正余弦定理在日常生活中的应用

合集下载

正弦定理和余弦定理的应用举例(解析版)

正弦定理和余弦定理的应用举例(解析版)

正弦定理和余弦定理的应用举例考点梳理1.用正弦定理和余弦定理解三角形的常见题型测量距离问题、高度问题、角度问题、计算面积问题、航海问题、物理问题等.2.实际问题中的常用角(1)仰角和俯角与目标线在同一铅垂平面内的水平视线和目标视线的夹角,目标视线在水平视线上方的角叫仰角,目标视线在水平视线下方的角叫俯角(如图①).(2)方向角:相对于某正方向的水平角,如南偏东30°,北偏西45°,西偏北60°等;(3)方位角指从正北方向顺时针转到目标方向线的水平角,如B点的方位角为α(如图②).(4)坡度:坡面与水平面所成的二面角的度数.【助学·微博】解三角形应用题的一般步骤(1)阅读理解题意,弄清问题的实际背景,明确已知与未知,理清量与量之间的关系.侧重考查从实际问题中提炼数学问题的能力.(2)根据题意画出示意图,将实际问题抽象成解三角形问题的模型.(3)根据题意选择正弦定理或余弦定理求解.(4)将三角形问题还原为实际问题,注意实际问题中的有关单位问题、近似计算的要求等.解三角形应用题常有以下两种情形(1)实际问题经抽象概括后,已知量与未知量全部集中在一个三角形中,可用正弦定理或余弦定理求解.(2)实际问题经抽象概括后,已知量与未知量涉及到两个或两个以上的三角形,这时需作出这些三角形,先解够条件的三角形,然后逐步求解其他三角形,有时需设出未知量,从几个三角形中列出方程(组),解方程(组)得出所要求的解.考点自测1.(2012·江苏金陵中学)已知△ABC的一个内角为120°,并且三边长构成公差为4的等差数列,则三角形的面积等于________.解析记三角形三边长为a-4,a,a+4,则(a+4)2=(a-4)2+a2-2a(a-4)cos120°,解得a=10,故S=12×10×6×sin 120°=15 3.答案15 32.若海上有A,B,C三个小岛,测得A,B两岛相距10海里,∠BAC=60°,∠ABC=75°,则B,C间的距离是________海里.解析由正弦定理,知BCsin 60°=ABsin(180°-60°-75°).解得BC=56(海里).答案5 63.(2013·日照调研)如图,一船自西向东匀速航行,上午10时到达一座灯塔P 的南偏西75°距塔68海里的M处,下午2时到达这座灯塔的东南方向的N处,则这只船的航行速度为________海里/时.解析由正弦定理,得MN=68sin 120°sin 45°=346(海里),船的航行速度为3464=1762(海里/时).答案176 24.在△ABC中,若23ab sin C=a2+b2+c2,则△ABC的形状是________.解析由23ab sin C=a2+b2+c2,a2+b2-c2=2ab cos C相加,得a2+b2=2ab sin ⎝ ⎛⎭⎪⎫C +π6.又a 2+b 2≥2ab ,所以 sin ⎝ ⎛⎭⎪⎫C +π6≥1,从而sin ⎝ ⎛⎭⎪⎫C +π6=1,且a =b ,C =π3时等号成立,所以△ABC 是等边三角形.答案 等边三角形5.(2010·江苏卷)在锐角△ABC 中,角A ,B ,C 的对边分别为a ,b ,c .若b a +a b=6cos C ,则tan C tan A +tan C tan B 的值是________.解析 利用正、余弦定理将角化为边来运算,因为b a +a b =6cos C ,由余弦定理得a 2+b 2ab =6·a 2+b 2-c 22ab ,即a 2+b 2=32c 2.而tan C tan A +tan C tan B =sin C cos C ⎝ ⎛⎭⎪⎫cos A sin A +cos B sin B =sin C cos C ·sin Csin A sin B =c 2ab ·a 2+b 2-c 22ab=2c 2a 2+b 2-c 2=2c 232c 2-c 2=4. 答案 4考向一 测量距离问题【例1】 如图所示,A 、B 、C 、D 都在同一个与水平面垂直的平面内,B 、D 为两岛上的两座灯塔的塔顶.测量船于水面A 处测得B 点和D 点的仰角分别为75°,30°,于水面C 处测得B 点和D 点的仰角均为60°,AC =0.1 km.(1)求证:AB =BD ;(2)求BD .(1)证明 在△ACD 中,∠DAC =30°,∠ADC =60°-∠DAC =30°,所以CD =AC =0.1.又∠BCD =180°-60°-60°=60°,故CB 是△CAD 底边AD 的中垂线,所以BD =BA .(2)解 在△ABC 中,AB sin ∠BCA =AC sin ∠ABC, 即AB =AC sin 60°sin 15°=32+620(km),因此,BD =32+620(km)故B 、D 的距离约为32+620 km.[方法总结] (1)利用示意图把已知量和待求量尽量集中在有关的三角形中,建立一个解三角形的模型.(2)利用正、余弦定理解出所需要的边和角,求得该数学模型的解.(3)应用题要注意作答.【训练1】 隔河看两目标A 与B ,但不能到达,在岸边先选取相距3千米的C ,D 两点,同时测得∠ACB =75°,∠BCD =45°,∠ADC =30°,∠ADB =45°(A ,B ,C ,D 在同一平面内),求两目标A ,B 之间的距离.解 如题图所示,在△ACD 中,∵∠ADC =30°,∠ACD =120°,∴∠CAD =30°,AC =CD =3(千米).在△BDC 中,∠CBD =180°-45°-75°=60°.由正弦定理,可得BC =3sin 75°sin 60°=6+22(千米).在△ABC 中,由余弦定理,可得AB 2=AC 2+BC 2-2AC ·BC cos ∠BCA ,即AB 2=(3)2+⎝ ⎛⎭⎪⎫6+222-23·6+22cos 75°=5, ∴AB =5(千米).所以两目标A ,B 间的距离为5千米.考向二 测量高度问题【例2】 (2010·江苏)某兴趣小组要测量电视塔AE 的高度H (单位:m)如图所示,垂直放置的标杆BC 的高度h =4 m ,仰角∠ABE =α,∠ADE =β.(1)该小组已测得一组α、β的值,算出了tan α=1.24,tan β=1.20,请据此算出H 的值;(2)该小组分析若干测得的数据后,认为适当调整标杆到电视塔的距离d (单位:m),使α与β之差较大,可以提高测量精度.若电视塔的实际高度为125 m ,试问d 为多少时,α-β最大?解 (1)由AB =H tan α,BD =h tan β,AD =H tan β及AB +BD =AD 得H tan α+h tan β=H tan β解得H =h tan αtan α-tan β=4×1.241.24-1.20=124. 因此,算出的电视塔的高度H 是124 m.(2)由题设知d =AB ,得tan α=H d .由AB =AD -BD =H tan β-h tan β,得tan β=H -h d ,所以tan(α-β)=tan α-tan β1+tan αtan β=h d +H (H -h )d ≤h 2H (H -h ), 当且仅当d =H (H -h )d,即d =H (H -h )=125×(125-4)=555时,上式取等号.所以当d =555时,tan(α-β)最大.因为0<β<α<π2,则0<α-β<π2,所以当d =555时,α-β最大.故所求的d 是55 5 m.[方法总结] (1)测量高度时,要准确理解仰、俯角的概念.(2)分清已知和待求,分析(画出)示意图,明确在哪个三角形应用正、余弦定理.(3)注意竖直线垂直于地面构成的直角三角形.【训练2】如图所示,测量河对岸的塔高AB时,可以选与塔底B在同一水平面内的两个测点C与D,现测得∠BCD=α,∠BDC=β,CD=s,并在点C测得塔顶A 的仰角为θ,求塔高AB.解在△BCD中,∠CBD=π-α-β,由正弦定理得BCsin∠BDC=CDsin∠CBD,所以BC=CD sin∠BDCsin∠CBD=s·sin βsin(α+β)在Rt△ABC中,AB=BC tan∠ACB=s tan θsin βsin(α+β).考向三运用正、余弦定理解决航海应用问题【例3】我国海军在东海举行大规模演习.在海岸A处,发现北偏东45°方向,距离A(3-1)km的B处有一艘“敌舰”.在A处北偏西75°的方向,距离A 2 km的C处的“大连号”驱逐舰奉命以10 3 km/h的速度追截“敌舰”.此时,“敌舰”正以10 km/h的速度从B处向北偏东30°方向逃窜,问“大连号”沿什么方向能最快追上“敌舰”?解设“大连号”用t h在D处追上“敌舰”,则有CD=103t,BD=10t,如图在△ABC中,∵AB=3-1,AC=2,∠BAC=120°,∴由余弦定理,得BC2=AB2+AC2-2AB·AC·cos∠BAC=(3-1)2+22-2·(3-1)·2·cos 120°=6∴BC=6,且sin∠ABC=ACBC·sin∠BAC=26·32=22.∴∠ABC=45°,∴BC与正北方向垂直.∴∠CBD=90°+30°=120°,在△BCD中,由正弦定理,得sin∠BCD=BD·sin∠CBDCD=10t sin 120°103t=12,∴∠BCD=30°.即“大连号”沿东偏北30°方向能最快追上“敌舰”.[方法总结] 用解三角形知识解决实际问题的步骤:第一步:将实际问题转化为解三角形问题;第二步:将有关条件和求解的结论归结到某一个或两个三角形中.第三步:用正弦定理和余弦定理解这个三角形.第四步:将所得结果转化为实际问题的结果.【训练3】(2013·广州二测)如图,渔船甲位于岛屿A的南偏西60°方向的B处,且与岛屿A相距12海里,渔船乙以10海里/时的速度从岛屿A出发沿正北方向航行,若渔船甲同时从B 处出发沿北偏东α的方向追赶渔船乙,刚好用2小时追上,此时到达C处.(1)求渔船甲的速度;(2)求sin α的值.解(1)依题意知,∠BAC=120°,AB=12(海里),AC=10×2=20(海里),∠BCA=α,在△ABC中,由余弦定理,得BC2=AB2+AC2-2AB·AC·cos∠BAC=122+202-2×12×20×cos 120°=784.解得BC=28(海里).所以渔船甲的速度为BC2=14海里/时.(2)在△ABC中,因为AB=12(海里),∠BAC=120°,BC=28(海里),∠BCA=α,由正弦定理,得ABsin α=BCsin 120°.即sin α=AB sin 120°BC=12×3228=3314.高考经典题组训练1.(四川卷改编)如图,正方形ABCD的边长为1,延长BA至E,使AE=1,连结EC、ED,则sin∠CED=________.解析在Rt△EAD和Rt△EBC中,易知ED=2,EC=5,在△DEC中,由余弦定理得cos∠CED=ED2+EC2-CD22ED·EC=2+5-12×2×5=31010.∴sin∠CED=1010.答案10 102.(2011·新课标卷)在△ABC中,B=60°,AC=3,则AB+2BC的最大值为________.解析由正弦定理知ABsin C=3sin 60°=BCsin A,∴AB=2sin C,BC=2sin A.又A+C=120°,∴AB+2BC=2sin C+4sin(120°-C)=2(sin C+2sin 120°cos C -2cos 120°sin C)=2(sin C+3cos C+sin C)=2(2sin C+3cos C)=27sin(C +α),其中tan α=32,α是第一象限角.由于0°<C <120°,且α是第一象限角,因此AB +2BC 有最大值27.答案 273.(湖北卷改编)若△ABC 的三边长为连续三个正整数,且A >B >C,3b =20a cos A ,则sin A ∶sin B ∶sin C =________.解析 由A >B >C ,得a >b >c .设a =c +2,b =c +1,则由3b =20a cos A ,得3(c+1)=20(c +2)·(c +1)2+c 2-(c +2)22(c +1)c,即3(c +1)2c =10(c +1)(c +2)(c -3),解得c =4,所以a =6,b =5.答案 6∶5∶44.(2·陕西卷)如图,A ,B 是海面上位于东西方向相距5(3+3)海里的两个观测点,现位于A 点北偏东45°,B 点北偏西60°的D 点有一艘轮船发出求救信号,位于B 点南偏西60°且与B 点相距203海里的C 点的救援船立即前往营救,其航行速度为30海里/时,该救援船达到D 点需要多长时间?解 由题意知AB =5(3+3)海里,∠DBA =90°-60°=30°,∠DAB =90°-45°=45°,所以∠ADB =180°-(45°+30°)=105°,在△ADB 中,由正弦定理得DB sin ∠DAB =AB sin ∠ADB, 所以DB =AB ·sin ∠DAB sin ∠ADB =5(3+3)·sin 45°sin 105°=5(3+3)·sin 45°sin 45°cos 60°+cos 45°sin 60°=103(海里), 又∠DBC =∠DBA +∠ABC =30°+(90°-60°)=60°, BC =203(海里),在△DBC 中,由余弦定理得 CD 2=BD 2+BC 2-2BD ·BC ·cos ∠DBC=300+1 200-2×103×203×12=900,所以CD =30(海里),则需要的时间t =3030=1(小时).所以救援船到达D 点需要1小时.(江苏省2013届高三高考压轴数学试题)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,已知a =5,b =4,cos(A -B )=3231. (Ⅰ) 求sin B 的值;(Ⅱ) 求cos C 的值.分层训练A 级 基础达标演练(时间:30分钟 满分:60分)一、填空题(每小题5分,共30分)1.若渡轮以15 km/h 的速度沿与水流方向成120°角的方向行驶,水流速度为4km/h ,则渡轮实际航行的速度为(精确到0.1 km/h)________.答案 13.5 km/h2.江岸边有一炮台高30 m ,江中有两条船,船与炮台底部在同一水面上,由炮台顶部测得俯角分别为45°和60°,而且两条船与炮台底部连线成30°角,则两条船相距________m.解析 如图,OM =AO tan 45°=30 (m),ON =AO tan 30°=33×30=10 3 (m),由余弦定理得,MN = 900+300-2×30×103×32=300=10 3 (m). 答案 10 33.某人向正东方向走x km 后,他向右转150°,然后朝新方向走3 km ,结果他离出发点恰好 3 km ,那么x 的值为________.解析 如图,在△ABC 中,AB =x ,BC =3,AC =3,∠ABC =30°,由余弦定理得(3)2=32+x 2-2×3x ×cos 30°,即x 2-33x +6=0,解得x 1=3,x 2=23,经检测均合题意.答案 3或2 34.如图所示,为了测量河对岸A ,B 两点间的距离,在这一岸定一基线CD ,现已测出CD =a 和∠ACD =60°,∠BCD =30°,∠BDC=105°,∠ADC =60°,则AB 的长为________.解析 在△ACD 中,已知CD =a ,∠ACD =60°,∠ADC=60°,所以AC =a .①在△BCD 中,由正弦定理可得BC =a sin 105°sin 45°=3+12a .②在△ABC 中,已经求得AC 和BC ,又因为∠ACB =30°,所以利用余弦定理可以求得A ,B 两点之间的距离为AB =AC 2+BC 2-2AC ·BC ·cos 30°=22a .答案 22a5.(2010·新课标全国卷)在△ABC 中,D 为边BC 上一点,BD =12CD ,∠ADB =120°,AD =2,若△ADC 的面积为3-3,则∠BAC =________.解析 由A 作垂线AH ⊥BC 于H .因为S △ADC =12DA ·DC ·sin 60°=12×2×DC ·32=3-3,所以DC =2(3-1),又因为AH ⊥BC ,∠ADH =60°,所以DH =AD cos 60°=1,∴HC =2(3-1)-DH =23-3.又BD =12CD ,∴BD =3-1,∴BH =BD +DH = 3.又AH =AD ·sin 60°=3,所以在Rt △ABH 中AH =BH ,∴∠BAH =45°.又在Rt △AHC 中tan ∠HAC =HC AH =23-33=2-3, 所以∠HAC =15°.又∠BAC =∠BAH +∠CAH =60°,故所求角为60°.答案 60°6.如图,为测得河对岸塔AB 的高,先在河岸上选一点C ,使C 在塔底B 的正东方向上,测得点A 的仰角为60°,再由点C 沿北偏东15°方向走10米到位置D ,测得∠BDC =45°,则塔AB 的高是________米.解析 在△BCD 中,CD =10(米),∠BDC =45°,∠BCD =15°+90°=105°,∠DBC =30°,BC sin 45°=CD sin 30°,BC =CD sin 45°sin 30°=102(米).在Rt △ABC 中,tan 60°=AB BC ,AB =BC tan 60°=106(米).答案 10 6二、解答题(每小题15分,共30分)7.(2011·常州七校联考)如图,在半径为3、圆心角为60°的扇形的弧上任取一点P ,作扇形的内接矩形PNMQ ,使点Q 在OA 上,点N 、M 在OB 上,设矩形PNMQ 的面积为y ,(1)按下列要求写出函数的关系式:①设PN =x ,将y 表示成x 的函数关系式;②设∠POB =θ,将y 表示成θ的函数关系式;(2)请你选用(1)中的一个函数关系式,求出y 的最大值.解 (1)①∵ON =OP 2-PN 2=3-x 2,OM =33x ,∴MN =3-x 2-33x ,∴y =x ⎝⎛⎭⎪⎫3-x 2-33x ,x ∈⎝ ⎛⎭⎪⎫0,32. ②∵PN =3sin θ,ON =3cos θ,OM =33×3sin θ=sin θ,∴MN =ON -OM =3cos θ-sin θ,∴y =3sin θ(3cos θ-sin θ),即y =3sin θcos θ-3sin 2θ,θ∈⎝ ⎛⎭⎪⎫0,π3. (2)选择y =3sin θcos θ-3sin 2θ=3sin ⎝ ⎛⎭⎪⎫2θ+π6-32, ∵θ∈⎝ ⎛⎭⎪⎫0,π3,∴2θ+π6∈⎝ ⎛⎭⎪⎫π6,5π6,∴y max =32. 8.某港口O 要将一件重要物品用小艇送到一艘正在航行的轮船上.在小艇出发时,轮船位于港口O 北偏西30°且与该港口相距20海里的A 处,并正以30海里/时的航行速度沿正东方向匀速行驶.假设该小艇沿直线方向以v 海里/时的航行速度匀速行驶,经过t 小时与轮船相遇.(1)若希望相遇时小艇的航行距离最小,则小艇航行速度的大小应为多少?(2)假设小艇的最高航行速度只能达到30海里/时,试设计航行方案(即确定航行方向和航行速度的大小),使得小艇能以最短时间与轮船相遇,并说明理由. 解 (1)设相遇时小艇航行的距离为S 海里,则 S =900t 2+400-2·30t ·20·cos (90°-30°)=900t 2-600t +400= 900⎝ ⎛⎭⎪⎫t -132+300. 故当t =13时,S min =103(海里),此时v =10313=303(海里/时).即,小艇以303海里/时的速度航行,相遇时小艇的航行距离最小.(2)设小艇与轮船在B 处相遇,则v 2t 2=400+900t 2-2·20·30t ·cos(90°-30°),故v 2=900-600t +400t 2,∵0<v ≤30,∴900-600t +400t 2≤900,即2t 2-3t ≤0,解得t ≥23.又t =23时,v =30海里/时.故v=30海里/时时,t取得最小值,且最小值等于2 3.此时,在△OAB中,有OA=OB=AB=20海里,故可设计航行方案如下:航行方向为北偏东30°,航行速度为30海里/时,小艇能以最短时间与轮船相遇.。

正余弦定理的实际应用共22页文档

正余弦定理的实际应用共22页文档
正余弦定理的实际应用
1、纪律是管理关系的形式。——阿法 纳西耶 夫 2、改革如果不讲纪律,就难以成功。
3、道德行为训练,不是通过语言影响 ,而是 让儿童 练习良 好道德 行为, 克服懒 惰、轻 率、不 守纪律 、颓废 等不良 行为。 4、学校没有纪律便如磨房里没有水。 ——夸 美纽斯
5、教导儿童服从真理、服从集体,养 儿童 自觉的 纪律性 ,这是 儿童道 德教育 最重要 的部分 。—— 陈鹤琴
END
16、业余生活要有意义,不要越轨。——华盛顿 17、一个人即使已登上顶峰,也仍要自强不息。——罗素·贝克 18、最大的挑战和突破在于用人,而用人最大的突破在于信任人。——马云 19、自己活着,就是为了使别人过得更美好。——雷锋 20、要掌握书,莫被书掌握;要为生而读,莫为读而生。——布尔沃

正余弦定理在实际生活中的应用

正余弦定理在实际生活中的应用

正余弦定理在实际生活中的应用正、余弦定理在测量、航海、物理、几何、天体运行等方面的应用十分广泛,解这类应用题需要我们吃透题意,对专业名词、术语要能正确理解,能将实际问题归结为数学问题.求解此类问题的大概步骤为:(1)准确理解题意,分清已知与所求,准确理解应用题中的有关名称、术语,如仰角、俯角、视角、象限角、方位角等; (2)根据题意画出图形;(3)将要求解的问题归结到一个或几个三角形中,通过合理运用正弦定理、余弦定理等有关知识建立数学模型,然后正确求解,演算过程要简练,计算要准确,最后作答.1.测量中正、余弦定理的应用例1 某观测站C 在目标A 南偏西25︒方向,从A 出发有一条南偏东35︒走向的公路,在C 处测得公路上与C 相距31千米的B 处有一人正沿此公路向A 走去,走20千米到达D ,此时测得CD 距离为21千米,求此人所在D 处距A 还有多少千米? 分析:根据已知作出示意图,分析已知及所求,解CBD ∆,求角B .再解ABC ∆,求出AC ,再求出AB ,从而求出AD (即为所求).解:由图知,60CAD ∠=︒.22222231202123cos 22312031BD BC CD B BC BD +-+-===⋅⨯⨯,sin B =. 在ABC ∆中,sin 24sin BC B AC A ⋅==.由余弦定理,得2222cos BC AC AB AC AB A =+-⋅⋅. 即2223124224cos60AB AB =+-⋅⋅⋅︒.整理,得2243850AB AB --=,解得35AB =或11AB =-(舍). 故15AD AB BD =-=(千米).答:此人所在D 处距A 还有15千米.评注:正、余弦定理的应用中,示意图起着关键的作用,“形”可为“数”指引方向,因此,只有正确作出示意图,方能合理应用正、余弦定理.2.航海中正、余弦定理的应用例2 在海岸A 处,发现北偏东45︒方向,距A 1海里的B 处有一艘走私船,在A 处北偏西75︒方向,距A 为2海里的C 处的缉私船奉命以/小时A C D 312120 35︒25︒ 东 北的速度追截走私船.此时走私船正以10海里/小时的速度从B 处向北偏东30︒方向逃窜,问缉私船沿什么方向能最快追上走私船,并求出所需要的时间? 分析:注意到最快追上走私船,且两船所用时间相等,可画出示意图,需求CD 的方位角及由C 到D 所需的航行时间.解:设缉私船追上走私船所需时间为t 小时,则有CD =,10BD t =.在ABC △中,∵1AB =,2AC =,4575120BAC ∠=︒+︒=︒,根据余弦定理可得BC ==根据正弦定理可得2sin120sin 2AC ABC BC ︒∠===. ∴45ABC ∠=︒,易知CB 方向与正北方向垂直,从而9030120CBD ∠=︒+︒=︒. 在BCD △中,根据正弦定理可得:sin 1sin 2BD CBD BCD CD ∠∠===,∴30BCD =︒△,30BDC ∠=︒,∴BD BC ==则有10t =0.24510t ==小时14.7=分钟. 所以缉私船沿北偏东060方向,需14.7分钟才能追上走私船.评注:认真分析问题的构成,三角形中边角关系的分析,可为解题的方向提供依据.明确方位角是应用的前提,此题边角关系较复杂要注意正余弦定理的联用.3.航测中正、余弦定理的应用例3 飞机的航线和山顶在同一个铅直平面内,已知飞机的高度为海拔20250m ,速度为180km/h ,飞行员先看到山顶的俯角为'1830︒,经过120秒后又看到山顶的俯角为81︒,求山顶的海拔高度(精确到1m ).分析:首先根据题意画出图形,如图,这样可在ABM ∆和Rt BMD ∆中解出山顶到航线的距离,然后再根据航线的海拔高度求得山顶的海拔高度.解:设飞行员的两次观测点依次为A 和B ,山顶为M ,山顶到直线的距离为MD .如图,在ABM △中,由已知,得1830'A ∠=︒,99ABM ∠=︒,6230'AMB ∠=︒.又12018066060AB =⨯=⨯(km ), A B DM 45︒75︒ 30︒ ACDB根据正弦定理,可得6sin1830'sin 6230'BM ︒=︒,进而求得6sin1830'sin81sin 6230'MD ︒︒=︒,∴2120MD ≈(m ),可得山顶的海拔高度为20250212018130-=(m ).评注:解题中要认真分析与问题有关的三角形,正确运用正、余弦定理有序地解相关的三角形,从而得到问题的答案.4.炮兵观测中正、余弦定理的应用例4 我炮兵阵地位于地面A 处,两观察所分别位于地面点C 和D 处,已知6000CD =米,45ACD ∠=︒,75ADC ∠=︒,目标出现于地面点B 处时,测得30BCD ∠=︒,15BDC ∠=︒(如图),求炮兵阵地到目标的距离(结果保留根号). 分析:根据题意画出图形,如图,题中的四点A 、B 、C 、D 可构成四个三角形.要求AB 的长,由于751590ADB ∠=︒+︒=︒,只需知道AD 和BD 的长,这样可选择在ACD ∆和BCD ∆中应用定理求解.解:在ACD △中,18060CAD ACD ADC ∠=︒-∠-∠=︒, 6000CD =,45ACD ∠=︒,根据正弦定理有sin 45sin 60CD AD ︒==︒, 同理,在BCD △中,180135CBD BCD BDC ∠=︒-∠-∠=︒,6000CD =,30BCD ∠=︒,根据正弦定理有sin 30sin1352CD BD CD ︒==︒. 又在ABD ∆中,90ADB ADC BDC ∠=∠+∠=︒,根据勾股定理有:AB ====所以炮兵阵地到目标的距离为米.评注:应用正、余弦定理求解问题时,要将实际问题转化为数学问题,而此类问题又可归结为解斜三角形问题,因此,解题的关键是正确寻求边、角关系,方能正确求解.5.下料中正余弦定理的应用例5 已知扇形铁板的半径为R ,圆心角为60︒,要从中截取一个面积最大的矩形,应怎样划线?分析:要使截取矩形面积最大,必须使矩形的四个顶点都在扇形的边界上,即为扇形的内接矩形,如图所示.30︒ 45︒ 75︒AC D 15︒解:在图(1)中,在AB 上取一点P ,过P 作PN OA ⊥于N ,过P 作PQ PN ⊥交OB 于Q ,再过Q 作QM OA ⊥于M .设AOP x ∠=,sin PN R x =.在POQ △中,由正弦定理,得sin(18060)sin(60)OP PQx =︒-︒︒-.∴sin(60)PQ R x =︒-.于是[]22sin sin(60)cos(260)cos 60S PN PQ R x x R x =⋅=⋅︒-=-︒-︒221(1)2≤-=. 当cos(260)1x -︒=即30x =︒时,S2. 在图(2)中,取AB 中点C ,连结OC ,在AB 上取一点P ,过P 作//PQ OC交OB 于Q ,过P 作PN PQ ⊥交AB 于N ,过Q 作QM PQ ⊥交CA 于M ,连结MN 得矩形MNPQ ,设POC x ∠=,则sin PD R x =.在POQ △中,由正弦定理得:sin(18030)sin(30)R Rx =︒-︒︒-,∴2sin(30)PQ R x =︒-.∴[]2224sin sin(30)2cos(230)cos30S PD PQ R x x R x =⋅=⋅︒-=-︒-︒222(1cos30)(2R R ≤-︒=(当15x =︒时取“=”).∴当15x =︒时,S取得最大值2(2R .∵22(26R R >, ∴作30AOP ∠=︒,按图(1)划线所截得的矩形面积最大.评注:此题属于探索性问题,需要我们自己寻求参数,建立目标函数,这需要有扎实的基本功,在平时学习中要有意识训练这方面的能力.综上,通过对以上例题的分析,要能正确解答实际问题需:(1)准确理解有关问题的陈述材料和应用的背景;(2)能够综合地,灵活地应用所学知识去分析和解决带有实际意义的与生产、生活、科学实验相结合的数学问题.ABQ POxMN (1)ABQPOxMNED(2)。

正余弦定理应用举例(1)--举例

正余弦定理应用举例(1)--举例

100 3
D
BC DC = 由正弦定理 ,得 sin ∠BDC sin ∠DBC
DC sin ∠BDC 100 3 sin 75° BC = = = 200 sin 75° sin ∠DBC sin 60°
在△ABC中由余弦定理, ABC中由余弦定理, 中由余弦定理
AB 2 = CA2 + CB 2 − 2CA ⋅ CB cos C = (100 3) 2 + (200 sin 75°) 2
练习2.自动卸货汽车的车厢采用液压机构。 练习 .自动卸货汽车的车厢采用液压机构。设计时需要计算 油泵顶杆BC的长度.已知车厢的最大仰角是 ° 油泵顶点B 油泵顶杆 的长度.已知车厢的最大仰角是55°,油泵顶点 的长度 与车厢支点A之间的距离为 之间的距离为2m, 与水平线之间的夹角为 与水平线之间的夹角为5° 与车厢支点 之间的距离为 ,AB与水平线之间的夹角为 °, AC长为 o ,计算 的长(精确到0.01m). 长为1m,计算BC的长 精确到0.01 的长( 0.01m 长为 60 20′ 分析】例题中涉及一个怎样的三角形? 【分析】例题中涉及一个怎样的三角形? 中已知什么, 在△ABC中已知什么,要求什么? 中已知什么 要求什么?
C
∴ BC = 3 ≈ 1.73(m)
答:顶杆BC约长1.73m。 顶杆BC约长 BC约长 。 A B
课堂小结
解应用题的基本思路
实际问题
抽象概括 示意图 推 理
数学模型 演 算
实际问题的解
数学模型的解
作业
课本第19页 课本第 页 2,5 ,
: ∆ 解 在 ASB , SBA 105° 中 ∠ = , ∠S = 45° 由 弦 理 , 正 定 得 ABsin30° 16sin30° SB = = = 8 2(n mile) sin45° sin45° 设 S到 线 的 离 h, 则 点 直 AB 距 为 h = SBsin75° = 4( 3 + 1)(n mile) Qh > 6.5n mile∴此 可 继 沿 北 向 船 以 续 正 方 航 : 船 以 续 正 方 航 答 此 可 继 沿 北 向 行

正余弦定理在生活中的运用

正余弦定理在生活中的运用

正余弦定理在生活中的运用正余弦定理在实际生活中的应用有:航海、地理、物理、建筑工程。

1、航海在航海中,正余弦定理被广泛用于计算方向角。

当航行在广阔的海域或天空时,确定目标的方向是至关重要的。

通过观测两个已知位置相对于自身的角度,利用正弦或余弦定理,航行者可以精确地计算出到达目标的航向角,确保安全、准确地到达目的地。

2、地理在地理中,正余弦定理被用于计算地球上两点之间的精确距离。

由于地球是一个球体,因此需要使用球面三角学来进行计算。

通过观测两个已知位置相对于第三个位置的角度,利用正弦定理或余弦定理,测量人员可以精确地计算出两点之间的实际距离,为地图绘制、导航等提供准确的数据支持。

3、物理在物理学中,正弦定理和余弦定理被广泛应用于波动和振动的研究。

例如,在声学和光学中,这些定理被用来描述波的传播和干涉现象。

通过测量波的振幅、频率和传播方向,可以使用正弦定理或余弦定理来计算波在不同介质中的传播速度、波长和相位差。

4、建筑工程在建筑工程中,正弦定理和余弦定理可用于解决与角度和距离相关的问题。

例如,在设计桥梁、隧道或高楼大厦时,工程师需要计算各种角度和距离以确保结构的稳定性和安全性。

通过使用正弦定理或余弦定理,工程师可以确定结构物的高度、长度、宽度和角度等参数。

正余弦定理介绍和区别一、正余弦定理介绍1、正弦定理在一个三角形中,各边和它所对角的正弦的比值相等。

即,a/sinA=b/sinB=c/sinC,其中a、b、c为三角形的三边,A、B、C为三角形的三个内角。

2、余弦定理在任意三角形中,一边的平方等于其他两边的平方和减去这两边与其夹角的余弦的积的两倍。

即,c²=a²+b²-2abcosC,其中a、b、c为三角形的三边,C为夹角。

正余弦定理在日常生活中的应用

正余弦定理在日常生活中的应用

当小丽用力将4 m长的跷跷板的一端压下并碰
到地面,此时另一端离地面1.5m.你能求出
此时跷跷板与地面的夹角吗?


T:“另一端离地面1.5m”如何理解?

S:就是过其端点向地面作垂线,垂线
段的长度就是1.5m。

S:(另一学生迫不及待地说)老师我
知道了,我已经
S:如果我们把“碰地”的一端端点看
作点A的话,“跷跷板”看作线段AB,那么过
B点向地面作垂线,垂足为点C,这样就出现
了△ABC。

T:接下来应该做什么呢?

S:只要解这个直角三角形,求出∠A
的大小就行了。

如图所示,秋千链子的长度为3m,静止时的秋千踏板(大小忽略不
计)距地面0.5m.秋千向两边摆动时,若最大摆角(摆角指秋千链子与铅垂 线的夹角)约为60°,那么秋千踏板与地面的最大距离为多少?
• 答:其实很简单,函数都是有规律的,三角函数就是周期函数,只要将图像画出来那么解决问题就 很简单了。
• 问:那么我们就可以进行应用的调查了嘛?
• 答:是的,其实三角函数的应用很广泛。
• 问:在我们的生活中哪些方面应用到三角函数呢?
• 答:在电学物理方面应用的比较广泛,比如电学方面,要利用三角函数解决它在枢纽带的静电量, 进行一定防治措施,否则会让人触电死亡。
勒密的遗著《天文集》中得到的.托勒密第一个采用了巴比伦人的60进位制,把圆周分为360等份,
但他并没给出“度”、“分”、“秒”的名词,而是用“第一小分”、“第二小分”等字样进行描 述.在1570年曲卡拉木起用了“°”的符号来表示“度”,以及“分”、“秒”等名称.书中又给 出了“托勒密定理”来推算弦、弧及圆心角的关系及公式.

高一数学-正、余弦定理在实际生活中的应用

高一数学-正、余弦定理在实际生活中的应用

B
E
D
A
C
探究二
E B
D
C
(2-2)
解:由余弦定理得
AB2 AC2 BC2 2AC BC cos ACB
A 482.802 631.502 2 482.80 631.50 cos 56.3 293557.0525 AB 541.81 DE AB AD BE 421(米)
在BCD中,BCD=120,CBD=20
由正弦定理:BC DC sin120 2.53.
C
sin 20
在ABC中,由余弦定理:
AB2 BC2 AC 2 2AC BC cos 40
即400 9x2 6.4x2 2 3x 2.53x cos 40
x 10.3
SABC
1 2
AC BC sin C
角为 22.81 。问:他能否算出金茂大厦的高度呢?
若能算出,请计算其高度。(精确到1米)
A
h
D
C
B
探究一
A
h
D
C
(2-2)
解:在ABC中, ABC=15.66,ACD=22.81
BAC=22.81 15.66 7.15
由正弦定理: AC BC
B
sin ABC sin BAC
AC 500 sin15.66 1084.3 sin 7.15
260(m2 )
答:绿地面积约为260m2。
练习一
练习二
练习三
练习四
练习一
大楼的顶上有一座电视塔高20米,在地面某处测得塔
顶的仰角为 45.塔底的仰角为 30.求此大楼的高度(结
果保留两位小数,下列各题相同)
练习二
某地某时台风中心在甲地的东偏南 21 方向1171 千米处.经过24小时后,测得台风中心在甲地东偏

正余弦定理在日常生活中的应用

正余弦定理在日常生活中的应用
研究的最终成果以实验报告的形式递交,但是通过做手抄报、课件等形式来表达自己的成果。
每个学生都有自己的心得体会,每个学生都会得到自己、同组成员、组长及老师的评价。
六、资源准备
(一)根据主题,教师提供的资源
1、学校图书馆、电脑室、实验室
2、相关测量仪器
3、国土局、规划局、街道办的联系人及联系电话
4、评价量规
在活动中还有待加强对学生团队的指引,以及对一些较被动学生的鼓励与帮助。评价方面要提高评价的有效性和全面性。
四、研究的目标与内容(课题研究所要解决的主要问题是什么,通过哪些内容的研究来达成这一目标)
要解决的主要问题有:
1.增城市有哪些标志性的搞建筑,其名字、所在位置及其建成时间
2.增城市有哪几条河,几座桥,这些桥的名字、所在位置及其建成时间
3.去哪里借相关的测量仪器,如何使用
通过以下内容的研究来达成这一目标:
二、研究性学习的教学目的和方法(可按新课程标准的三维目标(或布鲁姆目标分类法)进行研究性学习的教学目和方法的阐述)
知识与技能
1.了解和掌握正余弦定理
2.了解并能熟悉使用相关测量仪器
3.掌握测量宽度与高度的步骤与方法
过程与方法
1.采用多种途径收集资料(上网下载,去市图书馆查阅,调查访问等)
2.能对各种资源进行筛选、整理、分析
(二)学生自行准备的资源
1、调查试卷
2、照相机
3、其他资料等
七、研究性学习的阶段设计
研究性学习的阶段
学生活动
教师活动
起止时间
第一阶段:动员和培训(初步认识研究性学习、理解研究性学习的研究方法)
1、接触、讨论问题
2、了解本次活动的学习目的
3、学习了解本次综合实践活动的步骤、方法、要求

正、余弦定理在实际生活中的应用

正、余弦定理在实际生活中的应用

正、余弦定理在实际生活中的应用正、余弦定理是解决三角形中各种角和边的关系的数学定理,在实际生活中有着广泛的应用。

无论是建筑设计、地理测量、航海航空还是工程建设中,都需要利用正、余弦定理来解决问题。

首先,正、余弦定理在建筑设计中有着重要的应用。

在设计建筑物的过程中,设计师需要考虑到各个角度和边的关系,确保建筑物的结构稳固。

正、余弦定理可以帮助设计师计算出各个角的大小,以及边的长度,从而确保建筑物的各个部分都符合设计要求。

其次,正、余弦定理在地理测量中也有着重要的应用。

地理测量需要测量地表上各种地理现象的位置和距离,这就需要考虑到三角形的各个角和边的关系。

利用正、余弦定理,地理测量员可以计算出地表上各种地理现象之间的距离和方向,从而为地理学研究提供数据支持。

此外,正、余弦定理在航海航空中也有着重要的应用。

航海员和飞行员需要根据地图上的各种地理现象和飞行路径来确定航行方向和
距离。

利用正、余弦定理,航海员和飞行员可以计算出航行方向和距离,确保航行的安全和准确。

最后,正、余弦定理在工程建设中也有着重要的应用。

工程建设需要考虑到各种地形和地貌的情况,从而确定工程设计方案和施工路径。

利用正、余弦定理,工程师可以计算出各种地形和地貌之间的距离和角度,从而确保工程建设的顺利进行。

综上所述,正、余弦定理在实际生活中有着广泛的应用。

无论是建筑设计、地理测量、航海航空还是工程建设中,都需要利用正、余弦定理来解决各种问题。

正、余弦定理的应用不仅帮助我们解决各种实际问题,还为我们的生活和工作提供了便利和支持。

因此,正、余弦定理在实际生活中的应用是非常重要的。

解三角形在现实生活中的应用——正、余弦定理

解三角形在现实生活中的应用——正、余弦定理

解三角形在现实生活中的应用——正、余弦定理解三角形在现实生活中的应用——正、余弦定理一、引言在数学领域中,三角形是一个非常重要的图形。

它不仅有着丰富的理论内涵,更有着广泛的实际应用。

本文将重点探讨三角形中的正、余弦定理在现实生活中的应用。

正、余弦定理是三角形中的重要定理,它们不仅是解决三角形问题的基础,更是许多实际问题的关键。

二、正、余弦定理的概念和原理在介绍正、余弦定理在现实生活中的应用之前,我们有必要回顾一下这两个定理的概念和原理。

正、余弦定理是三角形中用来描述边与角之间关系的重要定理。

正定理指出:在任意三角形中,边的平方等于其他两边平方和减去这两边与它们夹角的余弦之积的两倍。

余弦定理则指出:在任意三角形中,边的平方等于其他两边平方和减去这两边之积与它们夹角的余弦积的两倍。

通过正、余弦定理,我们可以推导出许多三角形的性质和关系,从而在实际问题中得到应用。

三、海上测距中的应用在海上航行中,船舶需要不断地确定自己的位置,以避免发生碰撞或迷失方向。

正、余弦定理就被广泛应用在海上测距中。

通过观测两个不同方向上的地标并测量它们的夹角,船舶可以利用余弦定理计算出自己与地标的距离。

在实际操作中,船舶的船长和船员们可以根据余弦定理的公式,精确计算出自己与地标的距离,并及时调整航线,确保航行安全。

四、建筑工程中的应用在建筑工程中,正、余弦定理也扮演着重要的角色。

在设计斜拉桥、悬索桥等大型桥梁时,工程师们需要精确计算桥墩与桥塔的高度和跨度,以确保桥梁的稳定性和安全性。

正、余弦定理可以帮助他们在实际建设过程中,精确计算各个零部件的尺寸和位置,从而保证桥梁的结构稳固。

五、航天工程中的应用在航天工程领域,正、余弦定理也被广泛应用。

在设计和控制航天器的轨道时,科学家们需要精确计算航天器与地球、月球或其他天体之间的距离和角度。

通过应用正、余弦定理,他们可以准确地计算出航天器的轨道曲线和飞行路径,确保航天器能够按照预定计划完成任务。

正弦定理余弦定理应用举例

正弦定理余弦定理应用举例
三角函数与几何问题的联 系
正弦定理和余弦定理是三角函数与几何问题 之间的桥梁,它们将几何形状的边长和角度 联系起来,为解决几何问题提供了重要的工 具。
实际应用价值
正弦定理和余弦定理在现实生活中有着广泛 的应用,例如测量、建筑、航海等领域,通
过这些定理可以解决许多实际问题。
未来发展方向
要点一
理论完善
判断三角形是否为等腰三角形
通过比较三角形的两边长度和对应的角的正弦值或余弦值, 可以判断三角形是否为等腰三角形。
判断三角形是否为等边三角形
如果三角形的三个角都相等,则它们的正弦值和余弦值也相 等,利用这个性质可以判断三角形是否为等边三角形。
求解三角形面积
利用正弦定理计算三角形面积
已知三角形的两边长度和夹角,可以通过正弦定理计算出三角形的面积。
正弦定理余弦定理应用举例
$number {01}
目 录
• 正弦定理的应用 • 余弦定理的应用 • 正弦定理与余弦定理的综合应用 • 实际应用举例 • 总结与展望
01
正弦定理的应用
计算角度
计算已知两边及夹角时的角度
已知三角形的两边及其夹角,可以使用正弦定理计算出该角的大小。
计算已知两边及非夹角时的角度
求解三角形面积
公式
$S = frac{1}{2}absin C$
例如
在三角形ABC中,已知a=3, b=4, C=60°,则三角形的面积为 $frac{3sqrt{3}}{2}$。
03
正弦定理与余弦定理的综合 应用
判断三角形形状
1 2
3
判断三角形是否为直角三角形
利用正弦定理和余弦定理,可以判断三角形是否满足勾股定 理的条件,从而确定是否为直角三角形。

正弦定理和余弦定理应用举例 Microsoft Word 文档

正弦定理和余弦定理应用举例 Microsoft Word 文档

1、一艘轮船按照北偏西30度,的方向以每小时45海里的速度航行,一个灯塔M原来在轮船的北偏东10度的方向,经过20分钟后,灯塔在轮船的北偏东70度方向上,求灯塔和轮船原来的距离.现在这样可以用余弦定理了cos60°=(AB^2+BC^2-AC^2)/2AB*BCBC=2a,AC=15,这样肯定能用含有a的式子表示AB然后在左边那个三角形里就能根据勾股定理求出a。

但是我这种算法特别不好算,你再等等,我想一想还有什么办法。

【同步教育信息】一. 本周教学内容:1. 正弦定理和余弦定理应用举例2. 解三角形全章总结教学目的:1. 能够正确运用正弦定理、余弦定理等知识、方法解决一些与测量以及几何计算有关的实际问题。

2. 通过对全章知识的总结提高,帮助学生系统深入地掌握本章知识及典型问题的解决方法。

二. 重点、难点:重点:解斜三角形问题的实际应用;全章知识点的总结归纳。

难点:如何在理解题意的基础上将实际问题数学化。

知识分析:一. 正弦定理和余弦定理应用举例 1. 解三角形应用题的基本思路 (1)建模思想解三角形应用问题时,通常都要根据题意,从实际问题中抽象出一个或几个三角形,然后通过解这些三角形,得出三角形的边角的大小,从而得出实际问题的解。

这种数学建模思想,从实际问题出发,经过抽象概括,把它转化为具体问题中的数学模型,然后通过推理演算,得出数学模型的解,再还原成实际问题的解,用流程图可表示为:(2)解三角形应用题的基本思路:−−−→−−−−→−−−−→画图解三角形检验、结论实际问题数学问题(解三角形)数学问题的解实际问题的解2. 解三角形应用题常见的几种情况:(1)实际问题经抽象概括,已知量与未知量全部集中在一个三角形中,可用正弦定理或余弦定理求解。

(2)实际问题经抽象概括后,已知量与未知量涉及到两个(或两个以上)三角形,这时需作出这些三角形,先解够条件的三角形,然后逐步求出其他三角形中的解,有时需设出未知量,从几个三角形中列出方程,解方程得出所要求的解。

正弦定理和余弦定理的应用举例

正弦定理和余弦定理的应用举例

正弦定理和余弦定理的应用举例1.实际测量中的常见问题判断正误(正确的打“√”,错误的打“×”) (1)东北方向就是北偏东45°的方向.()(2)从A 处望B 处的仰角为α,从B 处望A 处的俯角为β,则α,β的关系为α+β=180°.( ) (3)俯角是铅垂线与视线所成的角,其范围为⎣⎡⎦⎤0,π2.( )(4)方位角与方向角其实质是一样的,均是确定观察点与目标点之间的位置关系.( ) (5)方位角大小的范围是[0,2π),方向角大小的范围一般是[0,π2).( )答案:(1)√ (2)× (3)× (4)√ (5)√若点A 在点C 的北偏东30°,点B 在点C 的南偏东60°,且AC =BC ,则点A 在点B的( )A .北偏东15°B .北偏西15°C .北偏东10°D .北偏西10°解析:选B.如图所示,∠ACB =90°,又AC =BC ,所以∠CBA =45°,而β=30°,所以α=90°-45°-30°=15°. 所以点A 在点B 的北偏西15°.(教材习题改编)如图,一艘船上午9:30在A 处测得灯塔S 在它的北偏东30°的方向,之后它继续沿正北方向匀速航行,上午10:00到达B 处,此时又测得灯塔S 在它的北偏东75°的方向,且与它相距8 2 n mile.此船的航速是________n mile/h. 解析:设航速为v n mile/h ,在△ABS 中AB =12v ,BS =82,∠BSA =45°,由正弦定理得82sin 30°=12v sin 45°,则v =32.答案:32如图,设A ,B 两点在河的两岸,一测量者在A 的同侧,选定一点C ,测出AC 的距离为50 m ,∠ACB =45°,∠CAB =105°,则A ,B 两点间的距离为________.解析:由正弦定理得 AB =AC ·sin ∠ACB sin B =50×2212=502(m).答案:50 2 m如图所示,D ,C ,B 三点在地面的同一直线上,DC =a ,从C ,D 两点测得A 点的仰角分别为60°,30°,则A 点离地面的高度AB =________.解析:因为∠D =30°,∠ACB =60°, 则∠CAD =30°,所以CA =CD =a , 所以AB =a sin 60°=32a . 答案:32a测量距离[典例引领]如图所示,某旅游景点有一座风景秀丽的山峰,山上有一条笔直的山路BC 和一条索道AC ,小王和小李打算不坐索道,而是花2个小时的时间进行徒步攀登,已知∠ABC =120°,∠ADC =150°,BD =1 km ,AC =3 km.假设小王和小李徒步攀登的速度为每小时1 250米,请问:两位登山爱好者能否在2个小时内徒步登上山峰?(即从B 点出发到达C 点)【解】 在△ABD 中,由题意知,∠ADB =∠BAD =30°,所以AB =BD =1,因为∠ABD =120°,由正弦定理得AB sin ∠ADB =AD sin ∠ABD ,解得AD =3,在△ACD 中,由AC 2=AD 2+CD 2-2AD ·CD ·cos 150°, 得9=3+CD 2+23×32CD , 即CD 2+3CD -6=0,解得CD =33-32, BC =BD +CD =33-12, 2个小时小王和小李可徒步攀登1 250×2=2 500米,即2.5千米,而33-12<36-12=52=2.5,所以两位登山爱好者可以在2个小时内徒步登上山峰.若本例条件“BD =1 km ,AC =3 km ”变为“BD =200 m ,CD =300 m ”,其他条件不变,则这条索道AC 长为________.解析:在△ABD 中,BD =200,∠ABD =120°. 因为∠ADB =30°,所以∠DAB =30°. 由正弦定理,得BD sin ∠DAB =ADsin ∠ABD,所以200sin 30°=AD sin 120°.所以AD =200×sin 120°sin 30°=200 3(m).在△ADC 中,DC =300 m ,∠ADC =150°, 所以AC 2=AD 2+DC 2-2AD ×DC ×cos ∠ADC =(200 3)2+3002-2×2003×300×cos 150° =390 000,所以AC =10039. 故这条索道AC 长为10039 m. 答案:10039 m距离问题的类型及解法(1)测量距离问题分为三种类型:两点间不可达又不可视、两点间可视但不可达、两点都不可达.(2)解法:选择合适的辅助测量点,构造三角形,将问题转化为求某个三角形的边长问题,从而利用正、余弦定理求解.如图,隔河看两目标A 与B ,但不能到达,在岸边先选取相距 3 km 的C ,D 两点,同时,测得∠ACB =75°,∠BCD =45°,∠ADC =30°,∠ADB =45°(A ,B ,C ,D 在同一平面内),求两目标A ,B 之间的距离.解:在△ACD 中,∠ACD =120°,∠CAD =∠ADC =30°, 所以AC =CD = 3 km.在△BCD 中,∠BCD =45°,∠BDC =75°,∠CBD =60°. 所以BC =3sin 75°sin 60°=6+22.在△ABC 中,由余弦定理,得AB 2=(3)2+⎝ ⎛⎭⎪⎫6+222-2×3×6+22×cos 75° =3+2+3-3=5,所以AB = 5 km ,测量高度[典例引领]如图,一辆汽车在一条水平的公路上向正西行驶,到A 处时测得公路北侧一山顶D 在西偏北30°的方向上,行驶600 m 后到达B 处,测得此山顶在西偏北75°的方向上,仰角为30°,则此山的高度CD =________m.【解析】 由题意,在△ABC 中,∠BAC =30°,∠ABC =180°-75°=105°,故∠ACB =45°.又AB =600 m ,故由正弦定理得600sin 45°=BC sin 30°,解得BC =300 2 m.在Rt △BCD 中,CD =BC ·tan 30°=3002×33=1006(m). 【答案】 1006求解高度问题的注意事项(1)在测量高度时,要理解仰角、俯角的概念,仰角和俯角都是在同一铅垂面内,视线与水平线的夹角;(2)准确理解题意,分清已知条件与所求,画出示意图;(3)运用正、余弦定理,有序地解相关的三角形,逐步求解问题的答案,注意方程思想的运用.(2018·湖北省七市(州)协作体联考)如图,为了估测某塔的高度,在同一水平面的A ,B 两点处进行测量,在点A 处测得塔顶C 在西偏北20°的方向上,仰角为60°;在点B 处测得塔顶C 在东偏北40°的方向上,仰角为30°.若A ,B 两点相距130 m ,则塔的高度CD =________m.解析:由题意可知,设CD =h ,则AD =h3,BD =3h ,在△ADB 中,∠ADB =180°-20°-40°=120°,所以由余弦定理AB 2=BD 2+AD 2-2BD ·AD ·cos 120°,可得1302=3h 2+h 23-2·3h ·h 3·⎝⎛⎭⎫-12,解得h =1039,故塔的高度为1039 m. 答案:1039测量角度[典例引领]一艘海轮从A 出发,沿北偏东75°的方向航行(23-2)n mile 到达海岛B ,然后从B 出发,沿北偏东15°的方向航行4 n mile 到达海岛C .(1)求AC 的长;(2)如果下次航行直接从A 出发到达C ,求∠CAB 的大小. 【解】 (1)由题意,在△ABC 中,∠ABC =180°-75°+15°=120°,AB =23-2,BC =4, 根据余弦定理得AC 2=AB 2+BC 2-2AB ×BC ×cos ∠ABC =(23-2)2+42+(23-2)×4=24, 所以AC =2 6.(2)根据正弦定理得,sin ∠BAC =4×3226=22,所以∠CAB =45°.解决测量角度问题的注意事项(1)首先应明确方位角或方向角的含义.(2)分析题意,分清已知与所求,再根据题意画出正确的示意图,这是最关键、最重要的一步.(3)将实际问题转化为可用数学方法解决的问题后,注意正、余弦定理的“联袂”使用.[通关练习]1.甲船在A 处观察乙船,乙船在它的北偏东60°的方向,相距a 海里的B 处,乙船正向北的方向前进.解析:设两船在C 处相遇,则由题意∠ABC =180°-60°=120°,且ACBC =3,由正弦定理得AC BC =sin 120°sin ∠BAC =3,所以sin ∠BAC =12.又因为0°<∠BAC <60°,所以∠BAC =30°. 所以甲船应沿北偏东30°方向前进. 答案:30°2.在一次海上联合作战演习中,红方一艘侦察艇发现在北偏东45°方向,相距12 n mile 的水面上,有蓝方一艘小艇正以每小时10 n mile 的速度沿南偏东75°方向前进,若红方侦察艇以每小时14 n mile 的速度,沿北偏东45°+α方向拦截蓝方的小艇,若要在最短的时间内拦截住,求红方侦察艇所需的时间和角α的正弦值.解:如图,设红方侦察艇经过x 小时后在C 处追上蓝方的小艇,则AC =14x ,BC =10x ,∠ABC =120°.根据余弦定理得(14x )2=122+(10x )2-240x cos 120°, 解得x =2.故AC =28,BC =20. 根据正弦定理得BC sin α=AC sin 120°,解得sin α=20sin 120°28=5314.利用解三角形解决实际问题时:(1)要理解题意,整合题目条件,画出示意图,建立一个三角形模型; (2)要理解仰角、俯角、方位角、方向角等概念;(3)三角函数模型中,要确定相应参数和自变量范围,最后还要检验问题的实际意义.易错防范(1)易混淆方位角与方向角概念:方位角是指正北方向与目标方向线(按顺时针)之间的夹角,而方向角是正北或正南方向线与目标方向线所成的锐角.(2)解三角形时,为避免误差的积累,应尽可能用已知的数据(原始数据),少用间接求出的量.1.两座灯塔A 和B 与海岸观察站C 的距离相等,灯塔A 在观察站南偏西40°,灯塔B 在观察站南偏东60°,则灯塔A 在灯塔B 的( )A .北偏东10°B .北偏西10°C .南偏东80°D .南偏西80°解析:选D.由条件及题图可知,∠A =∠B =40°,又∠BCD =60°,所以∠CBD =30°,所以∠DBA =10°,因此灯塔A 在灯塔B 南偏西80°.2.一艘船以每小时15 km 的速度向东航行,船在A 处看到一个灯塔M 在北偏东60°方向,行驶4 h 后,船到达B 处,看到这个灯塔在北偏东15°方向,这时船与灯塔的距离为( ) A .15 2 km B .30 2 km C .45 2 km D .60 2 km解析:选B.如图所示,依题意有AB =15×4=60,∠DAC =60°,∠CBM =15°, 所以∠MAB =30°,∠AMB =45°.在△AMB 中,由正弦定理,得60sin 45°=BM sin 30°,解得BM =302,故选B.3.如图,一条河的两岸平行,河的宽度d =0.6 km ,一艘客船从码头A 出发匀速驶往河对岸的码头B .已知AB =1 km ,水的流速为2 km/h ,若客船从码头A 驶到码头B 所用的最短时间为6 min ,则客船在静水中的速度为( )A .8 km/hB .6 2 km/hC .234 km/hD .10 km/h解析:选B.设AB 与河岸线所成的角为θ,客船在静水中的速度为v km/h ,由题意知,sin θ=0.61=35,从而cos θ=45,所以由余弦定理得⎝⎛⎭⎫110v 2=⎝⎛⎭⎫110×22+12-2×110×2×1×45,解得v =6 2.4.如图,两座相距60 m 的建筑物AB ,CD 的高度分别为20 m 、50 m ,BD 为水平面,则从建筑物AB 的顶端A 看建筑物CD 的张角为( )A .30°B .45°C .60°D .75°解析:选B.依题意可得AD =2010(m),AC =305(m),又CD =50(m), 所以在△ACD 中,由余弦定理得 cos ∠CAD =AC 2+AD 2-CD 22AC ·AD=(305)2+(2010)2-5022×305×2010=6 0006 0002=22,又0°<∠CAD <180°,所以∠CAD =45°,所以从顶端A 看建筑物CD 的张角为45°. 5.某船开始看见灯塔在南偏东30°方向,后来船沿南偏东60°的方向航行15 km 后,看见灯塔在正西方向,则这时船与灯塔的距离是( ) A .5 km B .10 km C .5 3 kmD .5 2 km解析:选C.作出示意图(如图),全国名校高考数学复习优质学案汇编(理科,附详解)点A 为该船开始的位置,点B 为灯塔的位置,点C 为该船后来的位置,所以在△ABC 中,有∠BAC =60°-30°=30°,B =120°,AC =15,由正弦定理,得15sin 120°=BC sin 30°, 即BC =15×1232=53,即这时船与灯塔的距离是5 3 km. 6.海上有A ,B 两个小岛相距10 n mile ,从A 岛望C 岛和B 岛成60°的视角,从B 岛望C 岛和A 岛成75°的视角,那么B 岛和C 岛间的距离是________ n mile.解析:如图,在△ABC 中,AB =10,A =60°,B =75°,C =45°,由正弦定理,得AB sin C =BC sin A , 所以BC =AB ·sin A sin C =10×sin 60°sin 45°=56(n mile).答案:5 67.如图,为了测量河的宽度,在一岸边选定两点A 、B 望对岸的标记物C ,测得∠CAB =30°,∠CBA =75°,AB =120 m ,则这条河的宽度为________.解析:如图,在△ABC 中,过C 作CD ⊥AB 于D 点,则CD 为所求河的宽度.在△ABC 中,因为∠CAB =30°,∠CBA =75°,所以∠ACB =75°,所以AC =AB =120 m.在Rt △ACD 中,CD =AC sin ∠CAD。

正、余弦定理在实际中的应用应用题

正、余弦定理在实际中的应用应用题

正、余弦定理在实际中的应用应用题正弦定理和余弦定理是三角形中的重要定理,它们在实际问题中有着广泛的应用。

下面将通过几个例子来说明它们在实际问题中的应用。

例1:一座山的高度是100米,从山顶到山脚的水平距离是500米。

现在我们要在山脚处建造一座高塔,使得从山顶到塔顶的视角恰好等于直角的一半(即45度)。

求塔的高度。

h/sin45° = 500/sin90°因为 sin45° = √2/2, sin90° = 1,例2:一座大桥的桥面宽度为 10米,桥下水流的深度为 2米。

为了使桥下水的流速达到每秒 5米,现要在桥边修建一条人行道,要求人行道的宽度为 3米。

问人行道的长度应该是多少?解:设人行道的长度为 L米。

由余弦定理得:L2 = (10 - 3)2 + (2 + 5)2 - 2 ×(10 - 3)×(2 + 5)× cos30°= 9 + 67 - 2 ×(10 - 3)×(2 + 5)× cos30°= 76 - 2 ×(10 - 3)×(2 + 5)×(√3/2)= 76 - (10 - 3)×(2 + 5)×(√3/2)× 2= 76 - (10 - 3)×(2 + 5)×(√3/2)× 2= 76 - (17 ×√3)×(√3/2)× 2答:人行道的长度为 25米。

本节课是介绍余弦定理和正弦定理的内容。

这两个定理是三角学的基本定理,对于理解三角形的属性和解决三角形的问题有着重要的意义。

余弦定理和正弦定理的发现和证明,也体现了数学中普遍存在的一种方法——归纳法。

通过本节课的学习,学生将更好地理解三角形的属性和解三角形的方法,同时也能提高他们的数学思维能力和推理能力。

正弦定理、余弦定理在生活中的应用

正弦定理、余弦定理在生活中的应用

正弦定理、余弦定理在生活中的应用正弦定理、余弦定理是解三角形得重要工具,解三角形在经济生活和工程测量中的重要应用,使高考考查的热点和重点之一,本文将正弦定理、余弦定理在生活中的应用作以简单介绍,供同学们学习时参考.一、在不可到达物体高度测量中的应用例1 如图,在河的对岸有一电线铁塔AB ,某人在测量河对岸的塔高AB 时,选与塔底B 在同一水平面内的两个测量点C 与D ,现测得BCD BDC CD s αβ∠=∠==,,,并在点C 测得塔顶A 的仰角为θ,求塔高AB .分析:本题是一个高度测量问题,在∆BCD 中,先求出CBD ∠,用正弦定理求出BC ,再在ABC Rt △中求出塔高AB.解析:在BCD △中,CBD ∠=παβ--. 由正弦定理得sin BC BDC ∠=sin CD CBD ∠. 所以BC =sin sin CD BDC CBD ∠∠=sin sin()s βαβ+·. 在ABC Rt △中,AB =tan BC ACB ∠=tan sin sin()s θβαβ+·. 点评:对不可到达的物体的高度测量问题,可先在与物体底部在同一平面内找两点,测出这两点间的距离,再测出这两点分别与物体底部所在点连线和这两点连线所成的角,利用正弦定理或余弦定理求出其中一点到物体底部的距离,在这一点测得物体顶部的仰角,通过解直角三角形,求得物体的高.二、在测量不可到达的两点间距离中的应用例2某工程队在修筑公路时,遇到一个小山包,需要打一条隧道,设山两侧隧道口分别为A 、B ,为了测得隧道的长度,在小山的一侧选取相距km 的C 、D 两点高,测得∠ACB=750,∠BCD=450,∠ADC=300,∠ADC=450(A 、B 、C 、D ),试求隧道的长度.分析:根据题意作出平面示意图,在四边形ABCD 中,需要由已知条件求出AB 的长,由图可知,在∆ACD 和∆BCD 中,利用正弦定理可求得AC 与BC ,然后再在∆ABC 中,由余弦定理求出AB.解析:在∆ACD 中,∵∠ADC=300,∠ACD=1200,∴∠CAD=300,∴在∆BCD 中,∠CBD=1800-450-750=600由正弦定理可得,在∆ABC 中,由余弦定理,可得2222AB AC BC AC BC COS ACB =+-∙∙∠,2220(27522AB COS =+-⨯⨯=5∴ 2.236km,即隧道长为2.236km.点评:本题涉及到解多个三角形问题,注意优化解题过程.如为求AB 的长,可以在∆ABD 中,应用余弦定理求解,但必须先求出AD 与BD 长,但求AD 不如求AC 容易,另外。

正余弦定理的实际应用

正余弦定理的实际应用
1.有一座塔CD, 某人站在塔前 A点仰视,此时人与塔顶的角度 为45,人又向前走了20km到达 B点,此时人与塔顶的角度为 60,求塔高
2.为测量河对岸A, B两点间的 距离,在河的这边测出 CD 3 km,ADB CDB 30 2 ACD 60,ACB 45, 求A、B两点的距离
3.湖中小岛A周围38海里内有暗礁, 船向正南航行,在 B处测得小岛A 在船的南偏东 30方向上,航行了 30海里后,在C处测得小岛A在船 的南偏东45方向上,如果此船不 改变方向,继续向南航 行,有无 触礁的可能?
4.为了测量两山Байду номын сангаас M, N间的距离, 飞机沿水平方向在 A、B两点进行 测量,A、B、M、N在同一铅垂 直平面内,飞机能够测 量的数据 有俯角和A, B间的距离,请设计 一个方案包括 (1)需要测量的数据 (用字母表示)(2)用文字和公式写 出计算M, N距离的步骤

解三角形在现实生活中的应用——正,余弦定理

解三角形在现实生活中的应用——正,余弦定理

解三角形正,余弦定理在现实生活中的应用解三角形的正弦定理和余弦定理在现实生活中有广泛的应用。

例如,测量距离、测量高度、航海模型、物理问题等都与这些定理有关。

以下是一些例子:
1. 测量距离
利用正弦定理和余弦定理可以测量出无法直接测量的距离。

假设你想知道两个建筑物之间的距离,但你不能直接测量它们之间的直线距离。

你可以站在其中一个建筑物旁边,用一个工具测量你与另一个建筑物之间的角度和高度差,然后使用正弦定理或余弦定理计算出两个建筑物之间的直线距离。

2. 测量高度
同样可以利用正弦定理和余弦定理测量出无法直接测量的高度。

假设你想知道一个树的高度,但你只能在地面附近测量树的影子长度。

你可以使用正弦定理或余弦定理计算出树的高度。

3. 航海模型
在航海中,可以利用正弦定理和余弦定理计算船只的位置。

假设你知道船只在某个时间点的位置和朝向,以及它的速度和方向,你可以使用正弦定理和余弦定理计算出船只在任何其他时间点的位置和朝向。

这对于导航非常重要。

4. 物理问题
在物理学中,正弦定理和余弦定理也有很多应用,例如在振
动、波动等问题中。

例如,当一个弹簧上放置一个小球时,小球会以一定的频率来回摆动。

通过测量小球的振幅、周期等参数,可以使用正弦定理和余弦定理计算出小球的运动轨迹和速度。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2、课题的意义(为什么要进行本课题的研究):
希望在研究性学习的过程中认真、踏实的研究,实事求是地获得结论,培养他们端正的科学态度和科学道德观,培养出不断追求进取、不怕吃苦、勇于克服困难的意志品质。
3、课题介绍
对增城市高的建筑物的高度,以及河的宽度、桥的宽度进行实地测量,得到测量数据,通过计算得出实际结果,然后与相关部门对照数据,检查测量的准确性。这个过程学生必须认真、他是的测量、记录,实事求是地获得结论。
研究性学习设计方案
研究课题名称:
正余弦定理在日常生活中的应用
设计者姓名
阿不
所在学校
仙村中学
所教年级
高二
研究学科
数学
联系电话
电子邮件
一、课题背景、意义及介绍
1、背景说明(怎么会想到本课题的):
学习了正余弦定理后,进行“正余弦定理的应用”时,想到除了课本给的例题,应该还有别的实际生活中使用正余弦定理的情况。
2、设计“调查记录表”,为学生调查记录提供指引
第三阶段:课题实施阶段
一、搜集资料活动
本活动采取的形式多样:走访、上网下载、上图书馆查阅
二、实地考察活动
计划从荔城增江附近选取合适的建筑或者桥
三、科学实验活动
第一步相关知识与测量仪器的准备;第二步是科学实验;
第三步是计算得出成果;第四步是验证数据是否准确
3.经历发现问题、分析问题、解决问题的研究过程,初步学会探究学习的方法
4.经过小组合作学习,能写出调查报告
情感态度与价值观
对增城市的高建筑物和增江加深了解,更好地认识家乡,热爱大自然。
坚信“数学有用”,并在家庭生活、社会生活以及以后的生产生活中懂得利用学到的数学知识解决遇到的问题。
通过小组的合作,加强自己与同学之间的人际关系,了解团队的力量。
二、研究性学习的教学目的和方法(可按新课程标准的三维目标(或布鲁姆目标分类法)进行研究性学习的教学目和方法的阐述)
知识与技能
1.了解和掌握正余弦定理
2.了解并能熟悉使用相关测量仪器
3.掌握测量宽度与高度的步骤与方法
过程与方法
1.采用多种途径收集资料(上网下载,去市图书馆查阅,调查访问等)
2.能对各种资源进行筛选、整理、分析
四、研究的目标与内容(课题研究所要解决的主要问题是什么,通过哪些内容的研究来达成这一目标)
要解决的主要问题有:
增城市有哪些标志性的搞建筑,其名字、所在位置及其建成时间
增城市有哪几条河,几座桥,这些桥的名字、所在位置及其建成时间
去哪里借相关的测量仪器,如何使用
通过以下内容的研究来达成这一目标:
收集有关建筑,其名字、所在位置及其建成时间和应用现状
提出和选择课题
1、比较全面的了解增城市的建筑物和河流及其面的桥
2、经过师生共同讨论,确定主题,比如:
1.高建筑物的现状
2、河流及其桥的现状
1、组织学生讨论
2、与学生仪器赛选课题,确定本组课题
第5 ——6周
成立课题组
1、学生根据自己的专长和喜好确定自己的选题,并形成不同小组
2、各小组成立后,选定组长,学习讨论小组合作学习评价量规
3、根据自己的选题,进行小组分工
1、在学生自愿成组的前提下,合理调配各族成员,以利于能力较弱的学生也可以安排到工作
2、制定合作学习规则提供给学生
3、组织指导学生的小组讨论、小组成员分工
形成小组实施方案
制定初步的课题研究实施方案,分配研究时间,细分研究内容,制作数据表,预订成果等
1、与学生交流实施方案的可行性与科学性
每个学生都有自己的心得体会,每个学生都会得到自己、同组成员、组长及老师的评价。
六、资源准备
根据主题,教师提供的资源
学校图书馆、电脑室、实验室
相关测量仪器
国土局、规划局、街道办的联系人及联系电话
评价量规
学生自行准备的资源
调查试卷
照相机
其他资料等
七、研究性学习的阶段设计
研究性学习的阶段
学生活动
教师活动
起止时间
收集有关河流和桥的名字、所在位置及其建成时间
找到学校负责人,由学校出面,向增城市城建部门借测量工具,同时邀请一位专家可以给予使用指导。
去市图书馆查找相关的资料,以备以后检验
五、研究的预期成果及其表现形式(研究的最终成果以什么样的形式展现出来,是论文、实验报告、实物、网站、多媒体还是其他形式)
研究的最终成果以实验报告的形式递交,但是通过做手抄报、课件等形式来表达自己的成果。
在活动中还有待加强对学生团队的指引,以及对一些较被动学生的鼓励与帮助。评价方面要提高评价的有效性和全面性。
第一阶段:动员和培训(初步认识研究性学习、理解研究性学习的研究方法)
1、接触、讨论问题
2、了解本次活动的学习目的
3、学习了解本次综合实践活动的步骤、方法、要求
1、呈现增城市的地图照片,激发学生实验兴趣
2、组织学生就问题谈感受,提问题
3、利用演示文稿介绍本次综合实践活动的步骤、方法、要求
第4周
第二阶段 课题准备阶段
三、参与者特征分析(重点分析学生有哪些共性、有哪些差异,尤其对开展研究性学习有影响的因素。)
学生是高二年级的学生,具备了一定的数学知识,但是基础不是特别好。
学生对身边的事物关注不多。
正值青少,思维活跃,乐于表达自己,渴望得到同学和老师的夸奖。
都不会使用测量工具,但是自认动手能力比较强,对操作性、验证性工作有能力有信息去做好它。
1、组织学生到市国土局、规划局、街道办事处采访相关工作人员;
2、给学生一些明确的考察对象;
3、给组长发放“活动记录表”,以用作每次小组活动后收集整理信息
4、及时跟踪了解各小组活动进行情况,注意保护一起,做好参谋指导工作
第7——9周
八、总结与反思(实践后总结、反思整个研究性学习过程,提出改进意见)
经过这次研究性学习,学生们走进社会、走进生活,了解了很多增城本土的建筑与自然文化。学生的参与面广,积极性高,提高了调查、访问、合作、分析、评价等的能力;同时,经过对测量仪器的学习与使用,提高学生的动手能力。最主要的,学生们以全新的视野来重新审视他们日常生活中的数学问题。
相关文档
最新文档