气体流量测定与流量计标定

合集下载

mt法气体流量标准

mt法气体流量标准

MT法气体流量标准一、流量定义和术语MT法气体流量标准是指使用磁力流量计(MT)测量气体流量的标准方法。

磁力流量计是一种利用磁场感应定量测量导电液体体积流量的仪表。

在管道中安装磁力流量计,通过涡街信号转换器将流量信号转换为电信号,再传输到二次仪表进行显示和记录。

二、测量原理和方法磁力流量计的测量原理是基于法拉第电磁感应定律。

在磁场中,导电介质中自由流动的电流会产生感应电势。

感应电势的大小与导体在磁场中的有效长度及导体在磁场中作垂直于磁场方向运动的速度成正比。

磁力流量计主要由磁路系统、测量管、电极、外壳、衬里和转换器等部分组成。

它通过测量导电流体在磁场中流动时产生的感应电势来计算流体速度,从而得到体积流量。

感应电势与流体的体积流量成正比,这个比例系数就是仪表的仪表系数。

三、测量仪器和设备磁力流量计主要由传感器(包括测量管和电极)和二次仪表组成。

传感器负责测量流量信号,二次仪表则对流量信号进行显示、记录和远程传输。

此外,还需要提供电源设备、信号电缆和其他辅助设备。

四、气体种类和压力范围磁力流量计适用于测量多种气体,包括空气、氧气、氮气、二氧化碳等。

测量的压力范围根据不同的型号和规格而有所不同,一般在0.1MPa至10MPa 之间。

在测量气体流量时,需要考虑到气体的物理性质(如密度、粘度等)对测量结果的影响。

五、流量校准和验证为了保证磁力流量计的测量准确性和可靠性,需要进行定期的流量校准和验证。

一般采用标准表法或质量法进行校准和验证。

标准表法是将被校准的磁力流量计与标准表进行比较,以确定其准确度;质量法则是通过测量一定时间内流经管道的气体质量来验证磁力流量计的准确性。

六、操作和维护规程在使用磁力流量计时,需要遵循一定的操作和维护规程。

首先,要按照说明书安装和调试设备,确保设备正常运行。

在使用过程中,要定期检查设备的运行状态,如发现异常应及时处理。

此外,还需要定期对设备进行清洗和维护,以保证设备的测量精度和使用寿命。

热式气体质量流量计原理和标定过程

热式气体质量流量计原理和标定过程

热式气体质量流量计原理和标定过程When it comes to thermal mass flow meters, they are one of the most commonly used devices for measuring gas flow rates in a variety of industrial applications. 热式气体质量流量计是在各种工业应用中用于测量气体流速的最常用设备之一。

These flow meters operate based on the principle of heat transfer, where the flow rate of gas is directly proportional to the amount of heat needed to maintain a constant temperature difference between the sensor and the gas. 这些流量计的运行原理是基于热传递,气体的流速与维持传感器与气体之间恒定温度差所需的热量成正比。

By measuring this heat transfer, the flow meter can accurately determine the mass flow rate of the gas passing through it. 通过测量这种热传递,流量计可以准确确定通过其的气体的质量流量。

One unique characteristic of thermal mass flow meters is that they are capable of measuring mass flow rate without the need for additional pressure or temperature corrections, making them highly reliable in various operating conditions. 热式气体质量流量计的一个独特特征是,它们可以在不需要额外的压力或温度修正的情况下测量质量流速,使其在各种操作条件下都非常可靠。

流量计标定实验报告

流量计标定实验报告

流量计标定实验报告流量计标定实验报告摘要:本实验旨在通过对流量计的标定实验,探究其在不同流量下的准确性和稳定性。

实验采用了标准流量计作为对照组,对比不同流量计的读数,并分析其误差和可靠性。

实验结果表明,在一定范围内,流量计的读数具有较高的准确性和稳定性。

引言:流量计是工业生产和实验室研究中常用的仪器,用于测量液体或气体通过管道的流量。

准确的流量测量对于工业生产的控制和实验研究的可靠性至关重要。

因此,流量计的标定是保证其准确性和可靠性的重要步骤。

实验方法:1. 实验仪器和材料:- 流量计:本实验使用了三种不同型号的流量计,分别为A型、B型和C型。

- 标准流量计:作为对照组,使用了一台已经标定过的标准流量计。

- 水源:使用自来水作为实验介质。

- 流量计支架和连接管道。

2. 实验步骤:a. 将标准流量计连接到流量计支架上,并将其与待测流量计并联连接。

b. 打开水源,使水通过流量计流动,并记录标准流量计和待测流量计的读数。

c. 逐渐调整水源流量,记录不同流量下的标准流量计和待测流量计的读数。

d. 重复实验三次,取平均值作为最终结果。

实验结果与讨论:在实验过程中,我们分别对A型、B型和C型流量计进行了标定实验,并与标准流量计的读数进行对比。

实验结果显示,A型流量计在低流量下的读数与标准流量计相比存在一定的偏差,但在高流量下的读数较为接近。

B型流量计在不同流量下的读数与标准流量计的读数相差较小,表现出较高的准确性和稳定性。

C型流量计在低流量下的读数与标准流量计相比存在较大的误差,但在高流量下的读数与标准流量计的读数较为接近。

通过对实验结果的分析,我们可以得出以下结论:1. 不同型号的流量计在不同流量下的准确性和稳定性存在差异。

在选择流量计时,需要根据实际需求和使用环境来进行合理选择。

2. 流量计的读数误差主要集中在低流量范围内,可能与流量计的设计原理和流体特性有关。

因此,在低流量下需要更加谨慎地使用流量计。

油气计量技术-第6章 天然气流量计量标准装置及流量计检定

油气计量技术-第6章 天然气流量计量标准装置及流量计检定
11
6.1 天然气流量计量标准装置
(一)钟罩式气体流量标准装置
➢ (2)工作原理
➢ 打开阀门23和调节阀22; ➢ 钟罩以一定速度下降,钟罩内气体通过导气管,经被检定的流量
计流入大气。 ➢ 当下挡板4遮住光电发讯器时,计时器开始计时,被检流量计同
时也开始计数,钟罩继续下降。 ➢ 当上挡板5遮住光电发讯器时,计时器停止计时,被检流量计同
,装置在工作过程中压力有波动,即压力波动。压力波动 应符合表6-1的规定。 ➢ (3)密封性 ➢ 装置在关闭进出口阀门后应密封。 ➢ (4)温度差控制 ➢ 应严格控制装置温度,以保证钟罩内的气体温度和液槽内 的液体温度之差符合表6-1的规定。
5
6.1 天然气流量计量标准装置
(一)钟罩式气体流量标准装置 ➢ (5)计时器 ➢ 计时器的启、停应由钟罩上的光电发讯器发出的信号控制。
计时器的准确度应优于测量时间的0.1%,分辨力小于或等 于0.01s。 ➢ (6)装置的配套设备 ➢ 温度计:分度值小于或等于0.2℃。 ➢ 压力计:分辨力小于或等于10Pa。 ➢ 大气压力计:准确度优于0.1%。
6
6.1 天然气流量计量标准装置
(一)钟罩式气体流量标准装置 ➢ 2. 钟罩式气体流量标准装置的结构与原理 ➢ (1)装置的结构 ➢ 装置一般由钟罩、液槽、发讯机构、压力补偿机构、气源和
试验管道等构成。如测量瞬时流量,则应配备计时器。若有 编码器等能自动检测钟罩位置,则可代替发讯机构。 ➢ 钟罩式气体流量标准装置结构如图6-1所示。
7
6.1 天然气流量计量标准装置
8
6.1 天然气流量计量标准装置
(一)钟罩式气体流量标准装置 ➢ (1)装置的结构 ➢ 钟罩1是一个上部有顶盖,下部开口的容器; ➢ 液槽2内盛满水或不易挥发的油,由于液封的作用,使钟罩

液体流量计和气体流量计的检定方法

液体流量计和气体流量计的检定方法

液体流量计和气体流量计的检定方法
液体流量计的计量性能常用静态容积法/静态质量法或标准表法进行检定。

静态容积法/静态质量法的检定方法为:计量一段时间内标准容器或标准衡器的液体体积或质量,通过计算得出该段时间标准装置的平均体积流量或质量流量,同时记录该段时间被检表的脉冲计数(脉冲频率与被检表瞬时流量成比例关系或脉冲数值代表一定的累计流量),通过计算得出被检表的平均体积流量或质量流量,计算标准值和被检值之间的误差,从而判定被检表是否合格。

标准表法检定方法为:计量一段时间内标准表(标准流量计)和被检表的脉冲计数,通过计算得出标准流量值和被检流量值,计算两者之间误差来判定被检表是否合格。

气体流量计的计量性能常用临界流文丘里喷嘴法进行检定,检定方法为:通过控制音速喷嘴的开闭调整标准流量,计量一段时间内被检表的脉冲计数,计算得出被检表的平均流量,计算标准流量和被检表流量之间的误差,判定被检表是否合格。

企业在建造流量检定装置时,常采用多台被检表同时检定的方法来提高检定效率。

装置在建造时,计时器为单一设备,脉冲则通过可编程逻辑控制器(PLC)或脉冲计数器进行采集,设备启停不同步存在一定时间差,可能会产生测量误差,脉冲计数设备的抗干扰能力也决定脉冲计数的准确性,同时设备众多,也增加了系统的复杂性和建造成本。

为了解决这一问题,设计一种具有10通道脉冲信号计数功能的
计时器,可自动计算每通道的平均流量及与标准流量的相对示值误差,具有RS485通信功能,在非检定状态下可显示每通道脉冲频率和流量值。

流量计标定实验报告

流量计标定实验报告

一、实验目的1. 了解流量计的构造、工作原理和主要特点;2. 掌握流量计的标定方法;3. 通过标定实验,了解流量计的测量误差,提高测量精度;4. 培养实验操作技能和数据处理能力。

二、实验原理流量计是一种用于测量流体流量的仪表。

本实验采用孔板流量计进行标定,其工作原理如下:当流体通过孔板时,在孔板前后产生压差,压差与流量之间的关系可以用伯努利方程进行描述。

通过测量孔板前后的压差,即可计算出流体的流量。

伯努利方程为:ρgh = 1/2ρv^2 + P/ρ其中,ρ为流体密度,g为重力加速度,h为流体高度,v为流体流速,P为流体压强。

孔板流量计的流量系数C可以表示为:C = A1/A2 √(2gh)其中,A1为孔板上游面积,A2为孔板下游面积,h为孔板前后压差。

通过测量孔板前后的压差,即可计算出流量系数C,进而计算出流量。

三、实验装置1. 实验装置:孔板流量计、U型管压差计、水泵、水箱、流量计、调节阀门;2. 实验仪器:秒表、量筒、电子秤、电子天平、游标卡尺。

四、实验步骤1. 将实验装置连接好,检查各部分连接是否牢固,确保实验安全;2. 将水箱注满水,关闭出口阀门,打开水泵,调节阀门,使流体通过孔板流量计;3. 使用U型管压差计测量孔板前后的压差,记录数据;4. 使用秒表记录流体通过孔板的时间,计算流量;5. 重复步骤3和4,进行多次实验,取平均值;6. 使用电子秤和游标卡尺测量孔板上游和下游面积,计算面积比;7. 计算流量系数C;8. 根据流量系数C和压差,计算流量;9. 对比实际流量和计算流量,分析误差。

五、实验结果与分析1. 实验数据记录如下:实验次数 | 压差 (Pa) | 流量 (m^3/s) | 面积比 | 流量系数C | 计算流量(m^3/s)------- | -------- | ---------- | ------ | ---------- | -------------1 | 1000 | 0.5 | 0.8 | 0.6 | 0.482 | 1200 | 0.6 | 0.8 | 0.7 | 0.563 | 1400 | 0.7 | 0.8 | 0.8 | 0.642. 实验结果分析:通过对比实际流量和计算流量,可以看出实验存在一定的误差。

流量计的标定实验报告

流量计的标定实验报告

流量计的标定实验报告一、引言流量计是现代工业中常用的仪器设备,用于测量液体或气体的流量。

为了保证流量计的准确性,需要进行定期的标定实验。

本报告将详细介绍流量计的标定实验过程及结果。

二、实验目的1. 确定流量计的准确性;2. 确认流量计的稳定性;3. 评估流量计在不同工况下的测量误差。

三、实验原理本次实验采用热式流量计进行标定。

热式流量计通过测量液体或气体通过传感器时产生的热传导来确定其质量流率。

热式流量计主要包括传感器、加热元件和温度传感器三部分。

四、实验步骤1. 准备工作:将所需设备和试剂准备好,确保所有设备干净无杂质。

2. 安装:将热式流量计安装到测试管道上,并连接相应管道。

3. 标定:根据不同工况设置不同参数,并记录数据。

4. 数据处理:根据记录数据进行统计和分析,得出测量误差等结果。

5. 结果分析:根据数据处理结果评估流量计的准确性和稳定性,并确定其适用范围。

五、实验结果1. 测量误差:通过数据处理得出,流量计在不同工况下的测量误差分别为±0.5%、±1%、±2%。

2. 稳定性:经过长时间测试,流量计稳定性良好,误差变化范围在±0.2%以内。

3. 准确性:经过对比测试,流量计与标准流量计的误差在可接受范围内。

六、结论本次实验结果表明,热式流量计具有较高的准确性和稳定性,在不同工况下的测量误差也在可接受范围内。

因此,在实际应用中可以放心使用。

七、建议为了保证流量计的准确性和稳定性,建议定期进行标定实验,并根据实验结果进行调整和维护。

同时,在使用过程中要注意保持设备清洁,避免杂质进入影响测量结果。

气体质量流量计标定方法

气体质量流量计标定方法

气体质量流量计标定方法1. 哎呀呀,你知道吗,气体质量流量计标定可以用标准表法呀!就像你跑步找个标准速度的人来对比一样。

比如说,把要标定的流量计和一个超级标准的流量计放在一起,同时测量同一种气体,然后一对比,不就知道准不准啦!2. 嘿!还有一种主副基准法呢!这就好像有个老大带着小弟一起干活儿。

用主基准去校准副基准,然后再用副基准去标定我们要用的流量计,是不是很妙!比如在实验室里,主基准就是那个厉害的“老大”,带着其他流量计一起准确工作。

3. 哇塞,传递比较法也很牛啊!这不就是接力赛跑嘛。

把标准流量计的数值通过一系列传递,最后到要标定的流量计上。

就像接力棒一样,一个传一个,到终点就知道结果啦!比如从这边的标准设备传递到那边的待标定仪表。

4. 你看哦,固定点质量法也不错呀!想象一下有个固定的点,在那一直很靠谱。

就像有个固定的参照点一样,我们通过这个点来确定流量计的准确性。

好比有个特别的位置,总是能给我们最准确的数据。

5. 哎,离线标定法也能行呢!把流量计拆下来,单独去标定,就像运动员离开赛场专门去训练一样。

比如说在工厂里,把流量计拆下来,仔细地去给它校准。

6. 哇哦,在线实流标定法可厉害啦!这就像是实时监控啊,在实际使用的时候直接就给流量计来个精准“调教”。

比如在生产线上,一边让气体流过,一边就把流量计校准好了。

7. 咦,还有使用称重法来标定呢!这就好像给东西称重一样,知道确切的重量才能判断嘛。

比如对一定量的气体进行称重,然后和流量计的数据对比。

8. 哈哈,直接测量法也能用上呀!就是简单直接地去测量,没有那么多弯弯绕绕。

就像直截了当地去做一件事,干脆利落。

比如直接测量气体的某些数据来确定流量计对不对。

9. 嘿呀,综合标定法更是牛了,把各种方法结合起来用!就像把各种工具组合在一起,发挥最大的作用。

比如在一些复杂的情况下,用多种方法一起给流量计一个最准确的判定。

总之,这么多种气体质量流量计标定方法,各有各的好处和适用场景,我们可得好好了解和运用呀!。

气体流量计的准确性与精度验证方法

气体流量计的准确性与精度验证方法

气体流量计的准确性与精度验证方法气体流量计被广泛应用于工业和实验室等各种领域,用于测量气体的流量。

然而,由于气体的特性以及仪器本身的限制,流量计的准确性和精度一直是人们关注的焦点。

本文将介绍气体流量计的准确性与精度验证方法,并探讨这些方法的优缺点。

1. 标准流量计法标准流量计法是一种常用的验证方法,其原理是将待测流量计与已知准确度的标准流量计进行比较。

首先,将待测流量计和标准流量计安装在同一气体管线上,通过调节控制阀门来使流量相等。

然后,根据标准流量计的示值和待测流量计的示值进行比较,以判断待测流量计的准确性和精度。

标准流量计法的优点是简单易行,不需要特殊设备和复杂的过程。

然而,该方法也存在一些缺点。

例如,由于实际工作条件和实验条件的差异,可能会引入一些误差。

此外,标准流量计本身的准确度也会对验证结果产生影响。

2. 静态法静态法是一种基于流量计示值的直接比较方法。

在实验过程中,将待测流量计和标准流量计分别与一个大型容器相连接,使气体在容器中静止。

然后,通过打开或关闭阀门来调节气体流量。

待测流量计和标准流量计的示值可以直接进行比较,以验证待测流量计的准确性和精度。

静态法的优点是精确度高,可以排除实际工作条件的干扰。

然而,该方法也存在一些限制。

由于静态法要求对流量计进行长时间的观察和比较,因此需要较长的测试时间。

此外,静态法对容器的稳定性和密封性要求较高,否则可能会引入误差。

3. 动态法动态法是一种基于流量瞬变的方法,通过测量流量计在不同工况下的响应来评估其准确性和精度。

在实验过程中,通过改变气体的流速和压力来模拟实际工作条件下的不同工况。

然后,观察和记录待测流量计在这些工况下的示值变化,以评估其准确性和精度。

动态法的优点是可以快速评估流量计的准确性,并且可以模拟实际工作条件的变化。

然而,该方法也存在一些挑战。

由于实验过程中需要改变气体流速和压力,可能会引入干扰和误差。

此外,动态法对实验设备和技术要求较高,需要较好的控制能力和仪器精度。

流量计的标定实验报告

流量计的标定实验报告

流量计的标定实验报告
《流量计的标定实验报告》
在工业生产中,流量计是一种非常重要的仪器设备,用于测量流体的流量。

为了确保流量计的准确性和可靠性,必须进行定期的标定实验。

本文将介绍一次流量计的标定实验报告,以便更好地了解流量计的工作原理和标定方法。

实验目的:通过标定实验,验证流量计的准确性和稳定性,以及了解流量计的测量范围和误差范围。

实验仪器:流量计、流量标定装置、压力表、温度计等。

实验步骤:
1. 确定实验条件,包括流体种类、流量范围、温度、压力等参数。

2. 将流量计安装在流量标定装置上,并连接好压力表和温度计。

3. 调节流量标定装置,使流体流量逐渐增加,记录下每个流量点对应的流量计读数、压力和温度。

4. 根据实验数据,绘制流量计的标定曲线,分析流量计的准确性和稳定性。

实验结果:
通过实验数据分析,得出以下结论:
1. 流量计的测量范围为0-1000L/min,误差范围在正负2%之间。

2. 在不同流量下,流量计的读数与实际流量基本吻合,表明流量计的准确性较高。

3. 流量计在不同温度和压力下的测量误差较小,稳定性良好。

结论:流量计的标定实验结果表明,该流量计具有较高的准确性和稳定性,可以满足工业生产对流量测量的要求。

通过本次标定实验,我们更加深入地了解了流量计的工作原理和标定方法,为今后的流量计使用和维护提供了重要参考。

同时,也提醒我们在工业生产中要重视流量计的定期标定,以确保生产过程中的流量测量准确和可靠。

气体流量计的工作原理及其校准方法

气体流量计的工作原理及其校准方法

气体流量计的工作原理及其校准方法作者:气体流量计文章来源:/现在市面上有很多气体流量计类型,不同类型的流量计其使用范围也不一样。

当然,其工作原理和方法也各不相同。

气体流量计在工作过程中是遵循一定的原理的,如果在使用过程中出现了故障也有其独特的校准方法。

这里以湿式气体流量计为例,看看它的工作原理和校准方法是怎样的:一湿式气体流量计的计量原理与结构(一) 结构原理湿式气体流量计约在十九世纪初在英国诞生,经多次技术改进和原理完善变成现在的样式(见图1)。

它是一个圆形封闭的壳体,后面有进气管,上面是出气管,进气和出气以水或油封闭隔离(下面以水为例说明,油也同理)。

上面安装有水平仪和测量温度与压力的连接孔,后下侧有放水阀,侧面有一个控制液面的溢水阀口,底部是3个可调底脚,可调整使整机呈水平状态,前面是大圆盘的指针计数器和5位数字式计数器,它的内部结构如图2所示。

湿式气体流量计的容积是被叶片和转筒分成4(或5)个螺旋状隔离腔的小计量室,滚筒平卧在壳内的水中(一半以上浸水),靠横轴支撑,转动灵活。

原则上当一个计量室在充气时,至少有另外一个计量室在排气。

一个计量室充满气体后,必须进入排气位置,所以一个计量室的排气口的起点和充气口的封闭点一定要同步地在液位线上。

实际运行时,充气侧的液位线低于排气侧的液位线,排气口的起点比充气口的封闭点滞后一点。

(二) 水平及液位调整湿式气体流量计的计量容积主要是靠液位调节器控制,当安装到位并调整到水平(调整底脚螺柱)状态后,要求湿式气体流量计上的横向及纵向的水平仪的气泡必须在零位。

拧开溢水阀,从上进水口灌注一定量的纯净水,当水满(壳内外水平面呈同一水平状态)时会从溢水阀溢出,等不再溢出后,关闭溢水阀就可以进行检测。

这项工作很重要,溢水阀的位置高低在出厂检定时已经调节好,一般无需改动。

根据需要,湿式表中的水也可换成白油(5号)。

由于湿式表中只有一根中轴转动,机械摩擦小,湿式表的压力损失很低(一般只有几百帕),波动极小。

流量计的标定实验报告

流量计的标定实验报告

流量计的标定实验报告标定流量计实验报告流量计的校核实验报告文丘里流量计实验报告篇一:实验2 流量计标定实验实验2 流量计标定实验一、实验目的1.了解文氏管、转子流量计、孔板流量计和涡轮流量计的构造、工作原理和主要特点;2.掌握流量计的标定方法;3. 用直接容量法或对比法对文氏流量计、孔板流量计、转子进行标定,测定孔流系数与雷诺数间的关系;3.学习合理选用坐标系的方法。

二、实验原理流体流过文氏管由于喉部流速大压强小,文氏管前端与喉部产生压差,此差值可用倒U管型、单管压差计测出。

又压强差与流量大小有关,根据柏努力方程及压差计计算公式,可以推导出公式如下:Vs=Cv〃Sv2gR?0?? ?则在测定不同流量下的R、Vs等数值代入公式即可求得1Cv值。

当流体流过流量计时,因为阻力造成机械能损失。

把文氏管看成一个局部阻力部位,流体克服局部阻力所消耗的机械能(损失压头)可表示为动能(动压头)的倍数。

22u0u0?J/kg? 或Hf???m? 即hf??22g若流量计前部压强为p1 后部为p2列出实际流体的机械能衡算式为:2p1u1p2u2?z2g??2?hf z1g???2?2对在水平管上安装的文氏管,上式可整理成p?phf?12?J/kg? ?即只要在文氏管两端连接测压导管并用U型压差计测出p1-p2值,即可测出文氏管阻力,并进一步得出局部阻力系数。

三、实验装置如后图所示,文氏流量计所用的压差计分单管压差计和倒U型压差计两种,测定文氏管阻力采用倒U型管压差计,流体水由离心泵从水箱中输送,并循环使用。

四、实验方法1.装有单管压差计的装置(1)在出口阀(即流量调节阀或管道进口阀)关闭情况下开动离心泵。

(2)打开计量槽下阀门,再缓慢开启泵出口阀,排出管2道中气体。

(3)关闭泵出口阀,观察压差计液面是否指零,不指零说明测压导管中有气体,需要重新进行排气调节。

(4)调节方法是打开单管压差计上方的平衡夹和排气夹,设法增加管路中的压强(如增加流速或闭小管上的另一出口阀等)使水沿测压导管从压差计上部排气管排出,观察缓冲泡内无气泡为止。

气体流量测定与流量计标定

气体流量测定与流量计标定

实验二气体流量测定与流量计标定一、实验目的气体属于可压缩流体.气体流量的测量,虽然有一些与用于不可压缩流体相同的测量仪表但也有不少专用于气体的测量仪表,在测量方法和检定方法上也有一些特殊之处。

显然,气体流量的测量与液体一样,在工业生产上和科学研究中,都是十分重要的。

尤其是在近代,工业生产规摸的大型化和科学实验的微型化,往往这些流量、温度、压力等的检测仪表就成为关键问题.目前,工业用有LZB系列转子流量计,实验室用有LZW系列微型转子流量计,可供选用.对于市售定型仪表,若流体种类和使用条件都按照规格规定,则读出刻度就能知道流量。

但从精度上考虑,仍有必要重新进行校正.转子流量计自制是有困难的,因锥形玻璃管的锥度手工难于制作。

但是,在科学研究中或其它某种场合,有时,不免还要根据某种特殊需要,创制一些新型测量仪表和自制一些简易的流量计.不论是市售的标准系列产品还是自制的简易仪表,使用前,尤其是使用一段时间后,都需要进行校正,这样才能保证计量的准确、可靠.气体流量计的标定,一般采用容积法,用标准容量瓶量体积,或者用校准过的流量计作比较标定。

在实验室里,一般采用湿式气体流量计作为标准计量器。

它属于容积式仪表,事先应经标准容量瓶校准。

实验用的湿式流量计的额定流量,一般有0。

2m3·h-1和0.5m3·h—1两种。

若要标定更大流量的仪表,一般采用气柜计量体积。

实验室往往又需用微型流量计,现时一般采用皂膜流量计来标定。

本实验采用标准系列中的转子流量计和自制的毛细管流量计来测量空气流量。

并用经标准容量瓶直接校准好的湿式流量作为标准,用比较法对上述两种流量计进行检定,标定出流量曲线。

,对毛细管流量计标定.通过本实验学习气体流量的测量方法,以及气体流量计的原理、使用方法和检定方法。

同时,这些知识和实验方法对学习者在进行以下各项实验时,肯定会有帮助,尤其时对今后所从事的各种实验研究工作,也是有益处的。

测量流量进行标定的方法

测量流量进行标定的方法

测量流量进行标定的方法流量是指单位时间内通过某一断面的液体或气体的体积。

在许多工业领域和实验室中,准确测量流量是非常重要的。

流量的标定是指将测量设备的输出值与标准值进行比较和校准,以确保测量结果的准确性和可靠性。

本文将介绍几种常用的测量流量进行标定的方法。

1. 重力下落法重力下落法是一种简单有效的测量流量的方法。

它基于重力作用下液体的自由流动。

在实验中,需要一个垂直的管道,液体从管道的上端倒入,通过时间来测量液体下降的距离。

通过测量液体下降的时间和距离,可以计算出流量。

重力下落法适用于低流速和低粘度液体的测量。

2. 流量计流量计是一种常用的流量测量设备,它可以直接测量液体或气体的流量。

流量计的原理有很多种,比如涡街流量计、电磁流量计、超声波流量计等。

在进行流量标定时,可以使用已知流量的标准流量计与待标定流量计进行比较,从而得到待标定流量计的准确度和偏差。

流量计的标定需要在实验室或者专门的标定设备下进行。

3. 校准液位计液位计是一种常用的测量流量的设备,它可以通过测量液体的液位来间接计算流量。

校准液位计是将液位计与标准流量计进行比较和校准,以确保测量结果的准确性。

在进行液位计的标定时,可以通过改变流量来测量不同液位下的流量,然后与标准流量计的数据进行比较,从而得到液位计的准确度和偏差。

4. 容积法容积法是一种基于容器的测量流量的方法。

在实验中,需要一个已知容积的容器和一个计时器。

通过将液体注入容器并计时,然后测量液体注入容器的体积,可以计算出流量。

容积法适用于小流量和高粘度液体的测量。

5. 标定流量模拟器标定流量模拟器是一种专门用于流量计标定的设备。

它可以模拟不同的流量值,并通过与待标定流量计的比较来确定其准确度和偏差。

标定流量模拟器通常由计算机控制,可以根据需要进行不同流量点的标定。

使用标定流量模拟器进行流量标定可以提高标定的准确性和可重复性。

总结起来,测量流量进行标定的方法有重力下落法、流量计比较法、校准液位计、容积法和标定流量模拟器等。

气体涡轮流量计的测量原理和检定规程

气体涡轮流量计的测量原理和检定规程

气体涡轮流量计的测量原理和检定规程1、测量原理涡轮流量计是一种流量测量仪表,流动流体的动力驱使涡轮叶片旋转,其旋转速度与体积流量近似成比例。

通过流量计的流体体积示值是以涡轮叶轮转数为基准的。

信号输出主要包括脉冲、模拟量或数字通信方式。

气体涡轮流量计由涡轮流量传感器和流量显示仪表组成,可实现瞬时流量和累积总量的计量,加温度和压力补偿时刻实现标准状态的瞬时流量和累积总量的计量仪表系数K是单位流体流量,通过涡轮流量计时传感器输出的信号脉冲总数N(或信号脉冲频率f)。

在一定流量范围内,对于一定的流体介质黏度,涡轮流量计输出的信号脉冲频率f与通过涡轮流量计的体积流量q成正比,即f=K×q。

2、测量依据JJG 1037-2008《涡轮流量计检定规程》,检定用流体为单相气体,充满试验管道,其流动为常流,且气体介质与实际使用介质的密度、粘度等物理参数相接近,气体中无游离水或油等杂质的存在,在每一个流量点的每一次检定过程中,气体的温度变化应不超过±0.5℃,压力变化应不超过±0.5%。

环境条件:环境温度为(5~45)℃,相对湿度一般为15%~95%,大气压力一般为(70~106)kPa,外界磁场、机械振动和噪声应小到对流量计的影响可忽略不计。

同时气体涡轮流量计在检定时前、后直管段要同轴安装,连接部位没有泄露,连接处密封垫不得凸入流体管道内。

在检定时需要测量流经流量计的流体温度时,可直接从流量计表体上的测温孔测温,或者将温度测量点设在流量计的下游。

需要测量流体压力时,流量计至少应提供一个取压孔,该取压孔接头处应有“P m”标志,如流量计表体上无取压孔,应根据流量计本身要求确定压力的测量位置。

流量计应在可达到的最大检定流量的70%~100%范围内运行至少5min,待流体温度、压力和流量稳定后方可进行正式检定。

气体流量计的使用技巧和校准步骤

气体流量计的使用技巧和校准步骤

气体流量计的使用技巧和校准步骤随着科学技术的发展,气体流量计在工业生产和实验研究中扮演着重要的角色。

准确测量气体流量对于流程控制、质量控制以及安全性都至关重要。

本文将介绍气体流量计的使用技巧和校准步骤,帮助读者更好地理解和运用这项技术。

首先,让我们来了解气体流量计的类型。

常见的气体流量计有质量流量计和体积流量计两种。

质量流量计可以直接测量气体的压力和温度,并将其转化为质量流量。

而体积流量计则测量气体通过的体积。

在使用气体流量计之前,首先需要检查仪器是否完好。

确认仪器没有损坏或者零件松动,并确保所有的连接已经完全插入。

接下来,我们需要将流量计与所需的气源连接好,并打开气源阀门。

确保阀门的开启速度逐渐增加,以防止压力冲击。

在测量的过程中,需要注意气体流速是否恒定。

为了获得准确的测量结果,应该让气体流过流量计之前和之后都达到稳定的状态。

一般来说,要求气流稳定需要一段时间的等待。

在等待的过程中,我们可以进行其他准备工作,如准备校准仪器。

在进行气体流量计的校准之前,要先了解仪器的工作原理和相关的校准规程。

通常情况下,校准仪器会提供详细的使用说明。

在校准之前,需要准备标准气体和校准气体,保证其准确性和纯度。

校准气体的选择要符合实际使用环境,并与所需测量的气体相同。

在校准之前,要确保校准气体的温度和压力稳定,并在气源管道中充分混合。

校准气体的流量要逐渐增加,以避免压力冲击,并使其稳定在所需范围内。

在进行气体流量计的校准过程中,需要根据标准值和仪器读数之间的差异进行调整。

校准步骤可以根据具体的仪器型号略有不同,但通常包括标定和调整。

在标定的过程中,使用标准气体进行测量,并记录仪器读数。

调整的过程中,通过调节仪器上的控制装置,使仪器读数与标准气体的值相匹配。

多次反复校准,直到仪器的读数稳定于误差范围之内。

除了校准之外,定期检查和维护也是保证气体流量计准确性的重要步骤。

定期检查仪器是否有损坏或老化的零部件,并及时更换。

实验二气体流量测定与流量计标定(精)

实验二气体流量测定与流量计标定(精)

实验二气体流量测定与流量计标定一、实验目的气体属于可压缩流体。

气体流量的测量,虽然有一些与用于不可压缩流体相同的测量仪表但也有不少专用于气体的测量仪表,在测量方法和检定方法上也有一些特殊之处。

显然,气体流量的测量与液体一样,在工业生产上和科学研究中,都是十分重要的。

尤其是在近代,工业生产规摸的大型化和科学实验的微型化,往往这些流量、温度、压力等的检测仪表就成为关键问题。

目前,工业用有LZB系列转子流量计,实验室用有LZW系列微型转子流量计,可供选用。

对于市售定型仪表,若流体种类和使用条件都按照规格规定,则读出刻度就能知道流量。

但从精度上考虑,仍有必要重新进行校正。

转子流量计自制是有困难的,因锥形玻璃管的锥度手工难于制作。

但是,在科学研究中或其它某种场合,有时,不免还要根据某种特殊需要,创制一些新型测量仪表和自制一些简易的流量计。

不论是市售的标准系列产品还是自制的简易仪表,使用前,尤其是使用一段时间后,都需要进行校正,这样才能保证计量的准确、可靠。

气体流量计的标定,一般采用容积法,用标准容量瓶量体积,或者用校准过的流量计作比较标定。

在实验室里,一般采用湿式气体流量计作为标准计量器。

它属于容积式仪表,事先应经标准容量瓶校准。

实验用的湿式流量计的额定流量,一般有0.2m3·h—1和0.5m3·h—1两种。

若要标定更大流量的仪表,一般采用气柜计量体积。

实验室往往又需用微型流量计,现时一般采用皂膜流量计来标定。

本实验采用标准系列中的转子流量计和自制的毛细管流量计来测量空气流量。

并用经标准容量瓶直接校准好的湿式流量作为标准,用比较法对上述两种流量计进行检定,标定出流量曲线.,对毛细管流量计标定。

通过本实验学习气体流量的测量方法,以及气体流量计的原理、使用方法和检定方法。

同时,这些知识和实验方法对学习者在进行以下各项实验时,肯定会有帮助,尤其时对今后所从事的各种实验研究工作,也是有益处的。

热式气体质量流量计原理和标定过程

热式气体质量流量计原理和标定过程

热式气体质量流量计原理和标定过程热式气体质量流量计是一种常用的流量测量仪器,用于测量气体在管道中的流量。

其原理是通过测量气体通过加热丝导致的温度变化来计算气体的质量流量。

在工业生产中,热式气体质量流量计被广泛应用于石油化工、制药、食品加工等领域。

本文将介绍热式气体质量流量计的原理和标定过程。

一、热式气体质量流量计的原理热式气体质量流量计的原理基于加热丝所受的对流冷却作用。

当气体流过加热丝时,气体流速越快,对流冷却作用越强,导致加热丝的温度降低。

测量加热丝受冷却作用后的温度变化,即可计算出气体的质量流量。

热式气体质量流量计的工作原理可以用以下公式表示:\[Q=MC_p\Delta T\]其中,Q为流量,M为气体质量,C_p为定压比热,ΔT为温度变化。

热式气体质量流量计的测量原理是利用加热丝受到的冷却作用来判断气体流量,其准确性受到温度的影响。

因此,要保证测量的准确性,需要对热式气体质量流量计进行定期的标定。

二、热式气体质量流量计的标定过程热式气体质量流量计的标定过程通常分为实验室标定和现场标定两种方式。

1.实验室标定实验室标定是指将热式气体质量流量计安装在标定装置上,以标准流量作为输入,通过比对测量结果与标准流量值的差异,来确定流量计的准确性。

实验室标定需要精密的标准流量仪器和标准气体,因此成本较高,但标定结果准确可靠。

2.现场标定现场标定是指将热式气体质量流量计直接安装在流体管道上,利用相关的标定设备进行标定。

现场标定相对于实验室标定来说更加方便和经济,但标定结果可能受到环境条件和流体状况的影响。

因此,在实际应用中,一般会根据需要选择实验室标定和现场标定相结合的方式进行标定。

无论采用何种方式,热式气体质量流量计的标定过程都需要以下步骤:1)准备工作在进行标定之前,需要对设备和标准气体进行检查,并将相关仪器调整到标定状态。

2)标定参数设置设定标定参数,如温度、压力、流速等,以确定标定的范围和精度。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验二气体流量测定与流量计标定一、实验目的气体属于可压缩流体。

气体流量的测量,虽然有一些与用于不可压缩流体相同的测量仪表但也有不少专用于气体的测量仪表,在测量方法和检定方法上也有一些特殊之处。

显然,气体流量的测量与液体一样,在工业生产上和科学研究中,都是十分重要的。

尤其是在近代,工业生产规摸的大型化和科学实验的微型化,往往这些流量、温度、压力等的检测仪表就成为关键问题。

目前,工业用有LZB系列转子流量计,实验室用有LZW系列微型转子流量计,可供选用。

对于市售定型仪表,若流体种类和使用条件都按照规格规定,则读出刻度就能知道流量。

但从精度上考虑,仍有必要重新进行校正。

转子流量计自制是有困难的,因锥形玻璃管的锥度手工难于制作。

但是,在科学研究中或其它某种场合,有时,不免还要根据某种特殊需要,创制一些新型测量仪表和自制一些简易的流量计。

不论是市售的标准系列产品还是自制的简易仪表,使用前,尤其是使用一段时间后,都需要进行校正,这样才能保证计量的准确、可靠。

气体流量计的标定,一般采用容积法,用标准容量瓶量体积,或者用校准过的流量计作比较标定。

在实验室里,一般采用湿式气体流量计作为标准计量器。

它属于容积式仪表,事先应经标准容量瓶校准。

实验用的湿式流量计的额定流量,一般有0.2m3·h—1和0.5m3·h—1两种。

若要标定更大流量的仪表,一般采用气柜计量体积。

实验室往往又需用微型流量计,现时一般采用皂膜流量计来标定。

本实验采用标准系列中的转子流量计和自制的毛细管流量计来测量空气流量。

并用经标准容量瓶直接校准好的湿式流量作为标准,用比较法对上述两种流量计进行检定,标定出流量曲线.,对毛细管流量计标定。

通过本实验学习气体流量的测量方法,以及气体流量计的原理、使用方法和检定方法。

同时,这些知识和实验方法对学习者在进行以下各项实验时,肯定会有帮助,尤其时对今后所从事的各种实验研究工作,也是有益处的。

二、实验原理1.湿式气体流量计该仪器属于容积式流量计。

它是实验室常用的一种仪器,其构造主要由圆鼓形壳体、转鼓及传动记数机构所组成,如图1所示。

转鼓是由圆筒及四个弯曲形状的叶片所构成。

四个叶片构成四个体积相等的小室。

转鼓的下半部浸没在水中。

充水量由水位器指示。

气体从背部中间的进气管9处依次进入一室,并相继由顶部排出时,迫使转鼓转动。

由转动的次数,通过记数机构,在表盘上计数器和指针显示体积。

它配合秒表工作时,可直接测定气体流量。

工作时,依图1位置所示,气体由进气管进入,B 室正在进气,C 室开始进气,而D 室排气将尽,湿气气体流量计可直接用于测量气体流量,也可用来作标准仪器以检定其他流量计。

湿式气体流量计一般用标准容量瓶进行校准。

标准容量瓶的体积为V V 。

湿式气体流量计体积示值为V W ,则两者差值△V 为:△V=Vv —Vw (2—1)当流量计指针旋转一周时,刻度盘上总体积为5升,一般配置1升容量瓶进行5次校准,流量计总体积示值为∑V w ,则平均校正系数为:∑∑∆=WWV V C (2—2)因此,经校准后,湿式气体流量计的实际体积流量为V S 与流量计示值V S ’之间的关系为:''S W S S V C V V += (2—3)2.转子流量计转子流量计的构造原理如图2所示。

它是由一根垂直的略显锥形的玻璃管和转子图1 湿式流量计结构简图1—温度计;2—压差计;3—水平仪;4—排气管;5—转鼓;6—壳体;7—水位仪;8—可调支脚;9—进气管(或称浮子)组成。

锥形玻璃管截面积由上而下逐渐缩小。

流体由下而上流过,由转子的位置决定流体的流量。

转子流量计与孔板流量计虽都以节流作用为依据,但孔板流量计是截面积不变,流量与压强差呈比例;而转子流量计则是压强差不变,流量与环隙截面积大小(即随转子位置而变)成比例。

在一定流量下,当转子上下产生的压力差与转子的净重(重量-浮力)相平衡时,转子就停留在一定位置上。

g V g V pA R R R R ρρ-=∆ (2—4)式中V R ——转子的体积,m 3;A R ——转子的最大截面积,m 2;R ρ——转子的密度,kg/m 3;ρ——流体的密度,kg/m 3;当转子停留在一定位置时,转子与玻璃管间环隙面积是一定值,流速与静压强差的关系,与通过孔板流量计孔口时的情况是相似的。

因此,可依照孔板流量计的流量公式写出:gpg S c q RR V ρ∆=2 ρρρR R R R R A gV S c )(2-= (2—5)式中V q ——流体的体积流量,m 3/s ;p ∆——转子上下间流体的压强差,Pa ; ρ——被测流体的密度,kg/m 3;S R ——转子与玻璃管环隙的截面积,m 2;C R ——转子流量计的流量系数,与转子的形状以及流体通过环隙的Re 数有关。

其具体数值由实验测定。

由上述原理可知,式中环隙截面积S R 随流量而改变,而S R 的大小也就表示转子位置的高低。

因此,流量与转子位置保持一定关系。

但式中△p 是不随流量而改变的,只是与转子的净重量有关。

标定气体流量计时,一般采用空气作为标定介质,标定温度为20℃,压力为图2 转子流量计760mmHg 。

当实际测量时,气体种类、温度和压力与标定时可能不同,这就需要进行换算。

若被测气体只是温度和压力改变,则可按下式换算:122112T p T p q q V V = (2—6) 式中2V q ——被测气体流量,m 3/s ;1V q ——标定气体流量,m 3/s ;p 1,T 1——标定时的压力,Pa ,和温度,K ; p 2,T 2——被测定时气体的压力,Pa ,和温度K 。

当被测气体种类改变时,而粘度与标定介质相近,流量系数C R 可视为常数,则可按下式换算:211212)()(ρρρρρρ--=R R V V q q (2—7)式中1ρ——标定气体的密度,kg/m 3;2ρ——被测气体的密度,kg/m 3。

3.毛细管流量计毛细管流量计用于实验室里测量小流量的气体,较为方便。

它是利用流体通过一小段毛细管,因阻力产生压强降。

测压采用一种特殊装置,可防止指示剂被冲走,其构造如图3所示。

根据测量范围,只要更换毛细管的粗细与长短就可以了。

一般采用水作为测压管的指示液。

毛细管流量计的构造原理,与孔板流量计类似。

因此,亦可依照孔板流量计列出流量公式:HS C V p p S ∆=2ρρρ)(2-=i pp gR S C (2—8)式中C P ——毛细管流量计流量系数;S p ——毛细管截面积,m 2;i ρ——指示液的密度,kg/m 3。

图3 毛细管流量计实验室里,为了简便,通常将自制的毛细管流量计经过直接标定,绘制成流量q V 与测压管液柱高度R 之间的关系曲线。

三、实验装置和流程这套装置分两部分:一部分是标准容量瓶校准湿式气体流量计,装置主要部分是标准容量瓶(1000mL )、平衡瓶和湿式气体流量计,如图4所示。

另一部分是用湿式气体流量计分别标定转子流量计和毛细管流量计。

装置主要部分是气源、缓冲罐和湿式气体流量计,在中间并联连接转子和毛细管两种流量计。

具体装置流程如图5所示。

图5 流量计校正和标定流程图1—湿式气体流量计;2—毛细管流量计;3—转子流量计;4—三通旋塞;5—缓冲罐;6—气源主要设备及仪表参考规格 (1) 气源:流量3.6m 3/h 1台(2) 湿式气体流量计:额定流量0.5m 3/h 1台图4 湿式流量计校正的实验装置 1—湿式流量计;2—平衡瓶;3—标准容量瓶;4—三通阀(3)玻璃转子流量计:LZB-6 1台(4)毛细管流量计:1台(5)标准容量瓶:1个四、实验方法1.湿式气体流量计的校准检查三通阀的通向,使容量瓶与大气相通,而与湿式流量计断开。

调正湿式流量计的水平:转动支脚螺丝,直至水平仪内气泡居中为准。

向流量计内注入蒸馏水,其水位高低必须保持水位器中液面与针尖重合。

平衡瓶内注入蒸馏水后,提高其位置,向容量瓶内注水,使水面与上刻度线重合。

这时,便可开始校正试验。

先转动三通旋塞,使容量瓶与湿式流量计接通,缓慢放下平衡瓶,使容量瓶内液面与下刻度线一齐,气体体积恰好为一升,然后记下流量计的体积示数、温度和压力。

湿式流量计指针旋转一圈为5升,故需依次对每一升重复上述操作一次,共作5组数据,求得其平均校正系数。

2.转子流量计的校检先将缓冲罐上的放空阀完全打开,同时关闭出气阀,然后才能启动气源。

待气源运行正常后,再将三通阀旋至与转子流量计系统相通。

缓慢的调节放空阀,使气体流量调到所需要数值。

湿式流量计运转数周后,便可开始测定。

读取转子流量计示数,用秒表和湿式流量计测量流量值。

在转子流量计测量范围内,测取5—6组数据。

3.毛细管流量计的标定毛细管流量计的校检流程与转子流量计是并联的,因此,实验方法完全相同。

这里不再重述。

根据湿式流量计和秒表计数所求流量给毛细管流量标记刻度。

在实验过程中,应注意下列事项:(1)在实验过程中,要经常注意湿式气体流量计的水位器和水平仪,不符合要求时要随时调整,以保证测量准确。

(2)校验气体流量计时,因为校准介质是可压缩流体,所以校准时的温度和压力一定要记准,切勿疏忽。

(3)气源为容积式设备,在启动前一定要打开放空阀,并用其来调节进入设备的气体流量。

(4)管道连接一定要严密,切勿有泄露之处,否则测量准确度成问题。

(5)实验测定时,可用从小流量到大流量,再从大到小,两次数据取其平均值。

五、实验结果整理1.湿式气体流量计校准数据平均修正系数=2.转子流量计校准数据平均修正系数=3.毛细管流量计校准数据平均修正系数=六、实验结果讨论1.通过实验,分析这三种测气体的流量计各有什么特点?在使用上都应注意哪些事项?2.试推导气体流量换算公式,并举一实例,改变气体种类温度或压力换算之。

相关文档
最新文档