空间向量点坐标求法
空间向量的坐标运算
a b a1b1 a2b2 a3b3 a // b a1 b1,a2 b2,a3 b3( R)
a b a1b1 a2b2 a3b3 0.
若A(x1,y1,z1),B(x2,y2,z2), 则
无罪,该负责任的是那些劝说我的人。世上有很多很好的鞋,但要看适不适合你的脚。在这里,所有的经验之谈都无济于事,你只需在半夜时分,倾听你脚的感觉。 看到好位赤着脚参加世界田径大赛的南非女子的风采,我报以会心一笑:没有鞋也一样能破世界纪录!脚会长,鞋却
不变,于是鞋与脚,就成为一对永恒的矛盾。鞋与脚的力量,究竟谁的更大些?我想是脚。只见有磨穿了的鞋,没有磨薄了的脚。鞋要束缚脚的时候,脚趾就把鞋面挑开一个洞,到外面去凉快。 脚终有不长的时候,那就是我们开始成熟的年龄。认真地选择一种适合自己的鞋吧!一
这是从远古传下来的手艺,博物馆描述猿人生活的图画,都绘着腰间绑着兽皮的女人,低垂着乳房,拨弄篝火,准备食物。可见烹饪对于女人,先于时装和一切其他行业。汤不一定鲜美,却要热;饼不一定酥软,却要圆。无论从爱自己还是爱他人的角度想,“食”都是一件大事。一个不
爱做饭的女人,像风干的葡萄干,可能更甜,却失了珠圆玉润的本相。 ? 我喜欢爱读书的女人。书不是胭脂,却会使女人心颜常驻。书不是棍棒,却会使女人铿锵有力。书不是羽毛,却会使女人飞翔。书不是万能的,却会使女人千变万化。不读书的女人,无论她怎样冰雪聪明,只有一
只脚是男人,一只脚是女人,鞋把他们联结为相似而又绝不相同的一双。从此,世人在人生的旅途上,看到的就不再是脚印,而是鞋印了。 削足适履是一种愚人的残酷,郑人买履是一种智者的迂腐;步履维艰时,鞋与脚要精诚团结;平步青云时切不要将鞋儿抛弃…… 当然,脚
高二数学空间向量运算的坐标表示
一、向量的直角坐标运算
设a (a1, a2 , a3 ),b (b1 , b2 , b3 )则
a b (a 1 b1 , a2 b2 , a3 b3 ) ;
a b (a 1 b1 , a2 b2 , a3 b3 ) ;
a (a1 , a2 , a3 ),( R) ;
F A1 B1 E D1 C1
D
C
A
B
练习三:
如图:直三棱柱ABC A1 B1C1 , 底面ABC 中, CA=CB=1,BCA=90o,棱AA1=2,M、 N分别为A1B1、AA1的中点, 1)求BN的长; 2)求 cos BA1 , CB1 的值; 3)求证:A1B C1M。
(3)当cos a , b 0 时,a b 。 思考:当 0 cos a , b 1 及 1 cos a , b 0时, 的夹角在什么范围内?
练习一:
1.求下列两个向量的夹角的余弦:
(1) a (2 , 3 , 3) , b (1, 0 , 0) ;
解:设正方体的棱长为1,如图建
C1
z
D1 A1
F1 E1 B1
立空间直角坐标系 O xyz ,则
3 B(1,1, 0) , E1 1, ,1 , 4
C
D
O
B
y
1 D(0 , 0 , 0) , F1 0 , ,1 . 4
A
x
1 3 BE1 1, ,1 (1,1, 0) 0 , ,1 , 4 4
(1)线段 AB 的中点坐标和长度; 解:设 M ( x , y , z ) 是 AB 的中点,则
课件2:3.1.4空间向量的直角坐标运算
研一研·问题探究、课堂更高效
小结 已知两个向量的坐标,证明这两个向量平行或垂 直,就是根据 a⊥b⇔a·b=0⇔a1b1+a2b2+a3b3=0,c∥d⇔c =xd⇔c1=xd1,c2=xd2,c3=xd3 (x∈R,x≠0)来证明.
研一研·问题探究、课堂更高效
跟踪训练 2 将本例中“若向量 ka+b 与 ka-2b 互相垂
练一练·当堂检测、目标达成落实处
3.若 ABCD 为平行四边形,且 A(4,1,3),B(2,-5,1),
C(-3,7,-5),则顶点 D 的坐标为
(D )
A.72,4,-1
B.(2,3,1)
C.(-3,1,5)
研一研·问题探究、课堂更高效
例 2 已知空间三点 A(-2,0,2),B(-1,1,2),C(-3,0,4),设 a =A→B,b=A→C.若向量 ka+b 与 ka-2b 互相垂直,求 k 的值.
解 a=(-1+2,1-0,2-2)=(1,1,0), b=(-3+2,0-0,4-2)=(-1,0,2), ∴ka+b=(k,k,0)+(-1,0,2)=(k-1,k,2), ka-2b=(k,k,0)-(-2,0,4)=(k+2,k,-4), ∴(k-1,k,2)·(k+2,k,-4)=(k-1)(k+2)+k2-8, 即 2k2+k-10=0,∴k=-52或 k=2.
=(2,1,2)-λ(1,1,2)=(2-λ,1-λ,2-2λ),
研一研·问题探究、课堂更高效
则Q→A·Q→B=(1-λ,2-λ,3-2λ)·(2-λ,1-λ,2-2λ) =(1-λ)(2-λ)+(2-λ)(1-λ)+(3-2λ)(2-2λ) =6λ2-16λ+10, ∴当 λ=43时,Q→A·Q→B取得最小值. 又O→Q=λO→P=43(1,1,2)=43,43,83. 所以,所求点 Q 的坐标为43,43,83.
空间向量的坐标表示与计算
空间向量的坐标表示与计算空间向量是三维空间中的一个重要概念,可以用来表示空间中的一个点或者空间中的两个点之间的位移向量。
为了方便计算和表示,我们可以使用坐标表示来描述和计算空间向量。
一、空间向量的坐标表示在三维坐标系中,可以使用三个坐标轴(通常是x轴、y轴、z轴)来表示一个空间向量的坐标。
这三个坐标轴是相互垂直的,构成一个直角坐标系。
对于一个空间向量v,可以使用v的起点在坐标原点的坐标表示来表示该向量。
假设v的坐标表示为(x, y, z),其中x、y、z分别表示v在x轴、y轴、z轴上的坐标值。
例如,对于一个空间向量v,如果它的起点在坐标原点,终点的坐标分别为(3, 4, 5),那么可以表示为v = (3, 4, 5)。
二、空间向量的计算1. 向量的加法空间向量的加法是指将两个向量相加得到一个新的向量。
假设有两个向量a和b,它们的坐标表示分别为(a1, a2, a3)和(b1, b2, b3)。
那么它们的和向量c的坐标表示为(c1, c2, c3),其中c1 = a1 + b1,c2 = a2 + b2,c3 = a3 + b3。
+ b的坐标表示为(c1, c2, c3) = (1 + 4, 2 + 5, 3 + 6) = (5, 7, 9)。
2. 向量的减法空间向量的减法是指将一个向量减去另一个向量得到一个新的向量。
假设有两个向量a和b,它们的坐标表示分别为(a1, a2, a3)和(b1, b2, b3)。
那么它们的差向量c的坐标表示为(c1, c2, c3),其中c1 = a1 - b1,c2 =a2 - b2,c3 = a3 - b3。
例如,对于向量a = (1, 2, 3)和向量b = (4, 5, 6),它们的差向量c = a - b的坐标表示为(c1, c2, c3) = (1 - 4, 2 - 5, 3 - 6) = (-3, -3, -3)。
3. 向量的数量积空间向量的数量积是指将两个向量相乘得到一个标量(即一个数)。
空间向量中点坐标公式
空间向量中点坐标公式以空间向量中点坐标公式为标题,本文将介绍空间向量中点坐标的计算方法。
在三维空间中,我们可以用向量来表示点。
一个点的位置可以由其在三个坐标轴上的坐标确定。
为了方便计算,我们可以使用空间向量来表示点的位置。
空间向量由其起点和终点确定,可以用一个有序的三元组表示。
假设有两个空间向量a和b,它们的起点分别为点A和点B,终点分别为点C和点D。
我们想要计算向量CD的中点坐标。
根据向量的性质,可以得到以下公式:中点坐标 = (终点坐标 + 起点坐标) / 2在空间向量中,我们可以将向量的坐标表示为三元组(x, y, z),其中x表示在x轴上的坐标,y表示在y轴上的坐标,z表示在z轴上的坐标。
假设向量a的坐标为(x1, y1, z1),向量b的坐标为(x2, y2, z2)。
根据上述公式,我们可以计算向量CD的中点坐标:中点x坐标 = (x2 + x1) / 2中点y坐标 = (y2 + y1) / 2中点z坐标 = (z2 + z1) / 2通过以上计算,我们可以得到向量CD的中点坐标。
在实际应用中,我们可以利用中点坐标来解决一些问题。
例如,在计算机图形学中,我们可以利用中点坐标来确定线段的中点,从而实现线段的平移、旋转等操作。
在三维建模中,我们可以利用中点坐标来确定物体的重心,从而进行物体的位置调整和运动仿真。
除了计算中点坐标,我们还可以进行其他相关计算。
例如,可以计算向量的长度、向量的夹角、向量的点积等。
这些计算可以帮助我们更好地理解和应用空间向量。
空间向量中点坐标的计算方法是通过将起点坐标和终点坐标相加,然后除以2来得到中点坐标。
这个计算方法在三维空间中具有广泛的应用,可以帮助我们解决各种问题。
在实际应用中,我们可以根据具体情况灵活运用这一计算方法,以实现更多的功能和效果。
空间向量的坐标运算1
空间直角坐标系O--xyz中的坐标, 记作.
a =( a 1 , a2, a3)
z
a
k i Oj
A(a1,a2,
a3) y
x
;菲律宾签证 https:/// 菲律宾签证
;
;
马上就明白了。哈里被人领养了,而汤姆没有,他还依旧被留在孤儿院。 如何答复汤姆呢?摩罗·邦尼博士知道,最直截了当的办法,就是找一家愿意领养孩子的人,然后秘密地办理领养手续,待一切办好之后,给汤姆回信,说:汤姆,我的孩子!我真有点疏忽大意了,像您这样好的孩 子,是不应该没有爸爸妈妈的。明天我一定给您送去。 对于一个孤儿,上帝真的会这样答复吗?摩罗·邦尼博士心里非常矛盾。他想,对于一个从小失去依靠的人,要想让他知道上帝是公平的,绝不能用这种办法。经过深思熟虑,他给汤姆回了这么一封信。 亲爱的汤姆: 我不 期望您现在就读懂这封信,不过我还是想现在就告诉您,上帝永远是公平的。假若您认为我没有送给您爸爸妈妈,就是我的不公,这实在让我感到遗憾。我想告诉你:我的公平在于免费地向人类供应了三样东西:生命、信念和目标。 您知道吗?你们每一个人的生命都是免费得到的。到目 前为止,我没让任何一个人在生前为他的生命支付过一分钱。信念和目标与生命一样,也是我免费提供给你们的,不论你生活在人间的哪一个角落,不论你是王子还是贫儿,只要想拥有它们,我都随时让您们据为己有。 孩子,让生命、信念和目标成为免费的东西,这就是我在人间的公平 所在,也是我作为上帝的最大智慧。但愿有一天,您能理解。 您的上帝 这封信后来被刊登在《基督教科学箴言报》上,成为上帝最著名的公平独白,同时也使很多人第一次真正地认识了上帝 务实的李敖 ?你会说我的思想有一点老古板,我对你们清华大学早期的校友名字叫胡适的态 度,你们知道我是老牌的态度,在很早的时候胡适送给我1000块,我在大学捐了150万台币,相当于35万人民币,我是来还这个情,告诉大家,人间有情有义,可是人间也会疏财仗义,我的解释是钱拿出来才是事,光同情你是不可以的。 在帮助慰安妇的时候我把胡适送给我的字都义卖了。 因为二次世界大战,在中国,在朝鲜,在高丽,在台湾,在菲律宾,街上走的女孩子17、18岁抓着就跑,放在军营里面,给他们做性奴隶,不但集体乱奸,怀孕了把她绑在门板上动妇科手术,没有麻醉药,日本人是这样子对待我们的。后来日本人为了应付联合国,就说我们和解这件事情,就 是全世界对慰安妇每个人送50万新台币,相当于10几万人民币,台湾当时还剩下54个老太太,很可怜,有的眼睛看不到,有的路走不动,一身都是性病,没有人理她们。慰安妇的团体和他们说,这个钱不能要,日本人说原谅他们,这50万现金对她们太重要了,可是她们说不可以拿这个钱,为 了国家的尊严和个人的荣誉不可以拿这个钱。不拿可是心里觉得很难过,因为她们现在需要这个钱,我李敖实在看不过去,我站出来,我拿出100件收藏品,举行义卖,我们卖了100万美金,每个人发50万,条件就是你不能要日本鬼子的50万,你要我的50万,还定了一个规定,如果你拿了日本 的50万,这个50万要还我,最后日本人真这样了,但是我说不行,不能要日本人的钱。所以日本人是行不通的,至少在台湾保留了我们中国人的尊严。 我和大家讲,大家注意,我这个招不谈高调的,就是你道德劝说慰安妇不拿这个钱,不尽人情,老太太们实在要这个钱,她内心发生了天 人交战,什么办法,就是我的方法,这才是务实。你们只看到我张牙舞爪,骂张三和李四,你们没有看到我务实这一面,这是很重要的。今天的意思就是大家要务实,面对今天的中国问题和中国的前途,就是说中国才是我们真正努力的方向,真正努力的目标,真正献身的目标。 摘自《李 敖2005年9月23日清华大学演讲文字实录》 爱的遗赠 ?艾尔非常年轻的时候,就已经是一个娴熟的艺术家和制陶工人了。他有一个妻子和两个优秀的儿子。 一天晚上,他的长子感到胃部疼得厉害,但是艾尔和妻子都认为这只是普通的肠道疾病,而没有多加注意。可是男孩得的却是急性阑尾炎, 他在那天晚上意外地死去了。如果不是由于他的粗枝大叶,如果他能稍微意识到儿子病情的严重性,儿子的死本来是完全可以避免的。——在这样巨大的犯罪感的压制下,艾尔的情绪急剧地变坏了。 不久之后,他的妻子也离开了他,留下他和6岁的小儿子相依为命,这使本来就已经很糟 的局面更加恶化。艾尔受不了这两件事给他带来了打击和痛苦,就妄图从酒精中寻求帮助和解脱,没过多久,他就变成了一个酒鬼。 随着对酒精的迷恋越来越深,艾尔所拥有的一切开始一点一点地失去了--他的家,他的土地,他的艺术作品,他的一切。最后,艾尔在旧金山的一家汽车旅 馆里孤独地死去了。 当我听到艾尔去世的消息后,我对他的蔑视也和世人对那些死后没给子孙留下任何遗产的人的蔑视一样。"这是一个多么彻底的失败者呀!"我心里这样想,"完全是浪费生命!" 随着时间的流逝,我开始对早年自己对艾尔的苛刻评断重新估价,因为,我认识了艾 尔现在已经成年的小儿子厄尼。他是我所知道的最仁慈最精细最富爱心的人之一。我观察着厄尼和他的孩子们,看见他们之间洋溢着丰富的关爱之情。我知道那种仁慈和爱心一定源自某处。 我很少听到厄尼谈论他的父亲。要为一个酒鬼辩护是多么困难啊。一天,我鼓起勇气问他,"有一 件事使我感到很迷惑,"我说,"我知道你主要由你的父亲抚养长大的。那么他究竟是如何使你成为这样一个非同一般的人的呢?" 厄尼平静地坐在那儿,仔细思索了一会儿,然后他说:"从我记事起一直到我18岁离开家,父亲每天晚上都到我的房间里来,在我的面颊上吻一下,并且说:' 我爱你,儿子。'" 我的眼睛湿润了,我意识到我过去觉得艾尔是一个失败者的想法是多么的愚蠢。他虽然没给儿子留下了什么物质财富,但是他用一个父亲的仁慈和爱心,培养出了一个非常善良无私的儿子。 ? 给狗取个好名字 ? 我的朋友琴德太太,住在纽约白利斯德路,她刚雇好一个 女佣,告诉她下星期一开始来工作。琴德太大打电话给那女佣以前的女主人,那太太指这个女佣并不好。当那女佣来上班的时候,琴德太太说: "妮莉,前天我打电话给你以前做事的那家太太。她说你诚实可靠,会做菜,会照顾孩子,不过她说你平时很随便,总不能将房间整理干净。 我相信她说的是没有根据的,你穿的很整洁,这是谁都可以看出来的……我可以打赌,你收拾房间,一定同你的人一样整洁干净。我也相信,我们一定会相处得很好。" 是的,她们果然相处得非常好,妮莉不得不顾全她的名誉,所以琴德太太所讲的,她真的做到了。她把屋子收拾得干干 净净,她宁愿自己多费些时间,辛苦些,也不愿意破坏琴德太太对她的好印象。 包德文铁路机车工厂总经理华克伦,他说过这样的话:"一般人,都会愿意接受指导,如果你得到他的敬重,并且对他的某种能力表示敬重的话。" 我们也可以这样说,如果你想改善一个人某方面的缺点, 你要表示出,他已经具有这方面的优点了。莎士比亚说: "如果你没有某种美德,就假定你有。"最好是"假定"对方有你所要激发的美德,给他一个美好的名誉去表现,他会尽其所能,也不愿意使你感到失望的。 雷布利克在她的《我和梅脱林克的生活》一书中,曾叙述一个低卑的比 利时女佣的惊人改变。 她这样写着:隔壁饭店里有个女佣,每天替我送饭菜来,她的名字叫洗碗的玛丽。因为她开始工作时,是厨房里的一个助手。她那副长相真古怪,一对斗鸡眼,两条弯弯的腿,身上瘦得没有四两肉,精神也是显得无精打采、迷迷糊糊的。 有一天,当她端着一 盘面来给我时,我坦白的对她这样说:"玛丽,你不知你有内在的财富?" 玛丽平时似乎有约束自己感情的习惯,生怕会招来什么灾祸,不敢做出一点喜欢的样子,她把面放到桌上后,才叹了口气说:"太太,我是从来不敢想到那些的。"她没有任何怀疑,也没有提出更多的问题,她只是回 到厨房,反复思索我所说的话,深信这不是人家开她的玩笑。 就从那天起,她自己似乎也考虑到那回事了;在她谦卑的心理,已起了一种神奇的变化。她相信自己是看不见的暗室之宝;她开始注意修饰她的面部和身体。她那原来枯萎了的青春,渐渐洋溢出青春般的气息来。 两个月 后,当我要离开那地方时,她突然告诉我,她就要跟厨师的侄儿结婚了。她悄悄的告诉我:"我要去做人家的太太了!她向我道谢我只用了这样简短的一句话,就改变了她的人生。 雷布利克给"洗碗的玛丽",一个美好的名誉,而那个名誉改变了她的一生。 当利士纳要影响在法国的美 国士兵的行为时,也用了同样的方法。哈巴德将军--一位最受人们欢迎的美国将军,他曾经告诉利士纳说,在他看来,在法国的二百万美国兵,是他所接触过最合乎理想、最整洁的队伍。 这是不是过份的赞许?或许是的。可是我们看利士纳如何应用它! 利士纳说:"我从未忘记把哈 巴德将军所说的话,告诉士兵们,我并没有怀疑这话的真实性,即使并不真实,那些士兵们知道哈巴德将军的意见后,他们会努力去达到那个水准。" 有这样一句古语:"如果不给一条狗取个好听的名字,不如把它勒死算了。" 几乎包括了富人、穷人、乞丐、盗贼,每一个人都愿意竭 尽其所能,保持别人赠予他的"诚实"的美誉。 "星星监狱"狱长洛斯说: "如果你必须去对付一个盗贼、骗子,只有一个办法可以制服他,那就是待他如同一个诚会、体面的绅士一样,假设他是位规规矩矩的正人君子。他会感到受宠若惊,他会很骄傲的认为有人信任他。" 那句话 太重要,太好了!我们不妨再说一遍: "如果你必须去对付一个盗贼、骗子,只有一个办法可以制服他,那就是待他如同一个诚实、体面的绅士,假设他是位规规矩矩的正人君子。他会感到受宠若惊,他会很骄傲的认为有人信任他。" 所以,如果你要影响一个人的行为,而不引起他 的反感,记住这项规则,那是: 给人一个美名让他去保全。 ? 松下幸之助:为你配副好眼镜 ?每一个生意人都想赚钱,这是天经地义的事。可是,满脑子都是生意经,这只是一般人的想法。 很久以前,我曾接到一封从北海道的札幌市寄来的信件,内容大致如下:"我是一位眼镜商 人,前几天,在杂志上看到了您的照片。因为您所配戴的眼镜不大适合脸形,希望我能为您服务,
空间向量的直角坐标运算律
.空间向量的直角坐标运算律:(1)若,,则.一个向量在直角坐标系中的坐标等于表示这个向量的有向线段的终点的坐标减去起点的坐标。
(2)若,,则,,,,,;,.夹角公式:.(3)两点间的距离公式:若,,则或。
对于垂直问题,一般是利用进行证明;对于平行问题,一般是利用共线向量和共面向量定理进行证明.2.利用向量求夹角(线线夹角、线面夹角、面面夹角)有时也很方便.其一般方法是将所求的角转化为求两个向量的夹角或其补角,而求两个向量的夹角则可以利用向量的夹角公式。
3.用向量法求距离的公式设n是平面的法向量,AB是平面的一条斜线,则点B到平面的距离为(如图)。
向量法在求空间角上的应用平面的法向量的求法:设n=(x,y,z),利用n与平面内的两个不共线的向a,b垂直,其数量积为零,列出两个三元一次方程,联立后取其一组解,即得到平面的一个法向量(如图)。
线线角的求法:设直线AB、CD对应的方向向量分别为a、b,则直线AB与CD所成的角为。
(注意:线线角的范围[00,900])线面角的求法:设n是平面的法向量,是直线的方向向量,则直线与平面所成的角为(如图)。
二面角的求法:设n1,n2分别是二面角的两个面,的法向量,则就是二面角的平面角或其补角的大小(如图)利用法向量求空间距离⑴点A到平面的距离:,其中,是平面的法向量。
⑵直线与平面之间的距离:,其中,是平面的法向量。
⑶两平行平面之间的距离:,其中,是平面的法向量。
①线线平行的判定:判定定理性质定理判定定理判定定理性质定理判定定理总结:从中可以看出,一般情况下,往往借助一些“性质定理”来构造满足“判定定理”的条件。
(2)还会考查到的位置关系:异面直线的判定。
判定方法:定义(排除法与反证法)、判定定理。
二、基本例题例1已知:分析:利用线面平行的性质与平行公理。
注意严格的公理化体系的推理演绎。
说明:过l分别作平面∴l∥m同理l∥n∴m∥n又又例2. 已知:AB是异面直线a、b的公垂线段,P是AB的中点,平面经过点P且与AB垂直,设M是a上任意一点,N是b 上任意一点。
空间向量的坐标运算精选全文完整版
| AC | | BB1 | cos 900 0 AD1 DB1 AD1 DA AD1 AB AD1 BB1 | AD1 | | DA | cos1350 | AD1 | | AB | cos 900
| AD1 | | BB1 | cos 450 0 又AD1 AC A,
AD1 DB1, AC DB1. DB1 平面ACD1.
xA‘
y B(3,4,0)
与y轴垂直的坐标平面是___x_o__z___ A'(3, 4, 5)
与z 轴垂直的坐标平面是___x_o_y____
(2)点P(2,3,4)在 xoy平面内的射影是_(_2_,3_,_0_)
在 xoz 平面内的射影是_(2_,_0_,4_)_
在 yoz平面内的射影是_(0_,_3_,4_)_
(2)a 6b 8c _(2_,_-3_,_1_)_+_(_12,0,18)+(0,0,-16)
=(14,-3,3)
练习P39 8.判定下列各题中的向量是否平行: (1) (1,2,-2)和(-2,-4,4), (2) (-2,3,5)和(16,-24,40). 解: (1) (-2,-4,4) = -2 (1,2,-2)
数轴:x轴、y轴、z轴,它们都叫做坐标轴.这样
就建立了一个空间直角坐标系O — x y z .
点O叫做原点,向量 i, j, k
z k
都叫做坐标向量.通过每两个
y
i 坐标轴的平面叫做坐标平面。
O
j
x
三、向量的直角坐标系
给定一个空间坐标系和向量
a ,且设 i, j, k为坐标向量,由空z a
间向量基本定理,存在唯一的有
D1 A1
D
空间向量的中点坐标公式
空间向量的中点坐标公式在三维空间中,我们常常遇到需要求两点之间的中点坐标的情况。
假设有两个点A(x1, y1, z1)和B(x2, y2, z2),我们希望求得这两点的中点坐标。
根据空间向量的性质,我们可以得到以下公式来计算两点的中点坐标:M = (A + B) / 2其中M表示两点的中点坐标,A和B分别为两点的坐标。
在这个公式中,我们首先将两个点的坐标相加,然后再除以2,得到的结果就是两点的中点坐标M。
这个公式的原理其实很简单,我们可以将两点A和B看作从原点出发的两个向量,其坐标表示了向量的方向和长度。
当我们将这两个向量相加后,得到的向量可以看作是从原点出发,指向中点M的向量。
因此,我们可以得到M的坐标。
接下来,我们通过一个例子来进一步说明这个公式的应用。
假设有两个点A(1, 2, 3)和B(4, 5, 6),我们希望求得这两点的中点坐标。
根据公式,我们将A和B的坐标相加:(1, 2, 3) + (4, 5, 6) = (5, 7, 9)然后再将结果除以2,得到中点坐标:(5, 7, 9) / 2 = (2.5, 3.5, 4.5)因此,点A和点B的中点坐标为(2.5, 3.5, 4.5)。
这个例子展示了如何使用空间向量的中点坐标公式来计算两点的中点坐标。
这个公式在实际应用中非常有用,特别是在计算机图形学和几何学中经常会遇到。
除了计算两点的中点坐标,我们还可以通过这个公式来进行其他的计算。
例如,我们可以将中点坐标作为一个向量,与其他向量进行运算。
我们可以将一个向量加到中点坐标上,得到另一个点的坐标,或者将中点坐标减去一个向量,得到另一个点的坐标。
这些运算在三维空间中的平移和定位中非常有用。
总结起来,空间向量的中点坐标公式为M = (A + B) / 2,其中A 和B分别为两点的坐标。
这个公式在三维空间中计算两点的中点坐标非常有用,并且可以扩展为其他向量运算。
通过掌握这个公式,我们可以更方便地进行空间向量的计算和应用。
空间向量坐标运算
空间向量坐标运算空间向量是指在空间中有大小和方向的线段。
空间向量的坐标运算包括向量的加法、减法、数乘和内积。
下面将对这些运算进行详细介绍。
一、向量的加法设空间中有两个向量A和B,它们的坐标分别为(Ax, Ay, Az)和(Bx, By, Bz)。
向量的加法即将两个向量的对应分量相加得到一个新的向量C。
它的坐标为(Ax+Bx, Ay+By, Az+Bz)。
例如,设A = (1, 2, 3)和B = (4, 5, 6),则A+B = (1+4, 2+5, 3+6) = (5, 7, 9)。
二、向量的减法向量的减法是指将一个向量减去另一个向量。
设向量A和B的坐标分别为(Ax, Ay, Az)和(Bx, By, Bz),则向量A减去向量B的坐标为(Ax-Bx, Ay-By, Az-Bz)。
例如,设A = (1, 2, 3)和B = (4, 5, 6),则A-B = (1-4, 2-5, 3-6) = (-3, -3, -3)。
三、向量的数乘向量的数乘是指一个向量乘以一个实数。
设向量A的坐标为(Ax, Ay, Az),实数k,则向量A乘以实数k的坐标为(kAx, kAy, kAz)。
例如,设A = (1, 2, 3),k = 2,则kA = (2*1, 2*2, 2*3) = (2, 4,6)。
四、向量的内积向量的内积又称为点乘,它是两个向量之间的一种运算。
设向量A和B的坐标分别为(Ax, Ay, Az)和(Bx, By, Bz),则向量A与向量B的内积为Ax*Bx + Ay*By + Az*Bz。
例如,设A = (1, 2, 3)和B = (4, 5, 6),则A·B = 1*4 + 2*5 +3*6 = 32。
向量的内积有以下几个性质:1. 交换律:A·B = B·A;2. 分配律:(A+B)·C = A·C + B·C;3. 数乘结合律:(kA)·B = k(A·B) = A·(kB)。
1.3 空间向量的坐标表示及其运算(共47张PPT)
设向量a=(a1,a2,a3),b=(b1,b2,b3),λ∈R,那么
向量运算
加法
减法
数乘
数量积
向量表示
a+b
a-b
λa
a·b
坐标表示
(a1+b1,a2+b2,a3+b3)
(a1-b1,a2-b2,a3-b3)
(λa1,λa2,λa3)
a1b1+a2b2+a3b3
2.空间向量的坐标与其端点坐标的关系:
能运用公式解决问
题.(数学运算)
思维脉络
情境导学
我国著名数学家吴文俊先生在《数学教育现
代化问题》中指出:“数学研究数量关系与空间形
式,简单讲就是形与数,欧几里得几何体系的特点是
排除了数量关系,对于研究空间形式,你要真正的
‘腾飞’,不通过数量关系,我想不出有什么好的办
法…….”
吴文俊先生明确地指出中学几何的“腾飞”是
(1)求AB + CA, CB-2BA, AB ·AC;
(2)若点 M 满足AM =
1
3
AB + AC,求点
2
4
M 的坐标;
(3)若 p=,q=,求(p+q)·(p-q).
思路分析先由点的坐标求出各个向量的坐标,再按照空间向量运算的坐标运算法则进行计算求解.
解:(1)因为 A(1,-2,4),B(-2,3,0),C(2,-2,-5),
(2)a⊥b⇔
a·b=0
⇔
a1=λb1,a2=λb2,a3=λb3 (λ∈R);
a1b1+a2b2+a3b3=0
.
点睛:当b的坐标中b1,b2,b3都不等于0时,a与b平行的条件还可以表
空间向量的坐标运算
a= ( a1, a2 ), b= (b1, b2 )
则
思考:空间向量的直角坐标运算 是否可以视作平面向量坐标运算 的推广?
向量的直角坐标运算.
设 a (a1 , a2 , a3 ), b (b1 , b2 , b3 ) 则
a b (a1 b1, a2 b2 , a3 b3 ) a b (a1 b1, a2 b2 , a3 b3 ) a (a1, a2 , a3 )( R) a b a1b1 a2b2 a3b3 a // b a1 b1, a2 b2 , a3 b3 ( R) a b a1b1 a2b2 a3b3 0.
1、空间向量的坐标运算; 2、利用向量的坐标运算判断空间几何关 系的关键:
首先要选定单位正交基,进而确定各向量 的坐标,再利用向量的坐标运算确定几何关系。
;微信监控 手机监控 https:/// 员工微信管理软件
;
密,只要你呀敢亮出来,那么你呀将永远遭受无止境の追杀,没有人能够救你呀,所以这上品神剑,你呀只能摆在这逍遥阁,绝对不能曝光,也就是说,这剑你呀只能看,不能用." 【作者题外话】:郑重推荐几个大大の经典之作——艾连の《特种兵痞在校园》习风《阵芒》,大家闹书荒の话,可以 去看看,很不错!俺一直在追! 本书来自 品&书#网 当前 第2陆陆章 没有品节の屠神刀 可惜啊,暴殄天物啊! 白重炙叹了口气,有些无奈,这么好の东西只能看,不能用,の确是件憾事.看书 只是他明白鹿希说の很有道理,于是也不多想,点了点头. 见白重炙点了点头,鹿希才再次说道:"这 把刀,主人称之屠神刀,品阶…未知,能力…未知,虽然他只能增加使用者百分之两百の攻击力.但是主人却说,这把刀绝不寻常,只是他没有时候破解这把刀の秘密.而这把刀外面看不出他是把神器,使用の时候,也没有特殊の异状,外表和普通武器差不多,所以这把刀你呀可以放心使用!接着! " 屠神刀? 品阶未知? 能力未知? 增加百分之两百攻击力?绝不寻常? 白重炙脑海还在琢磨着鹿希の话语,不料鹿希却把这把刀丢了过来,白重炙连忙一把接住,细细观看起来. 其实严格意义这把屠神刀,并不能称作刀.因为这刀是直の,但是又不能称呼为剑,因为它顶端是平の,并且只有一边 有锋刃. 刀长一米五,宽一尺,大约有百多斤斤重,通体黝黑,却有些暗红の神秘花纹.这把刀让白重炙想起前世の传奇里面の战士武器"开天".同样の款式,只是颜色换成了黑色.恩,这刀也可以称呼为巨大铁尺,只不过一边有锋刃而已. 白重炙手握刀柄,感觉着这屠神刀の惊人重量,百多斤の武 器,他还是第一见到.不过白重炙此刻如此强悍の修为,百来斤の东西也是犹如握着一把菜刀一样轻松. 随意挥舞了几下,白重炙非常の满意.其实他老早就想换武器了,青龙匕虽然用の很习惯,但是太短了.并且此刻他修炼成功夜皇七式,他很早就想拥有一把霸气の长刀,而这把屠神刀却是让他 非常满意,爱不释手. "好刀!好刀!"白重炙不断の抚摸着刀身,感觉这刀身带来の寒意,心情大好,这刀虽然看起来满意那把神剑绚丽,神秘,威势.但是白重炙一握住这把刀,就几多の舒适,几多の欢喜,似乎这把刀本来就属于他の一样,似乎这刀已经成为了他身体不可分割の一部分一样. 虽 然不知品阶,不知道能力,但是魂帝那么牛の人都说这刀不寻常,那肯定就不寻常,白重炙决定以后有时候好好摸索一样,说不定这把刀和他の魂戒一样,突然涌现出许多莫名神奇の能力也不一定. "好了!" 鹿希の话语再次将白重炙の思绪拉了回来,鹿希看着白重炙宛如一些孩子得到心爱の玩 具一样,微微笑了起来,继续说道:"以后有の是时候给你呀玩,现在你呀有更重要の事情!" "恩!"白重炙不好意思の笑了笑,点了道:"什么事,您说,鹿老!" "炼化这个戒指,这戒指就是这逍遥阁の中心,这是一枚空间神奇戒指,你呀炼化了它就等于炼化了逍遥阁,以后你呀就可以随时进入 这逍遥阁了!"鹿希一把抓起戒指,而后隔空缓缓将他丢了过来. "空间神器,炼化它就等于炼化逍遥阁?"白重炙有些疑惑の望着手中の戒指,另外一只手却还是抓着屠神刀不放. "其实整个逍遥阁,本来是在这逍遥戒内の,不过主人强行将它移动到了,你呀们炽火位面の空间乱流之中,现在你呀 炼化了这枚逍遥戒,逍遥阁自然再次回到里面,这可不是一样の空间神器,因为一样の空间戒指,可不能装活人!"鹿希郑重の点了点头,开始为白重炙解释器这枚炼化这枚戒指起来. 片刻之后,等白重炙总算弄懂了这枚炼化之后,鹿希才催促起来:"行了,你呀马上炼化吧,落神山天路现在已经 开启了,并且闯关威力也减半了,你呀抓紧时候炼化,其他の问题,以后俺在和你呀细说!" "好!"白重炙知道轻重,不再废话,连忙盘坐起来,把屠神刀放在脚下,开始闭目炼化逍遥戒起来. …… …… 当白重炙开始炼化逍遥戒の时候,落神山却再次震动了一下,而落神上顶部悬空の不咋大的神 阁却微微颤抖了一下,不过很显然,下面の人都没有发现. 而其实炽火大陆看到の不咋大的神阁,其实只是一些幻像而已.真正の不咋大的神阁,其实在炽火大陆の空间乱流之中. 空间乱流内,有这无数の空间裂缝,也有着无数の可以轻易绞杀神级强者の乱流风刃,只是……这些风刃飘到不咋大 的神阁外表の时候,却自动弯了开去,似乎有股无形之力,正自动の将乱流风刃扒开,很是神奇. 只是,当白重炙炼化逍遥戒,不咋大的神阁微微颤抖の那一刻.不远处の乱流中,盘踞の一处黑影,突然亮起了两道刺眼の精光. 居然是一名长着双角の神秘男子,这名男子盘坐在乱流中,四周の乱流 风刃也如同碰不到他一样,主动绕路.长角の男子,双眼成褐色,此刻盯着不咋大的神阁,看了一会,随即又闭上了眼睛,继续盘坐,宛如空间乱流中の一粒沙城,继续沉寂下去. 而同一时候,暗黑森林最深处の一座古堡内,也有人发出了一声微微の惊讶声音. 暗黑森林最深处,有一座,没有人知道 の古堡.古堡很华丽,很漂亮,比逍遥阁要大了几倍,各种装饰却是更加豪华,甚至可以说奢华. 不咋大的神阁微微颤抖の那一刻,古堡の顶层,一名正在穿着火红袍子正在看书の女子,惊讶の轻呼了一声,放下了手中の书,将目光投向了落神山方向,脸上却露出了玩味の笑容. 只是片刻之后,这名 看不出年纪の女子,微微笑了笑,继续拿起了手中の书籍,专心了看了起来,宛如什么也没用察觉,什么也没用发生. 暗黑森林又恢复了往日の平静. …… 白重炙在炼化逍遥戒,鹿希却身形一闪,离开了逍遥阁,居然回到了傀儡通道の最后一关の那个大厅之中. 他回到大厅,双手快速の朝着大厅 の墙壁,不同の方位,开始射出强弱不等の气剑,随着他の气剑射出,大厅突然神奇出现了一块屏幕.而屏幕上方却是不同闪现着不同の人物. 如果白重炙在这里の话,一定会激动の大叫起来.因为屏幕上不是闪现出来の人物,不少他都认识.有风家の,有龙城の,有蛮神府妖神府の,当然还有夜枪 和夜轻语. "呵呵,速度蛮快の嘛,恩!不咋大的寒子要炼化一天,没事索性俺来玩玩,这也是最后一次玩了,要好好玩玩……"鹿希眼中闪现出一次戏谑,继续开始挥动双手,控制着落神山の无数阵法,机关运转起来… 当前 第2陆柒章 诡异の第九关 文章阅读 神城の不咋大的队,是首先进入天 路の,也是速度最快の,由于白重炙の破了落神山の所有关卡,所以落神山の关卡威力全部减半了.请大家检索(品#书……网)看最全!更新最快の所以神城不咋大的队の闯关速度是最快の. 仅仅一天时候,此刻他们已经达到了第八关,这次神城带队是一名身材很是矮不咋大的の帝王境巅峰 强者,名屠黑,是屠神卫世家の旁系子弟. 屠黑双眼透过金袍,冷冷の望着,前方の一群八级魔智血虎,被自己の手下轻易の击退,不禁嘴角微微の笑了起来.虽然不清楚为何落神山突然异变,但是这并妨碍屠黑の心情无比の好了起来.一天时候就达到了傀儡通道第八关,看来这次是运气到了极点. 他此刻已经在幻想着,自己不咋大的队破了落神山の关卡,而后拿了神剑,回到神城,自己被神主赐予神城五卫の风光情景. 越想越兴奋,他再次一挥手,身旁の所有神城使者,全部一窝蜂の朝前面の血虎扑去,想必几多钟之后这关就破了吧. 下一关,第九关他知道是吞石鼠の关卡,傀儡通道虽然 许多关卡の守护智,地形都会随着闯关の人の综合实力,人数等方面,自动转换.但是闯关多次の他,非常清楚,一、五、九这三个最难の关卡,守护智从来没有换过,只是实力不同而已.而第九关是一种很难缠の吞石鼠,而他们是清一色の帝王境强者,所以他们等会面对の则是八品下阶の吞石鼠. 当然第九关,虽然吞石鼠比较多了一点,但是屠黑却并没有放在眼里,因为第九关の地
空间向量点坐标求法
得 y= , z=
(II) arcsin
y ∴ S(1, , )
,
例2 如图,一张平行四边形的硬纸ABC0D中, AD=BD=1,AB= 2 .沿它的对角线BD折起,使
点C0到达平面外C点的位置。若 求二面角A – BD –C的大小。 60°
解析:如图A(1, 0, 0) B(0, 1, 0)∵ CB ⊥ DB
∴ 可设 C(x, 1, z )( z >0)
z
∵
,
x
y
B
解得 x= ,z = ∴ C( ,1, )
如图,四面体ABCD中,CA=BC=CD= BD=2,
AB=AD= 2 ,试在 BC 上找一点E,使点E到平面
ACD的距离为 .
z
O是 BD中点,
AO⊥平面SAB
.
O
E
y
x
如图,四面体ABCD中,CA=BC=CD=BD= 2,
高中数学教材中引入了空间向量坐标运算这一内容使得在解决立体几何平行垂直夹角距离等问题时更加程序化只需代入公式进行代数运算即可这里常常需要首先建立空间直角坐标系求出所需点的坐标
空间向量点坐标求法
例 在 平 行 六 面 体 ABCD - A1B1C1D1 中 , 底 面 ABCD是矩形,AB=4, AD=2, 平行六面体高为 2 3 ,
解: (4)∵D1, N , D 三点共线,可设D1N DD1
即 D1N 0, 2, 2 3 0, 2, 2 3 ,
ON OD1 D1N 0, 2 2, 2 3
N 0, 2 2, 2 3
∵ ON DD1 0
0 4 112 0,
1
故
N
0,
3 2
,Hale Waihona Puke 3 24向量法
空间向量之立体几何建系和求点坐标(共24张PPT)
建系方法4 练习1
已知斜三棱柱ABC A1B1C1, BCA 90, AC BC 2, A1在底面ABC上的射影 恰好为AC的中点D,又知BA1 AC1,建立合适的空间直角坐标系 并确定各点坐标。
A1
C1
B1
造“墙角”
A
D
C
B
敬请各位教师批评指正
投影点,坐标是否好写。如果可以则直接确定了横纵坐标,而竖 坐标为该点到底面的距离。
以上两个类型已经可以囊括大多数几何体中的点, 但总还有一些特殊点,那么就要用到第三个方法:
基础知识:
3、需要计算的点 ① 中点坐标公式: ② 利用向量关系进行计算(先设再求):向量坐标化后,向量的 关系也可转化为坐标的关系,进而可以求出一些位置不好的点的坐
建系方法2例题
二、利用线面垂直关系构建空间直角坐标系(转化为墙角模型) 例2 如图,在四棱锥P-ABCD中,底面ABCD为正方形,且边
长为2a,棱PD⊥底面ABCD,PD=2b,取各侧棱的中点E,F,G, H,写出点E,F,G,H的坐标.
找“墙角”
建系方法2练习1
练1.在三棱锥P ABC中,PA 平面ABC, BAC 90, D, E, F分别是棱AB, BC,CD的中点,AB AC 1, PA 2, 试建立适当的空间直角坐标系并确定各点坐标。
基础知识:
(二)坐标的书写:建系之后要能够
快速准确的写出点的坐标,按照特点
可以分为两3大类 1、能够直接写出坐标的点:
• F
(1)坐标轴上的点
(2)底面上的点:
x
点P的位置
原点O
x轴上A
z
•C
•E
1
O• • B
空间向量及其运算的坐标表示
平面向量
平面向量的坐标运算: a ( x1 , y1 ), b ( x2 , y2 ) a b ( x1 x2 , y1 y2 );
空间向量
空间向量的坐标运算: a ( x1 , y1 , z1 ), b ( x2 , y2 , z 2 ) a b ( x1 x2 , y1 y2 , z1 z 2 );
空间向量
空间向量的夹角: a ( x1 , y1 , z1 ), b ( x2 , y2 , z 2 ) ab cos a,b | a || b | x1 x2 y1 y2 z1 z 2 2 2 2 2 2 x1 y1 z12 x2 y2 z 2
垂直与平行: a ( x1 , y1 , z1 ), b ( x2 , y2 , z 2 ) x1 y1 z1 a // b (?) x2 y 2 z 2 a b x1 x2 y1 y2 z1 z 2 0
x1 x 2 y1 y 2 z1 z 2 (3)中点坐标公式: ( , , ) 2 2 2
2.两个向量夹角公式
a1b1 a2b2 a3b3 a b cos a, b ; 2 2 2 2 2 2 | a || b | a1 a2 a3 b1 b2 b3
垂直与平行: a ( x1 , y1 ), b ( x2 , y2 ) a // b x1 y2 x2 y1 0 a b x1 x2 y1 y2 0
对比表4
平面向量
平面向量基本定理: 如果e1 , e 2是同一平面内的两个不 共线 的向量,那么对于这个 平面内的任一 向量a,有且仅有一对实数 x, y,使a xe1 ye 2 .
空间向量运算的坐标表示精选全文完整版
在空间选定一点O和一个单位正交基底{i , j, k } 以点O为原
点,分别以 i , j, k 的正方向建立三条数轴:x 轴、y 轴、z 轴,
这样就建立了一个空间直角坐标系O —xyz . x 轴、y 轴、z 轴,都叫
做叫做坐标轴,点O 叫做原点,向量i , j, k都叫做坐标向量.通过
每两个坐标轴的平面叫做坐标平面.
练习 3⑵.如图,在平行六面体 ABCD-A1B1C1D1 中,
O 是 B1D1 的中点,求证:B1C∥面 ODC1.
证明:设 OD OD1
C1B1 c
a,C1D1 1(b a) 2
b,C1C c ,则 c ,若存在实数 x,
B1C c y ,使得
a ,C1O B1C xOD
1(a b), 2 yOC1成立,
Eb p A
对向量 p 进行分解,
作 AB // b, BD // a, BC // c
O
D c p OB BA OC OD OE
C
B
xa yb zc
a
然后证唯一性
注:空间任意三个不共面向量都可以构成空
间的一个基底.如: a, b, c 3
例1 课本94页例4
推论:设点O、A、B、C是不共面的四点,则 对空间任一点P,都存在唯一的有序实数组 x、 y、z使OP xOA yOB zOC
22
学习小结:
1.基本知识: (1)向量的长度公式与两点间的距离公式; (2)两个向量的夹角公式。 2.思想方法:用向量计算或证明几何问题 时,可以先建立直角坐标系,然后把向量、点坐 标化,借助向量的直角坐标运算法则进行计算或 证明。
23
证明:如图,不妨设正方体的棱长为 1,
分别以 DA 、 DC 、 DD1 为单位正交基底
空间向量9个坐标计算公式
空间向量9个坐标计算公式空间向量是三维空间中的一个重要概念,它可以用来描述物体在空间中的位置、方向和运动。
在三维空间中,一个向量可以用三个坐标来表示,分别是x、y和z坐标。
通过这三个坐标,我们可以计算出向量的模、方向角和方向余弦等重要性质,从而更好地理解和应用空间向量。
在三维空间中,一个向量可以用以下公式来表示:\[。
\vec{a} = (x, y, z)。
\]其中,\(\vec{a}\)表示向量,\(x\)、\(y\)和\(z\)分别表示向量在x、y和z方向上的分量。
向量的模是指向量的长度,它可以用以下公式来计算:\[。
|\vec{a}| = \sqrt{x^2 + y^2 + z^2}。
\]这个公式就是三维空间中向量的模的计算公式,通过这个公式我们可以计算出向量的长度,从而更好地理解向量在空间中的位置和方向。
除了模之外,向量的方向角也是一个重要的性质。
在三维空间中,一个向量的方向角可以用以下公式来计算:\[。
\cos\alpha = \frac{x}{|\vec{a}|}, \cos\beta = \frac{y}{|\vec{a}|}, \cos\gamma =\frac{z}{|\vec{a}|}。
\]其中,\(\alpha\)、\(\beta\)和\(\gamma\)分别表示向量与x、y和z轴的夹角,通过这个公式我们可以计算出向量与坐标轴的夹角,从而更好地理解向量的方向。
除了方向角之外,向量的方向余弦也是一个重要的性质。
在三维空间中,一个向量的方向余弦可以用以下公式来计算:\[。
\cos\alpha = \frac{x}{|\vec{a}|}, \cos\beta = \frac{y}{|\vec{a}|}, \cos\gamma =\frac{z}{|\vec{a}|}。
\]通过这个公式我们可以计算出向量的方向余弦,从而更好地理解向量的方向。
除了以上的性质之外,向量还有很多其他重要的性质,比如向量的加法、减法、数量积、向量积等。
3.1.4空间向量的直角坐标运算
七、 当堂训练( 8 分钟)
15
OA与BO的夹角
5. 已知 a (3, 2,5), b (1, 3,0), c (7, 2,1) ,求 2 | a b c | (4) cos a, b (1) a b c (2)(a b) c (3)
三、学习目标:(10s)
1. 掌握向量的坐标表示、坐标运算。 2.掌握平行向量、垂直向量坐标之间的关系。 3.掌握两个向量夹角与向量长度的坐标计算 公式。 4.体会类比思想在空间向量公式推导当中的 应用。
四、自学指导:(7分钟)
认真阅读课本P89-P91,并注意以下问题:
1.空间向量的直角坐标运算:建立空间直角坐标系 的方法以及如何用坐标表示向量的加减、数乘、 数量积? 2.空间向量平行和垂直的条件是什么? 3.怎样表达两个向量的夹角? 4.向量长度的坐标计算公式是什么? (限时7分钟,7分钟后进行检测,看谁能利用本节 知识做对检测题)
3.空间向量平行和垂直的条件
若 a (a1 , a2 , a3 ) b (b1 , b2 , b3 )
a // b (b 0)
当b 与三个坐标平面都不平 行时
a1 a 2 a3 b1 b2 b3
b1 a ___ 1 a b ( R) b2 a2 ___ a ___ 3 b
则 a
a a a
2 1 2 2
————————
Cos a, b
AB
2 2 2 a12 a 2 a3 b12 b2 b32 若 A( x1 , y1 , z1 ) B( x2 , y2 , z2 ) 则
a b ———————— = ab
空间向量之立体几何建系和求点坐标(共24张PPT)
xOy面内D yOz面内E zOx面内F
坐标形式 (x,y,0)
(0,y,z)
(x,0,z)
基础知识:
2、空间中在底面投影为特殊位置的点:
如果 A' x1, y1, z 在底面的投影为 A x2, y2,0 ,那么x1 x2, y1 y2
(即点与投影点的横纵坐标相同) 由这条规律出发,在写空间中的点坐标时,可看一下在底面的
建系方法2练习2 练2.如图,已知四棱锥P ABCD的底面是菱形,对角线AC, BD交于点O, OA 4,OB 3,OP 4,且OP 平面ABCD,点M为PC的三等分点(靠近P), 建立适当的直角坐标系并求各点坐标。
找“墙角”
14
建系方法2练习3
练3.如图,在等腰梯形ABCD中,AB // CD, AD DC CB 1, ABC 60,CF 平面ABCD,且CF 1,建立适当的直角坐标系 并确定各点坐标。
找“墙角”
建系方法2练习5
真题(辽宁卷)如图,AB 是圆的直径,PA 垂 直圆所在的平面,C 是圆上的点.
(1)求证:平面 PAC⊥平面 PBC; (2)若 AB=2,AC=1,PA=1,求证:二面
角 C-PB-A 的余弦值.
造“墙角”
建系方法3例题
三、利用面面垂直关系构建空间直角坐标系(转化为墙角模型) 例3.在四棱锥V-ABCD中,底面ABCD是边长为2的正方形,侧面VAD 是正三角形,平面VAD⊥底面ABCD.点P、H分别是线段VC、AD的 中点.试建立空间直角坐标系并写出P、V、A、B、C、D的坐标.
互相垂直,EF // BD, ED BD, AD 2, EF ED 1, 试建立合适的 空间直角坐标系并确定各点的坐标
空间向量点坐标求法
△AB1D1的重心G,建立适当空间直角坐标系并写
出下列点的坐标。
(1) A1 、 B1 、A、 D1;
(2) G;
射影法
z D
C
(1)A1 (2, -2, 0 ) 、 B1 (2, 2, 0 ) 、A
B
A(2,0, 2 3 )、 D1 (0, -2, 0 )
(2) G 4, 0, 2 3
3 3
A1
a
求空间直角坐标下 点的坐标的方法
广西玉林高中
1
例 在 平 行 六 面 体 ABCD - A1B1C1D1 中 , 底 面 ABCD是矩形,AB=4, AD=2, 平行六面体高为 2 3 ,
a
顶点 D在底面 A1B1C1D1的 射影 O是 C1D1中 点,设 △AB1D1的重心G,建立适当空间直角坐标系并写 出下列点的坐标。
点C0到达平面外C点的位置。若 求二面角A – BD –C的大小。 60°
a
解析:如图A(1, 0, 0) B(0, 1, 0)∵ CB ⊥ DB
∴ 可设 C(x, 1, z )( z >0)
z
∵
,
x
解得 x= ,z = ∴ C( ,1,
y
B
11
)
如图,四面体ABCD中,CA=BC=CD= BD=2,
公式法
D1 O
C1
x
y
6
例 在 平 行 六 面 体 ABCD - A1B1C1D1 中 , 底 面
ABCD是矩形,AB=4,AD=2,平行六面体高为 2 3 ,
a
顶点 D在底面 A1B1C1D1的 射影 O是 C1D1中 点,设
△AB1D1的重心G,建立适当空间直角坐标系并写
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
x
y
又由CD=2,且CD与平面ɑ成30 °角
得x=﹣CDcos 30 °=﹣ , z=CDsin30 °=1 ∴ D(﹣ , 2, 1 )
,
例2 如图,一张平行四边形的硬纸ABC0D中, AD=BD=1,AB= 2 .沿它的对角线BD折起,使
点C0到达平面外C点的位置。若 求二面角A – BD –C的大小。 60°
解析:如图A(1, 0, 0) B(0, 1, 0)∵ CB ⊥ DB
∴ 可设 C(x, 1, z )( z >0)
z
∵
ON OD1 D1N 0, 2 2, 2 3
N 0, 2 2, 2 3
∵ ON DD1 0
0 4 112 0,
1
故
N 0,
3 2
,
3 2
4
向量法
A1
z
D
C
A N O
D1
B C1 y
x
B1
求空间直角坐标下点的坐标的方法:
ACD的距离为 .
z
解析一:
O
x
E
y
E
d=
=
解得 x= ,y=
∴ E( , ,1 ) 故E为BC中点
如图,四面体ABCD中,CA=BC=CD= 2,
AB=AD= 2 ,试在 BC 上找一点E,使点E到平面
z
ACD的距离为 .
解析二:平面ACD的平面方程为
即
O.
x
E
y
E
到平面
的距离
=
解得 x= ,y=
3 3
A1
公式法
x
B1
例 在 平 行 六 面 体 ABCD - A1B1C1D1 中 , 底 面
ABCD是矩形,AB=4,AD=2,平行六面体高为 2 3 ,
顶点D在底面A1B1C1D1的射 影 O是C1D1中点,设
△AB1D1的重心G,建立适当空间直角坐标系并写
出下列点的坐标。
z
(3) B;
(2) G;
(3) B;
D A
C B
(4)若N为DD1上点,且 ON⊥ DD1写出N坐标。
D1 O
C1
A1
B1
例 在 平 行 六 面 体 ABCD - A1B1C1D1 中 2,平行六面体高为 2 3 ,
顶点D在底面A1B1C1D1的射 影 O是C1D1中点,设
∴ E( , ,1 ) 故E为BC中点
如图,已知AB ⊥ɑ, BC ɑ, CD⊥BC, CD与平
面ɑ成30 °角, AB=BC= CD=2.
(1)求线段AD的长;
z
(2)求二面角D-AC-B的正弦值。 分析:建系如图,设D(x,y,z),
B(0,0,0),A(0,0,2),C(0,2,0)
由CD⊥BC(y轴) ,知 y=2
ABCD是矩形,AB=4,AD=2,平行六面体高为 2 3 , 顶点D在底面A1B1C1D1的射影O是C1D1中点. (4)若N为DD1上点,且ON⊥ DD1写出N坐标。
解: (4)∵D1, N, D 三点共线,可设 D1N DD1
即 D1N 0, 2, 2 3 0, 2, 2 3 ,
△AB1D1的重心G,建立适当空间直角坐标系并写
出下列点的坐标。
(1) A1 、 B1 、A、 D1;
(2) G;
射影法
z D
C
(1)A1 (2, -2, 0 ) 、 B1 (2, 2, 0 ) 、A
B
A(2,0, 2 3 )、 D1 (0, -2, 0 )
D1 O
C1
y
(2) G 4 , 0, 2 3
,
x
解得 x= ,z = ∴ C( ,1,
y
B
)
如图,四面体ABCD中,CA=BC=CD= BD=2,
AB=AD= 2 ,试在 BC 上找一点E,使点E到平面
ACD的距离为 .
z
O是 BD中点,
AO⊥平面SAB
.
O
E
y
x
如图,四面体ABCD中,CA=BC=CD=BD= 2,
AB=AD= 2 ,试在 BC 上找一点E,使点E到平面
AB∥CD,BC⊥CD,侧面SAB为等边三角
形,AB=BC=2,CD=SD=1.
(I)证明: SD⊥平面SAB ;
(II)求AB与平面SBC所成的角的大小
z
解析:(I)设S(x, y, z )(x >0, y >0, z >0)
由
x
得
又∵ 解得
得 y= , z=
(II) arcsin
y ∴ S(1, , )
向量法
D
C
(3)设B ( x, y, z ), 则
A
B1B x 2, y 2, z, D1D 0, 2, 2 3
又∵ B1B D1D , 比较得 x 2, y 4, z 2 3
D1
∴点B坐标为 2, 4, 2 3
A1 x
B
O C1 y B1
例 在 平 行 六 面 体 ABCD - A1B1C1D1 中 , 底 面
广西玉林高中
例 在 平 行 六 面 体 ABCD - A1B1C1D1 中 , 底 面 ABCD是矩形,AB=4, AD=2, 平行六面体高为 2 3 ,
顶点D在底面A1B1C1D1的射 影 O是C1D1中点,设 △AB1D1的重心G,建立适当空间直角坐标系并写 出下列点的坐标。
(1) A1 、 B1 、A、 D1;
一、投影法
将空间点P分别投影到 x轴、 y轴、z 轴
所得投影点为A(a,0,0) ,B(0,b,0),C(0,0,c)则点
P坐标为(a,b,c) 。
二、公式法 利用线段的中点坐标公式三角形的重心
坐标公式、距离公式、夹角公式等求出点的 坐标。 三、向量法 利用向量相等、垂直、共线等运算求出 点坐标。
例1. (2011广西高考题)如图,四棱锥S-ABCD中,