化工原理第二章
化工原理(第四版)谭天恩-第二章-流体输送机械
![化工原理(第四版)谭天恩-第二章-流体输送机械](https://img.taocdn.com/s3/m/0733129f370cba1aa8114431b90d6c85ec3a88dc.png)
注意安全防护
在操作流体输送机械时,应注意安全防护 ,穿戴好防护用品,避免发生意外事故。
THANKS
感谢观看
高效节能设计
优化流体输送机械的结构和运行方式,降低能耗,提高能效比。
减少排放
采取有效的措施减少流体输送机械在运行过程中产生的污染物排放, 如采用密封性能好的机械部件、回收利用排放的余热等。
环保材料
选择对环境友好的材料和润滑剂,减少对环境的污染。
资源循环利用
对流体输送机械中的可回收利用部分进行回收再利用,减少资源浪费 。
化工原理(第四版)谭 天恩-第二章-流体 输送机械
目录
• 流体输送机械概述 • 离心泵 • 其他类型的泵 • 流体输送机械的性能比较与选用 • 流体输送机械的维护与故障处理
01
CATALOGUE
流体输送机械概述
流体输送机械的定义与分类
定义
流体输送机械是用于将流体从一 个地方输送到另一个地方的机械 设备。
05
CATALOGUE
流体输送机械的维护与故障处理
流体输送机械的日常维护与保养
定期检查
对流体输送机械进行定期检查,确保其正 常运转,包括检查泵、管道、阀门等部件
是否完好无损,润滑系统是否正常等。
清洗与清洁
定期对流体输送机械进行清洗,清除残留 物和污垢,保持机械内部的清洁,防止堵 塞和腐蚀。
更换磨损部件
流体输送机械的应用
工业生产
在化工、石油、制药等领 域,流体输送机械广泛应 用于原料、半成品和成品 的输送。
能源与环保
流体输送机械在燃煤、燃 气等能源输送以及通风、 除尘等环保领域也有广泛 应用。
城市供暖与空调
在集中供暖和空调系统中 ,流体输送机械用于将热 源或冷源输送到各个用户 。
化工原理 第二章 流体流动.
![化工原理 第二章 流体流动.](https://img.taocdn.com/s3/m/84e2dd0e0912a216147929b3.png)
本章着重讨论流体流动过程的基本原理和流体 在管内的流动规律,并应用这些规律去分析和计 算流体的输送问题:
1. 流体静力学 3. 流体的流动现象 5. 管路计算
2. 流体在管内的流动 4. 流动阻力 6. 流量测量
要求 掌握连续性方程和能量方程 能进行管路的设计计算
概述 流体: 在剪应力作用下能产生连续变形的物体称
为流体。如气体和液体。
流体的特征:具有流动性。即
抗剪和抗张的能力很小; 无固定形状,随容器的形状而变化;
在外力作用下其内部发生相对运动。
流体的研究意义
流体的输送:根据生产要求,往往要将这些流体按照生产 程序从一个设备输送到另一个设备,从而完成流体输送的任
务:流速的选用、管径的确定、输送功率计算、输送设备选用
为理想气体)
解: 首先将摄氏度换算成开尔文:
100℃=273+100=373K
求干空气的平均分子量: Mm = M1y1 + M2y2 + … + Mnyn
Mm =32 × 0.21+28 ×0.78+39.9 × 0.01
=28.96
气体平均密度:
0
p p0
T0 T
0
T0 p0
p T
Mm R
解:应用混合液体密度公式,则有
1
m
a1
1
a2
2
0.6 0.4 1830 998
7.285 10 4
m 1370 kg / m3
例2 已知干空气的组成为:O221%、N278%和Ar1%(均为体积%)。 试求干空气在压力为9.81×104Pa、温度为100℃时的密度。(可作
化工原理第二章-流体输送机械
![化工原理第二章-流体输送机械](https://img.taocdn.com/s3/m/1b1ce4ae172ded630a1cb624.png)
w2 w2 w2 c2小,泵内流动阻力损失小
c2 c2
c2
uuu222
前径后弯向弯叶叶叶片片片
3) 理论流量
H T
u22 g
u2ctg2 gD2b2
若离心泵的几何尺寸(b2、D2、β2)和转速n一定,则式可表示
为
表示HT∞与QT呈线性关系,该直线的斜率与叶 片形状β2有关,即 β2>90°时,B<0, HT∞随QT的增加而增大。 β2=90°时,B=0, HT∞与QT的无关。 β2<90°时,B>0, HT∞随QT的增加而减少。
Ne
轴功率 N :电机输入到泵轴的功率,由于泵提供给流 体的实际扬程小于理论扬程,故泵由电机获得的轴功并不 能全部有效地转换为流体的机械能。
N Ne
有效功率 Ne:流体从泵获得的实际功率,可直
接由泵的流量和扬程求得
Ne = HgQρ
N QH 102
电机
泵
2. 离心泵特性曲线及其换算
用20C清水测定
包括 :H~Q曲线(平坦型、陡降型、 驼峰型) N~Q曲线、 ~Q曲线
QgH
N
由图可见: Q,H ,N,
有最大值。
思考: ➢ 离心泵启动时均关闭 出口阀门,why? ➢为什么Q=0时,N0?
02
高效区
与最高效率相比, 效率下降5%~8%
设计点
3.离心泵性能的改变和换算
1)液体性质的影响 (1)密度:
思考:泵壳的主要作用是什么?
①汇集液体,并导出液体; ②能量转换装置
轴封装置:离心泵工作时是泵轴旋转而泵壳不动,泵轴与泵 壳之间的密封。
作用:防止高压液体从泵壳内沿间隙漏出,或外界空气 漏入泵内。
化工原理课后练习答案第二章 王志魁
![化工原理课后练习答案第二章 王志魁](https://img.taocdn.com/s3/m/b6340850876fb84ae45c3b3567ec102de2bddfd8.png)
化工原理课后练习答案第二章王志魁问题一1. 根据化学方程式燃烧一摩尔乙醇需要消耗多少摩尔氧气?根据化学方程式:C2H5OH + 3O2 → 2CO2 + 3H2O可知,燃烧一摩尔乙醇需要消耗3摩尔氧气。
2. 当空气中乙醇与空气中丙醇的含量分别为30%和70%时,求空气中乙醇和丙醇所占的摩尔百分比。
假设空气中乙醇和丙醇的总摩尔百分比为100,则空气中乙醇所占的摩尔百分比为30,丙醇所占的摩尔百分比为70。
问题二1. 试述理想气体状态方程及其适用范围。
理想气体状态方程可以表示为:PV = nRT其中,P为气体的压力,V为气体的体积,n为气体的摩尔数,R为气体常数,T为气体的绝对温度。
理想气体状态方程适用于满足以下条件的气体系统:•气体分子与分子之间没有相互作用力;•气体分子之间碰撞时完全弹性碰撞;•气体分子体积相比于容器体积可忽略不计;•气体分子之间和气体与容器之间没有能量交换。
2. 理想气体状态方程中的R值有多少种选择?理想气体状态方程中的R值有两种选择,分别为:•理想气体常数R:其数值为8.314 J/(mol·K),适用于用焦耳和开尔文为单位的计算。
•气体常数R:其数值为0.0821 L·atm/(mol·K),适用于用升和大气压为单位的计算。
问题三1. 一瓶容积为500 mL的二氧化碳气体在273 K时的压力为2 atm,求该瓶中二氧化碳的摩尔数。
根据理想气体状态方程,我们可以将已知条件代入计算:PV = nRT其中,P为压力,V为体积,n为摩尔数,R为气体常数,T为温度。
将已知条件代入计算:2 atm × 500 mL = n × 0.0821 L·atm/(mol·K) × 273 K解方程得:n = (2 atm × 500 mL) / (0.0821 L·atm/(mol·K) × 273 K)计算结果得:n ≈ 0.0441 mol因此,该瓶中二氧化碳的摩尔数约为0.0441 mol。
化工原理第二章.
![化工原理第二章.](https://img.taocdn.com/s3/m/5815f8581ed9ad51f01df267.png)
u1
4qv
d12
4 15 103 3.14 0.12
1.91m/s
u2
4qv π d22
2.98 m/s
H 0 f ,12
H 0.5 2.55105 2.67104 2.982 1.912
1000 9.81
2 9.81
29.5m
能适应物料特性(如黏度、腐蚀性、易燃易爆、 含固体等)要求。
流体输送设备分类:
按流体类型 按工作原理
输送液体—泵(pumps) 输送气体—通风机、鼓风机、压缩机
及真空泵
离心式 往复式 旋转式 流体动力作用式
第一节 离心泵
一、基本结构及工作原理
离心泵(centrifugal pump)
1.基本结构
第二章 流体输送机械
1. 本章学习的目的 通过学习,了解制药化工中常用的流体输送机
械的基本结构、工作原理及操作特性,以便根据生 产工艺要求,合理地选择和正确使用输送机械,并 使之在高效率下可靠运行。 2. 本章重点掌握的内容
离心泵的基本结构、工作原理、操作特性、安 装及选型。
概述
生产过程中的流体输送一般有以下几种情况:
效率64% 轴功率2.6kW
重量363N
(1)流量(qv):单位时间内泵所输送的液体体积。m3/s 常用单位为L/s或m3/h qv与泵的结构、尺寸、转速等有关 ,实际流量还与 管路特性有关。
(2)扬程或压头(H):是指单位重量(1N)液体流经 泵所获得的能量,单位:m 。H与泵的结构、转速 和流量有关。
旋转的叶轮(impeller) 固定的泵壳(Volute)
2、离心泵的工作原理
化工原理第二章习题及答案
![化工原理第二章习题及答案](https://img.taocdn.com/s3/m/7be507c3d5bbfd0a79567321.png)
第二章流体输送机械一、名词解释(每题2分)1、泵流量泵单位时间输送液体体积量2、压头流体输送设备为单位重量流体所提供的能量3、效率有效功率与轴功率的比值4、轴功率电机为泵轴所提供的功率5、理论压头具有无限多叶片的离心泵为单位重量理想流体所提供的能量6、气缚现象因为泵中存在气体而导致吸不上液体的现象7、离心泵特性曲线在一定转速下,离心泵主要性能参数与流量关系的曲线8、最佳工作点效率最高时所对应的工作点9、气蚀现象泵入口的压力低于所输送液体同温度的饱和蒸汽压力,液体汽化,产生对泵损害或吸不上液体10、安装高度泵正常工作时,泵入口到液面的垂直距离11、允许吸上真空度泵吸入口允许的最低真空度12、气蚀余量泵入口的动压头和静压头高于液体饱和蒸汽压头的数值13、泵的工作点管路特性曲线与泵的特性曲线的交点14、风压风机为单位体积的流体所提供的能量15、风量风机单位时间所输送的气体量,并以进口状态计二、单选择题(每题2分)1、用离心泵将水池的水抽吸到水塔中,若离心泵在正常操作范围内工作,开大出口阀门将导致()A送水量增加,整个管路阻力损失减少B送水量增加,整个管路阻力损失增大C送水量增加,泵的轴功率不变D送水量增加,泵的轴功率下降 A2、以下不是离心式通风机的性能参数( )A风量B扬程C效率D静风压 B3、往复泵适用于( )A大流量且流量要求特别均匀的场合B介质腐蚀性特别强的场合C流量较小,扬程较高的场合D投资较小的场合 C4、离心通风机的全风压等于( )A静风压加通风机出口的动压B离心通风机出口与进口间的压差C离心通风机出口的压力D动风压加静风压 D5、以下型号的泵不是水泵( )AB型BD型CF型Dsh型 C 6、离心泵的调节阀( )A只能安在进口管路上B只能安在出口管路上C安装在进口管路和出口管路上均可D只能安在旁路上 B 7、离心泵的扬程,是指单位重量流体经过泵后以下能量的增加值( )A包括内能在内的总能量B机械能C压能D位能(即实际的升扬高度)B8、流体经过泵后,压力增大∆p N/m2,则单位重量流体压能的增加为( )A ∆pB ∆p/ρC ∆p/ρgD ∆p/2g C9、离心泵的下列部件是用来将动能转变为压能( )A 泵壳和叶轮B 叶轮C 泵壳D 叶轮和导轮 C10、离心泵停车时要( )A先关出口阀后断电B先断电后关出口阀C先关出口阀先断电均可D单级式的先断电,多级式的先关出口阀 A11、离心通风机的铭牌上标明的全风压为100mmH2O意思是( )A 输任何条件的气体介质全风压都达100mmH2OB 输送空气时不论流量多少,全风压都可达100mmH2OC 输送任何气体介质当效率最高时,全风压为100mmH2OD 输送20℃,101325Pa空气,在效率最高时,全风压为100mmH2O D12、离心泵的允许吸上真空高度与以下因素无关( )A当地大气压力B输送液体的温度C流量D泵的吸入管路的长度 D13、如以∆h,允表示汽蚀余量时,p1,允表示泵入口处允许的最低压力,p v为操作温度下液体的饱和蒸汽压,u1为泵进口处的液速,则( )A p1,允= p v + ∆h,允B p1,允/ρg= p v/ρg+ ∆h,允-u12/2gC p1,允/ρg= p v/ρg+ ∆h,允D p1,允/ρg= p v/ρg+ ∆h,允+u12/2g B14、以下种类的泵具有自吸能力( )A往复泵B齿轮泵与漩涡泵C离心泵D旋转泵与漩涡泵 A15、如图示,列1--1与2--2截面的伯努利方程,为:H e=∆z+∆p/ρg+∆(u2/2g)+∑H f,1-2,则∆h f,1-2为( )A 泵的容积损失,水力损失及机械损失之和B 泵的容积损失与水力损失之和C 泵的水力损失D 测压点1至泵进口,以及泵出口至测压点2间的阻力损失D16、离心泵开动以前必须充满液体是为了防止发生( )A气缚现象B汽蚀现象C汽化现象D气浮现象A17、某同学进行离心泵特性曲线测定实验,启动泵后,出水管不出水,泵进口处真空计指示真空度很高,他对故障原因作出了正确判断,排除了故障,你认为以下可能的原因中,哪一个是真正的原因( )A水温太高B真空计坏了C吸入管路堵塞D排出管路堵塞C18、由阀门全开的条件算出在要求流量为V时所需扬程为H e/。
化工原理第二章1
![化工原理第二章1](https://img.taocdn.com/s3/m/c4961300844769eae009ed57.png)
③工作点对应的各性能参数反映一台泵的实际工作状态。
14
3.离心泵的流量调节 (1)改变管路特性------变出口阀的开度
15
(2)改变泵的特性 ----变叶轮转速 nA<nB,转速增加,流量和压头均
增加。
(3)改变泵的特性 ----切削叶轮直径
调节范围不大,只能变小,适合 长期性调整,操作中调整不可行
P63
例2-3
16
四
离心泵的组合操作
1.双泵并联 ①理论上,H不变,Q加倍; ②实际工作流量并未加倍(QB<2QA),压头有所增加 ;n台完全相同的泵并联,组合泵的特性方程为: ③
H A B Q2 n2
2.双泵串联 ①理论上,Q不变,H加倍;
θ
28
3.往复泵特点:
(1) 流量只与泵缸尺寸、冲程、活塞往复次数有关,与泵的压
头、管路等无关。
(2) 理论上
单动泵的流量:QT=ASnr 双动泵的流量:QT=(2A-a)S nr 式中: QT —— 往复泵理论流量,m3/s; A —— 活塞截面积,m2;
a —— 活塞杆截面积,m2;
有效功率Ne :单位时间离心泵对流体做的功。 Ne=gQH ;
轴功率N:单位时间内由电机输入离心泵的功。 效率η :泵对外加能量的利用程度。 η = Ne /N 2.离心泵的性能曲线 ①H-Q曲线:随着流量的增加,泵的压头下降, 此规律对流量很小的情况可能不适用。 ② N-Q曲线:轴功率随流量的增加而增大,离心
部真空,周围液体以很高的流速冲向真空区域; ③当汽泡的冷凝发生在叶片表面附近时,大量液体以高频冲 击力冲击叶片,使叶轮损伤,这种现象称为“汽蚀”。
化工原理第二章 吸收.
![化工原理第二章 吸收.](https://img.taocdn.com/s3/m/a6b9611ea6c30c2259019ec1.png)
2.2.1平衡溶解度
⑴溶解度曲线 对 单组 分 物 理 吸收 的 物 系 ,根 据 相 律 ,自 由 度 数 F 为 F=CΦ +2=3-2+2=3(C=3,溶质A,惰性组分B,溶剂S,Φ =2,气、液两 相),即在温度 t ,总压 p ,气、液相组成共4个变量中,由3个自 变量(独立变量),另1个是它们的函数,故可将平衡时溶质在气 相中的分压 pe 表达为温度 t ,总压 p 和溶解度 x 的函数:
2.1概述
①溶剂应对被分离组分(溶质)有较大的溶解度,或者说在 一定的温度与浓度下,溶质的平衡分压要低。这样,从平衡角度 来说,处理一定量混合气体所需溶剂量较少,气体中溶质的极限 残余浓度亦可降低;就过程数率而言,溶质平衡分压↓,过程推 动力大,传质数率快,所需设备尺寸小。 ②溶剂对混合气体中其他组分的溶解度要小,即溶剂应具备 较高的选择性。若溶剂的选择性不高,将同时吸收混合物中的其 他组分,只能实现组分间某种程度的增浓而不能实现较为完全的 分离。 ③溶质在溶剂中的溶解度应对温度的变化比较敏感,即不仅 在低温下溶解度要大,平衡分压要小,而且随着温度升高,溶解 度应迅速下降,平衡分压应迅速上升。这样,被吸收的气体容易 解吸,溶剂再生方便。
2.1概述
④溶剂的蒸汽压要低,不易挥发。一方面是为了减少溶剂在 吸收和再生过程的损失,另一方面也是避免在气体中引入新的杂质。 ⑤溶剂应有较好的化学稳定性,以免使用过程中发生变质; ⑥溶剂应有较低的粘度,不易产生泡沫,以实现吸收塔内良 好的气液接触和塔顶的气液分离。 ⑦溶剂应尽可能满足价廉、易得、无毒、不易燃烧等经济和 安全条件。 实际上很难找到一个理想得溶剂能够满足上述所有要求,应 对可供选择得溶剂做全面得评价,以便作出经济、合理得选择。 ⑹吸收操作得经济性 吸收总费用=设备(塔、换热器等)折旧费+操作费(占比重大)
化工原理第二章 流体输送机械
![化工原理第二章 流体输送机械](https://img.taocdn.com/s3/m/551e1049be1e650e52ea9920.png)
注意:在选用离心泵时,应使离心泵在该点附近工作。
一般要求操作时的效率应不低于最高效率的92%。
例2-1 离心泵特性曲线的测定 附图为测定离心泵特性曲线的实验装置, 实验中已测出如下一组数据:泵进口处真 空表读数 p1=2.67×104 Pa(真空度) ,泵出 口处压强表读数 p2=2.55×105 Pa(表压) , 泵的流量 q=12.5×10-3 m3 /s ,功率表测 得电动机所消耗功率为 6.2kW ,吸入管 直径 d1=80mm,压出管直径 d2=60mm , 两测压点间垂直距离 Z2-Z1=0.5m,泵由 电动机直接带动,传动效率可视为 1,电 动机的效率为 0.93 ,实验介质为 20℃的 清水,试计算在此流量下泵的压头 H、轴 功率 N 和效率 η。
1
1
p K z g
u 2 0 2g
He K H f
压头损失—取决于管内布局及管内流速的大小
2 l le u H f d 2g
在管路中,通常用流量反应生产任务 u
l le 8 H f 2 4 qv2 d d g
转速
当液体的粘度不大且转速n变化不大时(小于20%),利用
出口速度三角形相似的近似假定,若不变,可推知:
q' n q n H n H n
2
H
转速增大
比例定律
n
n
p' n p n
3
0
Q
叶轮直径
当叶轮直径因切割而变小时,若变化程度小于20%,不 变,则
理论压头、实际压头及各种压头损失与流量的关系为 H
q-H
实际压 头
化工原理-第二章-离心泵
![化工原理-第二章-离心泵](https://img.taocdn.com/s3/m/fc105b3da36925c52cc58bd63186bceb19e8eda1.png)
2、离心泵的工作原理
(1)叶轮被泵轴带动旋转,对位于叶片间的流体做 功,流体受离心力的作用,由叶轮中心被抛向外围 。当流体到达叶轮外周时,流速非常高(15~25 m/s),使流体获得动能。
(2)泵壳汇集从各叶片间被抛出的液体,这些液体 在壳内顺着蜗壳形通道逐渐扩大的方向流动,使流 体的动能转化为静压能。
例:有一离心泵用来输送水,出口管速 度为3.6m/s,流体离开叶轮的线速度是 30m/s,试确定流体流经泵前后的压力差 。忽略阻力损失。
2023/11/12
解:从叶轮边沿处到泵的出口处列伯努利方程为:
Z1
u12 2g
P1
g
H
Z2
u22 2g
P2
g
H
f
忽略高度差,即 Z1=Z2
已知 H=0 ΣHf=0 u1=30m/s u2=3.6m/s
2023/11/12
离心泵的压头取决于:
▪ 泵的结构(叶轮的直径、叶片的弯曲情况等)
▪ 转速 n
▪ 流量 Q
可以通过实验测定离心 泵的压头(扬程),其 具体方法为: (1)在泵的前后安装 真空表、压力表; (2)进行能量衡算。
2023/11/12
H的计算可根据进、出两截面间的柏努利方程:
P进
g
u进2 2g
导叶轮上的叶片的弯曲方向与叶轮上叶片的弯曲方向相反 ,其弯曲角度正好与液体从叶轮流出的方向相适应,引导液 体在泵壳的通道内平缓的改变方向,使能量损失减小,使动 能向静压能的转换更为有效。
2023/11/12
(3)轴封装置
a)轴封的作用
为了防止高压液体从泵壳内沿轴的四周而漏出,或者外界
空气漏入泵壳内。
n2 n1
化工原理内容概要-第2章
![化工原理内容概要-第2章](https://img.taocdn.com/s3/m/969b162bbfd5b9f3f90f76c66137ee06eff94efc.png)
《化工原理》内容提要第二章流体输送机械1. 基本概念1)离心泵的主要构件:叶轮和蜗壳2)泵的流量q v:指泵的单位时间内送出的液体体积,等于管路中的流量,这是输送任务所规定必须达到的输送量。
3)泵的压头(又称扬程)He是指泵向单位重量流体提供的能量。
4)流体输送机械的分类:动力式(叶轮式)、容积式(正位移式)、其他类型。
5)离心泵的主要构件:叶轮和蜗壳。
6)离心泵的主要性能参数:流量、扬程、效率、轴功率。
7)离心泵特性曲线:描述压头、轴功率、效率与流量关系的曲线。
8)离心泵的工作点:泵特性曲线与管路特性曲线的交点。
9)离心泵的调节:改变管路特性(阀门的开大关小,改变K值);改变泵的特性(改变D、n,调节工作点)。
10)往复泵的结构:由泵缸、活塞、活塞杆、吸入和排出单向阀(活门)构成,有电动和汽动两种驱动形式。
2. 基本原理1)离心泵的工作原理:电动机经泵轴带动叶轮旋转,叶片间的液体在离心力作用下,沿叶片间的通道从叶轮中心进口处甩向叶轮外围,以很高速度汇入泵壳;液体经泵壳将大部分动能转变为静压能,以较高压力从压出口进入排出管。
2)泵的汽蚀现象:当水泵叶轮中心进口出压力低于操作温度下被输送液体的饱和蒸汽压时,液体将发生沸腾部分汽化。
所生成的汽泡,在随液体从叶轮进口向叶轮外围流动时,因压强升高,气泡立即凝聚。
高速度冲向原空间,在冲击点处产生高频高压强冲击。
当气泡的凝结发生在叶轮表面时,气泡周围液体在高压作用下如细小的高频水锤撞击叶片,加之气泡中可能带有氧气等对金属材料发生化学腐蚀作用,将导致叶片过早损坏。
3)离心泵的选用原则:①根据被输送液体的性质确定泵的类型;②确定输送系统的流量和所需压头;③根据所需流量和压头确定泵的型号。
4)往复泵的工作原理:活塞往复运动,在泵缸中造成容积的变化并形成负压和正压,完成一次吸入和排出。
5)气体输送的特点:气体的密度相对液体很小,①动力消耗大;②气体输送机械体积一般都很庞大;③输送机械内部气体压力变化的同时,体积和温度也将随之发生变化。
化工原理第二章
![化工原理第二章](https://img.taocdn.com/s3/m/b83cac41767f5acfa1c7cd3f.png)
1、管路特性:H e ′= (z 2-z 1) + (p 2-p 1)/(ρg ) + ΣH f=8+(0.45-0.15)×10/0.8+8λLV 2/(π 2gd 5)=11.75+1.32×105V 2泵的特性:H e = 26-1.15×105V 2H e = H e ′,解得 V = 7.60×10-3 m 3/s则 H e = 26-1.15×105×(7.60×10-3)2 = 19.4 mN e = H e V ρg = 19.4×7.60×10-3×800×9.81 = 1.16×103 W3、m gdLV g p p z z He 1.4205.081.914.3)360018()2050(023.0881.99601081.9)2.02.1(218'52245221212=⨯⨯⨯+⨯⨯+⨯⨯⨯-+=+-+-=πλρ 可见,管路要求V =18m 3/h,H e ′=42.1m,而该泵最高效率时:V =20m 3/h , H e =44m,管路要求的(V ,H e ′)点接近最高效率的状态,故此泵适用。
m gd LV h H gp p H f v g 34.583.2,5220max ,-=--=∆---=∑πλρ允吸 故可正常工作。
4、解:1-2截面间列伯努利方程。
P 1=P a=0(表) z 1=0 u 1=0 p 2=9.81×104Pa(表)z 2=12m u 2=1.5m/sH e =P 2/ρg + z 2+u 22/2g +λ(L /d )u 2/2g +∑H f ,吸+H f 换热器=9.81×104/(960×9.81)+1.52/(2×9.81)+12+0.03×(120/0.106)×1.52/(2×9.81)+1+0.8×9.81×104/(960×9.81) =35.75mV=(π/4)(0.106)2×1.5×3600=47.6m3/hr由H e、V考虑选用3B57A型合适。
化工原理-第二章-流体输送机械PPT课件
![化工原理-第二章-流体输送机械PPT课件](https://img.taocdn.com/s3/m/f9bad8de3b3567ec112d8a77.png)
Vmh
(4)轴功率N
离心泵的轴功率N可直接用效率来计算:
流体密度,kg/ m3
泵的效率
N HQg /
泵的轴功率,W 泵的压头,m
泵的流量,m3/s
一般小型离心泵的效率50~70%,大型离心泵效率可达90% 。
2、离心泵特性曲线(Characteristic curves)
由于离心泵的各种损失难 以定量计算,使得离心泵的特
性曲线H~Q、N~Q、η~Q
的关系只能靠实验测定,在泵 出厂时列于产品样本中以供参 考。右图所示为4B20型离心泵
在 转 速n= 2900r/min 时 的特
性曲线。若泵的型号或转速不 同,则特性曲线将不同。借助 离心泵的特性曲线可以较完整 地了解一台离心泵的性能,供 合理选用和指导操作。
H/m NkW
u2
D2n
60
根据装置角β2的大小,叶片形状可分为三种:
w2
c2
2
2
u2
w2
c2
2
2
u2
w2 2
c2 2 u2
(a)
(a)β2< 90o为后弯 叶片,cotβ2 >0, HT∞ <u22 /g
(b) (b)β2= 90o为径向 叶片,cotβ2 =0 , HT∞ =u22 /g
(c) (c) β2 > 90o为前 弯叶片,cotβ2 <0,HT∞ > u22 /g
c2r
c2' r
u2
u2'
Q n Qn
H ( n)2 Hn
N H Qg ( n )3 N HQg n
不同转速下的速度三角形
比例定律
(4)叶轮直径D2对特性曲线的影响
化工原理第二章
![化工原理第二章](https://img.taocdn.com/s3/m/831f7454dcccda38376baf1ffc4ffe473368fd20.png)
化工原理第二章
•五、离心泵的安装高度
•安装高度: •液面到泵入口处的垂直距离(Hg)
•问题: •安装高度有无限制?
化工原理第二章
•0-0~1-1,B.E. •Hg,则p1 •当p1pv,•叶轮中心汽化汽泡•被抛向外围•压力升高 •凝结局部真空•周围液体高速冲向汽泡中心
化工原理第二章
•4-8个叶片(前弯、后弯,径向)•液体通道。 •前盖板、后盖板,无盖板 •闭式叶轮 •半开式 •开式
化工原理第二章
•(2)泵壳:•泵体的外壳,包围叶轮
•截面积逐渐扩大的蜗牛壳形通道
• 液体入口——中心
•出口——切线
思考:泵壳的主要作用是什么?
•①汇集液体,并导出液体; •②能量转换装置
•< 90度 — 后弯~流动能量损失小 •= 90度 — 径向叶片 •(2)后弯叶片,ctg >0 •b、r、, 则H
•Q ,则H (线性规律)
•(3)理论压头H与流体的性质无关
•(4)H与H的差距—•叶片间环流;阻力损失;冲击损失
化工原理第二章
•问:为什么泵采用后弯叶片的居多?
•后弯叶片:理论压头随流量增大而减少;径向:无关; •前弯:增大。在一定的叶轮尺寸、转速和流量下,前弯叶 •片产生的理论压头最大。但压头的提高包括静压头和动压 •头的提高。对后弯叶片静压头的提高大于动压头的提高,而 •对前弯叶片则相反,液体动压头的提高较大,同时液体在泵 •壳流动部分动压头转换为静压头时能量损失较大。为获得较 •高的能量利用率,离心泵总是采用后弯叶化片工原形理第式二章
化工原理第二章
•(2)转速——比例定律
•—— n 20%以内
化工原理第二章平面力系
![化工原理第二章平面力系](https://img.taocdn.com/s3/m/cccf1f196edb6f1afe001f0d.png)
如图所示,平面上作用一力 F ,在同平面内任取一点O, 点O称为矩心,点O到力的作用线的垂直距离h称为力臂。
力对点的矩:
力对点之矩是一个代数量, 它的绝对值恒等于力的大小与力臂的乘积, 它的正负可按下法确定:力使物体绕矩心逆时针转向转动 时为正,反之为负。 力 F 对于点O的矩
由右图容易看出,力F对点O的矩的大 小也可用三角形OAB面积的两倍表示, 即
(2)画受力图。
滑轮受到钢丝绳的拉力
=
=P;
由于滑轮的大小可忽略不计,故这些力可看作是汇交力系。
(3)列平衡方程 为使每个未知力只在一个轴上有投影, 在另一轴上的投影为零,坐标轴应尽量 取在与未知力作用线相垂直的方向。这 样在一个平衡方程中只有一个未知数, 不必解联立方程,故选取坐标轴如图所 示。 (a)
和
当Ox、Oy两轴不相垂直时,力沿两轴的分力 值上也不等于力在两轴上的投影X、Y。
、
在数
2.平面汇交力系合成的解析法
设由n个力组成的平面汇交力系作用 于一个刚体上。以汇交点O作为坐 标原点,建立直角坐标系Oxy 。
此汇交力系的合力
合矢量投影定理:合矢量在某一轴上的投影等于各分矢量在同 一轴上投影的代数和。 由此可得
例2—3 如图所示,重物P=20kN,用钢丝绳挂在支架的滑轮 B上,钢丝绳的另一端缠绕在铰车D上。杆AB与BC铰接,并 以铰链A、C与墙连接。如两杆和滑轮的自重不计,并忽略摩 擦和滑轮的大小,试求平衡时杆AB和BC所受的力。
解:(1)取滑轮B为研究对象。 AB、BC两杆都是二力杆,假 设杆AB受拉力、杆BC受压力;
平面汇交力系可简化为一合力.其合力的大小与方向等于各分 力的矢量和(几何和),合力的作用线通过汇交点。设平面汇交 力系包含n个力,以 表示它们的合力矢,则有
化工原理 第二章 流体的流动和输送超详细讲解
![化工原理 第二章 流体的流动和输送超详细讲解](https://img.taocdn.com/s3/m/a420d28d02d276a200292e1a.png)
1)判断下列两关系是否成立
PA=PA’,PB=P’B。 2)计算玻璃管内水的高度h。
解:(1)判断题给两关系是否成立 ∵A,A’在静止的连通着的同一种液体的同一水平面上
PA PA'
因B,B’虽在同一水平面上,但不是连通着的同一种液
10001.0 13600 0.067 1000 820
0.493m
作业 P71:3、5
要求解题过程要规范:
1、写清楚解题过程——先写公式,再写计算过程, 追求结果的准确性;
2、计算过程中注意单位统一成SI制。
第二节 流体稳定流动时的物料衡算和能量衡算
一、流速与管径的关系 1、流速v =qv/A
解:气压管内水上升的高度
P(表压) P(真空度) h ρ水g ρ水g 80103
1000 9.81 8.15m
3、液位的测定
液柱压差计测量液位的方法:
由压差计指示液的读数R可以计算 出容器内液面的高度。 当R=0时,容器内的液面高度将达 到允许的最大高度,容器内液面愈 低,压差计读数R越大。
流体的单位表面积上所受的压力,称为流体的静压强,
简称压强。
p F A
SI制单位:N/m2,即Pa。1 N/m2 =1Pa
工程制: 1at(工程大气压)= 1公斤/cm2 =98100Pa
物理制: 1atm (标准大气压)=101325Pa
换算关系为:
1atm 760mmHg 10.33mH2O 1.033kgf / cm2 1.0133105 Pa
在1-1’截面受到垂直向下的压力: 在2-2’ 截面受到垂直向上的压力: 小液柱本身所受的重力:
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Q,H ,N,有最大值。
注意:
离心泵在一定转速下有一最高效率点。离心泵在与最高
效率点相对应的流量及压头下工作最为经济。
高效区
与最高效率点所对应的Q、H、N值称为最佳工况参数。
离心泵的铭牌上标明的就是指该泵在运行时最高效率点的 状态参数。
与最高效率相比, 效率下降5%~8%
设计点
在选用离心泵时,应使离心泵在该点附近工作。一般
高,敞式叶轮的内漏最大。
敞式叶轮和半闭式叶轮不易发生堵
塞现象
平衡孔:在后盖板上钻有小孔,以
把后盖前后空间连通起来。
单吸式叶轮 按吸液方式
液体只能从叶轮一侧被吸入,结 构简单。
双吸式叶轮 相当于两个没有盖板的单吸式叶轮 背靠背并在了一起,可以从两侧吸 入液体,具有较大的吸液能力,而 且可以较好的消除轴向推力。
1
Q cot 2 ] 2 b 2
w2 2 2
2
c2 u2
(1)理论压头与流量Q、叶轮转速、叶轮的尺寸和 构造r2、b2、2)有关; (2)叶轮直径及转速越大,则理论压头越大;
w1 1 1 c1
(3)理论压头H与液体密度无关。 这就是说,同一台泵无论输送何种密度的液体,对单 位重量流体所能提供的能量是相同的。 (4) 在叶轮转速、直径一定时,流量 Q与理论压头H 2 的影响如下: 的关系受装置角
环流损失、阻力损失和冲击损失
N
N
电
电功率
N电出
传
N
电机 N 电出 电功率 电
N N 电出 传
Ne
N e N
(3)机械损失
泵轴与轴承、密封圈等机械部件之间的摩擦
机械 容积 损失 损失
水力 损失
小型水泵:一般为5070% 大型泵:可达90%以上
泵
N
Ne
此处是标题
铭 牌
此处是标题
6
-刘宇-
(一).压头与流量
1 离心泵的流量 指离心泵在单位时间里排到管路系统的液体体积,一 般用Q表示,单位为m3/s或m3/h。又称为泵的送液能力 2 离心泵的压头 泵对单位重量的液体所提供的有效能量,以H表示,单 位为m。又称为泵的扬程。 。
离心泵的压头取决于: 泵的结构(叶轮的直径、叶片的弯曲情况等) 转速 流量 n Q,
(二)轴功率、有效功率及效率
轴功率:电机输入离心泵的功率,用N表示,单位为W或kW 有效功率:排送到管道的液体从叶轮获得的功率,用Ne表示 效率: 反映泵对外加能量的利用程度,无量纲,用表示。 三者关系(如图): N e QgH
与效率有关的各种能量损失:
(1)容积损失:
内漏
(2)水力损失
第一节
离心泵
2. 离心泵的操作原理:
1)开泵前,先在泵内灌满要输送的液体。 2)开泵后,泵轴带动叶轮一起高速旋转产生离心力。液体在
压出导管
一、离心泵的构造和工作原理
1、叶轮: 1、离心泵的构造: 2、泵壳: 3、泵轴及轴封装置 :
此作用下,从叶轮中心被抛向叶轮外周,压力增高,并以很 高的速度(15-25 m/s)流入泵壳。
思考:转速一定时,出厂前如何确定泵的压头呢? 实验测定 在泵进口b、泵出口c间列机械能衡算式:
2 p b ub p u2 H c c h0 h f g 2 g g 2 g
流量计 真空表 压力表
c b
h0
H
pc pb p ( 表 ) p b (真 ) c g g
7
-刘宇-
例2-1
用水对一离心泵的性能进行测定,在某一次实验中
四.离心泵的特性曲线及应用
1、离心泵特性曲线 离心泵的H、η 、 N都与离心泵的Q有关,它们之间的关 系由确定离心泵性能的实验来测定,实验测出的一组关系
测得:流量10m3/h,泵出口压力表读数0.17MPa,泵入口的 真空表读数160mmHg,轴功率1.07kW。真空表与压力表两测 压截面的垂直距离为0.5m。试计算泵的压头及效率。
3)轴封装置
a) 轴封的作用 为了防止高压液体从泵壳内沿轴的四周而漏出,或者 外界空气漏入泵壳内。 B 轴封的分类 填料密封: 主要由填料函壳、软填料和填料压盖 轴封装置 组成,普通离心泵采用这种密封。 机械密封: 主要由装在泵轴上随之转动的动环和 端面密封 固定于泵壳上的静环组成,两个环形 端面由弹簧的弹力互相贴紧而作相对 运动,起到密封作用。
4
-刘宇-
2、离心泵的理论压头 1)离心泵基本方程式的导出
离心泵的基本方程
理想情况:
1)泵叶轮的叶片数目为无限多个,也就是说叶片的 厚度为无限薄,液体质点沿叶片弯曲表面流动,不发 生任何环流现象。 2)输送的是理想液体,流动中无流动阻力。
H
u2 c2 cos 2 u2 c2u Q cot 2 1 [( r2 ) 2 ] g 2 b 2 g g
考虑到这项损失后,压 头线应为曲线d。
b c
w2 2 2
2
c2 u2
b c d
设计 流量
w1 1 1 c1
u1
理论压头、实际压头及各种压头损失与流量的关系为:
三.离心泵的主要性能参数
转速 流量 压头 轴功率和效率 允许汽蚀余量
H
离心泵的主要性能参数
q-H
实际压 头 设计流 量
二、离心泵的理论压头和实际压头 1、压头的意义
泵的压头:泵向单位重量流体提供的机械能。用 H 表
示,单位是m。
管道输送流体系统正常工作时:H=he
he z
p u 2 hf g 2g
泵产生的压头主要用于是液位高度增加,静压头增大
以及克服流动过程中的压头损失。
此处是标题
泵 轴
吸入导管
底阀
此处是标题
1
-刘宇-
思考:泵启动前为什么要灌满液体
气缚现象:
离心泵启动时,如果泵壳内存在空气,由于空气的密度远
小于液体的密度,叶轮旋转所产生的离心力很小,叶轮中心 处产生的低压不足以造成吸上液体所需要的真空度,这样, 离心泵就无法工作,这种现象称作“气缚”。 为了使启动前泵内充满液体,在吸入管道底部装一止 逆阀。此外,在离心泵的出口管路上也装一调节阀,用于 开停车和调节流量。
由于液体的流速过大,在动能转化为静压能的
实际过程中,会有大量机械能损失,使泵的效率降 低。
一般都采用后弯叶片。
后弯叶片
径向叶片
前弯叶片
此处是标题
5
-刘宇-
3、实际压头
离心泵的实际压头与理论压头有较大的差异,原因在于 流体在通过泵的过程中存在着压头损失,它主要包括:
具体原因如下:
(1)叶片间的环流运动 主 要 取 决 于 叶片 数 目、
——离心泵基本方程
r—叶轮半径;—叶轮旋转角速度;Q—泵的体积流量; b—叶片宽度; —叶片装置角。
理论压头
意义:表示离心泵的理论压头与理论流量,叶轮
离心泵在上述理想情况下产生的压头,就做理论压头, 用H∞表示。
的转速和叶轮的几何形状间的关系。
2 2)离心泵基本方程式的讨论 H g [( r2 )
一、离心泵的构造和工作原理
叶片式:如离心式 、 轴流式、喷射式等 泵
特点:依靠旋转的叶片向液体传送机械能
二.离心泵主要构件的结构及功能 三、离心泵的主要性能参数 四、离心泵的工作点与流量调节 五、离心泵的安装高度 六、离心泵的选用、安装与操作
容积式:如往复式、回转式等
特点:机械内部的工作容积不断发生变化
复习:
1. 流量测量(变压头流量计;变截面流量计)。 2.变压头流量计(测速管、孔板流量计和文丘里流量计 ) 3.变截面流量计(转子流量计) 4. 流体输送机械(液体输送机械;气体输送机械) 5. 泵的分类(叶片式;容积式)
复习:
一、离心泵的构造和工作原理 1.离心泵的构造(叶轮;泵壳;泵轴及轴封装置) 1)叶轮(作用;分类) 2)泵壳(作用;导叶轮) 3)轴封装置(作用;分类) 2. 工作原理(灌泵—叶轮旋转产生离心力—中心形成负 压—吸入液体) 二、离心泵的主要性能参数 1.转速;流量;压头;轴功率及效率;允许气蚀余量
思路:
曲线:
Ne N
H~Q 、η~Q 、 N~Q
Ne
N e HQ g
H
机械能衡算
——离心泵的特性曲线 注意:特性曲线随转速而变。 各种型号的离心泵都有本身独自的特性曲线,但形状基
具体解题步骤见P60,例2-1
本相似,具有共同的特点 。
1)H~Q曲线:表示泵的压头与流量的关系,离心泵的压头 普遍是随流量的增大而下降(流量很小时可能有例外) 2)N~Q曲线:表示泵的轴功率与流量的关系,离心泵的轴 功率随流量的增加而上升,流量为零时轴功率最小。 离心泵启动时,应关闭出口阀,使启动电流最小,以保 护电机。 3)η~Q曲线:表示泵的效率与流量的关系,随着流量的 增大,泵的效率将上升并达到一个最大值,以后流量再增 大,效率便下降。
此处是标题
3
-刘宇-
4、离心泵的分类
1)按照轴上叶轮数目的多少 单级泵 轴上只有一个叶轮的离心泵,适用于出口压力 不太大的情况; 多级泵 轴上不止一个叶轮的离心泵 ,可以达到较高的 压头。离心泵的级数就是指轴上的叶轮数,我国 生产的多级离心泵一般为2~9级。 2)按叶轮上吸入口的数目 单吸泵 叶轮上只有一个吸入口,适用于输送量不大的情况。 双吸泵 叶轮上有两个吸入口,适用于输送量很大的情况。
-刘宇-
兰州理工大学 石油化工学院