核酸的生物合成

合集下载

核酸的生物合成

核酸的生物合成

冈崎片段:DNA半不连续复制时,合成的一些短的不连续的DNA片段称~。原核细胞约含1000-2000 nt;真原核细胞约含100-200 nt。
原核细胞DNA的复制过程 - E.coli 与复制有关的酶和蛋白质 DNA聚合酶Ⅰ 1956年Kornberg等首先从E.coli分离出 主要功能: 5′→3′方向聚合作用,需RNA引物,活力低。单链球状蛋白,含锌,每秒可聚合10个碱基。5′→3′方向聚合的5个特点。 具3′→5′外切酶(校正)和5′→3′外切酶(切除引物)的能力。对DNA损伤进行修复以及在DNA复制过程中填补引物RNA被切除后的空隙。
真核细胞DNA的复制过程 与复制有关的酶 至少有5种: α:细胞核,5′→3′聚合作用(相当于DNA聚合酶Ⅲ),延长后随链,引发酶,有3′→5′外切酶活性。 β:细胞核,5′→3′聚合作用,修复 δ:细胞核,5′→3′聚合作用,延长前导链,解旋酶作用,有3′→5′外切酶活性。 γ:线粒体,线粒体DNA复制 ε:细胞核,修复
5′→3′聚合作用,活力低,作用不清楚; 具3′→5′外切酶的能力,无5′→3′外切酶的能力。
的主要功能:
5′→3′聚合作用,活力强,起主要作用。 具3′→5′外切酶的能力,无5′→3′外切酶的能力。
的主要功能:


DNA连接酶 DNA连接酶是指催化一个DNA链的5′-磷酸根与另一个DNA链的3′-羟基形成磷酸二酯键的酶,但是这两条链必需都同—个互补链结合,而且必需是相邻的。反应需要供给能量,细菌连接酶以NAD+为能量来源,动物细胞和某些噬菌体以ATP为能量来源。
第十章 核酸的生物合成
蛋白质
翻译
转录
逆转录
复制
复制
DNA
RNA

生物化学第十二章核酸的生物合成

生物化学第十二章核酸的生物合成

表观遗传学调控
05
CHAPTER
核酸合成的应用
通过分析基因序列,检测是否存在突变位点,对遗传性疾病进行诊断。
基因突变检测
利用核酸合成技术检测特定基因的表达水平,有助于了解疾病的发生机制和个体差异。
基因表达分析
通过对特定人群进行核酸合成检测,可以对遗传性疾病进行筛查,提前采取干预措施。
遗传病筛查
在遗传疾病诊断中的应用
DNA复制从特定的起始点开始,称为复制起始点或原点。
复制的起始
DNA复制过程中,两条母链各提供一条单链作为模板,合成两条新的子链,形成半保留复制。
半保留复制
DNA复制过程中,两条母链同时进行复制,形成双向复制。
双向复制
DNA复制到达终止点时,复制过程结束。
复制的终止
DNA的复制
当DNA复制过程中出现碱基错配时,细胞会启动错配修复机制,纠正错配的碱基。
合成生物学
通过设计并合成特定功能的核酸序列,构建人工生物系统,实现生物功能的定制化。
药物研发
利用核酸合成技术对药物靶点或相关基因进行研究和改造,开发新型药物或优化现有药物疗效。
在生物技术中的应用
THANKS
感谢您的观看。
在转录过程中,RNA聚合酶与DNA分子结合,并沿着DNA链移动,将DNA序列转录为互补的RNA序列。
转录过程中,DNA的碱基序列被忠实地转录到RNA中,但RNA中的碱基序列可能与DNA中的碱基序列不完全相同,这主要由于RNA编辑和剪接过程。
转录过程中,RNA聚合酶还负责启动子识别、转录起始、延伸和终止等过程,以确保转录的准确性和效率。
生物化学第十二章核酸的生物合成
目录
核酸的合成概述 DNA的合成 RNA的合成 核酸合成的调控 核酸合成的应用

核酸的生物合成

核酸的生物合成

2、DNA 的半保留 复制实验 依据
1958年Meselson
& stahl用同位素 示踪标记加密度 梯度离心技术实 验,证明了DNA是 采取半保留的方 式进行复制.
[15N] DNA
[14N- 15N] DNA
[14N- 15N] DNA
[14N] DNA
Meselson-stahl实验 (a)密度梯度离心的DNA带 (b)对应于左侧DNA带的解释
一、半保留复制
1、DNA的 半保留复制的概念
DNA在复制时,两条 链解开分别作为模板,在 DNA聚合酶的催化下按碱 基互补的原则合成两条与 模板链互补的新链,以组 成新的DNA分子。这样新 形成的两个DNA分子与亲 代DNA分子的碱基顺序完 全一样。由于子代DNA分 子中一条链来自亲代,另 一条链是新合成的,这种 复制方式称为半保留复制。
具有3′ 5′端核酸外切酶的活性,主要负责 DNA的修复,在一定程度上参与DNA复制。活性 低。功能不十分清楚,是一种修复酶。
3、DNA聚合酶Ⅲ
polⅢ
是使DNA链延长的主要聚合酶, 目前已知全酶是由7种多肽形成的复合 物,含有10种共22个亚基组分 (α 2ε 2θ 2δ 2г 2δ 2δ 2′2χ 2ψ 2β 2) 和Zn原子。
DNA—3′—OH+P—5′—DNA+ATP(NAD+)
DNA—3′—O—P—5′—DNA+AMP+ PPi(NMN)
E,coli连接酶
催化下的连接机制
3'
5'
模板链
连 接 酶 连 接 切 口
A G A A C C T T G T C T T G G A A C
5' P P P P P OH P P P P 3'

核酸的生物合成

核酸的生物合成

核酸的生物合成引言核酸是生物体中非常重要的生物分子之一,它在遗传信息的传递和蛋白质合成等生物学过程中起着关键的作用。

核酸的生物合成是一个复杂而精密的过程,涉及到许多酶和辅因子的参与。

本文将对核酸的生物合成过程进行详细的介绍,并讨论其中的关键步骤和调控机制。

核酸的组成核酸分为DNA(脱氧核酸)和RNA(核糖核酸)两类。

DNA是遗传信息的存储介质,而RNA则在蛋白质合成和其他生物学过程中起着重要的调节和功能性作用。

DNA和RNA的基本组成单元是核苷酸,核苷酸由糖、碱基和磷酸组成。

DNA的糖是脱氧核糖,RNA的糖是核糖;DNA的碱基有腺嘌呤(A)、鸟嘌呤(G)、胸腺嘧啶(T)和脱氧胸腺嘧啶(C),RNA的碱基有腺嘌呤(A)、鸟嘌呤(G)、尿嘧啶(U)和胸腺嘧啶(T)。

磷酸连接不同核苷酸,形成链状的DNA或RNA分子。

核酸的生物合成路径核酸的生物合成路径分为两个主要的步骤:核苷酸的合成和核酸链的合成。

核苷酸的合成核苷酸的合成是核酸合成的第一步,它是通过一系列酶催化的反应进行的。

核苷酸的合成可以分为两个阶段:碱基的合成和糖-磷酸的合成。

在碱基的合成过程中,腺嘌呤和鸟嘌呤是由一些小分子前体合成的,而胸腺嘧啶和尿嘧啶则是由核苷酸催化的反应合成的。

碱基的合成是一个复杂的过程,涉及到多个酶和辅因子的参与。

在糖-磷酸的合成过程中,核糖-1-磷酸和脱氧核糖-1-磷酸是通过核糖-5-磷酸和脱氧核糖-5-磷酸的合成转化得到的。

这个过程是通过一系列酶催化的反应进行的。

核酸链的合成核酸链的合成是核酸合成的第二步,它是通过酶催化的反应进行的。

DNA的合成是由DNA聚合酶催化的反应进行的,RNA的合成则是由RNA聚合酶催化的反应进行的。

在DNA的合成中,DNA聚合酶结合到DNA模板上,依据碱基配对规则,在新合成的链上加入互补碱基,形成一个新的DNA链。

这个过程是一个复制过程,可以将一条DNA模板复制成两条完全相同的DNA 分子。

生物化学:第七章 核酸的生物合成

生物化学:第七章 核酸的生物合成

第七章核酸的生物合成(一)DNA的生物合成1. DNA的生物合成:指以亲代DNA的两条链为模板,以4种脱氧核苷三磷酸为底物,在DNA 聚合酶催化下进行的脱氧核苷酸聚合反应。

基因(顺反子):泛指被转录的一个DNA片段。

在某些情况下,基因常用来指编码一个功能蛋白或DNA分子的DNA片段。

2.复制 (Replication):以亲代DNA分子的双链为模板,按照碱基配对的原则,合成出与亲代DNA分子相同的双链DNA的过程。

3.转录(Transcription):以DNA分子中一条链的部分片段为模板,按照碱基配对原则,合成出一条与模板DNA链互补的RNA分子的过程。

4.翻译(Translation):把mRNA上的遗传信息按照遗传密码转换成蛋白质中特定的氨基酸序列的过程。

5.半保留复制:双链DNA 的复制方式,其中亲代链分离,每一子代DNA 分子由一条亲代链和一条新合成的链组成。

基因组中能独立进行复制的单位叫复制子。

6.DNA聚合酶反应的特点:以四种脱氧核苷三磷酸为底物;反应需要接受模板的指导;反应要有引物3’-OH的存在;需Mg2+激活;DNA链的生长方向为5’→3’;产物与模板的性质相同。

7. DNA聚合酶:DNA聚合酶I主要负责RNA引物的切除和校对;DNA聚合酶II主要负责修复;DNA聚合酶III主要负责复制。

8.DNA复制体:蛋白质和酶合理、精巧地分布在复制叉上,既可解离聚合,又彼此协调,形成一个高效、高精度复制的完整实体复合物。

包括解螺旋酶、单链结合蛋白(SSB)、拓扑异构酶、引发体、连接酶等。

9.复制叉:复制DNA 分子的Y 形区域,在此区域发生链的分离及新链的合成。

10.原核生物DNA的复制复制的启动:原核生物的DNA上一般只有一个复制原点,真核生物则有多个复制原点,可以同时启动复制过程。

DNA链的延伸:DNA链的延伸按5'→3'方向。

一条链延伸的方向与复制叉前进的方向一致,它的合成能连续进行,称为先导链;另一条链延伸的方向与复制叉前进的方向相反,这条新链的合成是不连续的,而且总晚于先导链,所以称为后随链。

第九章 核酸的生物合成

第九章 核酸的生物合成

第九章 核酸的生物合成1.半保留复制(semiconservative replication):DNA复制的一种方式。

每条链都可用作合成互补链的模板,合成出两分子的双链DNA,每个分子都是由一条亲代链和一条新合成的链组成。

2.复制叉(replication fork):在DNA进行复制的时候形成的Y字型结构,在复制叉处作为模板的双链DNA解旋,同时合成新的DNA链。

3.DNA聚合酶(DNA polymerase):以DNA为模板,催化核苷酸残基加到已存在的聚核苷酸的3ˊ末端反应的酶。

某些DNA聚全酶具有外切核酸酶的活性,可用来校正新合成的核苷酸的序列。

4.前导链(leading strand):在DNA复制时,新合成的子链与复制叉移动方向一致,通过连续的5ˊ-3ˊ聚合合成的新的DNA链。

5.滞后链(lagging strand):DNA复制时,新合成的子链与复制叉移动方向相反,通过不连续的5ˊ-3ˊ聚合合成的新的DNA链。

6.冈崎片段(Okazaki fragment):相对比较短的DNA链(大约1000核苷酸残基),是在DNA的滞后链的不连续合成期间生成的片段,这是Reiji Okazaki在DNA合成实验中添加放射性的脱氧核苷酸前体观察到的。

7.引发体(primosome):一种多蛋白复合体,E.coli中的引发体包括催化DNA滞后链不连续DNA合成所必需的,短的RNA引物合成的引发酶、解旋酶。

8.复制体(replisome):一种多蛋白复合体,包含DNA聚合酶,引发酶,解旋酶,单链结合蛋白和其它辅助因子。

复制体位于每个复制叉处进行细菌染色体DNA复制的聚合反应。

9.单链结合蛋白(SSB,single-strand binding protein):一种与单链DNA结合紧密的蛋白,它的结合可以防止复制叉处单链DNA本身重新折叠回双链区。

10.滚环复制(rolling-circle replication):环状DNA的一种复制模式。

核酸的生物合成和降解

核酸的生物合成和降解

DNA polymerase III is much more complex than DNA polymerase I, having ten types of subunits
Hale Waihona Puke 核酸的生物合成和降解第12页
(四)参加复制酶和蛋白质
一.DNA复制
核酸的生物合成和降解
第13页
(四)参加复制酶和蛋白质
核酸的生物合成和降解
核酸的生物合成和降解
第1页
一. DNA复制
复制部位:
真核生物:细胞核 原核生物:细胞质核质区
核酸的生物合成和降解
第2页
(一) 复制反应
一. DNA复制
n1d ATP n2d CTP n3d GTP n4d TTP
DNA聚合酶
DNA模板 DNA +(n1+n2+n3+n4)PPi
核酸的生物合成和降解
第4页
(二) 复制方式
半保留复制
一. DNA复制
核酸的生物合成和降解
第5页
(二) 复制方式 怎样证实半保留复制
一. DNA复制
1958年,Meselson 证实:用,15NH4Cl唯一氮源 培养大肠杆菌,之后,用14NH4Cl培养,然后进行 CsCl2进行密度梯度离心。因为15NH4Cl密度大于 14NH4Cl,所以,形成不一样区带,经过若干代培 养后,两个14NH4Cl区带增多。
核酸的生物合成和降解
第9页
(四)参加复制酶和蛋白质
1. DNA聚合酶(DNA polymease)
一.DNA复制
DNA聚合酶 5'→3'
聚合
DNA聚合
原 酶Ⅰ

核酸的生物合成与调控

核酸的生物合成与调控

核酸的生物合成与调控核酸是生命体内极其重要的生物大分子,包括脱氧核糖核酸(DNA)和核糖核酸(RNA)。

它们在遗传信息的传递、表达以及细胞的各种生命活动中发挥着关键作用。

核酸的生物合成与调控是一个复杂而精密的过程,对于生物体的生长、发育、繁殖和适应环境变化都具有至关重要的意义。

DNA 的生物合成,也称为 DNA 复制,是细胞分裂过程中遗传信息传递的基础。

这一过程发生在细胞周期的 S 期,其基本特点是半保留复制,即新合成的 DNA 分子中,一条链来自亲代 DNA,另一条链是新合成的。

DNA 复制的过程十分复杂,涉及到多种酶和蛋白质的协同作用。

首先,解旋酶解开 DNA 双螺旋结构,使两条链分开成为单链。

然后,单链结合蛋白稳定单链 DNA,防止其重新形成双螺旋。

在复制的起始点,引发酶合成一段 RNA 引物,为 DNA 聚合酶提供起始位点。

DNA聚合酶沿着模板链以 5'到 3'的方向合成新的 DNA 链。

在这个过程中,前导链是连续合成的,而后随链则是不连续合成的,形成许多短的冈崎片段,最后由 DNA 连接酶将这些片段连接起来,形成完整的新链。

RNA 的生物合成主要包括转录过程。

转录是指以 DNA 为模板合成RNA 的过程。

根据所合成 RNA 的种类不同,可分为信使 RNA (mRNA)、核糖体 RNA(rRNA)和转运 RNA(tRNA)的转录。

转录过程同样需要多种酶和蛋白质的参与。

RNA 聚合酶结合到DNA 的特定区域,称为启动子,开始转录。

它沿着DNA 模板链移动,按照碱基互补配对原则合成 RNA 链。

与 DNA 复制不同的是,转录是不对称的,只以 DNA 双链中的一条链为模板。

而且,转录的产物在长度和序列上与模板 DNA 并不完全相同,因为在转录结束后,会对初级转录产物进行一系列的加工修饰,如剪接、加帽、加尾等,以形成成熟的 mRNA、rRNA 和 tRNA。

核酸的生物合成受到严格的调控,以确保细胞在不同的生理和环境条件下,能够精确地合成所需的核酸种类和数量。

生化复习——核酸的生物合成

生化复习——核酸的生物合成

五 、DNA损伤和修复
1.原因:复制时的错配、自发、环境因素(化学诱变剂、 紫外辐射、电离辐射) 2.DNA损伤形式: (1)形成胸腺嘧啶二聚体:辐射 (2)胞嘧啶脱氨--尿嘧啶:如亚硝酸盐 • (3)嘌呤核苷酸残基自发脱嘌呤 • (4)缺失和插入
• (5)重排:大片段的交换
• Cancer risk and oxidative DNA damage in man. • These include oxidative damage to DNA, which experimental studies in animals and in vitro have suggested are an important factor in carcinogenesis. • The most abundant of DNA lesions , 8-oxo-7,8dihydro-2'-deoxyguanosine (8-oxodG), is also the most mutagenic, resulting in GT transversions which are frequently found in tumor relevant genes
2.复制的起始
(1)起始点解链
DnaA结合至Oric的9bp重 复序列 13bp重复序列解 链 2个解旋酶(DnaB) 反向结合到两条单链DNA 上 (DnaC协助),催化DNA 双链解链
(2) 每个解旋酶结合一个引物酶,形成引发体(引 物酶、解旋酶、DnaC、DNA复制起始位点等组 成),合成RNA引物 (3)引物被DNA pol Ⅲ识别,前导链开始合成 (4) 解链至1kb左右,2条滞后链的模板指导合成引物, 滞后链的合成起始
首先在动物线粒体中被发现 1)线粒体\叶绿体DNA\某些质粒的复制为D环 复制 2)特点

核酸与蛋白质的生物合成

核酸与蛋白质的生物合成

核酸与蛋白质的生物合成生物合成是指生物体内分子的合成过程。

核酸和蛋白质作为生命体内的两种重要生物分子,在细胞内经历了一系列复杂的合成过程。

本文将对核酸和蛋白质的生物合成进行详细介绍。

一、核酸的生物合成核酸是由核苷酸组成的生物高分子,包括DNA和RNA两种类型。

DNA是储存遗传信息的分子,而RNA则参与信息的传递和蛋白质合成。

核酸的生物合成主要涉及DNA的复制和RNA的转录两个过程。

1. DNA的复制DNA的复制是指在细胞分裂过程中,DNA分子能够准确地复制并传递给下一代细胞。

复制的过程主要包括三个步骤:解旋、复制和连接。

首先,在复制起点处,酶将DNA的双链分子解开,形成两条单链。

接着,酶会聚在单链上,以单链为模板合成互补的新链,形成两个完全相同的DNA分子。

最后,两条新的DNA链通过连接酶重新连接在一起,形成完整的DNA分子。

2. RNA的转录RNA的转录是指通过RNA聚合酶将DNA的信息转录成RNA分子的过程。

转录分为三个主要步骤:识别、合成和终止。

首先,RNA聚合酶会在DNA上找到转录起点,从而识别何处开始转录。

然后,酶会在DNA模板链上逐个引入互补的核苷酸,合成与DNA链一致的RNA链。

最后,在终止信号的作用下,RNA聚合酶停止转录,RNA分子与DNA分离。

二、蛋白质的生物合成蛋白质作为细胞内功能的主要执行者,其生物合成包括两个主要过程:转录和翻译。

1. 转录转录是指通过RNA聚合酶将DNA的信息转录成RNA的过程。

与RNA的转录类似,转录也包括识别、合成和终止三个主要步骤。

在转录过程中,RNA聚合酶会识别DNA上的启动子区域,并通过与DNA 的互补配对,在RNA链上合成与DNA模板链一致的RNA链。

最后,在转录终止信号的作用下,RNA分子与DNA分离。

2. 翻译翻译是指通过核糖体将RNA的信息转化为蛋白质的过程。

翻译过程主要包括三个主要步骤:起始、延伸和终止。

首先,在起始信号的引导下,核糖体会找到mRNA上的起始密码子,并将起始tRNA与其配对。

核酸的生物合成(本)

核酸的生物合成(本)

DNA聚合酶II: 单链,以切口双链DNA为模板。活性极低 DNA聚合酶Ⅲ: 共10种亚基。功能与聚合酶I相似,起DNA 复制作用。每秒可聚合1000个碱基。
DNA聚合酶Ⅲ
12.1.3.3 双链DNA复制的分 子机制 (1)半不连续复制过程 新 DNA 的 一 条 链 是 按 5’→3’方向连续合成的, 称为前导链。 另一条链的合成则是不 连续的,即先按5’ →3’方 向合成若干短片段(冈崎片 段),再通过酶的作用将这 些短片段连在一起构成第二 条子链,称为后随链。
• DNA新链合成时需要:
–四种脱氧核苷三磷酸、 –Mg2+ 、DNA模板、 –与模板DNA互补的一小段多核苷酸引物, –酶的活性部位含有紧密结合的Zn2+。
DNA聚合酶Ⅰ的功能 1. 5‘→3’聚合功能 2. 3‘→5’外切活性 3. 5‘→3’外切活性 (1)切口平移 (2)链的置换; (3)模板转换
而其mRNA却容易获得时,就可以利用反转 录酶制备合成该基因。
• 测定其mRNA序列再反推出RNA的序列。
12.1.6 DNA的损伤与修复 紫外光照射可以使DNA链中相邻的嘧啶形成 一个环形丁烷,主要产生胸腺嘧啶二体。
光复活修复:
光复活机制是可见光激活了光复活酶,使之 能分解由于紫外光照射而产生的嘧啶二体。
Hale Waihona Puke 12.1.7 细菌的限制—修饰系统
• 能识别DNA特定核苷酸序列的核酸内切酶,
简称为限制酶。
• 限制酶能在特定核苷酸序列处切开核苷酸
之间的键,使DNA产生双链裂口,进而被脱 氧核糖核酸酶水解。
•细菌DNA受到专一性密切相关的“修饰甲
基化酶”和“限制酶”的保护。
•相应的限制酶将水解断裂任何具有未曾甲

核酸的生物合成

核酸的生物合成
44
三、 真核生物DNA复制的特点
真核生物每条染色质上可以有多个复制起始点
5’ 3’ ori ori ori ori 3’ 5’
5’
3’
3’
5’
复制子
2006-8 第十三章 核酸的生物合成 45
真核生物的DNA聚合酶
DNA-pol :起始引发,有引物酶活性。 DNA-pol :参与低保真度的复制 。 DNA-pol :在线粒体DNA复制中起催化作用。 DNA-pol :延长子链的主要酶,有持续合成DNA
功能 具有高活性的5′→3′聚合酶作用 ,是原核生物 复制延长中真正起催化作用的酶。 3′→5′外切酶 活性, 能切除错配的碱基 ,具有校读功能。
第十三章 核酸的生物合成
2006-8
33
E.coli三种DNA聚合酶的比较
DNA Pol I
5′→3′聚合酶 活性 3′→5′核酸外 切酶活性
DNA Pol II +
2006-8
第十三章 核酸的生物合成
47
端粒酶(telomerase)
端粒酶是蛋白质和RNA的复合物 组成:
端粒酶RNA (human telomerase RNA, hTR) 端粒酶协同蛋白(human telomerase associated protein 1, hTP1)
端粒酶逆转录酶(human telomerase reverse
聚合酶(polymerase): 依赖DNA的DNA聚合酶 模板(template) : 解开成单链的DNA母链
引物(primer):
提供3-OH末端使dNTP可以依次聚合
其他的酶和蛋白质因子
2006-8
第十三章 核酸的生物合成

核酸的生物合成与调控

核酸的生物合成与调控

核酸的生物合成与调控核酸是生命体内极其重要的生物大分子,包括脱氧核糖核酸(DNA)和核糖核酸(RNA)。

它们在遗传信息的传递、表达以及各种生命活动的调控中发挥着关键作用。

核酸的生物合成与调控是一个复杂而精密的过程,涉及众多的酶和蛋白质因子,以及细胞内外的各种信号通路。

DNA 的生物合成,也就是 DNA 复制,是细胞分裂和遗传信息传递的基础。

这一过程发生在细胞周期的 S 期,需要一系列酶和蛋白质的协同作用。

解旋酶首先将 DNA 双链解开,形成两条单链模板。

然后,引物酶合成一小段 RNA 引物,为后续的 DNA 聚合酶提供起始位点。

DNA 聚合酶沿着模板链,以脱氧核苷酸为原料,按照碱基互补配对原则合成新的DNA 链。

在这个过程中,DNA 聚合酶的准确性至关重要,它能够识别和纠正错误配对的碱基,以保证遗传信息的准确性。

RNA 的生物合成,包括转录和 RNA 加工。

转录是指以 DNA 为模板合成 RNA 的过程。

RNA 聚合酶结合到 DNA 上的特定区域,称为启动子,然后开始沿着DNA 链移动,合成RNA 链。

与DNA 复制不同,转录是不对称的,只以 DNA 双链中的一条链为模板。

转录生成的初始RNA 产物通常需要经过一系列的加工和修饰,才能成为具有功能的成熟 RNA。

例如,信使 RNA(mRNA)需要经过 5'端加帽、3'端加尾以及剪接等过程,去除内含子,连接外显子,从而形成能够指导蛋白质合成的 mRNA。

核酸的生物合成受到严格的调控。

在细胞水平上,调控机制确保了核酸的合成与细胞的生长、分裂和分化等过程相协调。

例如,细胞周期蛋白和依赖于细胞周期蛋白的激酶等调控因子,可以控制 DNA 复制和细胞分裂的进程。

当细胞接收到外部信号,如生长因子或应激信号时,会通过信号转导通路影响核酸合成相关酶和蛋白质的活性,从而调整核酸的合成速度和量。

在基因水平上,调控主要发生在转录阶段。

基因的启动子区域包含了许多调控元件,如顺式作用元件和反式作用因子。

第十四章核酸的生物合成 课件

第十四章核酸的生物合成 课件
DNA聚合酶的作用特点: 1. 模板:解开的 DNA双链 2. 催化底物 (dATP 、dGTP 、dCTP 、dTTP )聚合 3. 形成3′,5′ 磷酸二酯键 4. 新链延长方向 5 / →3 / 5. 具核酸外切酶活性
①polⅠ:
原核DNA聚合酶
? 3′→5′外切酶活性,参与DNA修复校正 ? 5′→3′外切酶、聚合酶活性,
(一)DNA复制的基本原则
? 半保留复制 ? 复制起始点( ori) ? 双向复制 ? 半不连续复制
半保留复制 semiconservative replication
A
T
G
C
A
T
A
T
C
G
T
A
T
A
A
T
G
C
A
T
G
C
A
T
A
T 亲代
C
G
T
A
T
A
A
T
G
C
子代
A
T
G
C
A
T
A
T
C
G
T
A
T
A
A
T
G
C
DNA半保留复制的实验
? 依赖RNA的DNA聚合酶功能 ? RNaseH 功能(水解 RNA-DNA 杂交链) ? 依赖DNA的DNA聚合酶功能
HIV生活史
三、DNA复制与端粒、端粒酶
(telomere 、telomerase) 端粒: 是由蛋白质和 DNA紧密结合的结构
端粒酶: 是一种自身携带模板 RNA 的逆转录酶

3' ----
AGC C AAAACCCCAAAA CA A
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(二)填空题1.DNA复制是定点双向进行的,股的合成是,并且合成方向和复制叉移动方向相同;股的合成是的,合成方向与复制叉移动的方向相反。

每个冈崎片段是借助于连在它的末端上的一小段而合成的;所有冈崎片段链的增长都是按方向进行。

2.DNA连接酶催化的连接反应需要能量,大肠杆菌由供能,动物细胞由供能。

3.大肠杆菌RNA聚合酶全酶由组成;核心酶的组成是。

参与识别起始信号的是因子。

4.基因有两条链,作为模板指导转录的那条链称链。

5.以RNA为模板合成DNA称,由酶催化。

6.DNA或UpGpCpA分别经0.3NKOHR、NaseT1和牛胰RNaseI处理所得结果:DNA: 0.3NKOH:;RNaseT1:;RNase I: ;UpGpCpA:0.3NKOH:;RNaseT1:;RNase I :。

7.基因突变形式分为:,,和四类。

8.亚硝酸是一个非常有效的诱变剂,因为它可直接作用于DNA,使碱基中基氧化成基,造成碱基对的。

9.所有冈崎片段的延伸都是按方向进行的。

10.前导链的合成是的,其合成方向与复制叉移动方向;随后链的合成是的,其合成方向与复制叉移动方向。

11.引物酶与转录中的RNA聚合酶之间的差别在于它对不敏感,并可以作为底物。

12.DNA聚合酶I的催化功能有、、、和。

13.DNA回旋酶又叫,它的功能是。

14.细菌的环状DNA通常在一个开始复制,而真核生物染色体中的线形DNA可以在起始复制。

15.大肠杆菌DNA聚合酶Ⅲ的活性使之具有功能,极大地提高了DNA复制的保真度。

16.大肠杆菌中已发现种DNA聚合酶,其中负责DNA复制,负责DNA损伤修复。

17.DNA切除修复需要的酶有、、和。

18.在DNA复制中,可防止单链模板重新缔合和核酸酶的攻击。

19.DNA合成时,先由引物酶合成,再由在其3′ 端合成DNA链,然后由切除引物并填补空隙,最后由连接成完整的链。

20.原核细胞中各种RNA是催化生成的,而真核细胞核基因的转录分别由种RNA聚合酶催化,其中rRNA基因由转录,hnRNA基因由转录,各类小分子量RAN则是的产物。

21.一个转录单位一般应包括序列、序列和顺序。

22.真核细胞中编码蛋白质的基因多为。

编码的序列还保留在成熟mRNA中的是,编码的序列在前体分子转录后加工中被切除的是。

在基因中被分隔,而在成熟的mRNA序列被拼接起来。

23.染色质中的蛋白和蛋白对转录均有调节作用,其中的调节作用具有组织特异性。

三)选择题1.DNA按半保留方式复制。

如果一个完全放射标记的双链DNA分子,放在不含有放射标记物的溶液中,进行两轮复制,所产生的四个DNA分子的放射活性将会怎样:A.半数分子没有放射性B.所有分子均有放射性C.半数分子的两条链均有放射性D.一个分子的两条链均有放射性E.四个分子均无放射性2.参加DNA复制的酶类包括:(1)DNA聚合酶Ⅲ;(2)解链酶;(3)DNA聚合酶Ⅰ;(4)RNA聚合酶(引物酶);(5)DNA连接酶。

其作用顺序是:A.(4)、(3)、(1)、(2)、(5)B.(2)、(3)、(4)、(1)、(5)C.(4)、(2)、(1)、(5)、(3)D.(4)、(2)、(1)、(3)、(5)E.(2)、(4)、(1)、(3)、(5)3.如果15N标记的大肠杆菌转入14N培养基中生长了三代,其各种状况的DNA分子比例应是下列哪一项:纯15N 15N-14N 纯14N-DNA 杂种DNA -DNAA.1/8 1/8 6/8B.1/8 0 7/8C.0 1/8 7/8D.0 2/8 6/8E.0 4/8 4/84.下列关于DNA复制特点的叙述哪一项错误的:A.RNA与DNA链共价相连B.新生DNA链沿5′→3′方向合成C.DNA链的合成是不连续的D.复制总是定点双向进行的E.DNA在一条母链上沿5′→3′方向合成,而在另一条母链上则沿3′→5′方向合成5.DNA复制时,5′—TpApGpAp-3′序列产生的互补结构是下列哪一种:A.5′—TpCpTpAp-3′B.5′—ApTpCpTp-3′C.5′—UpCpUpAp-3′D.5′—GpCpGpAp-3′E.3′—TpCpTpAp-5′6.下列关于DNA聚合酶I的叙述哪一项是正确的:A.它起DNA修复酶的作用但不参加DNA复制过程B.它催化dNTP聚合时需要模板和引物C.在DNA复制时把冈崎片段连接成完整的随从链D.它催化产生的冈崎片段与RNA引物链相连E.有些细菌突变体其正常生长不需要它7.下列关于真核细胞DNA聚合酶活性的叙述哪一项是正确的:A.它仅有一种B它不具有核酸酶活性C.它的底物是二磷酸脱氧核苷D它不需要引物E.它按3′-5′方向合成新生链8.从正在进行DNA复制的细胞分离出的短链核酸——冈崎片段,具有下列哪项特性:A.它们是双链的B.它们是一组短的单链DNA片段C.它们是DNA—RNA杂化双链D.它们被核酸酶活性切除E.它们产生于亲代DNA链的糖-磷酸骨架的缺口处9.切除修复可以纠正下列哪一项引起的DNA损伤:A.碱基缺失B.碱基插入C.碱基甲基化D.胸腺嘧啶二聚体形成E.碱基烷基化10.大肠杆菌DNA连接酶需要下列哪一种辅助因子?A.FAD作为电子受体B.NADP+作为磷酸供体C.NAD+形成活性腺苷酰酶D.NAD+作为电子受体E.以上都不是11.下列关于RNA和DNA聚合酶的叙述哪一项是正确的:A.RNA聚合酶用二磷酸核苷合成多核苷酸链B.RNA聚合酶需要引物,并在延长链的5′端加接碱基C.DNA聚合酶可在链的两端加接核苷酸D.DNA仅能以RNA为模板合成DNAE.所有RNA聚合酶和DNA聚合酶只能在生长中的多核苷酸链的3′端加接核苷酸12.紫外线照射引起DNA最常见的损伤形式是生成胸腺嘧啶二聚体。

在下列关于DNA分子结构这种变化的叙述中,哪项是正确的:A.不会终止DNA复制B.可由包括连接酶在内的有关酶系统进行修复C.可看作是一种移码突变D.是由胸腺嘧啶二聚体酶催化生成的E.引起相对的核苷酸链上胸腺嘧啶间的共价联结13.下列哪种突变最可能是致死的:A.腺嘌呤取代胞嘧啶 B.胞嘧啶取代鸟嘌呤C.甲基胞嘧啶取代胞嘧啶 D.缺失三个核苷酸E.插入一个核苷酸14.镰刀形红细胞贫血病是异常血红蛋白纯合子基因的临床表现。

β-链变异是由下列哪种突变造成的:A.交换 B.插入 C.缺失 D.染色体不分离 E.点突变15.在培养大肠杆菌时,自发点突变的引起多半是由于:A.氢原子的互变异构移位 B.DNA糖-磷酸骨架的断裂C.插入一个碱基对 D.链间交联 E.脱氧核糖的变旋16.插入或缺失碱基对会引起移码突变,下列哪种化合物最容易造成这种突变:A.口丫啶衍生物 B.5-溴尿嘧啶C.氮杂丝氨酸 D.乙基乙磺酸 E.咪唑硫嘌呤17.在对细菌DNA复制机制的研究中,常常用到胸腺嘧啶的类似物5-溴尿嘧啶,其目的在于:A.引起特异性移码突变以作为顺序研究用B.在胸腺嘧啶参入部位中止DNA合成C.在DNA亲和载体中提供一个反应基D.合成一种密度较高的DNA以便用离心分离法予以鉴别E.在DNA中造成一个能被温和化学方法裂解的特异部位18.关于DNA指导的RNA合成,下列叙述哪一项是错误的:A.只有在DNA存在时,RNA聚合酶才能催化磷酸二酯键的生成B.转录过程中,RNA聚合酶需要引物C.RNA链的合成是从5′→3′端D.大多数情况下只有一股DNA链作为模板E.合成的RNA链从来没有环状的19.下列关于σ因子的叙述哪一项是正确的:A.是RNA聚合酶的亚基,起辨认转录起始点的作用B.是DNA聚合酶的亚基,容许按5′→3′和3′→5′双向合成C.是50S核蛋白体亚基,催化肽链生成D.是30S核蛋白体亚基,促进mRNA与之结合E.在30S亚基和50S亚基之间起搭桥作用,构成70S核蛋白体20.真核生物RNA聚合酶I催化转录的产物是:A.mRNA B.45S-rRNAC.5S-rRNA D.tRNA E.SnRNA21.下列关于真核细胞DNA复制的叙述哪一项是错误的:A.是半保留式复制 B.有多个复制叉C.有几种不同的DNA聚合酶 D.复制前组蛋白从双链DNA脱出E.真核DNA聚合酶不表现核酸酶活性22.下列关于原核细胞转录终止的叙述哪一项是正确的:A.是随机进行的 B.需要全酶的ρ亚基参加C.如果基因的末端含G—C丰富的回文结构则不需要ρ亚基参加D.如果基因的末端含A—T丰富的片段则对转录终止最为有效E.需要ρ因子以外的ATP酶23.下列关于大肠杆菌DNA连接酶的叙述哪些是正确的:A.催化DNA双螺旋结构之断开的DNA链间形成磷酸二酯键B.催化两条游离的单链DNA分子间形成磷酸二酯键C.产物中不含AMPD.需要ATP作能源24.下列关于真核细胞mRNA的叙述不正确的是:A.它是从细胞核的RNA前体—核不均RNA生成的B.在其链的3′端有7-甲基鸟苷,在其5′端连有多聚腺苷酸的PolyA尾巴C.它是从前RNA通过剪接酶切除内含子连接外显子而形成的D.是单顺反子的(四)是非判断题()1.中心法则概括了DNA在信息代谢中的主导作用。

()2.原核细胞DNA复制是在特定部位起始的,真核细胞则在多个位点同时起始进行复制。

()3.逆转录酶催化RNA指导的DNA合成不需要RNA引物。

()4.原核细胞和真核细胞中许多mRNA都是多顺反子转录产物。

()5.因为DNA两条链是反向平行的,在双向复制中一条链按5′→3′的方向合成,另一条链按3′→5′的方向合成。

()6.限制性内切酶切割的DNA片段都具有粘性末端。

()7.已发现一些RNA前体分子具有催化活性,可以准确地自我剪接,被称为核糖酶(ribozyme),或称核酶。

()8.重组修复可把DNA损伤部位彻底修复。

()9.原核生物中mRNA一般不需要转录后加工。

()10.RNA聚合酶对弱终止子的识别需要专一的终止因子(如蛋白)。

()11.原核细胞启动子中RNA聚合酶牢固结合并打开DNA双链的部分称为Pribnow box,真核细胞启动子中相应的顺序称为Hogness box,因为富含A-T,又称TATA box。

()12.增强子(endancer)是真核细胞DNA上一类重要的转录调节元件,它们自己并没有启动子活性,却具有增强启动子活性转录起始的效能。

(五)问答题1. 简述中心法则。

2. DNA复制的基本规律?3. 简述DNA复制的过程?4. 简述DNA复制时酶系。

5. 简述原核细胞和真核细胞的RNA聚合酶有何不同?6. 简述RNA转录的过程?7. 简述基因工程过程。

(二)、填空题答案1.领头链;连续的;随从链;不连续的;5′;RNA;5′ →3′。

2.NAD+;ATP。

3.;;4.有意义链。

相关文档
最新文档