生活污水化学除磷投药量的计算

合集下载

化学除磷药剂投加量

化学除磷药剂投加量

化学除磷药剂化学除磷原理化学除磷是利用无机金属盐作为沉淀剂,与污水中的磷酸盐类物质反应形成难溶性含磷化合物与絮凝体,将污水中的溶解性磷酸盐分离出来。

化学除磷的药剂主要有铁盐、铝盐和石灰,由于石灰对生物处理的pH影响较大,加之容易引起管道堵塞问题;铝盐对人体和生物毒害比较大,给运行管理带来很多麻烦。

一般在以生物除磷为主,化学除磷为辅的污水处理厂中很多采用。

目前,国内常爱用铁盐作为沉淀剂,其与磷的化学反应式如下(1):Fe3++PO43- →Fe PO4↓(1)与沉淀反应相竞争的反应式金属离子与OH-的反应,反应式如下(2):Fe3++ 3OH- →Fe (OH)3↓(2)金属氢氧化物会形成大块的絮凝体,这对于沉淀产物的絮凝是有力的,同时还会吸附胶体状的物质、细微悬浮颗粒。

除磷药剂投加量的计算由式(1)可知去除1mol的磷酸盐,需要1mol的铁离子。

由于在实际工程中,反应并不是100%的有效进行的,加之OH-会参与竞争反应,与金属离子反应,生成相应的氢氧化物,如(2)式,所以实际中化学沉淀药剂一般需要超量投加,以保证达到所需的出水P浓度。

《给水排水设计手册》第五册和德国设计规范中都提到了同步沉淀化学除磷可按照1mol磷需要1.5mol的铁盐来考虑,为了计算方便,实际中将摩尔换算成质量单位,如1molFe=56gFe,1molP=31gP,也就是去除1kg的磷,当采用铁盐时需要投加:1.5×(56/31)=1.5×1.8=2.7Kg Fe/Kg P,计算举例:某城镇污水处理厂规模2万m3/d,已建成稳定运行,二沉池出水排放标准总磷≤1.0mg/L,运行数据表明二沉池出水实测总磷2.5mg/L,欲采用液体三氯化铁(FeCl3)作为同步化学除磷药剂,其有效成分为40%(400g/Kg FeCl3溶液),密度为1.42Kg/L,求所需要的除磷药剂。

解:化学除磷欲除去的磷含量2.5-1.0=1.5mg/L,所需要的Fe的投加量至少为2.7×1.5×20000×10-3=81Kg/d;折算成每天需要有效成分为40%的FeCl3溶液体积为V=81×(56+35.5×3)/(56×0.4×1.42)=420L=0.42m3/d六水合三氯化铁(FeCl3·6H2O)含量98%(1g FeCl3·6H2O含有0.203gFe)除去1mg/L P盐,需要多少ppm的FeCl3·6H2O?(2.7Kg Fe/Kg P)。

液体除磷剂加药量计算公式

液体除磷剂加药量计算公式

液体除磷剂加药量计算公式在水处理工程中,除磷剂被广泛应用于废水处理和环境保护中。

液体除磷剂是一种常见的除磷剂,它可以有效地去除水中的磷,减少磷对水体的污染。

为了确保液体除磷剂的使用效果,需要根据水质和除磷剂的性质来计算加药量。

本文将介绍液体除磷剂加药量的计算公式及其应用。

液体除磷剂加药量的计算公式如下:加药量 = (目标除磷率实际除磷率)×水流量×磷浓度 / 除磷剂浓度。

其中,加药量表示每小时需要加入的除磷剂的体积,单位为升;目标除磷率是指需要达到的除磷效果,一般为90%以上;实际除磷率是指除磷剂实际去除的磷的百分比;水流量是指单位时间内流过处理设备的水的体积,单位为立方米;磷浓度是指水中的磷的浓度,一般以mg/L为单位;除磷剂浓度是指液体除磷剂的浓度,一般以g/L为单位。

在实际应用中,首先需要确定目标除磷率和水流量。

目标除磷率通常由环保部门或相关标准规定,根据具体情况进行调整。

水流量可以通过流量计等设备进行实时监测,也可以根据处理设备的设计参数进行计算。

其次,需要对水样进行磷浓度的测定。

磷浓度可以通过取样送检或现场测试的方式获取。

在取样送检时,需要注意取样的方法和保存条件,以避免磷的变化。

在现场测试时,需要使用合适的试剂和仪器进行测定,并根据测定结果进行数据处理。

最后,根据除磷剂的浓度和实际除磷率,通过上述公式计算出加药量。

在实际操作中,需要根据实际情况进行调整,包括除磷剂的投加方式、投加位置和投加时间等。

除磷剂的加药量计算是水处理工程中的重要环节,它直接影响着除磷效果和运行成本。

合理的加药量计算可以确保除磷剂的有效利用,降低运行成本,保护水环境。

因此,水处理工程师需要熟练掌握液体除磷剂加药量的计算方法,并结合实际情况进行灵活应用。

除磷剂加药量的计算公式是水处理工程中的基础知识,但在实际应用中也需要考虑其他因素的影响。

例如,除磷剂的稳定性、与水中其他成分的相互作用、处理设备的运行参数等都会对加药量产生影响。

污水处理基本计算公式

污水处理基本计算公式
1、池外填土,池内无水时,荷载组合作用弯矩表(kN·m/m)
基本组合作用弯矩表:
配筋及裂缝:
配筋计算方法:按单筋受弯构件计算板受拉钢筋。
裂缝计算根据《水池结构规程》附录A公式计算。
按基本组合弯矩计算配筋,按准永久组合弯矩计算裂缝,结果如下:
顶板配筋及裂缝表(弯矩:kN.m/m,面积:mm2/m,裂缝:mm)
(1)栅渣量与多种因素有关,在无当地运行资料时,可以采用以下资料。
格栅间隙16~25mm;0.10~0.05m3/103m3(栅渣/废水)。
格栅间隙30~50mm;0.03~0.01m3/103m3(栅渣/废水)。
(2)栅渣的含水率一般为80%,容重约为960kg/m3。
(3)在大型废水处理厂或泵站前的大型格栅(每日栅渣量大于0.2m3),一般应采用机械清渣。
3、其他参数
(1)过栅流速一般采用0.6~1.0m/s。
(2)格栅前渠道内水流速度一般采用0.4~0.9m/s。
(3)格栅倾角一般采用45°~75°,小角度较省力,但占地面积大。
(4)机械格栅的动力装置一般宜设在室内,或采取其他保护设备的措施。
(5)设置格栅装置的构筑物,必须考虑设有良好的通风设施。
式中:H——堰上水头(m);
Q——每座反应池出水量(m3/s),指污水最大流量( 0.579m/s);与回流污泥量、回流量之和(0.717×160% m3/s);
m——流量系数,一般采用0.4~0.5;
b——堰宽(m);与反应池宽度相等。
设计中取m=0.4,b=5.0m
设计中取为0.19m。
厌氧—缺氧—好氧池的最大出水流量为(0.66+0.66/1.368×160%)=1.43m3/s,出水管管径采用DN1500mm,送往二沉池,管道内的流速为0.81m/s。

聚合硫酸铁除磷投加量计算方法

聚合硫酸铁除磷投加量计算方法

聚合硫酸铁除磷投加量计算方法(原创版3篇)目录(篇1)一、引言二、聚合硫酸铁的基本介绍三、聚合硫酸铁除磷投加量的计算方法四、影响投加量的因素五、结论正文(篇1)一、引言水处理一直是我国环保领域关注的重点问题,其中,磷污染是导致水体富营养化的主要原因。

为了解决这一问题,常用的方法之一是使用聚合硫酸铁进行除磷处理。

本文将对聚合硫酸铁除磷投加量的计算方法进行介绍。

二、聚合硫酸铁的基本介绍聚合硫酸铁(PFS)是一种新型高效无机高分子絮凝剂,具有优良的混凝性能和絮凝效果。

其主要作用是中和水中胶体微粒表面的负电荷,并在离子间架桥或起吸附作用,从而产生絮凝效果。

与传统的铁盐类絮凝剂相比,聚合硫酸铁具有更好的环保性能,无毒无害,安全可靠。

三、聚合硫酸铁除磷投加量的计算方法聚合硫酸铁除磷投加量的计算方法通常根据废水的磷浓度、水质条件和处理目标等因素来确定。

一般情况下,投加量的确定需要通过生产调试或烧杯实验来观察矾花的形成情况,以达到最佳的处理效果。

此外,还需考虑聚合硫酸铁的物理性质,如吸湿性、溶解性等,以及药剂的成本和处理设备的腐蚀性等实际因素。

四、影响投加量的因素影响聚合硫酸铁除磷投加量的因素主要有以下几点:1.废水的磷浓度:废水中的磷浓度越高,需要的投加量就越大。

2.水质条件:废水的 pH 值、浊度、有机物含量等都会影响聚合硫酸铁的投加量。

3.处理目标:根据处理目标的不同,如只是去除磷还是同时去除其他污染物,投加量也会有所不同。

4.聚合硫酸铁的性质:如颗粒大小、溶解度等,也会影响投加量。

五、结论总之,聚合硫酸铁除磷投加量的计算需要综合考虑多种因素,通过实验和调试来确定最佳的投加量。

目录(篇2)一、引言二、聚合硫酸铁概述三、聚合硫酸铁除磷投加量的计算方法四、影响聚合硫酸铁除磷效果的因素五、结论正文(篇2)一、引言水处理一直是我国环保领域的重要课题,其中,去除污水中的磷元素是一项关键任务。

近年来,聚合硫酸铁作为一种高效无机高分子絮凝剂,已在水处理领域得到广泛应用。

聚合硫酸铁除磷投加量计算方法

聚合硫酸铁除磷投加量计算方法

聚合硫酸铁除磷投加量计算方法(最新版4篇)目录(篇1)一、引言二、聚合硫酸铁概述三、聚合硫酸铁除磷投加量的计算方法四、影响投加量的因素五、结论正文(篇1)一、引言水处理技术作为现代环境保护的重要手段之一,其核心目的是通过采用各种物理、化学和生物方法,去除水中的有害物质,以达到净化水质的目的。

在众多水处理方法中,絮凝沉淀法由于其操作简便、效果显著,被广泛应用于生活用水、工业用水和城市污水等水体的净化处理。

聚合硫酸铁作为一种新型高效无机高分子絮凝剂,在除磷方面有着良好的应用效果。

本文将探讨聚合硫酸铁除磷投加量的计算方法。

二、聚合硫酸铁概述聚合硫酸铁(PFS)是一种新型高效无机高分子絮凝剂,具有良好的混凝性能和沉降速度。

其作为一种优质、高效铁盐类无机高分子净水剂,被广泛应用于生活饮用水、各种工业用水、工业废水、城市污水的净化处理等领域。

PFS 产品特点包括:1)新型、优质、高效铁盐类无机高分子净水剂;2)混凝性能优良、矾花密实,沉降速度很快;3)净水效果优良,出水水质好,不含铝、氯及重金属离子等有害物质;4)具有显著脱色、脱臭、脱水、脱油、除菌、脱除水中重金属离子、放射性物质及致癌物等多种功效;5)适应水体 PH 值范围宽为 4-1.1,最佳 PH 值范围 6.9;6)对微污染、含藻类、低温低浊原水净水处理效果显著;7)对高浊度原水的净化效果尤佳。

三、聚合硫酸铁除磷投加量的计算方法聚合硫酸铁除磷投加量的计算方法通常根据水体的磷浓度、浊度、pH 值、聚合硫酸铁的浓度等因素来确定。

具体计算步骤如下:1.根据水体的磷浓度,确定所需的磷去除量。

一般情况下,磷的去除量应满足出水磷浓度达到排放标准的要求。

2.根据水体的浊度,确定投加聚合硫酸铁的浓度。

浊度较高的水体,需要投加较高浓度的聚合硫酸铁,以达到较好的絮凝效果。

3.根据水体的 pH 值,选择合适的聚合硫酸铁类型。

一般情况下,聚合硫酸铁在 pH 值 6.9 左右具有最佳絮凝效果。

化学除磷加药量计算

化学除磷加药量计算
3
生物除磷总去除率取70% Pti Pte 磷的去除率 铝盐的投加量(AL2/O3) 总投加量
需化学法去除进水磷含量 6 0.5 0.916666667 66.20754717 mg/l 1456.566038 Kg/d
1.8
3
3
4
5
计算铝盐制品的总投加量(式1-4): DAS = 0.87 × 2.2 × (3.5-0.5) 10000/0.159/1000 = 361(kg/d) 商品量
×
6
变化范围:328~394(kg/d) 计算磷酸铝污泥量(式3-2): WAP = 3.94 × (3.5-0.5) × 10000/1000 = 118.2(kg/d) 计算氢氧化铝污泥量(式3-5): WAH = 2.51×(2.2-1)×(3.5-0.5)×10000/1000 = 90.4(kg/d) 计算总化学污泥量(式3-6): WA = WAP + WAH = 209(kg/d) 干固体量 变化范围:194~224(kg/d) 计算碱度消耗(式4-1): ACA = 4.84 × (2.2-1) × (3.5-0.5) 17.4(mg/L) 按CaCO3 计
序号 1 2 确定设计参数:
过程及说明 采用铝盐 Qd = 10000 m /d,Pti = 3.5 mg/L,Pte = 0.5 确定药剂种类: 聚合氯化铝固体(一等品),Al2O3 含量30% 计算有效铝含量: Al2O3 摩尔质量102g,Al摩尔质量27g CA = 0.3×(2×27)/102 = 0.159 确定铝的需用系数: 磷的去除率:(3.5-0.5)/ 3.5 = 86% KA = 2.2(变化范围:2.0~2.4),KAP = 0.87 计算铝盐制品的单位投加量(式1-3): DAP = 2.2 × 0.87 × (3.5-0.5)/0.159 36(mg/L) 变化范围:33~39(mg/L) 商品确定设计参数: Qd = 10000 m /d,Pti = 3.5 mg/L,Pte = 0.5 mg/L 确定药剂种类: 六水氯化铁固体(一等品),FeCl3·6H2O含量98% 计算有效铁含量: FeCl3·6H2O 摩尔质量270g,Fe摩尔质量56g CF = 0.98×56/270 = 0.203 确定铁的需用系数: 磷的去除率:(3.5-0.5)/ 3.5 = 86% KF = 1.8(变化范围:1.6~2.0),KFP = 1.80 计算铁盐制品的单位投加量(式2-3): DFP = 1.8×1.8×(3.5-0.5)/0.203 = 48(mg/L) 变化范围:43~53(mg/L) 商品量 计算铁盐制品的总投加量(式2-4): DFS = 1.8×1.8×(3.5-0.5)×10000/0.203/1000 = 479(kg/d) 商品量 变化范围:426~532(kg/d) 计算磷酸铁污泥量(式3-8): WFP = 4.87×(3.5-0.5)×10000/1000 = 146.1(kg/d) 计算氢氧化铁污泥量(式3-11): WFH = 3.45×(1.8-1)×(3.5-0.5)×10000/1000 = 82.8(kg/d) 计算总化学污泥量(式3-12): WF = WFP + WFH = 229(kg/d) 干固体量 变化范围:208~250(kg/d) 计算碱度消耗(式4-2): ACF = 4.84×(1.8-1)×(3.5-0.5) = 11.6(mg/L) 按CaCO3 计

化学除磷的设计计算

化学除磷的设计计算
磷的去除有化学除磷和生物除磷两种工艺 ,生 物除磷是一种相对经济的除磷方法 ,但由于生物除 磷工艺目前还不能保证稳定达到 015mg/ L 出水标 准的要求 ,所以要达到稳定的出水标准 ,常需要采取 化学除磷措施来满足要求 。本文主要介绍化学除磷
的基本原理 、主要工艺形式和药剂投加量的计算方 法。
1 污水中的磷负荷 欧洲一些国家曾对生活污水中的总磷做过多次
另外 ,如果污水处理厂的污泥用于农业 ,使用金
属盐药剂除磷时必须考虑铝或者铁负荷对农业的影
响。
除了金属盐药剂外 ,氢氧化钙也用作沉析药剂 。
在沉析过程中 ,对于不溶解性的磷酸钙的形成起主
要作用的不是 Ca2 + ,而是 OH - 离子 ,因为随着 p H
值的提高 ,磷酸钙的溶解性降低 ,采用 Ca (OH) 2 除 磷要求的 p H 值为 815 以上 。磷酸钙的形成是按反
CaCO3 ↓
(7)
与钙进行磷酸盐沉析的反应除了受到 p H 值的
影响 ,另外还受到碳酸氢根浓度 (碱度) 的影响 。在
18 给水排水 Vol126 No19 2000
一定的 p H 值情况下 ,钙的投加量是与碱度成正比 的。
对于软或中硬的污水 ,采用钙沉析时 ,为了达到 要求的 p H 值所需要的钙量是很少的 ,具有强缓冲 能力的污水则要求较大的钙投加量 。
絮凝作用 。
FeCl3 + K3 PO4
FePO4 ↓ + 3 KCl (1)
污水沉析反应可以简单地理解为 :水中溶解状
的物质 ,大部分是离子状物质转换为非溶解 、颗粒状
形式的过程 ,絮凝则是细小的非溶解状的固体物互
相粘结成较大形状的过程 ,所以絮凝不是相转移过

除磷药剂如何投加效果最好

除磷药剂如何投加效果最好
计中的污水处理厂
根据磷的物料平衡可得:PPrec=PIAT-PER-PBM-PBioP?
(6)?式中?PIAT———生化系统进水中总磷设计浓度,mg/L;?
PBM———通过生物合成去除的磷量,PBM=0.01CBOD,IAT,mg/L;?CBOD,IAT———生化系统进水中?BOD5?实测浓度,?mg/L;?
PBM=0.01CBOD,IAT=0.01×200=2mgP/L;
通过生物过量吸附去除的磷为:
PBioP≤0.005CBOD,IAT=0.005×200=1mgP/L?
同步沉淀化学除磷系统中,想要计算出除磷药剂的投加量,关键是先求得需要辅助化学除磷去除的磷量?对于已经运行的污水处理厂及设计中的污水处理厂其算法有所不同?
1、已经运行的污水处理厂?PPrec=PEST-PER?
(5)?式中?PPrec———需要辅助化学除磷去除的磷量,mg/L;
PEST———二沉池出水总磷实测浓度,mg/L;
3、后沉淀除磷:即在二沉池后投加化学药剂,通过混合?絮凝及分离设施将残余在出水中的磷去除?
后沉淀除磷一般须设混凝反应池及终沉池,投资大,运行费用高。
综上,辅助化学除磷的最佳投药位置宜设在生化反应池曝气区尾部?同时,预留二沉池后除磷药剂投加点,以备应急情况下投入使用,确保最终出水。
三、除磷药剂投加量的计算
为了计算方便,实际计算中将摩尔换算成质量单位?
如:1molFe=56gFe,1molAl=27gAl,1molP=31gP;
也就是说去除1kg?磷,当采用铁盐时需要投加:1.5×(56/31)=2.7kgFe/kgP;
当采用铝盐时需投加:1.5×(27/31)=1.3kgAl/kgP?
四、需要辅助化学除磷去除的磷量计算

化学除磷计算

化学除磷计算

化学除磷计算前言在静止的或流动缓慢的水体中,如果磷的浓度过高,会造成水体的富营养化,其危害已众所周知,因而在污水处理中进行除磷是必要的。

我国《污水综合排放标准》(8978—1996)规定,城市污水处理厂磷酸盐(以P计)一级排放标准为0.5mg/l。

磷的去除有化学除磷生物除磷两种工艺,生物除磷是一种相对经济的除磷方法,但由于该除磷工艺目前还不能保证稳定达到0.5mg/l出水标准的要求,所以要达到稳定的出水标准,常需要采取化学除磷措施来满足要求。

本文主要介绍化学除磷的基本机理、主要工艺形式和药剂投加量的计算方法。

2 污水中的磷负荷欧洲一些国家曾对生活污水中的总磷PT做过多次调查,主要结果见表1。

由人类食物产生的磷是不变的,但国内外目前普遍开始采用无磷洗涤剂,所以由洗涤剂产生的磷几年降低了许多。

城市污水原水中的磷浓度在我国主要取决于工业废水中的磷含量。

国外生活污水一般为10~25mg/l,我国一般为5~10mg/l。

其大部分是无机化合磷,并是溶解状的,这一部分主要由来自洗涤剂的正磷酸盐和稠环磷酸盐组成。

总磷中的一小部分是有机化合磷,其以溶解和非溶解状态存在。

稠环磷酸盐(如P3O105-)和有机化合磷(核酸 )一般在污水管网中和污水处理中就已经转化为正磷酸盐(PO43-)。

3 化学除磷的基础化学除磷是通过化学沉析过程完成的,化学沉析是指通过向污水中投加无机金属盐药剂,其与污水中溶解性的盐类,如磷酸盐混合后,形成颗粒状、非溶解性的物质,这一过程涉及的是所谓的相转移过程,反应方程举例如式1。

实际上投加化学药剂后,污水中进行的不仅仅是沉析反应,同时还进行着化学絮凝反应,所以必须区分化学沉析和化学絮凝的差异(如图1所示)。

FeCl3+K3PO4→FePO4↓+3KCl式1污水沉析反应可以简单的理解为:水中溶解状的物质,大部分是离子状物质转换为非溶解、颗粒状形式的过程,絮凝则是细小的非溶解状的固体物互相粘结成较大形状的过程,所以絮凝不是相转移过程。

污水处理基本计算公式

污水处理基本计算公式

污水处理基本计算公式水处理公式是我们在工作中经常要使用到的东西,在这里我总结了几个常常用到的计算公式,按顺序分别为格栅、污泥池、风机、MBR、AAO进出水系统以及芬顿、碳源、除磷、反渗透、水泵和隔油池计算公式,由于篇幅较长,大家可选择有目的性的观看。

格栅的设计计算一、格栅设计一般规定1、栅隙(1)水泵前格栅栅条间隙应根据水泵要求确定。

(2) 废水处理系统前格栅栅条间隙,应符合下列要求:最大间隙40mm,其中人工清除25~40mm,机械清除16~25mm。

废水处理厂亦可设置粗、细两道格栅,粗格栅栅条间隙50~100mm。

(3) 大型废水处理厂可设置粗、中、细三道格栅。

(4) 如泵前格栅间隙不大于25mm,废水处理系统前可不再设置格栅。

2、栅渣(1) 栅渣量与多种因素有关,在无当地运行资料时,可以采用以下资料。

格栅间隙16~25mm;0.10~0.05m3/103m3 (栅渣/废水)。

格栅间隙30~50mm;0.03~0.01m3/103m3 (栅渣/废水)。

(2) 栅渣的含水率一般为80%,容重约为960kg/m3。

(3) 在大型废水处理厂或泵站前的大型格栅(每日栅渣量大于0.2m3),一般应采用机械清渣。

3、其他参数(1) 过栅流速一般采用0.6~1.0m/s。

(2) 格栅前渠道内水流速度一般采用0.4~0.9m/s。

(3) 格栅倾角一般采用45°~75°,小角度较省力,但占地面积大。

(4) 机械格栅的动力装置一般宜设在室内,或采取其他保护设备的措施。

(5) 设置格栅装置的构筑物,必须考虑设有良好的通风设施。

(6) 大中型格栅间内应安装吊运设备,以进行设备的检修和栅渣的日常清除。

二、格栅的设计计算1、平面格栅设计计算(1) 栅槽宽度B式中,S为栅条宽度,m;n为栅条间隙数,个;b为栅条间隙,m;为最大设计流量,m3/s;a为格栅倾角,(°); h为栅前水深,m,不能高于来水管(渠)水深;v为过栅流速,m/s。

污水除磷计算

污水除磷计算

3.94 0.67
Kg/d
氢氧化铝污泥投入的铝除反应生成磷酸铝外,剩余部分反应生成氢氧化铝沉淀
化学反应方程式:
AI3++3OH-=AI(OH)3↓
氢氧化铝与铝的摩尔质量比K=TAI(OH)3/TAI
2.89
参与反应的铝离子量DAH=(KA-1)*TA
2.22
mg/l
氢氧化铝污泥产量WAH=MAH*DAH*Q/1000
7% 7% 7%
AI2(SO4)3
7%
聚合氯化铝PAC
10%
聚合硫酸铁PFS 7%
镁含量 7%
铝27g/mol,磷31g/mol 部分反应生成氢氧化铝沉淀
铝27g/mol
解固体
投加系数
2.5
1.5~3(室外排水设计规范P69)
实际需铝量
3.70
mg/l
购买PAC固体中AI2O3有效含量
28%
%
有效铝含量
14.82%
%
所需投PAC的量
2.50
Kg/d
所需投PAC的量
0.90
t/年
污泥量计算
磷酸铝污泥化学方程式:
AI3++PO43--=AIPO4↓
磷酸铝与磷的摩尔质量比K=TAIPO4/TP 磷酸铝污泥产量W=M*TP*Q/1000
0.64
Kg/d
化学污泥量WA=WAP+WAH
1.31
Kg/d备注:忽略ຫໍສະໝຸດ 盐制品的不溶解固体I2O3)
1mol铝消耗1mol磷 铝27g/mol,磷31g/mol 1.5~3(室外排水设计规范P69)
查包装袋说明
药品铝和铁含量表
药品名称 含铁量 铝含量 钙含量

化学除磷计算

化学除磷计算

前言在静止的或流动缓慢的水体中,如果磷的浓度过高,会造成水体的富营养化,其危害已众所周知,因而在污水处理中进行除磷是必要的。

我国《污水综合排放标准》(8978—1996)规定,城市污水处理厂磷酸盐(以P计)一级排放标准为0.5mg/l。

磷的去除有化学除磷生物除磷两种工艺,生物除磷是一种相对经济的除磷方法,但由于该除磷工艺目前还不能保证稳定达到0.5mg/l 出水标准的要求,所以要达到稳定的出水标准,常需要采取化学除磷措施来满足要求。

本文主要介绍化学除磷的基本机理、主要工艺形式和药剂投加量的计算方法。

2 污水中的磷负荷欧洲一些国家曾对生活污水中的总磷PT做过多次调查,主要结果见表1。

由人类食物产生的磷是不变的,但国内外目前普遍开始采用无磷洗涤剂,所以由洗涤剂产生的磷几年降低了许多。

城市污水原水中的磷浓度在我国主要取决于工业废水中的磷含量。

国外生活污水一般为10~25mg/l,我国一般为5~10mg/l。

其大部分是无机化合磷,并是溶解状的,这一部分主要由来自洗涤剂的正磷酸盐和稠环磷酸盐组成。

总磷中的一小部分是有机化合磷,其以溶解和非溶解状态存在。

稠环磷酸盐(如P3O105-)和有机化合磷(核酸 )一般在污水管网中和污水处理中就已经转化为正磷酸盐(PO43-)。

3 化学除磷的基础化学除磷是通过化学沉析过程完成的,化学沉析是指通过向污水中投加无机金属盐药剂,其与污水中溶解性的盐类,如磷酸盐混合后,形成颗粒状、非溶解性的物质,这一过程涉与的是所谓的相转移过程,反应方程举例如式1。

实际上投加化学药剂后,污水中进行的不仅仅是沉析反应,同时还进行着化学絮凝反应,所以必须区分化学沉析和化学絮凝的差异(如图1所示)。

FeCl3+K3PO4→FePO4↓+3KCl式1污水沉析反应可以简单的理解为:水中溶解状的物质,大部分是离子状物质转换为非溶解、颗粒状形式的过程,絮凝则是细小的非溶解状的固体物互相粘结成较大形状的过程,所以絮凝不是相转移过程。

化学除磷加药量计算知识分享

化学除磷加药量计算知识分享
WFP = 4.87×(3.5-0.5)×10000/1000 = 146.1(kg/d)
计算氢氧化铁污泥量(式3-11): WFH = 3.45×(1.8-1)×(3.5-0.5)×10000/1000 = 82.8(kg/d) 计算总化学污泥量(式3-12): WF = WFP + WFH = 229(kg/d) 干固体量 变化范围:208~250(kg/d) 计算碱度消耗(式4-2): ACF = 4.84×(1.8-1)×(3.5-0.5) = 11.6(mg/L) 按CaCO3 计
生物除磷总去除率取70% 需化学法去除进水磷含量
1.8
Pti
6
Pte
0.5
磷的去除率
0.916666667
铝盐的投加量(AL2/O3) 总投加量
66.20754717 mg/l 1456.56603ห้องสมุดไป่ตู้ Kg/d
过程及说明
过程及说明 采用铁盐
确定设计参数: Qd = 10000 m3/d,Pti = 3.5 mg/L,Pte = 0.5 mg/L 确定药剂种类: 六水氯化铁固体(一等品),FeCl3·6H2O含量98% 计算有效铁含量: FeCl3·6H2O 摩尔质量270g,Fe摩尔质量56g CF = 0.98×56/270 = 0.203 确定铁的需用系数: 磷的去除率:(3.5-0.5)/ 3.5 = 86% KF = 1.8(变化范围:1.6~2.0),KFP = 1.80 计算铁盐制品的单位投加量(式2-3): DFP = 1.8×1.8×(3.5-0.5)/0.203 = 48(mg/L) 变化范围:43~53(mg/L) 商品量 计算铁盐制品的总投加量(式2-4): DFS = 1.8×1.8×(3.5-0.5)×10000/0.203/1000 = 479(kg/d) 商品量 变化范围:426~532(kg/d) 计算磷酸铁污泥量(式3-8):

水处理药剂投加量的计算公式

水处理药剂投加量的计算公式

水处理药剂投加量的计算公式
水处理药剂投加量的计算公式有多种,以下是一些常见的计算公式:
1. 定容量法:根据污水中有害物质的含量,按照一定的比例投加药剂,计算出所需要的药剂投加量。

计算公式为:药剂投加量=污水容量×有害物质的浓度÷药剂的有效浓度。

2. 氯化钠投加量计算公式:氯化钠投加量=污水总氮(TN)浓度÷氯化钠的有效浓度。

3. Dosage = (C1 - C2) × Q / M 计算公式:Dosage为吸附剂的加药量(单位为克);C1为进水中某种有机物(颜色、异味等)的初始浓度(单位为mg/L);C2为出水中该有机物的浓度(单位为mg/L);Q为水处理量(单位为m³);M为吸附剂的质量(单位为克/千克水)。

请注意,不同的水处理药剂和工艺需要采用不同的计算公式,因此在实际应用中需要根据具体情况选择合适的计算公式。

同时,还需要考虑药剂的溶解度、反应速度、投加设备等因素,以确保水处理效果和药剂的有效利用。

水处理常用计算公式汇总

水处理常用计算公式汇总

水处理常用计算公式汇总碳源计算公式1、碳源选择通常反硝化可利用的碳源分为快速碳源(如甲醇、乙酸、乙酸钠等)、慢速碳源(如淀粉、蛋白质、葡萄糖等)和细胞物质。

不同的外加碳源对系统的反硝化影响不同,即使外加碳投加量相同,反硝化效果也不同。

与慢速碳源和细胞物质相比,甲醇、乙醇、乙酸、乙酸钠等快速碳源的反硝化速率最快,因此应用较多。

表1 对比了四种快速碳源的性能。

2、碳源投加量计算1)氮平衡进水总氮和出水总氮均包括各种形态的氮。

进水总氮主要是氨氮和有机氮,出水总氮主要是硝态氮和有机氮。

进水总氮进入到生物反应池,一部分通过反硝化作用排入大气,一部分通过同化作用进入活性污泥中,剩余的出水总氮需满足相关水质排放要求。

2)碳源投加量计算同化作用进入污泥中的氮按BOD5 去除量的5%计,即0.05(Si-Se),其中Si、Se 分别为进水和出水的BOD5 浓度。

反硝化作用去除的氮与反硝化工艺缺氧池容大小和进水BOD5 浓度有关。

反硝化设计参数的概念,是将其定义为反硝化的硝态氮浓度与进水BOD5 浓度之比,表示为Kde(kgNO3--N/kgBOD5)。

由此可算出反硝化去除的硝态氮[NO3--N]=KdeSi。

从理论上讲,反硝化1kg 硝态氮消耗2.86kgBOD5,即:Kde=1/2.86(kg NO3--N/kgBOD5)=0.35(kg NO3--N/kgBOD5)污水处理厂需消耗外加碳源对应氮量的计算公式为:N=Ne 计 - NsNe 计=Ni - KdeSi - 0.05(Si-Se)式中:N—需消耗外加碳源对应氮量,mg/L;Ne 计—根据设计的污水水质和设计的工艺参数计算出能达到的出水总氮,mg/L;Ns—二沉池出水总氮排放标准, mg/L;Kde—0.35,kgNO3--N/kgBOD5;Si—进水BOD5 浓度,mg/L;Se—出水BOD5 浓度,mg/L;Ne 计需通过建立氮平衡方程计算,生化反应系统的氮平衡见图1。

污水站除磷计算公式

污水站除磷计算公式

污水站除磷计算公式1、除磷药剂投加量的计算国内较常用的是铁盐或铝盐,它们与磷的化学反应如式(1)、(2)。Al3++PO3-4→AlPO4↓(1)Fe3++PO3-4→FePO4↓(2)与沉淀反应相竞争的反应是金属离子与OH-的反应,反应式如式(3)、(4)。Al3++3OH-→Al(OH)3↓(3)Fe3++3OH-→Fe(OH)3↓(4)由式(1)和式(2)可知去除1mol的磷酸盐,需要1mol的铁离子或铝离子。由于在实际工程中,反应并不是100%有效进行的,加之OH-会参与竞争,与金属离子反应,生成相应的氢氧化物,如式(3)和式(4),所以实际化学沉淀药剂一般需要超量投加,以保证达到所需要的出水P浓度。《给水排水设计手册》第5册和德国设计规范中都提到了同步沉淀化学除磷可按1mol磷需投加1.5mol的铝盐(或铁盐)来考虑。为了计算方便,实际计算中将摩尔换算成质量单位。如:1molFe=56gFe,1molAl=27gAl,1molP=31gP;也就是说去除1kg磷,当采用铁盐时需要投加:1.5×(56/31)=2.7kgFe/kgP;当采用铝盐时需投加:1.5×(27/31)=1.3kgAl/kgP。2、需要辅助化学除磷去除的磷量计算同步沉淀化学除磷系统中,想要计算出除磷药剂的投加量,关键是先求得需要辅助化学除磷去除的磷量。对于已经运行的污水处理厂及设计中的污水处理厂其算法有所不同。1)已经运行的污水处理厂PPrec=PEST-PER(5)式中PPrec——需要辅助化学除磷去除的磷量,mg/L;PEST——二沉池出水总磷实测浓度,mg/L;PER——污水处理厂出水允许总磷浓度,mg/L。2)设计中的污水处理厂根据磷的物料平衡可得:PPrec=PIAT-PER-PBM-PBioP(6)式中PIAT——生化系统进水中总磷设计浓度,mg/L;PBM——通过生物合成去除的磷量,PBM=0.01CBOD,IAT,mg/L;CBOD,IAT——生化系统进水中BOD5实测浓度,mg/L;PBioP——通过生物过量吸附去除的磷量,mg/L。PBioP值与多种因素有关,德国ATV-A131标准中推荐PBioP的取值可根据如下几种情况进行估算:(1)当生化系统中设有前置厌氧池时,PBioP可按(0.01—0.015)CBOD,IAT进行估算。(2)当水温较低、出水中硝态氮浓度≥15mg/L,即使设有前置厌氧池,生物除磷的效果也将受到一定的影响,PBioP可按(0.005—0.01)CBOD,IAT进行估算。(3)当生化系统中设有前置反硝化或多级反硝化池,但未设厌氧池时,PBioP可按≤0.005CBOD,IAT进行估算。(4)当水温较低,回流至反硝化区的内回流混合液部分回流至厌氧池时(此时为改善反硝化效果将厌氧池作为缺氧池使用),PBioP可按≤0.005CBOD,IAT进行估算。。

污水处理基本计算公式

污水处理基本计算公式

污水处理基本计算公式水处理公式是我们在工作中经常要使用到的东西,在这里我总结了几个常常用到的计算公式,按顺序分别为格栅、污泥池、风机、MBR、AAO进出水系统以及芬顿、碳源、除磷、反渗透、水泵和隔油池计算公式,由于篇幅较长,大家可选择有目的性的观看。

格栅的设计计算一、格栅设计一般规定1、栅隙(1)水泵前格栅栅条间隙应根据水泵要求确定。

(2) 废水处理系统前格栅栅条间隙,应符合下列要求:最大间隙40mm,其中人工清除25~40mm,机械清除16~25mm。

废水处理厂亦可设置粗、细两道格栅,粗格栅栅条间隙50~100mm。

(3) 大型废水处理厂可设置粗、中、细三道格栅。

(4) 如泵前格栅间隙不大于25mm,废水处理系统前可不再设置格栅。

2、栅渣(1) 栅渣量与多种因素有关,在无当地运行资料时,可以采用以下资料。

格栅间隙16~25mm;0.10~0.05m3/103m3(栅渣/废水)。

格栅间隙30~50mm;0.03~0.01m3/103m3(栅渣/废水)。

(2) 栅渣的含水率一般为80%,容重约为960kg/m3。

(3) 在大型废水处理厂或泵站前的大型格栅(每日栅渣量大于0.2m3),一般应采用机械清渣。

3、其他参数(1) 过栅流速一般采用0.6~1.0m/s。

(2) 格栅前渠道内水流速度一般采用0.4~0.9m/s。

(3) 格栅倾角一般采用45°~75°,小角度较省力,但占地面积大。

(4) 机械格栅的动力装置一般宜设在室内,或采取其他保护设备的措施。

(5) 设置格栅装置的构筑物,必须考虑设有良好的通风设施。

(6) 大中型格栅间内应安装吊运设备,以进行设备的检修和栅渣的日常清除。

二、格栅的设计计算1、平面格栅设计计算(1) 栅槽宽度B式中,S为栅条宽度,m;n为栅条间隙数,个;b为栅条间隙,m;为最大设计流量,m3/s;a为格栅倾角,(°); h为栅前水深,m,不能高于来水管(渠)水深;v为过栅流速,m/s。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档