好坏。

陶瓷和耐⽕材料⾏业,它通常是强度和美观的有机结合,有时希望有较多的熔融相,⽽有时⼜希望熔融相含量较少,⽽更重要的是希望能控制熔体的粘度及表⾯张⼒等性质。

所有这些愿望,都必须在充分认识熔体结构和性质及其结构与性质之间的关系之后才能实现。

本章主要介绍熔体的结构及性质,玻璃的通性、玻璃的形成、玻璃的结构理论以及典型玻璃类型等内容,这些基本知识对控制⽆机材料的制造过程和改善⽆机材料性能具有重要的意义。

4.1 熔体的结构⼀、对熔体的⼀般认识⾃然界中,物质通常以⽓态、液态和固态三种聚集状态存在。

这些物质状态在空间的有限部分则称为⽓体、液体和固体。

固体⼜分为晶体和⾮晶体两种形式。

晶体的结构特点是质点在三维空间作规则排列,即远程有序;⾮晶体包括⽤熔体过冷⽽得到的传统玻璃和⽤⾮熔融法(如⽓相沉积、真空蒸发和溅射、离⼦注⼊等)所获得的新型玻璃,也称⽆定形体,其结构特点是近程有序,远程⽆序。

无机材料科学基础第四章非晶态结构与性质

无机材料科学基础第四章非晶态结构与性质

第4章非晶态结构与性质一、名词解释1.熔体与玻璃体:熔体即具有高熔点的物质的液体。

熔体快速冷却形成玻璃体。

2.聚合与解聚:聚合:各种低聚物相互作用形成高聚物解聚:高聚物分化成各种低聚物3.晶子学说与无规则网络学说:晶子学说(有序、对称、具有周期性的网络结构):1硅酸盐玻璃中含有无数的晶子2晶子的互相组成取决于玻璃的化学组成3晶子不同于一般微晶,而是带有晶体变形的有序区域,在晶子中心质点排列较有规律,远离中心则变形程度增大4晶子分散于无定形物质中,两者没有明显界面无规则网络学说(无序不对称不具有周期性的网络结构)1形成玻璃态的物质与晶体结构相类似,形成三维的空间网格结构2这种网络是离子多面体通过氧桥相连进而向三维空间规则4.网络形成体与网络变性体:网络形成体:能够单独形成玻璃的氧化物网络变性体:不能单独形成玻璃的氧化物5.桥氧与非桥氧:桥氧:玻璃网络中作为两个成网多面体所共有顶角的氧非桥氧:玻璃网络中只与一个成网多面体相连的氧二、填空与选择1.玻璃的通性为:各向同性、介稳性、由熔融态向玻璃态转化是可逆与渐变的,无固定熔点、由熔融态向玻璃态转化时,物理、化学性质随温度的变化连续性和物理化学性质随成分变化的连续性。

2.氧化物的键强是形成玻璃的重要条件。

根据单键强度的大小可把氧化物中的正离子分为三类:网络形成体、网络中间体和网络改变体;其单键强度数值范围分别为单键强度>335KJ/mol、单键强度介于250~335KJ/mol 和单键强度<250~335KJ/mol。

3.聚合物的形成可分为三个阶段,初期:石英颗粒的分化;中期:缩聚与变形;后期:在一定时间内分化与缩聚达到平衡。

4.熔体结构的特点是:近程有序、远程无序。

5.熔体是物质在液相温度以上存在的一种高能量状态,在冷却的过程中可以出现结晶化、玻璃化和分相三种不同的相变过程。

6.在玻璃性质随温度变化的曲线上有二个特征温度Tg(脆性温度)和Tf (软化温度),与这二个特征温度相对应的粘度分别为1012Pa·s和108Pa·s。

第4章 非晶态结构与性质 知识点065hxh

第4章 非晶态结构与性质 知识点065hxh

知识点065. 玻璃形成的条件
玻璃化和分相后的状态都有向晶体转化的倾向
析晶放出的能量与形成玻璃放出的能量较为接近的体系,从玻璃向晶体转化的驱动力很小,形成玻璃后可以长时间稳定存在,因此更容易形成玻璃
从熔体中形成晶体时,成核、生长速率与过冷度的关系
u
Iv
u
u
ΔT Iv
更容易析晶 更容易形成玻璃
A
B C
10-4 10-2 102 104 106 108 1010
1
120
100 80 60
40 20 过冷度(K )
时间(s )
V β/V ≈(π/3)I v u 3t 4
析晶区 玻璃区
过冷度越大,析晶需要的冷却时间越短
过冷度过大,析晶需要的冷却时间却变长
A
B C
10-4 10-2 102 104 106 108 1010
1
120
100 80 60
40 20 过冷度(K )
时间(s )
析晶区 玻璃区
析晶的最短时间t n 析晶的过冷度ΔT n
临界冷却速率 ΔT n / t n
聚合物结构理论的解释
离子键化合物
金属键物质
纯粹共价键化合物
离子键和金属键向共价键过渡
极性共价键
近程有序。

远程无序
金属共价键
近程有序。

远程无序
形成玻璃必须具有离子键或金属键向共价键过渡的混合键型
随堂练习:答:
随堂练习:答:
课后习题:P202-204 4.5, 4.14, 4.21, 4.23。

第4章 非晶态结构与性质

第4章 非晶态结构与性质

硼反常现象: 由于B3+离子配位数变化引 起性能曲线上出现转折的现象。
(6)混合碱效应:粘度↑ 混合碱效应:熔体中同时引入一种以上R2O或RO时,粘度比等量的一种R2O或RO高。 与离子半径、配位等结晶化学条件不同而相互制约有关。
(7)离子极化:粘度↓ 极化使离子变形,共价键成分增加,减弱Si-O键力。温度一定时,引入等量的具 有 18电子层结构的二价副族元素离子 Zn2+、Cd2+、Pb2+等较引入含8电子层结构的 碱土金属离子更能降低系统的粘度,即当粘度一定时,系统对应温度更低。 η=1012Pa·s时18Na2O·12RO·70SiO2玻璃对应温度 8电子结构 T(℃) 第四周期 第五周期 第六周期 CaO SrO BaO 533 511 482 18电子结构 T(℃) ZnO CdO PbO 513 487 422
3. 硼酸盐熔体随碱含量减少,表面张力温度系数dσ/dT由负逐 渐接近零值,并有可能出现正值。 【原因】温度升高:熔体中 各组分活动能力增强,破坏熔体表面 [BO3] 平面基团的整齐排 列,使表面张力增大。
2.表面张力-组成关系
结构类型相同的离子晶体,晶格能越大,则熔体表面张力越
大;单位晶胞边长越小,则熔体表面张力越大。
1.粘度-温度关系
(1) 弗仑格尔公式 ф=A1e-△u/kT η=1/ф=A2e△u/kT logη=A+B/T 式中 △u——质点粘滞活化能; K——波尔兹曼常数; T——绝对温标; A1 、 A2 、 A——与熔体组成有关的常数。
【注意】该公式假定粘滞活化能是 与温度无关的常数,则只能应用于 简单的不缔合的液体或在一定温度 范围内缔合度不变的液体。对于硅 酸盐熔体在较大温度范围时,斜率 会发生变化,因而在较大温度范围 内以上公式不适用。

第4章-非晶态结构与性质

第4章-非晶态结构与性质

50
金属氧化物(mol%)
图4-10 网络改变剂氧化物对熔融石英粘度的影响
□=Li2O-SiO2 1400℃ ;○=K2O-SiO2 1600℃;△=BaO-SiO2 1700℃
1000
K 100 η(Pa.s) Na Li
10
1
在简单R2O-SiO2中,碱 金属离子R+对粘度的影响与本 身含量有关。 当其含量较低时(此时氧 硅比较小): Li+>Na+>K+>Rb+>Cs+ 熔体中R2O含量较高时 : K+>Na+>Li+
玻璃粘度随温度变化的速率称为料性。相
同粘度变化范围内,所对应的温度变化范围大,
称为料性长。反之,为料性短。(了解) 见P174, Fig.4.9
举例1 4.6 熔体粘度在727℃时是107Pa· s,在1156℃时是 103Pa· s,在什么温度下它是106Pa· s? 解:根据
A=-6.32,B=13324
图4-6 偏硅酸钠熔体结构模型(二维示意图)
§ 4.1.3 熔体的分相
分相:在某些情况下,硅酸盐熔体会分成2种或2 种以上的不混溶液相。 硅酸盐熔体有:Si-O聚合体;R-O多面体 正离子R和氧的键强近似地取决于正离子电荷与 半径之比。Z/r越大,分相倾向越明显。反之,不易 导致分相。
Li+的半径小,易产生第二液相的液滴,造成乳 光现象。
[SiO4]Na4+[Si2O7]Na6 ——[Si3O10]Na8+ Na2O
[SiO4]Na4+[SinO3N+1]Na(2n+2) ——-——
[Sin+1O3n+4]Na(2n+4)+ Na2O 后期:在一定时间和一定温度下,缩聚-分化达到平衡。

第4章 非晶态结构与性质 知识点066hxh

第4章 非晶态结构与性质 知识点066hxh

知识点066. 玻璃的结构理论
学说要点:
520℃-590 ℃实验依据
100 T(℃)
200 400
300 500
玻璃的网络是不规则的、非周期性的,因此玻璃的内能比晶体的内能要大
缺乏对称性和周期性的重复
石英玻璃
0 0.04 0.08 0.12 0.16 0.20 0.24 λ
方石英
λ
硅胶
sinθ
优点:缺陷:
优点:均匀性、连续性及无序性
缺陷:
硼硅酸盐玻璃分相与不均匀
光学玻璃氟化物与磷酸盐玻璃分相
•两大学说的相同点:
•两大学说的不同点:
近程有序远程无序
本章知识点回顾:
知识点060. 液体的一般性状与结构
知识点061. 硅酸盐熔体的聚合物结构理论知识点062. 熔体的粘度及变化
知识点063. 熔体的表面张力及变化
知识点064. 玻璃的通性、玻璃的形成与转变知识点065. 玻璃形成的条件
知识点066. 玻璃的结构理论。

第四章—-非晶态结构与性质-2011

第四章—-非晶态结构与性质-2011

B3+开始处于层状[BO3]中,使结构趋 于疏松,粘度又逐步下降。
15 14 Lg η(η:P) 13 12 11 10 0 4 8 12 16 20 24 28 32 B2O3(mol%)
16Na2O·xB2O3·(84-x)SiO2系统玻璃中 560℃时 的粘度变化
(5) 混合碱效应
熔体中同时引入一种以上的R2O或 RO时,粘
(4) 阳离子配位数 硅酸盐Na2O-SiO2系统中: 当B2O3含量较少时,Na2O/ B2O3>1,结构中” 游离”氧充足,B3+以[BO4]四面体状态加 入到[SiO4]四面体网络,将断开的网络重新 连接起来,结构趋于紧密,粘度随含量升 高而增加;
当Na2O/ B2O3 约为1时(B2O3含量约为15 %),B3+形成[BO4]四面体最多,粘度 达到最高点; B2O3含量继续增加,较多量的B2O3引 入使Na2O/ B2O3<1,“游离”氧不足,
聚合物 的形成 过程:

Si 桥氧 非桥氧
Na2O和Si—O网络反应示意图 以上这种在Na2O的作用下,使架状[SiO4] 断裂的过程称为熔融石英的分化过程。
(a)
(b)
(c)
(d)
四面体网络被碱化示意图
分化的结果将产生许多由硅氧四面体短链 形成的低聚物,以及一些没有被分化完全 的残留高聚物——石英骨架,即石英的 “三维晶格碎片”,用[SiO2]n表示。
改变既取决于加入的化合物的本性,也取
决于原来基础熔体的组成。
4.3 玻璃的形成
4.3.1 玻璃的通性
(1)各向同性 无内应力存在的均质玻璃在各方向 的物理性质,如折射率、硬度、弹性 模量、热膨胀系数、导热系数以及机 械能等都是相同的。 (2)介稳性 在一定热力学条件下,系统虽未处 于最低能量状态,却处于一种可以较 长时间存在的状态,称为处于介稳状 态。

非晶态材料的结构和性质探究

非晶态材料的结构和性质探究

非晶态材料的结构和性质探究随着科学技术的不断发展,材料科学领域中有一个重要的分支——非晶态材料。

相较于晶态材料,非晶态材料具有更多的特殊性质,广泛应用于电子、光学、力学等众多领域。

本文将探究非晶态材料的结构和性质,着重讲解非晶态材料相变过程中的特性。

一、非晶态材料的特性非晶态材料是一种无序的结构状态,其原子或分子排列没有规则性可循。

这种无序状态可以使得非晶态材料具有比晶态材料更好的性质,例如:1. 力学性质:非晶态材料具备比晶态材料更高的强度和更好的韧性,因为其无序结构可以吸收更多的能量,从而避免应力集中的发生。

2. 热学性质:非晶态材料比晶态材料更好地维持其形状和结构,因为其良好的热稳定性可以防止晶界不稳定,使受热材料没有破裂的风险。

3. 电学性质:非晶态材料有时比晶态材料具有更好的导电性和磁性,因为其无序性使电子和电离子的移动更容易,比如非晶态碳材料、非晶态合金等。

二、非晶态材料的制备方法非晶态材料的制备方法多样,其中最常见的有:1. 溅射法:利用高能量离子束轰击原材料,将离子以固体形式沉积到厚度为20~100nm的基板上,形成非晶态薄膜材料。

2. 快速凝固法:将液态金属流淌在高温基底板上,迅速冷却至极低温度(20K),从而得到非晶态合金材料。

3. 机械法:通过机械磨粉、球磨、冲击等方式制备纳米非晶态材料。

三、非晶态材料的相变过程相变是指物质由一种状态转变为另一种状态的过程。

相较于晶态材料,非晶态材料的相变过程更加独特和复杂。

以非晶态金属为例,在高温下它们呈现出非晶态,但当温度下降时,非晶态材料会发生玻璃-金属相变,这种相变通常被称为相变前的热事件(Tg)和相变后的热事件(Tx)。

Tg是非晶态材料从固体状态转变为液体状态的温度,此时其结构变得更加有序;而Tx则是非晶态材料从玻璃状态转变为金属状态的温度,此时不光温度变化,而且其结构改变也十分复杂。

Tg 和Tx温度升高或降低对材料的性质产生重要影响。

第4章习题及答案 无机材料科学基础

第4章习题及答案 无机材料科学基础

第四章非晶态结构与性质4-3试用实验方法鉴别晶体SiO2、SiO2玻璃、硅胶和SiO2熔体。

它们的结构有什么不同?解:利用X射线检测。

晶体SiO2——质点在三维空间做有规律的排列,各向异性。

SiO2熔体——内部结构为架状,近程有序,远程无序。

SiO2玻璃——各向同性。

硅胶——疏松多孔。

4-4影响熔体粘度的因素有哪些?试分析一价碱金属氧化物降低硅酸盐熔体粘度的原因。

解:(1)影响熔体粘度的主要因素:温度和熔体的组成。

碱性氧化物含量增加,剧烈降低粘度。

随温度降低,熔体粘度按指数关系递增。

(2)通常碱金属氧化物(Li2O、Na2O、K2O、Rb2O、Cs2O)能降低熔体粘度。

这些正离子由于电荷少、半径大、和O2-的作用力较小,提供了系统中的“自由氧”而使O/Si比值增加,导致原来硅氧负离子团解聚成较简单的结构单位,因而使活化能减低、粘度变小。

4-5熔体粘度在727℃时是107Pa·s,在1156℃时是103 Pa·s,在什么温度下它是106 Pa·s?解:根据727℃时,η=107Pa·s,由公式得:(1)1156℃时,η=103 Pa·s,由公式得:(2)联立(1),(2)式解得∴A=-6.32,B=13324当η=106 Pa·s时,解得t =808.5℃。

4-14影响玻璃形成过程中的动力学因素是什么?结晶化学因素是什么?试简要叙述之。

解:影响玻璃形成的关键是熔体的冷却速率,熔体是析晶还是形成玻璃与过冷度、粘度、成核速率、晶体生长速率有关。

玻璃形成的结晶化学因素有:复合阴离子团大小与排列方式,键强,键型。

4-16有两种玻璃其组成(mol%)如下表,试计算玻璃的结构参数,并比较两种玻璃的粘度在高温下何者大?解:1号:Z=4,Al3+被视为网络形成离子X1=2R-Z=0.5,Y1=4-0.5=3.52号:Z=4,Al3+被视为网络改变离子X2=2R-Z=1.5,Y2=4-1.5=2.5Y1>Y2 高温下1号玻璃的粘度大。

第4章 非晶态结构与性质 知识点060

第4章 非晶态结构与性质 知识点060

2.晶体的熔解热比液体的气化热小得多
Na晶体 Zn晶体 冰
熔融热 (kJ/mol) 2.51
6.70 6.03
而水的气化热为40.46kJ/mol。这说明晶体和液体内 能差别不大,质点在固体和液体中的相互作用力是接 近的。
3.固液态热容量相近
几种金属固、液态时的热容值
表明质点在液体中的热运动性质(状态)和在固体中 差别不大,基本上仍是在平衡位置附近作简谐振动。
强度 I
4. 气体-液体-玻璃-晶体的X射线衍射谱比较
气体 液体
玻璃 晶体 2θ
液体衍射峰最高点的位置与晶体相近,表明了液 体中某一质点最邻近的几个质点的排列形式与间距和晶 体中的相似。液体衍射图中的衍射峰都很宽阔,这是和 液体质点的有规则排列区域的高度分散有关。由此可以 认为,在高于熔点不太多的温度下,液体内部质点的排 列并不是象气体那样杂乱无章的,相反,却是具有某种 程度的规律性。这体现了液体结构中的近程有序和远程 无序的特征。
学习指导
4.1 熔体的结构
一、对液体的一般认识 二、硅酸盐熔体结构――聚合物理论
一、对液体结构的一般认识
知识点060. 液体的一般性状与结构
1.晶体与液体的体积密度相近
晶体熔化为液体时体积变化较小,一般不超过10% (相当于质点间平均距离增加3%左右);而当液体气化时, 体积要增大数百倍至数千倍(例如水增大1240倍)。
第4章 非晶态结构与性质
4.1 熔体的结构 4.2 熔体的性质 4.3 玻璃的通性 4.4 玻璃的形成
学前指导
将学习到的知识点:
知识点060. 液体的一般性状与结构 知识点061. 硅酸盐熔体的聚合物结构理论 知识点062. 熔体的粘度及变化 知识点063. 熔体的表面张力及变化 知识点064. 玻璃的通性、玻璃的形成与转变 知识点065.玻璃形成的条件 知识点066. 玻璃的结构理论

第四章-非晶态结构与性质

第四章-非晶态结构与性质

b.VFT公式(Vogel-Fulcher-Tammann公式) (自由体积理论)
lg A B
T T0
式中 A、B、T0――均是与熔体组成有关的常数。
c. 特征温度(过剩熵理论)
某些熔体的粘度-温度曲线
c1ea..0.变操应10.5形作变Pa点点点·s:的::粘粘温度粘度度相度相,当相当是于当于指1于0变140~形 1×开041始P0a1温·3sP时度a·的,s的温对温度应度,于,是热在玻膨该璃胀温成曲度形, 的粘线温性上度流最。动高事点实温上度不,复又存称在为,膨 f玻胀.成璃软形在化温该点度温。范度围退: 粘火度时相不当能于除 1成去d于0.3形4其L~.i5操t应1×t0e作力7l1eP0与t。ao6·Pn成sa软的·形s化温的时点度温能:。度粘保指,度持准它相制备是当品 形b用.状退0.所火55对点~应(0.7的T5gm的)m温: 直度粘径范度,围相2。3当cm 于长g.熔1的0化1玻2 温P璃a度纤·s的:维粘温在度度特相,制当是炉于消中10除以Pa·s 的玻5温℃璃度/中。m应在i力n速此的率温上加度限热下温,,度在玻,自璃也重能 以液称下的一的为达温般澄玻到度要清璃每。求、转分的均变 钟速化温伸度得度长熔以。一化完毫。成米玻。时璃
(4)高价金属氧化物
a. 网络形成氧化物(网络形成体)
SiO2、P2O5、B2O3等,他们的特点时正离子半径 高小,电价高,与 氧形成混合键,能单独形成玻 璃。(硅酸盐、磷酸盐、硼酸盐玻璃)
b.网络中间体氧化物
Al2O3 当石英玻璃中不仅混入Na2O氧化物,还混有
Al2O3时,成为钠铝硅酸盐玻璃,,当Al2O3/ Na2O≤1时, Al2O3作为网络形成氧化物,起到补 网的作用。 Al2O3/ Na2O>1时, Al2O3作为网络 修改氧化物,起到断网的作用。

第4章习题及答案_无机材料科学基础

第4章习题及答案_无机材料科学基础

第四章非晶态结构与性质4-1名词解释熔体与玻璃体分化(解聚)与缩聚网络形成体网络中间体网络改变体桥与非桥氧硼反常现象单键强度晶子学说与无规则网络学说4-2试简述硅酸盐熔体聚合物结构形成的过程和结构特点。

4-3试用实验方法鉴别晶体SiO2、SiO2玻璃、硅胶和SiO2熔体。

它们的结构有什么不同?4-4 试述石英晶体、石英熔体、Na2O·2SiO2熔体结构和性质上的区别。

4-5影响熔体粘度的因素有哪些?试分析一价碱金属氧化物降低硅酸盐熔体粘度的原因。

4-6熔体粘度在727℃时是107Pa·s,在1156℃时是103 Pa·s,在什么温度下它是106 Pa·s?(用lnη=A+B/T解之)4-7 SiO2熔体的粘度在1000℃时为1014 Pa·s,在1400℃时为107 Pa·s。

SiO2玻璃粘滞流动的活化能是多少?上述数据为恒压下取得,若在恒容下获得,你认为活化能会改变吗?为什么?4-8一种熔体在1300℃的粘度是310 Pa·s,在800℃是107 Pa·s,在1050℃时其粘度为多少?在此温度下急冷能否形成玻璃?4-9试用logη=A+B/(T-T0)方程式,绘出下列两种熔体在1350~500℃间的粘度曲线(logη~1/T)。

两种熔体常数如下:4-10派来克斯(Pyrex)玻璃的粘度在1400℃时是109 Pa·s,在840℃是1013Pa·s。

请回答:(1)粘性流动活化能是多少?(2)为了易于成形,玻璃达到105Pa·s的粘度时约要多高的温度?4-11一种玻璃的工作范围是870℃(η=106Pa·s)至1300℃(η=102.5Pa·s),估计它的退火点(η=1012Pa·s)?4-12一种用于密封照明灯的硼硅酸盐玻璃,它的退火点是544℃,软化点是780℃。

非晶态物质的结构与性质

非晶态物质的结构与性质

非晶态物质的结构与性质在我们的生活中,大部分的物质都是晶体。

晶体是一种有序的结构,它们的分子排列方式是高度固定的,因此晶体的形态也非常规则。

相比之下,非晶态物质则是分子有序排列的一种极端形式,它们的结构没有规则性,因此可以有很多不同的形态和性质。

在本文中,我们将探讨非晶态物质的结构和性质。

什么是非晶态物质?非晶态物质通常被认为是一种“无序”的结构。

简单来说,它们是没有长程有序性的物质,但在局部区域内分子之间可以有一定的“短程有序”。

这意味着分子之间的排列方式不是高度规则的,而是有所波动的。

非晶态物质可以出现在固体、液体和气体状态下,例如玻璃、塑料、橡胶和氧化硅等。

非晶态物质的结构非晶态物质的结构是非常复杂的,因为它们涉及到多个长度尺度上的无序性。

在小尺度上,在分子排列的局部区域内,非晶态物质可能会有一定的短程有序性。

这种局部有序性是由于物质的制备过程中,诸如原子或分子的排列方式不完全随机所导致的。

由于非晶态物质没有长程有序性,其原子和分子的排列方式不会出现周期性的重复。

这也使得非晶态物质的结构非常难以确定。

通常,人们使用散射技术来研究非晶态物质的结构。

这些散射技术包括X射线散射、中子散射、电子衍射以及光散射等技术。

非晶态物质的性质因为非晶态物质的结构没有规则性,所以它们有许多不同于晶体的性质。

本节将会讨论一些非晶态物质特有的性质。

1. 均匀性非晶态物质通常具有非常均匀的结构和成分分布。

这是由于非晶态物质没有周期性结构,使得其分子结构和成分分布在空间上更加均匀。

2. 可塑性非晶态物质通常具有非常好的可塑性。

这是由于其独特的结构,非晶态物质中的分子可以非常容易地滑动,从而使它能够产生大变形而不断裂。

3. 高温稳定性非晶态物质通常具有非常好的高温稳定性。

在高温下,晶体由于其有序排列被破坏而失去了稳定性,而非晶态物质由于其无序方式排列而保持稳定。

这使得一些高温应用中需要具有稳定性的材料,如汽车引擎零件和高温耐受的陶瓷,能够被制造出来。

非晶态材料的结构与性质

非晶态材料的结构与性质

非晶态材料的结构与性质非晶态材料,又称无定形材料或非晶材料。

与晶态材料不同,它们没有经过晶化,也就是说它们的分子没有像晶体一样有序排列。

这些化合物往往是由由金属、半导体或塑料构成的合金或陶瓷,有着非常特殊的性质。

本文将探讨非晶态材料的结构与性质,并探索其在现代工业中的应用。

一、非晶态材料的结构非晶态材料的结构比较难以描述,因为它们不是经过晶体结构有序排列的。

与之对应的,相对应于晶格的是非定向的、无规则的玻璃态;相对于晶体中的原子位置周期性排列,非晶体中的原子位置则是凌乱无序的。

在晶体中,原子的排列是周期性、有序的,而在非晶质中,在几近无序的背景下,原子与原子之间只有短程有序,也就是说,原子之间的距离与平均含量是变化无常且不依赖于空间位置的。

非晶态材料也可以看成是一个微小晶体组成的复合材料,不同晶粒的尺寸从几十Å到几百Å不等,而每个晶粒内的原子则分布得比晶体中原子分布更为凌乱。

二、非晶态材料的性质相比于晶态材料,在非晶态材料中,由于没有晶格,材料的物理性质更加复杂与难以描述。

以下将会介绍几个典型的非晶态材料的性质:1. 坚硬度高:许多非晶态金属材料的硬度都非常高,高达1500-1600HM,相比之下,很多晶体金属材料都只有100-600HM的硬度。

2. 形状记忆效应强:非晶态合金在各种情况下都有优秀的形态回复和形状记忆效应,这让它们在制造高弹性元器件时更加适用。

3. 震动阻尼性能强:非晶态合金的震动阻尼性能非常高,可以有效地抑制振动响应,这对于航空航天等领域有着十分广泛的应用。

4. 导电性能优异:非晶态的金属材料也有一些优秀的导电性能,可以作为微电子元器件的制造材料。

三、非晶态材料的应用除了上述提到的性质外,非晶态材料还具有较好的抗腐蚀性、抗疲劳性能和良好的潜变行为。

因此,非晶态材料在现代工业中的应用越来越广泛。

以下是几种常见的应用:1. 磁存储材料:非晶态磁性材料是计算机、电子元器件及储存介质等高科技产品中必不可少的基础材料。

第4章习题及答案_无机材料科学基础

第4章习题及答案_无机材料科学基础

第四章非晶态结构与性质4-1名词解释熔体与玻璃体分化(解聚)与缩聚网络形成体网络中间体网络改变体桥与非桥氧硼反常现象单键强度晶子学说与无规则网络学说4-2试简述硅酸盐熔体聚合物结构形成的过程和结构特点。

4-3试用实验方法鉴别晶体SiO2、SiO2玻璃、硅胶和SiO2熔体。

它们的结构有什么不同?4-4 试述石英晶体、石英熔体、Na2O·2SiO2熔体结构和性质上的区别。

4-5影响熔体粘度的因素有哪些?试分析一价碱金属氧化物降低硅酸盐熔体粘度的原因。

4-6熔体粘度在727℃时是107Pa·s,在1156℃时是103 Pa·s,在什么温度下它是106 Pa·s?(用lnη=A+B/T解之)4-7 SiO2熔体的粘度在1000℃时为1014 Pa·s,在1400℃时为107 Pa·s。

SiO2玻璃粘滞流动的活化能是多少?上述数据为恒压下取得,若在恒容下获得,你认为活化能会改变吗?为什么?4-8一种熔体在1300℃的粘度是310 Pa·s,在800℃是107 Pa·s,在1050℃时其粘度为多少?在此温度下急冷能否形成玻璃?4-9试用logη=A+B/(T-T0)方程式,绘出下列两种熔体在1350~500℃间的粘度曲线(logη~1/T)。

两种熔体常数如下:4-10派来克斯(Pyrex)玻璃的粘度在1400℃时是109 Pa·s,在840℃是1013Pa·s。

请回答:(1)粘性流动活化能是多少?(2)为了易于成形,玻璃达到105Pa·s的粘度时约要多高的温度?4-11一种玻璃的工作范围是870℃(η=106Pa·s)至1300℃(η=102.5Pa·s),估计它的退火点(η=1012Pa·s)?4-12一种用于密封照明灯的硼硅酸盐玻璃,它的退火点是544℃,软化点是780℃。

非晶态材料的结构和性质

非晶态材料的结构和性质

非晶态材料的结构和性质从古至今,材料科学一直是人类探究物质本质的重要领域。

而随着科技的不断发展,新型材料的研究和应用也是越来越引人瞩目。

其中,非晶态材料因其独特的结构和性质,备受关注。

本文将对非晶态材料的结构和性质进行分析和探讨。

一、非晶态材料的结构首先,我们来了解什么是非晶态材料。

非晶态材料又称为无定形材料,其最主要的特点就是缺乏结晶。

在结晶的材料中,原子或分子以一定的规律排列成晶体结构。

而在非晶态材料中,这些原子或分子呈现出一种无序的排列状态,这是它独特的结构。

具体来说,在非晶态材料中,原子或分子的排列呈现出类似于液体的状态,缺乏长程的周期性结构。

而这种无序排列的状态,正是非晶态材料独特性质的基础。

二、非晶态材料的性质在结晶材料中,晶格结构的确定和相互作用的复杂性对材料的性质有着至关重要的影响。

而非晶态材料的缺乏结晶,则意味着其物理和化学性质可能完全不同于晶体材料。

2.1 高硬度和强韧性首先,非晶态材料的高硬度和强韧性是其独特性质之一。

比如非晶态金属材料可以达到毫米级别的高弹性模量和高硬度,而且材料强度在拉伸时无明显脆性断裂的现象。

这些高机械性能是结晶材料所不具备的。

2.2 超强的抗腐蚀性其次,非晶态材料还具有超强的抗腐蚀性能。

比如很多非晶态合金材料可以在极端环境下,如酸和碱的腐蚀、高温和高压下长时间稳定存在,而且具有很高的耐腐蚀性。

这地取代了传统的耐腐蚀材料,如不锈钢和钛合金等。

2.3 特殊的磁性非晶态材料还具有独特的磁性。

比如费米面附近的能级密度很高,使得非晶态磁性材料可以达到很高的饱和磁化强度和低的磁晶各向异性,使其可用于磁性传感和数据存储设备等领域。

三、非晶态材料的应用由于非晶态材料的独特结构和性质,其应用范围也相当广泛。

3.1 军事领域在军事领域中,非晶态材料主要应用在弹头、装甲材料和悬挂设计等领域。

比如非晶态合金材料可以极大地提高弹头的穿透能力,使其能够有效打击敌方装甲车辆。

3.2 磁性领域在磁性领域中,非晶态材料主要应用于磁性传感器、磁存储器、电机和变压器等设备。

4--非晶态结构与性质

4--非晶态结构与性质

不同熔体的表面张力σ(10-3N/m)
熔体 H2O NaCl B2O3 P2O5 PbO Na2O Li2O Al2O3 ZrO2 GeO2 温度(℃) 25 1080 900 1000 1000 1300 1300 2150 1300 1300 1150 σ 72 95 80 60 128 290 450 550 380 350 250 熔体 SiO2 FeO 钠钙硅酸盐熔体 (Na2O∶CaO∶SiO2 =16∶10∶74) 钠硼硅酸盐熔体 (Na2O∶B2O3∶SiO2 =20∶10∶70) 瓷器中玻璃相 瓷釉 温度 (℃) 1800 1300 1420 1000 σ 307 290 585 316
10 0
Si
η(P)
8 0 6 0 4 0 2 0 0
Mg Zn Ni Ca Ca Sr Ba Mn Cu Pb Cd
1.00 1.50
0.50
高价金属氧化物

这些阳离子电荷多,离子半径小,倾向与 形成复杂巨大的聚合离子团,增大粘度
阳离子配位数

硼反常现象:B3+ 少的时候,O2-相 对多,以[BO4]形 式存在,结构紧 密粘度增加,随 着B3+的增加, O2-相对少了,以 [BO3]形式存在, 结构疏松粘度下 降

可从成形粘度范 η≈103~107Pa· s)所对应 的温度范围(例如图 t1t4>t2t3)推知玻璃料性 的长短。所谓料性是指玻 璃随温度变化时粘度的变 化速率。在相同粘度变化 范围内,所对应的温度变 化范围大,则称为料性长, 也称为长性玻璃或慢凝玻 璃,如硼硅酸盐玻璃;若 在相同粘度变化范围内, 所对应的温度变化范围小, 则称为料性短,也称为短 性玻璃或快凝玻璃,如铝 硅酸盐玻璃
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第四章非晶态结构与性质
【例4-1】一种用于制造灯泡的苏打-石灰-石英玻璃的退火点是514℃,软化点是696℃,计算这种玻璃的熔融范围和工作范围。

【解】按公式
退火点:514+273=787K时粘度η=1012Pa·s
软化点:696+273=969K时粘度η=4.5×106Pa·s

则:
解之:△E=429 kJ/mol,得:Pa·s
工作温度范围粘度一般为103~107 Pa·s,由于
当η=103Pa·s时,℃
当η=107Pa·s时,℃
所以工作温度范围是682~877℃
熔融范围粘度一般是10~100Pa·s
当η=10Pa·s时,℃
当η=50Pa·s时,4℃
所以熔融温度范围是940~1009℃
【例4-2】已知石英玻璃的密度为2.3g/cm’,假定玻璃中原子尺寸与晶体SiO2相同。

试计算玻璃原子堆积系数(APC)是多少?
【解】设在体积为1nm3内SiO2原子数为n,则密度
按题意ρ=2. 3g/cm3=2.3×10-21g/nm3,SiO2相对分子质量M=60.02g代入上式求得n:
个/nm3
在1nm中SiO2所占体积
则:
【例4-3】正硅酸铅玻璃密度为7.36g/cm3,求这个玻璃中氧的密度为若干?试把它与熔融石英(密度为2.2g/cm3)中的氧密度比较,试指出铅离子所在位置。

【解】正硅酸铅PbSiO3的相对分子质量为GM=207.2+28+16×3=283.2
在1cm3中PbSiO3的个数为:个/cm3
在PbSiO3玻璃中氧的密度为:g/cm3
同样求得石英玻璃中SiO2的个数n2和氧的密度为ρ2:
个/cm3,g/cm3显然ρ1>ρ2,即PbSiO3玻璃中氧的密度高于石英玻璃SiO2中氧的密度。

因而PbSiO3玻璃中Pb2+作
为网络改变离子而统计均匀分布在Si-O形成的网络骨架空隙中。

【例4-4】一种玻璃的组成为80wt%SiO2和20wt%Na2O,试计算其非桥氧百分数?
【解】将玻璃组成由质量百分比换算成摩尔百分比,如下表所示:
wt%mol数mol%
SiO280 1.33 80.6
Na2O 20 0.32 19.4
,,
非桥氧%=
【例4-5】有两种不同配比的玻璃,其组成如下,请用玻璃结构参数说明两种玻璃高温下粘度的大小?
序号Na2Owt%Al2O3wt%SiO2wt%
1 10 20 70
2 20 10 70
【解】将玻璃组成由质量百分比换算成摩尔百分比,如下表所示:
No
Na2O Al2O3SiO2
Y wt%mol%wt%mol%wt%mol%
1 10 10.6 20 12.9 70 76.5 2.72
2 20 20.4 10 6.2 70 73.4 3.66 对1#玻璃:
, Al3+被视为网络改变离子,
,,
对2#玻璃:
, Al3+作为网络形成离子,
,,
即:1#玻璃Y1<玻璃Y2,在高温下1#粘度<2#粘度。

【例4-6】在组成为16Na2O.xB2O3.(84-x)SiO2的熔体中,当x<15时,增加B2O3的含量使粘度升高,当x>15时,增加B2O3,则反而会使粘度降低,为什么?
【解】当x=0时,组成为16Na 2O. 84SiO2
∵R===2.19
∴x=2 R-Z=2×2.19-4=0.38(平均非桥氧数)
结构中的每个[SiO4]中有0.38个非桥氧,存在部分断网。

当(a)x<15mol%时,>1,游离氧充足
引入的B3+处于[BO4]中,加入到[SiO4]中,网络起连网作用,聚合程度增加,粘度增加。

(b)x=15mol%时(∵考虑到Na2O的挥发,一般为=1)
结构最紧密,粘度最大。

(c)x>15mol%时, <1,游离氧不足
则:[BO4][BO3],结构致密度降低,粘度降低。

即:由于B3+配位数变化,造成粘度曲线上出现转折,这称为硼反常现象。

【例4-7】试述玻璃的通性
【解】(1)各向同性;
(2)介稳性;
(3)由熔融态转变为固体玻璃的过程是渐变的、连续的、可逆的,在一定的温度范围内完成,无固定熔点,其物理化学性质的变化也是渐变的、连续的、可逆的;
(4)玻璃的成份在一定范围内可以连续变化,与此相应的性质也随之发生连续变化,因此带来了玻璃性质的加和性。

加和性法则:玻璃的性质随成分含量加和性的变化,即成分含量越高,对玻璃性质的影响贡献越大。

【例4-8】述“无规则网络学说”与“晶子学说”两大玻璃结构理论的要点,并比较两种学说在解释玻璃结构上的共同点和分歧。

【解】无规则网络学说:1932年,德国人查哈里阿生提出。

其要点:
认为按照原子在玻璃和晶体中的作用,形成连续的三维空间的网络结构,其结构单元(四面体或三面体)是相同的,但玻璃网络不如晶体网络,晶体网络是有规则、周期性重复排列;而玻璃网络是不规则、非周期性的,因而它的内能大于晶体,同时带来了玻璃的各向同性和连续性。

认为A m B n形成玻璃须满足五个条件:
(1)每个O2-最多与两个A n+相结合;
(2)围绕A n+的O2-数目不应过多,一般为3~4个;
(3)网络中这些氧多面体以共顶相连,不能以共棱共面相连;
(4)每个氧多面体中至少有三个O2-与相邻的氧多面体相连形成三度空间发展的无规则连续网络;
(5)网络外体离子均匀的全统计性的分布在网络孔隙中;
晶子学说:1921年,俄国人列别捷夫提出;其要点:
(1)玻璃是由两部分组成:晶子和无定形体,即晶子分布在无定形介质中;
(2)晶子中心部位的有序程度最高,离中心越远,有序程度越低;
(3)晶子与晶子之间由无定形中间层隔离,其无定形中间层离晶子部分越远,不规则程度越大;(4)晶子与无定形部分,没有明显的界限,过渡是逐步的;
(5)晶子是极其微小、极度变形的晶体;
(6)晶子的化学性质取决于玻璃的组成,可以是化合物也可以是固溶体;
无规则网络学说与晶子学说的共同点与分歧:
共同点:
(1)最小的结构单元是[SiO4]四面体;
(2)玻璃具有近程有序、远程无序的结构特点;
分歧:两种学说强调的内容不同。

(1)无规则连续网络学说强调的是玻璃结构的连续性、无序性(无规则性)、均匀性和统计性;(2)晶子学说强调的是玻璃结构的间断性、有序性(有规则性)微观不均匀性;
学说的发展:
(1)无规则网络学说将离子的配位方式和相应的晶体比较,指出了近程范围内离子堆积的有序性;(2)晶子学说指出了晶子之间的中间无序过渡层在玻璃中的作用。

相关文档
最新文档