高三理科数学一轮总复习第六章 数列

合集下载

数学课标通用(理科)一轮复习配套教师用书:第六章 数列 数列的概念与简单表示

数学课标通用(理科)一轮复习配套教师用书:第六章 数列  数列的概念与简单表示

必考部分第六章数列§6.1 数列的概念与简单表示考纲展示► 1.了解数列的概念和几种简单的表示方法(列表、图象、通项公式).2.了解数列是自变量为正整数的一类特殊函数.考点1 由数列的前几项求数列的通项公式1.数列的概念(1)数列的定义:按照________排列的一列数称为数列,数列中的每一个数叫做这个数列的________.(2)数列与函数的关系:从函数观点看,数列可以看成以正整数集N*(或它的有限子集)为________的函数a n=f(n).当自变量按照从小到大的顺序依次取值时所对应的一列函数值.(3)数列有三种表示法,它们分别是________、________和________.答案:(1)一定顺序项(2)定义域(3)列表法图象法通项公式法2.数列的分类答案:有限无限><3.数列的两种常用的表示方法(1)通项公式:如果数列{a n}的第n项a n与________之间的关系可以用一个式子________来表示,那么这个公式叫做这个数列的通项公式.(2)递推公式:如果已知数列{a n}的第1项(或前几项),且从第二项(或某一项)开始的任一项a n与它的前一项a n-1(或前几项)间的关系可以用一个公式来表示,那么这个公式就叫做这个数列的递推公式.答案:(1)序号n a n=f(n)4.已知数列{a n}的前n项和S n,则a n=错误!答案:S1S n-S n-1(1)[教材习题改编]已知数列{a n}的前四项分别为1,0,1,0,给出下列各式:①a n=错误!;②a n=错误!;③a n=sin2错误!;④a n=错误!;⑤a n=错误!⑥a n=错误!+(n-1)(n-2).其中可以作为数列{a n}的通项公式的有________.(写出所有正确结论的序号)答案:①③④(2)[教材习题改编]已知{a n}满足a n=错误!+1(n≥2), a7=错误!,则a5=__________.答案:错误!解析:由递推公式,得a 7=-1a 6+1,a 6=错误!+1,则a 5=错误!。

《志鸿优化设计》2022年高考数学人教A版理科一轮复习题库:第六章数列6.4数列的通项与求和

《志鸿优化设计》2022年高考数学人教A版理科一轮复习题库:第六章数列6.4数列的通项与求和

《志鸿优化设计》2022年高考数学人教A 版理科一轮复习题库:第六章数列6.4数列的通项与求和一、选择题 1.已知函数f(n)=⎩⎪⎨⎪⎧n2,当n 为正奇数时,-n2,当n 为正偶数时,且an =f(n)+f(n +1),则a1+a2+a3+…+a100等于( ). A .0 B .100 C .-100 D .10 2002.数列112,214,318,4116,…的前n 项和为( ).A .12n +n2+n 2B .-12n +n2+n 2C .-12n +n2+n 2+1D .-12n +1+n2+n 2 3.在10到2 000之间,形如2n(n ∈N*)的各数之和为( ).A .1 008B .2 040C .2 032D .2 0164.数列{an}中,已知对任意n ∈N*,a1+a2+a3+…+an =3n -1,则a21+a22+a23+…+a2n 等于( ).A .(3n -1)2B .12(9n -1)C .9n -1D .14(3n -1)5.假如一个数列{an}满足an +1+an =h(h 为常数,n ∈N*),则称数列{an}为等和数列,h 为公和,Sn 是其前n 项和.已知等和数列{an}中,a1=1,h =-3,则S2 011等于( ).A .3 014B .3 015C .-3 014D .-3 0156.设函数f(x)=xm +ax 的导函数f ′(x)=2x +1,则数列⎩⎨⎧⎭⎬⎫1f n (n ∈N*)的前n 项和是( ). A .n n +1 B .n +2n +1C .n n -1D .n +1n [来源:Z 。

xx 。

k ] 7.1-4+9-16+…+(-1)n +1n2等于( ). A .n n +12 B .-n n +12 C .(-1)n +1n n +12 D .以上答案均不对二、填空题8.在数列{an}中,a1=1,a2=2,且an +2-an =1+(-1)n(n ∈N*),则S100=__________.9.数列{an}的前n 项和为Sn ,且a1=1,an +1=3Sn(n =1,2,3,…),则log4S10=__________. 10.S =1+112+122+1+122+132+…+1+11002+11012的值为__________.三、解答题11.已知数列{an}的各项均为正数,Sn 为其前n 项和,关于任意的n ∈N*满足关系式2Sn =3an -3.(1)求数列{an}的通项公式;[来源:Z.xx.k ](2)设数列{bn}的通项公式是bn =1log3an ·log3an +1,前n 项和为Tn ,求证:关于任意的正整数n ,总有Tn <1.12.已知数列{an}和{bn}中,数列{an}的前n 项和为Sn.若点(n ,Sn)在函数y =-x2+4x 的图象上,点(n ,bn)在函数y =2x 的图象上.(1)求数列{an}的通项公式;(2)求数列{anbn}的前n 项和Tn.参考答案一、选择题1.B 解析:由题意,a1+a2+…+a100=12-22-22+32+32-42-42+52+…+992-1002-1002+1012=-(1+2)+(3+2)-…-(99+100)+(101+100)=100.故选B.2.C 解析:由题意,得an =n +12n , ∴Sn =(1+2+3+…+n)+⎝ ⎛⎭⎪⎫12+14+…+12n =n(n +1)2+12⎝ ⎛⎭⎪⎫1-12n 1-12=n2+n 2+1-12n . 故选C. 3.C 解析:S =24+25+…+210=24(1-27)1-2=(27-1)·24=2 032. 故选C.4.B 解析:因为a1+a2+…+an =3n -1,因此a1+a2+…+an -1=3n -1-1(n ≥2).[来源:Z_xx_k ]则n ≥2时,an =2·3n -1.当n =1时,a1=3-1=2,适合上式,因此an =2·3n -1(n ∈N*). 则数列{an2}是首项为4,公比为9的等比数列.∴a12+a22+…+an2=4(1-9n)1-9 =12(9n -1).故选B.5.C 解析:由公和h =-3,a1=1,得a2=-4,同时数列{an}是以2为周期的数列,则S2 011=1 005(a1+a2)+a1=-3 015+1=-3 014.6.A 解析:∵f ′(x)=mxm -1+a ,∴m =2,a =1.∴f(x)=x2+x ,f(n)=n2+n.∴1f(n)=1n2+n =1n(n +1)=1n -1n +1. ∴Sn =1f(1)+1f(2)+1f(3)+…+1f(n -1)+1f(n) =⎝ ⎛⎭⎪⎫1-12+⎝ ⎛⎭⎪⎫12-13+⎝ ⎛⎭⎪⎫13-14+…+⎝ ⎛⎭⎪⎫1n -1-1n +⎝ ⎛⎭⎪⎫1n -1n +1=1-1n +1=n n +1. 7.C 解析:当n 为偶数时,1-4+9-16+…+(-1)n +1n2=-3-7-…-(2n -1)=-n 2(3+2n -1)2=-n(n +1)2; 当n 为奇数时,1-4+9-16+…+(-1)n +1n2=-3-7-…-[2(n -1)-1]+n2=-n -12[3+2(n -1)-1]2+n2=n(n +1)2,[来源:Zxxk ] 综上可得,1-4+9-16+…+(-1)n +1n2=(-1)n +1n(n +1)2. 故选C.二、填空题8.2 600 解析:由已知,得a1=1,a2=2,a3-a1=0,a4-a2=2,a99-a97=0,a100-a98=2,累加得a100+a99=98+3,同理得a98+a97=96+3,…,a2+a1=0+3,则a100+a99+a98+a97+…+a2+a1=50×(98+0)2+50×3=2 600.9.9 解析:∵an +1=3Sn ,∴an =3Sn -1(n ≥2).两式相减得an +1-an =3(Sn -Sn -1)=3an ,∴an +1=4an ,即an +1an =4.[来源:学|科|网]∴{an}从第2项起是公比为4的等比数列.当n =1时,a2=3S1=3,∴n ≥2时,an =3·4n -2,S10=a1+a2+…+a10=1+3+3×4+3×42+…+3×48=1+3(1+4+…+48)=1+3×1-491-4 =1+49-1=49. ∴log4S10=log449=9.10.100100101 解析:易于归纳出通项公式1+1n2+1(n +1)2 =(n2+n +1)2n2·(n +1)2 =1+1n(n +1) =1+⎝ ⎛⎭⎪⎫1n -1n +1, 因此S =100+⎣⎢⎡ ⎝ ⎛⎭⎪⎫1-12+⎝ ⎛⎭⎪⎫12-13⎦⎥⎤+…+⎝ ⎛⎭⎪⎫1100-1101 =100+1-1101=100+100101=100100101. 三、解答题11.(1)解:由已知得 ⎩⎪⎨⎪⎧2Sn =3an -3,2Sn -1=3an -1-3,(n ≥2). 故2(Sn -Sn -1)=2an =3an -3an -1,即an =3an -1(n ≥2).故数列{an}为等比数列,且公比q =3.又当n =1时,2a1=3a1-3,∴a1=3.∴an =3n.(2)证明:∵bn =1n(n +1)=1n -1n +1. ∴Tn =b1+b2+…+bn=⎝ ⎛⎭⎪⎫1-12+⎝ ⎛⎭⎪⎫12-13+…+⎝ ⎛⎭⎪⎫1n -1n +1=1-1n +1<1. 12.解:(1)由已知得Sn =-n2+4n ,∵当n ≥2时,an =Sn -Sn -1=-2n +5,又当n =1时,a1=S1=3,符合上式.∴an =-2n +5.(2)由已知得bn =2n ,anbn =(-2n +5)·2n.Tn =3×21+1×22+(-1)×23+…+(-2n +5)×2n ,2Tn =3×22+1×23+…+(-2n +7)×2n +(-2n +5)×2n +1,两式相减得Tn =-6+(23+24+…+2n +1)+(-2n +5)×2n +1 =23(1-2n -1)1-2+(-2n +5)×2n +1-6 =(7-2n)·2n +1-14.。

高三数学一轮复习第六章数列第一节数列的概念及简单表示法文

高三数学一轮复习第六章数列第一节数列的概念及简单表示法文

示,那么这个公式叫做这个数列的通项公式.
5.已知数列{an}的前n项和Sn,
则an=
⑪ S1 (n 1), ⑫ Sn Sn1 (n
2).
判断下列结论的正误(正确的打“√”,错误的打“×”)
(1)所有的数列都有通项公式,且通项公式在形式上一定是唯一的. (×)
(2)数列是一种特殊的函数. (√)
的一个通项公式为an=(-1)n·(6n-5).
(2)将数列变形为8 ×(1-08.1),
9
9
原数列的一
8 9
1
1
1 0
n
个通项公式为an=
.
×(81-0.01),
9
×(1-0.001),……,故
(3)各项的分母分别为21,22 2,23 3,24,…,易看出第22,1 3,34,2…2 项3 的2 分3 子3 分别比
项公式为an=2n-1.
(2)如果数列的前4项分别减去1,则变为1,4,9,16,所以原数列的一个通项
公式为an=n2+1.
(3)分子为1×2,2×2,3×2,……,分母为1×3,3×5,5×7,……,故原数列 的一个

24 3
2
21
22
23
2n 3
母2少4 3,因此把第1项变为- ,则原数列可化为- 2 n, ,- ,
35 7 9
,……,∴原2数5列1 的0 一1 7 个通项公式为an=(-1)n· .
(4)将数列变为 , , , ,…,对于分子3,5,7,9,…,是相应项数的2
倍加1,
2n 1
可得分子的一个通项n 公2 式1 为bn=2n+1,对于分母2,5,10,17,…,联想到数列

高考一轮数学复习理科课件(人教版)第3课时 等比数列

高考一轮数学复习理科课件(人教版)第3课时   等比数列

第六章 数列
高考调研
高三数学(新课标版·理)
题型三 等比数列的判定与证明
例 3 (2011·天津文)已知数列{an}与{bn}满足 bn+1an+bnan +1=(-2)n+1,bn=3+-2 1n-1,n∈N*,且 a1=2.
设 cn=a2n+1-a2n-1,n∈N*,证明{cn}是等比数列.
第六章 数列
高考调研
高三数学(新课标版·理)
aq1=13, 解方程组1-a1 q=-12,
得aq1==31,, ⇒n=4
∴a2n=a1·q2n-1=1·32n-1=32n-1=37.
【答案】 37
第六章 数列
高考调研
高三数学(新课标版·理)
探究 1 (1)等比数列的通项公式 an=a1qn-1 及前 n 项 和公式 Sn=a111--qqn=a11--aqnq(q≠1)共涉及五个量 a1,an, q,n,Sn,知其三就能求另二,体现了方程思想的应用.
高考调研
高三数学(新课标版·理)
第六章 数列
第六章 数列
高考调研
高三数学(新课标版·理)
第3课时 等比数列
第六章 数列
高考调研
高三数学(新课标版·理)
2012·考纲下载
1.理解等比数列的概念. 2.掌握等比数列的通项公式与前 n 项和公式. 3.能在具体的问题情境中识别数列的等比关系,并 能用有关知识解决相应的问题. 4.了解等比数列与指数函数的关系.
2.(2012·大连模拟)在等比数列{an}中,a1+a2=30, a3+a4=60,则 a7+a8=________.
答案 240
第六章 数列
高考调研
高三数学(新课标版·理)
3.如果-1,a,b,c,-9 成等比数列,那么( ) A.b=3,ac=9 B.b=-3,ac=9 C.b=3,ac=-9 D.b=-3,ac=-9

高三数学一轮复习第六章数列第3课时等比数列课件

高三数学一轮复习第六章数列第3课时等比数列课件
提醒:“G2=ab”是“a,G,b成等比数列”的必要不充分条件.
√由题意知,数列S3,S6-S3,S9-S6,S12-S9是等比数列, 即4,8,S9-S6,S12-S9是等比数列, ∴S12=4+8+16+32=60.]
2
第六章 数列 第3课时 等比数列
a1qn-1
√ √
点拨 等比数列的通项公式与前n项和公式共涉及五个量a1,an,q,n,Sn,已知其中 三个就能求另外两个(简称“知三求二”).特别地,当等比数列的公比不明确时,往 往需要分类讨论.

54或24
(1)B (2)54或24 [(1)∵数列{an}为等比数列, a2a6=-2a7=a1a7,解得a1=-2, 设数列的公比为q,则S3=-6=-2-2q-2q2, 解得q=-2或q=1,
当q=-2时,a6=(-2)6=64, 当q=1时,a6=-2.
考点二 等比数列的判定与证明 1.等比数列的定义:一般地,如果一个数列从第2_项起,每一项与它的前一项 的比都等于同__一__个__常__数__(不为零),那么这个数列叫做等比数列.这个常数叫做 等比数列的公__比__,通常用字母q表示,定义的表达式为_______=q(n∈N*,q为 非零常数). 2.等比中项:如果在a与b中间插入一个数G,使a,G,b成等比数列,那么_G_ 叫做a与b的等比中项,此时,G2=ab.

2020届高考数学一轮总复习第六单元数列与算法第39讲由递推公式求通项课件理新人教A版

2020届高考数学一轮总复习第六单元数列与算法第39讲由递推公式求通项课件理新人教A版
(1)计算 a1,a2,a3,a4; (2)猜想 an 的表达式,并用数学归纳法证明你的结论.
解:(1)依题意,S1=1-a1,即 a1=1-a1, 所以 a1=21=1×1 2. S2=1-2a2,即 a1+a2=1-2a2, 所以 a2=61=2×1 3. S3=1-3a3,即 a1+a2+a3=1-3a3, 所以 a3=112=3×1 4. S4=1-4a4,即 a1+a2+a3+a4=1-4a4, 所以 a4=210=4×1 5.
解得 a1=3,a2=5,a3=7.
(2)由(1)猜想 an=2n+1. 因为 Sn=2nan+1-3n2-4n,① n≥2 时,Sn-1=2(n-1)an-3(n-1)2-4(n-1),② ①-②得:
an=2nan+1-2(n-1)an-3[n2-(n-1)2]-4[n-(n-1)], 所以 2nan+1=(2n-1)an+6n+1(n≥2), 所以 an+1=2n2-n 1an+6n2+n 1,
累加法、累乘法 转化法 归纳、猜想与证明
考点1·累加法、累乘法
【例 1】已知数列{an}中,a1=1,前 n 项和为 Sn=n+3 2an. (1)求 a2,a3; (2)求{an}的通项公式.
分析:由 Sn 与 an 的关系求通项,可利用 an 与 Sn 的关系:
an=SS1n, -Sn-1,
点评:(1)累加法和累乘法是推导等差数列和等比数列 的通项公式时所采用的方法,是递推关系求通项的两种最 基本的方法.
(2)一般地,若 an-an-1=f(n),在 f(n)可求和的条件下, 求 an 可采用累加法;
若aan-n1=g(n),在 g(n)可求积的条件下,求 an 可采用 累乘法.
考点2·转化法
高考总复习第(1)轮 理科数学

2023版高考数学一轮总复习第六章数列6.1数列的概念课件

2023版高考数学一轮总复习第六章数列6.1数列的概念课件

3. 数列的表示法
表示法
列表法
图象法
通项公


式 法
递推公 式
定义 列出表格表示 n 与 an 的对应关系 把点(n,an)画在平面直角坐标系中
an=f(n)
如果一个数列的相邻两项或多项之间的关系可以用一个式子 来表示,那么这个式子叫做这个数列的递推公式. 如 an+1= f(an),an=f(an-1,an+1)(n≥2)等
(8)9,99,999,…的一个通项公式为 an=10n-1.
【常用结论】
6. 累加法与累乘法 (1)已知 a1 且 an-an-1=f(n)(n≥2),可以用“累加法”得:an=a1+f(2)+f(3)+…+f(n -1)+f(n). (2)已知 a1 且aan-n1=f(n)(n≥2),可以用“累乘法”得:an=a1·f(2)·f(3)·…·f(n-1)·f(n). 注:以上两式要求{f(n)}易求和或积. 7. 数列最值:若aann≥ ≥aann+ -11, (n≥2),则 an 最大;若aann≤ ≤aann+ -11, (n≥2),则 an 最小.
(1)若数列{an}的前 n 项和为 Sn,且 Sn=n2+n,则数列{an}的通项公式为 an=__________. 解:Sn=n2+n,则 Sn-1=(n-1)2+(n-1)=n2-n(n≥2),所以 an=Sn-Sn-1=2n(n≥2),而 a1 =S1=12+1=2,符合上式,故 an=2n(n∈N*). 故填 2n.
(4)根据题意,数列即 1, 4, 7, 10, 13,…,故通项公式为 an= 3n-2. (5)把数列改写成11,02,13,04,15,06,17,08,…,分母依次为 1,2,3,…,而分子 1,0,1,0,…周期性出现,因此数列的通项可表示为 an=1+(-2n1)n+1.

理科数学高考大一轮总复习课件:第6章 第4讲 数列求和

理科数学高考大一轮总复习课件:第6章 第4讲 数列求和

高中新课标总复习
解析:S50=1-2+3-4+…+49-50 =(-1)×25 =-25.
理数
11 第十一页,编辑于星期日:十八点 四十八分。
高中新课标总复习
理数
5. 数列 0.5,0.55,0.555,0.5555,…的前 n 项和为________.
12 第十二页,编辑于星期日:十八点 四十八分。
理数
2. 设数列 1,(1+2),…,(1+2+…+2n-1),…的前 n
项和为 Sn,则 Sn 等于( D )
A.2n
B.2n-n
C.2n+1-n
D.2n+1-n-2
6 第六页,编辑于星期日:十八点 四十八分。
高中新课标总复习
理数
解析:依题意可知数列的每一项是由等比数列的和构成 的,设为 Tn,则 Tn=22n--11=2n-1,所以数列是由等比数列 和等差数列构成的,则 Sn=222-n-11-n=2n+1-n-2.
24 第二十四页,编辑于星期日:十八点 四十八分。
高中新课标总复习
理数
(2)由(1)知 bn=3n+2n-1(n=1,2,…). 数列{3n}的前 n 项和为32n(n+1),数列{2n-1}的前 n 项和 为11--22n=2n-1. 所以,数列{bn}的前 n 项和为32n(n+1)+2n-1.
25 第二十五页,编辑于星期日:十八点 四十八分。
高中新课标总复习
理数
二 裂项相消法求和 【例 2】(2014·广东茂名一模)已知等差数列{an}的前 n 项
和为 Sn. (1)请写出数列{an}的前 n 项和 Sn 的公式,并推导其公式; (2)若 an=n,数列{an}的前 n 项和为 Sn,求S11+S12+…+S1n

高三数学第一轮复习——数列(知识点很全)五篇范文

高三数学第一轮复习——数列(知识点很全)五篇范文

高三数学第一轮复习——数列(知识点很全)五篇范文第一篇:高三数学第一轮复习——数列(知识点很全)数列一、知识梳理数列概念1.数列的定义:按照一定顺序排列的一列数称为数列,数列中的每个数称为该数列的项.2.通项公式:如果数列通项公式,即anan的第n,那么这个公式叫做这个数列的,且任何一项an与它的前一项an-1(或前几{an}的第一项(或前几项)=f(n).3.递推公式:如果已知数列=f(an-1)或an=f(an-1,an-2),那么这个式子叫做数列{an}的递推公式.如数列{an}中,a1=1,an=2an+1,其中an=2an+1是数列{an}的递推项)间的关系可以用一个式子来表示,即an公式.4.数列的前n项和与通项的公式⎧S1(n=1)①Sn=a1+a2+Λ+an;②an=⎨.S-S(n≥2)n-1⎩n5.数列的表示方法:解析法、图像法、列举法、递推法.6.数列的分类:有穷数列,无穷数列;递增数列,递减数列,摆动数列,常数数列;有界数列,无界数列.①递增数列:对于任何n∈N+,均有an+1②递减数列:对于任何n∈N+,均有an+1③摆动数列:例如: -1,1,-1,1,-1,Λ.④常数数列:例如:6,6,6,6,…….⑤有界数列:存在正数M使>an.<an.an≤M,n∈N+.⑥无界数列:对于任何正数M,总有项an使得an>M.等差数列1.等差数列的概念如果一个数列从第二项起,每一项与它前一项的差等于同一个常数d,这个数列叫做等差数列,常数d 称为等差数列的公差.2.通项公式与前项和公式⑴通项公式an=a1+(n-1)d,a1为首项,d=为公差.⑵前n项和公式Sn3.等差中项 n(a1+an)1或Sn=na1+n(n-1)d.22A叫做a与b的等差中项.如果a,A,b成等差数列,那么即:A是a与b的等差中项⇔2A=a+b⇔a,A,b成等差数列.4.等差数列的判定方法⑴定义法:an+1-an=d(n∈N+,d是常数)⇔{an}是等差数列;⑵中项法:2an+1⑴数列=an+an+2(n∈N+)⇔{an}是等差数列.5.等差数列的常用性质{an}是等差数列,则数列{an+p}、{pan}(p是常数)都是等差数列;⑵在等差数列{an}中,等距离取出若干项也构成一个等差数列,即an,an+k,an+2k,an+3k,Λ为等差数列,公差为kd.⑶an=am+(n-m)d;an=an+b(a,b是常数);Sn=an2+bn(a,b是常数,a≠0)⑷若m+n =p+q(m,n,p,q∈N+),则am+an=ap+aq;1⑸若等差数列Sn⎫{an}的前n项和Sn,则⎧⎨⎬是等差数列;⎩n⎭;S偶an+1⑹当项数为2n(n∈N+),则S偶-S奇=nd,=S奇an当项数为2n-1(n∈N+),则S奇-S偶=an,S偶n-1.=S奇n等比数列1.等比数列的概念如果一个数列从第二项起,每一项与它前一项的比等于同一个常数q(q列,常数q称为等比数列的公比.≠0),这个数列叫做等比数2.通项公式与前n项和公式⑴通项公式:an=a1qn-1,a1为首项,q为公比.=1时,Sn=na1⑵前n项和公式:①当qa1(1-qn)a1-anq②当q≠1时,Sn=.=1-q1-q3.等比中项如果a,G,b成等比数列,那么G叫做a与b的等比中项.即:G是a与b的等差中项⇔a,4.等比数列的判定方法⑴定义法:A,b成等差数列⇒G2=a⋅b.an+1=q(n∈N+,q≠0是常数)⇔{an}是等比数列; an⑵中项法:an+1⑴数列=an⋅an+2(n∈N+)且an≠0⇔{an}是等比数列.5.等比数列的常用性质{an}是等比数列,则数列{pan}、{pan}(q≠0是常数)都是等比数列;⑵在等比数列{an}中,等距离取出若干项也构成一个等比数列,即an,an+k,an+2k,an+3k,Λ为等比数列,公比为q.k=am⋅qn-m(n,m∈N+)⑷若m+n=p+q(m,n,p,q∈N+),则am⋅an=ap⋅aq;⑶an⑸若等比数列{an}的前n项和Sn,则Sk、S2k-Sk、S3k-S2k、S4k-S3k是等比数列.二、典型例题A、求值类的计算题(多关于等差等比数列)1)根据基本量求解(方程的思想)1、已知Sn为等差数列{an}的前n项和,a4=9,a9=-6,Sn=63,求n;2、等差数列{an}中,a4=10且a3,a6,a10成等比数列,求数列{an}前20项的和S20.3、设{an}是公比为正数的等比数列,若a1=1,a5=16,求数列{an}前7项的和.4、已知四个实数,前三个数成等差数列,后三个数成等比数列,首末两数之和为37,中间两数之和为36,求这四个数.2)根据数列的性质求解(整体思想)1、已知Sn为等差数列{an}的前n项和,a6=100,则S11=2、设Sn、Tn分别是等差数列{an}、{an}的前n项和,3、设Sn 是等差数列{an}的前n项和,若Sn7n+2a,则5=.=Tnn+3b5a55S=,则9=()a39S5Sa2n4、等差数列{an},{bn}的前n项和分别为Sn,Tn,若n=,则n=()Tn3n+1bn5、已知Sn为等差数列{an}的前n项和,Sn=m,Sm=n(n≠m),则Sm+n=6、在正项等比数列{an}中,a1a5+2a3a5+a3a7=25,则a3+a5=_______。

高三理科数学一轮复习讲义,复习补习资料:第六章数列6.4数列求和(解析版)

高三理科数学一轮复习讲义,复习补习资料:第六章数列6.4数列求和(解析版)

§6.4 数列求和考纲展示►1.熟练掌握等差、等比数列的前n 项和公式.2.掌握非等差、等比数列求和的几种常见方法.考点1 公式法求和1.公式法直接利用等差数列、等比数列的前n 项和公式求和. (1)等差数列的前n 项和公式:S n =n a 1+a n 2=na 1+n n -2d .(2)等比数列的前n 项和公式:S n =⎩⎪⎨⎪⎧na 1,q =1,a 1-a n q 1-q=a 1-q n1-q ,q ≠1.2.倒序相加法与并项求和法 (1)倒序相加法:如果一个数列{a n }的前n 项中首末两端等“距离”的两项的和相等或等于同一个常数,那么求这个数列的前n 项和可用倒序相加法,如等差数列的前n 项和公式即是用此法推导的.(2)并项求和法:在一个数列的前n 项和中,可两两结合求解,则称之为并项求和. 形如a n =(-1)nf (n )类型,可采用两项合并求解.例如,S n =1002-992+982-972+…+22-12=(1002-992)+(982-972)+…+(22-12)=(100+99)+(98+97)+…+(2+1)=5 050.非等差、等比数列求和的常用方法:倒序相加法;并项求和法.(1)[教材习题改编]一个球从100 m 高处自由落下,着地后又跳回到原高度的一半再落下,当它第10次着地时,经过的路程是( )A .100+200×(1-2-9) B .100+100(1-2-9) C .200(1-2-9)D .100(1-2-9)答案:A(2)[教材习题改编]已知函数f (n )=n 2cos n π,且a n =f (n )+f (n +1),则a 1+a 2+a 3+…+a 100=________.答案:-100解析:因为f (n )=n 2cos n π=⎩⎪⎨⎪⎧-n 2,n 为奇数,n 2,n 为偶数,所以f (n )=(-1)n ·n 2,由a n =f (n )+f (n +1)=(-1)n ·n 2+(-1)n +1·(n +1)2=(-1)n [n 2-(n +1)2]=(-1)n +1·(2n +1),得a 1+a 2+a 3+…+a 100=3+(-5)+7+(-9)+…+199+(-201)=50×(-2)=-100.数列求和的两个易错点:公比为参数;项数的奇偶数.(1)设数列{a n }的通项公式是a n =x n,则数列{a n }的前n 项和S n =________.答案:S n =⎩⎪⎨⎪⎧n ,x =1,x -xn1-x,x ≠1解析:当x =1时,S n =n ;当x ≠1时,S n =x-xn1-x.(2)设数列{a n }的通项公式是a n =(-1)n,则数列{a n }的前n 项和S n =________.答案:S n =⎩⎪⎨⎪⎧0,n 为偶数,-1,n 为奇数解析:若n 为偶数,则S n =0;若n 为奇数,则S n =-1.[典题1] (1)已知数列{a n }中,a 1=1,a n =a n -1+12(n ≥2),则数列{a n }的前9项和等于________.[答案] 27[解析] 由a 1=1,a n =a n -1+12(n ≥2),可知数列{a n }是首项为1,公差为12的等差数列,故S 9=9a 1+-2×12=9+18=27.(2)若等比数列{a n }满足a 1+a 4=10,a 2+a 5=20,则{a n }的前n 项和S n =________. [答案]109(2n-1) [解析] 由题意a 2+a 5=q (a 1+a 4),得20=q ×10,故q =2,代入a 1+a 4=a 1+a 1q 3=10,得9a 1=10,即a 1=109.故S n =109-2n1-2=109(2n-1). [点石成金] 数列求和应从通项入手,若无通项,则先求通项,然后通过对通项变形,转化为等差或等比或可求数列前n 项和的数列来求之.考点2 分组转化法求和分组求和法若一个数列是由若干个等差数列或等比数列或可求和的数列组成,则求和时可用分组求和法,分别求和后相加减.(1)数列112,314,518,…,⎣⎢⎡⎦⎥⎤n -+12n 的前n 项和S n =________________. 答案:n 2+1-12n(2)已知数列{a n }中,a n =⎩⎪⎨⎪⎧2n -1,n 为正奇数,2n -1,n 为正偶数, 设数列{a n }的前n 项和为S n ,则S 9=________.答案:377[典题2] 已知数列{a n }的通项公式是a n =2·3n -1+(-1)n ·(ln 2-ln 3)+(-1)nn ln 3,求其前n 项和S n .[解] 由通项公式知,S n =2(1+3+…+3n -1)+[-1+1-1+…+(-1)n]·(ln 2-ln 3)+[-1+2-3+…+(-1)nn ]ln 3,所以当n 为偶数时,S n =2×1-3n1-3+n 2ln 3=3n+n 2ln 3-1;当n 为奇数时,S n =2×1-3n 1-3-(ln 2-ln 3)+⎝ ⎛⎭⎪⎫n -12-n ln 3=3n-n -12ln 3-ln 2-1.综上知,S n=⎩⎪⎨⎪⎧3n +n2ln 3-1,n 为偶数,3n-n -12ln 3-ln 2-1,n 为奇数.[点石成金] 分组转化法求和的常见类型(1)若a n =b n ±c n ,且{b n },{c n }为等差或等比数列,可采用分组转化法求{a n }的前n 项和. (2)通项公式为a n =⎩⎪⎨⎪⎧b n ,n 为奇数,c n ,n 为偶数的数列,其中数列{b n },{c n }是等比或等差数列,可采用分组转化法求和.[提醒] 某些数列的求和是将数列转化为若干个可求和的新数列的和或差,从而求得原数列的和,注意在含有字母的数列中对字母的讨论.在等差数列{a n }中,已知公差d =2,a 2是a 1 与a 4 的等比中项. (1)求数列{a n }的通项公式; (2)设b n =a nn +2,记T n =-b 1+b 2-b 3+b 4-…+(-1)nb n ,求T n .解:(1)由题意知,(a 1+d )2=a 1(a 1+3d ), 即(a 1+2)2=a 1(a 1+6), 解得a 1=2.所以数列{a n }的通项公式为a n =2n . (2)由题意知,b n =a nn +2=n (n +1).所以T n =-1×2+2×3-3×4+…+(-1)nn ×(n +1). 因为b n +1-b n =2(n +1), 可得当n 为偶数时,T n =(-b 1+b 2)+(-b 3+b 4)+…+(-b n -1+b n )=4+8+12+ (2)=n2+2n 2=n n +2;当n 为奇数时,T n =T n -1+(-b n )=n -n +2-n (n +1)=-n +22.所以T n=⎩⎪⎨⎪⎧-n +22,n 为奇数,nn +2,n 为偶数.考点3 错位相减法求和错位相减法如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,那么这个数列的前n 项和即可用此法来求,如等比数列的前n 项和公式就是用此法推导的.(1)[教材习题改编]数列1,11+2,11+2+3,…,11+2+…+n的前n 项和为________. 答案:2n n +1解析:因为11+2+…+n =2n n +=2⎝ ⎛⎭⎪⎫1n -1n +1, 所以数列的前n 项和为2×⎝ ⎛⎭⎪⎫1-12+12-13+13-14+…+1n -1n +1=2×⎝ ⎛⎭⎪⎫1-1n +1=2n n +1. (2)[教材习题改编]数列22,422,623, (2)2n ,…的前n 项的和为________.答案:4-n +22n -1解析:设该数列的前n 项和为S n , 由题可知,S n =22+422+623+ (2)2n ,①12S n =222+423+624+ (2)2n +1,② ①-②,得⎝ ⎛⎭⎪⎫1-12S n =22+222+223+224+…+22n -2n 2n +1=2-12n -1-2n 2n +1, ∴S n =4-n +22n -1.[典题3] [2018·山东模拟]设数列{a n }的前n 项和为S n .已知2S n =3n+3. (1)求{a n }的通项公式;(2)若数列{b n }满足a n b n =log 3a n ,求{b n }的前n 项和T n . [解] (1)因为2S n =3n+3, 所以2a 1=3+3,故a 1=3, 当n ≥2时,2S n -1=3n -1+3,此时2a n =2S n -2S n -1=3n-3n -1=2×3n -1,即a n =3n -1,所以a n =⎩⎪⎨⎪⎧3,n =1,3n -1,n ≥2.(2)因为a n b n =log 3a n ,所以b 1=13,当n ≥2时,b n =31-nlog 33n -1=(n -1)·31-n.所以T 1=b 1=13;当n ≥2时,T n =b 1+b 2+b 3+…+b n=13+[1×3-1+2×3-2+…+(n -1)×31-n], 所以3T n =1+[1×30+2×3-1+…+(n -1)×32-n],两式相减,得2T n =23+(30+3-1+3-2+…+32-n )-(n -1)×31-n=23+1-31-n1-3-1-(n -1)×31-n =136-6n +32×3n , 所以T n =1312-6n +34×3n ,经检验,n =1时也适合. 综上知,T n =1312-6n +34×3n .[点石成金] 用错位相减法求和的三个注意事项(1)要善于识别题目类型,特别是等比数列公比为负数的情形.(2)在写出“S n ”与“qS n ”的表达式时应特别注意将两式“错项对齐”,以便下一步准确写出“S n -qS n ”的表达式.(3)在应用错位相减法求和时,若等比数列的公比为参数,应分公比等于1和不等于1两种情况求解.[2018·天津模拟]已知{a n }是各项均为正数的等比数列,{b n }是等差数列,且a 1=b 1=1,b 2+b 3=2a 3,a 5-3b 2=7.(1)求{a n }和{b n }的通项公式;(2)设c n =a n b n ,n ∈N *,求数列{c n }的前n 项和.解:(1)设数列{a n }的公比为q ,数列{b n }的公差为d ,由题意知q >0.由已知,有⎩⎪⎨⎪⎧2q 2-3d =2,q 4-3d =10,消去d ,整理得q 4-2q 2-8=0,解得q 2=4. 又因为q >0,所以q =2,所以d =2. 所以数列{a n }的通项公式为a n =2n -1,n ∈N *;数列{b n }的通项公式为b n =2n -1,n ∈N *. (2)由(1)有c n =(2n -1)·2n -1,设{c n }的前n 项和为S n ,则S n =1×20+3×21+5×22+…+(2n -3)×2n -2+(2n -1)×2n -1,2S n =1×21+3×22+5×23+…+(2n -3)×2n -1+(2n -1)×2n,上述两式相减,得-S n =1+22+23+…+2n -(2n -1)×2n =2n +1-3-(2n -1)·2n =-(2n -3)·2n-3,所以S n =(2n -3)·2n+3,n ∈N *.考点4 裂项相消法求和裂项相消法(1)把数列的通项拆成两项之差,在求和时中间的一些项可以相互抵消,从而求得其和. (2)常见的裂项技巧: ①1n n +=1n -1n +1. ②1nn +=12⎝ ⎛⎭⎪⎫1n -1n +2. ③1n -n +=12⎝ ⎛⎭⎪⎫12n -1-12n +1.④1n +n +1=n +1-n .[考情聚焦] 把数列的通项拆成两项之差,在求和时中间的一些项可以相互抵消,从而求得其和.裂项相消法求和是历年高考的重点,命题角度凸显灵活多变,在解题中要善于利用裂项相消的基本思想,变换数列a n 的通项公式,达到求解目的.主要有以下几个命题角度: 角度一 形如a n =1nn +k型 [典题4] [2019·重庆模拟]设S n 为等差数列{a n }的前n 项和,已知S 3=a 7,a 8-2a 3=3. (1)求a n ;(2)设b n =1S n ,数列{b n }的前n 项和为T n ,求证:T n >34-1n +1(n ∈N *).(1)[解] 设数列{a n }的公差为d ,由题意,得⎩⎪⎨⎪⎧3a 1+3d =a 1+6d ,a 1+7d -a 1+2d =3,解得a 1=3,d =2,∴a n =a 1+(n -1)d =2n +1.(2)[证明] 由(1),得S n =na 1+n n -2d =n (n +2),∴b n =1nn +=12⎝ ⎛⎭⎪⎫1n -1n +2. ∴T n =b 1+b 2+…+b n -1+b n=12⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫1-13+⎝ ⎛⎭⎪⎫12-14+…+⎝ ⎛⎭⎪⎫1n -1-1n +1+⎝ ⎛⎭⎪⎫1n -1n +2 =12⎝ ⎛⎭⎪⎫1+12-1n +1-1n +2,∴T n =12⎝ ⎛⎭⎪⎫1+12-1n +1-1n +2>12⎝ ⎛⎭⎪⎫1+12-1n +1-1n +1=34-1n +1. 故T n >34-1n +1.角度二 形如a n =1n +k +n型[典题5] [2019·江南十校联考]已知函数f (x )=x a的图象过点(4,2),令a n =1f n ++f n,n ∈N *.记数列{a n }的前n 项和为S n ,则S 2 014=( )A. 2 013-1B. 2 014-1C. 2 015-1D. 2 015+1[答案] C[解析] 由f (4)=2可得4a=2,解得a =12,则f (x )=x 12.∴a n =1f n ++f n=1n +1+n=n +1-n ,S 2 014=a 1+a 2+a 3+…+a 2 014=(2-1)+(3-2)+(4-3)+…+( 2 014- 2 013)+( 2 015- 2 014) = 2 015-1. 角度三形如a n =n +1n 2n +2型[典题6] 正项数列{a n }的前n 项和S n 满足:S 2n -(n 2+n -1)S n -(n 2+n )=0. (1)求数列{a n }的通项公式a n ; (2)令b n =n +1n +2a 2n ,数列{b n }的前n 项和为T n .证明:对于任意的n ∈N *,都有T n <564. (1)[解] 由S 2n -(n 2+n -1)S n -(n 2+n )=0,得 [S n -(n 2+n )](S n +1)=0.由于{a n }是正项数列,所以S n >0,S n =n 2+n . 于是a 1=S 1=2,当n ≥2时,a n =S n -S n -1=n 2+n -(n -1)2-(n -1)=2n . 综上,数列{a n }的通项公式为a n =2n . (2)[证明] 由于a n =2n , 故b n =n +1n +2a 2n =n +14n 2n +2=116⎣⎢⎡⎦⎥⎤1n 2-1n +2.T n =116⎣⎢⎡⎦⎥⎤1-132+122-142+132-152+…+1n -2-1n +2+1n2-1n +2=116⎣⎢⎡⎦⎥⎤1+122-1n +2-1n +2<116×⎝ ⎛⎭⎪⎫1+122=564. [点石成金] 利用裂项相消法求和的注意事项(1)抵消后并不一定只剩下第一项和最后一项,也有可能前面剩两项,后面也剩两项. (2)将通项裂项后,有时需要调整前面的系数,使裂开的两项之差和系数之积与原通项相等.如:若{a n }是等差数列,则1a n a n +1=1d ⎝ ⎛⎭⎪⎫1a n -1a n +1,1a n a n +2=12d ⎝ ⎛⎭⎪⎫1a n -1a n +2.[方法技巧] 非等差、等比数列的一般数列求和,主要有两种思想:(1)转化的思想,即将一般数列设法转化为等差或等比数列,这一思想方法往往通过通项分解或错位相消来完成.(2)不能转化为等差或等比的特殊数列,往往通过裂项相消法、错位相减法、倒序相加法等来求和.[易错防范] 1.在应用错位相减法时,注意观察未合并项的正负号;结论中形如a n,an +1的式子应进行合并.2.在应用裂项相消法时,要注意消项的规律具有对称性,即前剩多少项则后剩多少项,特别是隔项相消.真题演练集训1.[2018·北京模拟]已知{a n }为等差数列,S n 为其前n 项和.若a 1=6,a 3+a 5=0,则S 6=________.答案:6解析:设等差数列{a n }的公差为d ,由已知,得⎩⎪⎨⎪⎧ a 1=6,2a 1+6d =0,解得⎩⎪⎨⎪⎧ a 1=6,d =-2,所以S 6=6a 1+12×6×5d =36+15×(-2)=6.2.[2018·四川模拟]设S n 是数列{a n }的前n 项和,且a 1=-1,a n +1=S n S n +1,则S n =________.答案:-1n解析:∵ a n +1=S n +1-S n ,a n +1=S n S n +1,∴ S n +1-S n =S n S n +1.∵ S n ≠0,∴ 1S n -1S n +1=1,即1S n +1-1S n =-1. 又1S 1=-1,∴ ⎩⎨⎧⎭⎬⎫1S n 是首项为-1,公差为-1的等差数列. ∴ 1S n=-1+(n -1)×(-1)=-n , ∴ S n =-1n. 3.[2018·山东模拟]已知数列{a n }的前n 项和S n =3n 2+8n ,{b n }是等差数列,且a n =b n +b n +1.(1)求数列{b n }的通项公式; (2)令c n =a n +n +1b n +n ,求数列{c n }的前n 项和T n .解:(1)由题意知,当n ≥2时,a n =S n -S n -1=6n +5,当n =1时,a 1=S 1=11,所以a n =6n +5.设数列{b n }的公差为d ,由⎩⎪⎨⎪⎧ a 1=b 1+b 2,a 2=b 2+b 3,得⎩⎪⎨⎪⎧ 11=2b 1+d ,17=2b 1+3d ,可解得b 1=4,d =3.所以b n =3n +1.(2)由(1)知,c n =n +n +1n +n =3(n +1)·2n +1.又T n =c 1+c 2+…+c n ,所以T n =3×[2×22+3×23+…+(n +1)×2n +1], 2T n =3×[2×23+3×24+…+(n +1)×2n +2], 两式作差,得-T n =3×[2×22+23+24+…+2n +1-(n +1)×2n +2]=3×⎣⎢⎡⎦⎥⎤4+-2n 1-2-n +n +2=-3n ·2n +2, 所以T n =3n ·2n +2. 4.[2018·重庆模拟]S n 为数列{a n }的前n 项和.已知a n >0,a 2n +2a n =4S n +3.(1)求{a n }的通项公式;(2)设b n =1a n a n +1,求数列{b n }的前n 项和. 解:(1)由a 2n +2a n =4S n +3,①可知a 2n +1+2a n +1=4S n +1+3.②②-①,得a 2n +1-a 2n +2(a n +1-a n )=4a n +1,即2(a n +1+a n )=a 2n +1-a 2n =(a n +1+a n )(a n +1-a n ). 由a n >0,得a n +1-a n =2.又a 21+2a 1=4a 1+3,解得a 1=-1(舍去)或a 1=3.所以{a n }是首项为3,公差为2的等差数列,通项公式为a n =2n +1.(2)由a n =2n +1可知, b n =1a n a n +1=1n +n +=12⎝ ⎛⎭⎪⎫12n +1-12n +3. 设数列{b n }的前n 项和为T n ,则T n =b 1+b 2+…+b n=12⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫13-15+⎝ ⎛⎭⎪⎫15-17+…+⎝ ⎛⎭⎪⎫12n +1-12n +3=n n +.课外拓展阅读数列求和[典例] 已知数列{a n }的前n 项和S n =-12n 2+kn (其中k ∈N *),且S n 的最大值为8. (1)确定常数k ,并求a n ;(2)求数列⎩⎨⎧⎭⎬⎫9-2a n 2n 的前n 项和T n .[审题视角][解析] (1)当n =k ,k ∈N *时,S n =-12n 2+kn 取得最大值, 即8=S k =-12k 2+k 2=12k 2,故k 2=16,k =4. 当n =1时,a 1=S 1=-12+4=72, 当n ≥2时,a n =S n -S n -1=92-n . 当n =1时,上式也成立,故a n =92-n . (2)因为9-2a n 2n =n 2n -1, 所以T n =1+22+322+…+n -12n -2+n 2n -1,① 所以2T n =2+2+32+…+n -12n -3+n 2n -2,② ②-①,得2T n -T n =2+1+12+…+12n -2-n 2n -1 =4-12n -2-n 2n -1=4-n +22n -1. 故T n =4-n +22n -1. 方法点睛1.根据数列前n 项和的结构特征和最值确定k 和S n ,求出a n 后再根据⎩⎨⎧⎭⎬⎫9-2a n 2n 的结构特征确定利用错位相减法求T n .在审题时,要审题目中数式的结构特征判定解题方案.2.利用S n 求a n 时不要忽视当n =1的情况;错位相减时不要漏项或算错项数.3.可以通过当n =1,2时的特殊情况对结果进行验证.。

高考数学(理)一轮总复习课件:第六章 数列 6-3

高考数学(理)一轮总复习课件:第六章 数列 6-3

(4)(2019· 珠海质量监测)等比数列{an}共有奇数项,所有奇数 项和 S 奇=255,所有偶数项和 S 偶=-126,末项是 192,则首项 a1 等于( A.1 C.3 ) B.2
ቤተ መጻሕፍቲ ባይዱ
D.4 S偶 -126 【解析】 ∵an=192,∴q= = 63 =-2. S奇-an
a1-anq a1-192×(-2) 又 Sn= =S 奇+S 偶, ∴ =255+(-126), 1-q 1-(-2) 解得 a1=3,故选 C. 【答案】 C
1 1 (4)在等比数列{an}中,a3=12,S3=42,求 a1 和 q.
a1(1-q3) 1 【解析】 ①当 q≠1 时,S3= =42, 1-q 1 1 又 a3=a1·q =12,解得 q=-2(q=1 舍),∴a1=6.
2
1 ②当 q=1 时,S3=3a1,∴a1=12. 1 a1=6, a1=1 , 2 综上所述,得 1 或 q=- 2 q=1. 1 a1=6, a1=1 , 2 【答案】 1 或 q=- 2 q=1
(2)设等比数列{an}的各项均为正数,其前 n 项和为 Sn,若 a1 =1,a3=4,Sk=63,则 k=________.
【解析】 设等比数列{an}的公比为 q,由已知 a1=1,a3=4,
k 1 - 2 a 3 得 q2= =4.又{an}的各项均为正数,所以 q=2.而 Sk= =63, a1 1-2
4 4
a1[1-(- 2)8] a1(-15) (3)∵S8= = =15(1- 2), 1+ 2 1+ 2 ∴a1=-(1- 2)· (1+ 2)=1. a1+a2+a3=7, (4)由已知,得(a1+3)+(a3+4) =3a2. 2 解得 a2=2. 2 设数列{an}的公比为 q,由 a2=2,可得 a1= ,a3=2q. q

2021版新高考数学一轮教师用书:第6章 第4节 数列求和 Word版含答案

2021版新高考数学一轮教师用书:第6章 第4节 数列求和 Word版含答案

第四节 数列求和[考点要求] 1.掌握等差、等比数列的前n 项和公式.2.掌握特殊的非等差、等比数列的几种常见的求和方法.(对应学生用书第108页)1.公式法(1)等差数列的前n 项和公式: S n =n (a 1+a n )2=na 1+n (n -1)2d ; (2)等比数列的前n 项和公式:S n =⎩⎨⎧na 1,q =1,a 1-a n q 1-q =a 1(1-q n )1-q ,q ≠1.2.几种数列求和的常用方法(1)分组求和法:一个数列的通项公式是由若干个等差或等比或可求和的数列组成的,则求和时可用分组求和法,分别求和而后相加减.(2)裂项相消法:把数列的通项拆成两项之差,在求和时中间的一些项可以相互抵消(注意消项规律),从而求得前n 项和.裂项时常用的三种变形:①1n (n +1)=1n -1n +1;②1(2n -1)(2n +1)=12⎝⎛⎭⎪⎫12n -1-12n +1; ③1n +n +1=n +1-n .(3)错位相减法:如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,那么求这个数列的前n 项和即可用错位相减法求解.(4)倒序相加法:如果一个数列{a n }与首末两端等“距离”的两项的和相等或等于同一个常数,那么求这个数列的前n 项和即可用倒序相加法求解.(5)并项求和法:一个数列的前n 项和中,可两两结合求解,则称之为并项求和.形如a n =(-1)n f (n )类型,可采用两项合并求解.例如,S n =1002-992+982-972+…+22-12=(100+99)+(98+97)+…+(2+1)=5 050.一、思考辨析(正确的打“√”,错误的打“×”)(1)已知等差数列{a n }的公差为d ,则有1a n a n +1=1d ⎝⎛⎭⎪⎫1a n -1a n +1.( ) (2)当n ≥2时,1n 2-1=12⎝ ⎛⎭⎪⎫1n -1-1n +1.( )(3)求S n =a +2a 2+3a 3+…+na n 之和时只要把上式等号两边同时乘以a 即可根据错位相减法求得.( )(4)利用倒序相加法可求得sin 21°+sin 22°+sin 23°+…+sin 288°+sin 289°=44.5.( ) [答案] (1)√ (2)√ (3)× (4)√ 二、教材改编1.数列{a n }的前n 项和为S n ,若a n =1n (n +1),则S 5等于( )A .1B .56C .16D .1302.若数列{a n }的通项公式为a n =2n +2n -1,则数列{a n }的前n 项和为( ) A .2n +n 2-1 B .2n +1+n 2-1 C .2n +1+n 2-2D .2n +n -23.S n =12+12+38+…+n2n 等于( ) A .2n -n -12n B .2n +1-n -22nC .2n -n +12nD .2n +1-n +22n4.数列{a n }的前n 项和为S n ,已知S n =1-2+3-4+…+(-1)n -1·n ,则S 17=________.(对应学生用书第109页)考点1 分组转化法求和 分组转化法求和的常见类型(1)若a n =b n ±c n ,且{b n },{c n }为等差或等比数列,则可采用分组求和法求{a n }的前n 项和. (2)通项公式为a n =⎩⎨⎧b n ,n 为奇数,c n ,n 为偶数的数列,其中数列{b n },{c n }是等比数列或等差数列,可采用分组求和法求和.提醒:注意在含有字母的数列中对字母的分类讨论.已知数列{a n }的前n 项和S n =n 2+n2,n ∈N *. (1)求数列{a n }的通项公式;(2)设b n =2a n +(-1)n a n ,求数列{b n }的前2n 项和.[母题探究] 在本例(2)中,若条件不变求数列{b n }的前n 项和T n . [解] 由本例(1)知b n =2n +(-1)n n . 当n 为偶数时,T n =(21+22+…+2n )+[-1+2-3+4-…-(n -1)+n ]=2-2n +11-2+n 2=2n +1+n 2-2; 当n 为奇数时,T n =(21+22+…+2n )+[-1+2-3+4-…-(n -2)+(n -1)-n ] =2n +1-2+n -12-n =2n +1-n 2-52.所以T n =⎩⎪⎨⎪⎧2n +1+n2-2,n 为偶数,2n +1-n 2-52,n 为奇数.常用并项求和法解答形如(-1)n a n 的数列求和问题,注意当n 奇偶性不定时,要对n 分奇数和偶数两种情况分别求解.对n 为奇数、偶数讨论数列求和时,一般先求n 为偶数时前n 项和T n .n 为奇数可用T n =T n -1+b n (n ≥2)或T n =T n +1-b n +1最好.已知等差数列{a n }的前n 项和为S n ,且a 1=1,S 3+S 4=S 5. (1)求数列{a n }的通项公式;(2)令b n =(-1)n -1a n ,求数列{b n }的前2n 项和T 2n . 考点2 裂项相消法求和形如a n =1n (n +k )(k 为非零常数)型a n =1n (n +k )=1k ⎝ ⎛⎭⎪⎫1n -1n +k .提醒:求和抵消后并不一定只剩下第一项和最后一项,也有可能前面剩两项,后面也剩两项.(2019·厦门一模)已知数列{a n }是公差为2的等差数列,数列{b n }满足b 1=6,b 1+b 22+b 33+…+b nn =a n +1.(1)求{a n },{b n }的通项公式;(2)求数列⎩⎨⎧⎭⎬⎫1a n b n 的前n 项和.本例第(1)问在求{b n }的通项公式时灵活运用了数列前n 项和与项的关系,注意通项公式是否包含n =1的情况;第(2)问在求解中运用了裂项法,即若{a n }是等差数列,则1a n a n +1=1d ⎝⎛⎭⎪⎫1a n -1a n +1. [教师备选例题](2019·唐山五校联考)已知数列{a n }满足:1a 1+2a 2+…+n a n=38(32n -1),n ∈N *.(1)求数列{a n }的通项公式;(2)设b n =log 3a n n ,求1b 1b 2+1b 2b 3+…+1b n b n +1.[解] 1a 1=38(32-1)=3,当n ≥2时,因为n a n =⎝ ⎛⎭⎪⎫1a 1+2a 2+…+n a n -⎝ ⎛⎭⎪⎫1a 1+2a 2+…+n -1a n -1 =38(32n -1)-38(32n -2-1) =32n -1,当n =1时,na n=32n -1也成立,所以a n =n32n -1.(2)b n =log 3a nn =-(2n -1), 因为1b n b n +1=1(2n -1)(2n +1)=12(12n -1-12n +1), 所以1b 1b 2+1b 2b 3+…+1b n b n +1=12[⎝⎛⎭⎪⎫1-13+⎝ ⎛⎭⎪⎫13-15+…+(12n -1-12n +1)]=12⎝ ⎛⎭⎪⎫1-12n +1=n2n +1. (2017·全国卷Ⅱ)等差数列{a n }的前n 项和为S n ,a 3=3,S 4=10,则∑nk =11S k =________.形如1n +k +n(k 为非零常数)型a n =1n +k +n=1k (n +k -n ).已知函数f (x )=x a 的图象过点(4,2),令a n =1f (n +1)+f (n ),n ∈N *,记数列{a n }的前n 项和为S n ,则S 2 019=( )A . 2 018-1B . 2 019-1C . 2 020-1D . 2 020+1运用分母有理化对分式1n +1+n正确变形并发现其前后项之间的抵消关系是求解本题的关键.求和S =11+3+13+5+…+1119+121=( ) A .5 B .4 C .10 D .9形如b n =(q -1)a n(a n +k )(a n +1+k )(q 为等比数列{a n }的公比)型b n =(q -1)a n (a n +k )(a n +1+k )=1a n +k -1a n +1+k.(2019·郑州模拟)已知数列{a n }的前n 项和为S n ,且a 2=8,S n =a n +12-n -1.(1)求数列{a n }的通项公式;(2)求数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫2×3n a n a n +1的前n 项和T n .本例第(1)问在求解通项公式时运用了构造法,形如a n +1=λa n +μ的数列递推关系求通项公式都可以采用此法;第(2)问运用了裂项相消法求和.已知 {a n }是等比数列,且a 2=12,a 5=116,若b n =a n +1(a n +1)(a n +1+1),则数列{b n }的前n 项和为( )A .2n -12(2n +1)B .2n -12n +1C .12n +1D .2n -12n +2形如a n =n +1n 2(n +2)2型a n =n +1n 2(n +2)2=14⎣⎢⎡⎦⎥⎤1n 2-1(n +2)2. 正项数列{a n }的前n 项和S n 满足:S 2n -(n 2+n -1)S n -(n 2+n )=0.(1)求数列{a n }的通项公式a n ;(2)令b n =n +1(n +2)2a 2n,数列{b n }的前n 项和为T n ,证明:对于任意的n ∈N *,都有T n <564. (1)与不等式相结合考查裂项相消法求和问题应分两步:第一步,求和;第二步,利用作差法、放缩法、单调性等证明不等式.(2)放缩法常见的放缩技巧有: ①1k 2<1k 2-1=12⎝ ⎛⎭⎪⎫1k -1-1k +1.②1k -1k +1<1k 2<1k -1-1k .③2(n +1-n )<1n<2(n -n -1).已知等比数列{a n }的前n 项和为S n ,满足S 4=2a 4-1,S 3=2a 3-1. (1)求{a n }的通项公式;(2)记b n =log 2(a n ·a n +1),数列{b n }的前n 项和为T n ,求证:1T 1+1T 2+…+1T n<2.考点3 错位相减法求和错位相减法求和的具体步骤 步骤1→写出S n =c 1+c 2+…+c n .步骤2→等式两边同乘等比数列的公比q ,即qS n =qc 1+qc 2+…+qc n . 步骤3→两式错位相减转化成等比数列求和.步骤4→两边同除以1-q ,求出S n .同时注意对q 是否为1进行讨论.(2019·莆田模拟)设数列{a n }的前n 项和为S n ,且a 1=1,a n +1=2S n +1,数列{b n }满足a 1=b 1,点P (b n ,b n +1)在直线x -y +2=0上,n ∈N *.(1)求数列{a n },{b n }的通项公式; (2)设c n =b na n,求数列{c n }的前n 项和T n .本例巧妙地将数列{a n }及其前n 项和为S n ,数列与函数的关系等知识融合在一起,难度适中.求解的关键是将所给条件合理转化,并运用错位相减法求和.(2019·烟台一模)已知等差数列{a n }的公差是1,且a 1,a 3,a 9成等比数列. (1)求数列{a n }的通项公式;(2)求数列⎩⎨⎧⎭⎬⎫a n 2a n 的前n 项和T n .课外素养提升⑥ 数学建模—— 数列中等量关系的建立(对应学生用书第111页)2019全国卷Ⅰ理科21题将数列与概率知识巧妙的融合在一起,在考查概率知识的同时,突出考查学生借用数列的递推关系将实际问题转化为数学问题的能力.数列作为特殊的函数,在实际问题中有着广泛的应用,如增长率,银行信贷,浓度匹配,养老保险,圆钢堆垒等问题,这就要求考生除熟练运用数列的有关概念外,还要善于观察题设的特征,联想有关数学知识和方法,迅速确定解题的方向,以提高解题的速度.直接借助等差(等比)数列的知识建立等量关系【例1】 从社会效益和经济效益出发,某地投入资金进行生态环境建设,并以此发展旅游产业,根据规划,本年度投入800万元,以后每年投入将比上年减少15,本年度当地旅游业收入估计为400万元,由于该项建设对旅游业的促进作用,预计今后的旅游业收入每年会比上年增加14.(1)设n 年内(本年度为第一年)总投入为a n 万元,旅游业总收入为b n 万元,写出a n ,b n 的表达式; (2)至少经过几年,旅游业的总收入才能超过总投入? [解] (1)第1年投入为800万元, 第2年投入为800×⎝ ⎛⎭⎪⎫1-15万元,…,第n 年投入为800×⎝ ⎛⎭⎪⎫1-15n -1万元,所以,n 年内的总投入为:a n =800+800×⎝ ⎛⎭⎪⎫1-15+…+800×⎝ ⎛⎭⎪⎫1-15n -1=4 000×⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫45n ,第1年旅游业收入为400万元, 第2年旅游业收入为400×⎝ ⎛⎭⎪⎫1+14万元,…,第n 年旅游业收入400×⎝ ⎛⎭⎪⎫1+14n -1万元.所以,n 年内的旅游业总收入为b n =400+400×⎝ ⎛⎭⎪⎫1+14+…+400×⎝ ⎛⎭⎪⎫1+14n -1=1 600×⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫54n -1.(2)设至少经过n 年旅游业的总收入才能超过总投入,由此b n -a n >0, 化简得5×(45)n +2×(54)n -7>0,即1 600×⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫54n -1-4000×⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫45n >0,令x =⎝ ⎛⎭⎪⎫45n,代入上式得:5x 2-7x +2>0.解得x <25,或x >1(舍去). 即⎝ ⎛⎭⎪⎫45n <25,由此得n ≥5. ∴至少经过5年,旅游业的总收入才能超过总投入.[评析] 本题以函数思想为指导,以数列知识为工具,涉及函数建模、数列求和、不等式的解法等知识点,正确审题、深刻挖掘数量关系,建立数量模型是本题的灵魂,(2)问中指数不等式采用了换元法,是解不等式常用的技巧.【素养提升练习】 公民在就业的第一年就交纳养老储备金a 1,以后每年交纳的数目均比上一年增加d (d >0),历年所交纳的储备金数目a 1,a 2,…,是一个公差为d 的等差数列.与此同时,国家给予优惠的计息政策,不仅采用固定利率,而且计算复利.如果固定年利率为r (r >0),那么,在第n 年末,第一年所交纳的储备金就变为a 1(1+r )n -1,第二年所交纳的储备金就变为a 2(1+r )n -2,…,以T n 表示到第n 年末所累计的储备金总额.求证:T n =A n +B n ,其中{A n }是一个等比数列,{B n }是一个等差数列. [解] T 1=a 1,对n ≥2反复使用上述关系式,得 T n =T n -1(1+r )+a n=T n -2(1+r )2+a n -1(1+r )+a n=a 1(1+r )n -1+a 2(1+r )n -2+…+a n -1(1+r )+a n ,① 在①式两端同乘1+r ,得(1+r )T n =a 1(1+r )n +a 2(1+r )n -1+…+a n -1(1+r )2+a n (1+r ),② ②-①,得rT n =a 1(1+r )n +d [(1+r )n -1+(1+r )n -2+…+(1+r )]-a n =dr [(1+r )n -1-r ]+a 1(1+r )n -a n . 即T n =a 1r +d r 2(1+r )n -dr n -a 1r +d r 2.如果记A n =a 1r +d r 2(1+r )n,B n =-a 1r +d r 2-d r n ,则T n =A n +B n ,其中{A n }是以a 1r +dr 2(1+r )为首项,以1+r (r >0)为公比的等比数列;{B n }是以-a 1r +d r 2-d r 为首项,-dr 为公差的等差数列.借助数列的递推关系建立等量关系【例2】 大学生自主创业已成为当代潮流.某大学大三学生夏某今年一月初向银行贷款两万元作开店资金,全部用作批发某种商品.银行贷款的年利率为6%,约定一年后一次还清贷款.已知夏某每月月底获得的利润是该月月初投入资金的15%,每月月底需要交纳个人所得税为该月所获利润的20%,当月房租等其他开支1 500元,余款作为资金全部投入批发该商品再经营,如此继续,假定每月月底该商品能全部卖出.(1)设夏某第n 个月月底余a n 元,第n +1个月月底余a n +1元,写出a 1的值并建立a n +1与a n 的递推关系;(2)预计年底夏某还清银行贷款后的纯收入.(参考数据:1.1211≈3.48,1.1212≈3.90,0.1211≈7.43×10-11,0.1212≈8.92×10-12) [解] (1)依题意,a 1=20 000(1+15%)-20 000×15%×20%-1 500=20 900(元), a n +1=a n (1+15%)-a n ×15%×20%-1 500 =1.12a n -1500(n ∈N *,1≤n ≤11). (2)令a n +1+λ=1.12(a n +λ),则 a n +1=1.12a n +0.12λ,对比(1)中的递推公式,得λ=-12 500. 则a n -12 500=(20 900-12 500)1.12n -1, 即a n =8 400×1.12n -1+12 500.则a 12=8 400×1.1211+12 500≈41 732(元).又年底偿还银行本利总计20 000(1+6%)=21 200(元), 故该生还清银行贷款后纯收入41 732-21 200=20 532(元).[评析] (1)先求出a 1的值,并依据题设条件得出a n +1与a n 的递推关系;(2)利用构造法求得{a n }的通项公式并求出相应值.【素养提升练习】 如图,P 1(x 1,y 1),P 2(x 2,y 2),…,P n (x n ,y n ),…,是曲线C :y 2=12x (y ≥0)上的点,A 1(a 1,0),A 2(a 2,0),…,A n (a n ,0),…,是x 轴正半轴上的点,且△A 0A 1P 1,△A 1A 2P 2,…,△A n -1A n P n ,…,均为斜边在x 轴上的等腰直角三角形(A 0为坐标原点).(1)写出a n -1、a n 和x n 之间的等量关系,以及a n -1、a n 和y n 之间的等量关系; (2)用数学归纳法证明a n =n (n +1)2(n ∈N *);(3)设b n =1a n +1+1a n +2+1a n +3+…+1a 2n,对所有n ∈N *,b n <log 8t 恒成立,求实数t 的取值范围.[解] (1)依题意,△A 0A 1P 1,△A 1A 2P 2,…,△A n -1A n P n ,…,均为斜边在x 轴上的等腰直角三角形(A 0为坐标原点),故有x n =a n -1+a n 2,y n =a n -a n -12.(2)证明:①当n =1时,可求得a 1=1=1×22,命题成立; ②假设当n =k 时,命题成立,即有a k =k (k +1)2. 则当n =k +1时,由归纳假设及(a k -a k -1)2=a k -1+a k , 得⎣⎢⎡⎦⎥⎤a k +1-k (k +1)22=k (k +1)2+a k +1.即(a k +1)2-(k 2+k +1)a k +1+k (k -1)2·(k +1)(k +2)2=0,解得a k +1=(k +1)(k +2)2(a k +1=k (k -1)2<a k ,不合题意,舍去),即当n =k +1时,命题成立.综上所述,对所有n ∈N *,a n =n (n +1)2. (3)b n =1a n +1+1a n +2+1a n +3+…+1a 2n=2(n +1)(n +2)+2(n +2)(n +3)+…+22n (2n +1)=2n +1-22n +1=2n 2n 2+3n +1=2⎝ ⎛⎭⎪⎫2n +1n +3.因为函数f (x )=2x +1x 在区间[1,+∞)上单调递增,所以当n =1时,b n 最大为13,即b n ≤13. 由题意,有13<log 8t ,所以t >2,所以,t ∈(2,+∞).。

2020年高三理科数学一轮复习讲义6.4【数列求和】

2020年高三理科数学一轮复习讲义6.4【数列求和】

年高三理科数学一轮复习讲义【数列求和】最新考纲1.熟练掌握等差、等比数列的前n 项和公式;2.掌握非等差数列、非等比数列求和的几种常见方法.知识梳理1.特殊数列的求和公式(1) 等差数列的前 n 项和公式:S n =n ( a 1+ a n )=na 1+n ( n - 1)d.22(2) 等比数列的前 n 项和公式:na 1, q = 1, S n =a 1- a n q = a 1( 1-q n ),q ≠1W.1- q1-q2.数列求和的几种常用方法 (1) 分组转化法把数列的每一项分成两项或几项,使其转化为几个等差、等比数列,再求解. (2) 裂项相消法把数列的通项拆成两项之差,在求和时中间的一些项可以相互抵消,从而求得其和. (3) 错位相减法如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,这个数列的前 n 项和可用错位相减法求解 . (4) 倒序相加法如果一个数列 { a n } 的前 n 项中与首末两端等“距离”的两项的和相等或等于同一个常数, 那么求这个数列的前 n 项和即可用倒序相加法求解 . [ 微点提醒 ]1.1+ 2+ 3+ 4+ + n = n ( n +1).22.12+22+ +n 2=n (n +1)(2n +1).613.裂项求和常用的三种变形1 1 1(1)n ( n +1) = n -n + 1.11 1-1(2)( 2n -1)( 2n + 1) = 22n + 1.2n - 1 1= n + 1- n.(3)n + n + 1基础自测1.判断下列结论正误 (在括号内打“√”或“×” )(1) 若数列 { a n } 为等比数列,且公比不等于1,则其前 n 项和 S n =a 1-a n +1.()1- q(2) 当 n ≥2 时, 2 11 1 -1).( )= (n -1 2 n - 1 n + 1(3) 求 S n = a + 2a 2+ 3a 3+ + na n 时只要把上式等号两边同时乘以a 即可根据错位相减法求得 .()n- 1(4) 若数列 a 1,a 2-a 1 , ,a n - a n - 1 是首项为 1,公比为 3 的等比数列,则数列 { a n } 的通项公式是 a n = 3.()2解析 (3)要分 a =0 或 a =1 或 a ≠ 0 且 a ≠ 1 讨论求解 .答案 (1)√ (2) √ (3)×(4) √2.(必修 5P47B4 改编 ) 数列 { a n } 中, a n = 1,若 { a n } 的前 n 项和为2 019,则项数 n 为 ()n (n + 1) 2 020 A.2 018B.2 019C.2 020D.2 021解析 a =1=1-1,nnn (n + 1) n + 1n = 1-1+ 1-1++ 1-1=1-1=n=2 019,所以 n = 2019.S2 2 3nn + 1n + 1n + 1 2 020答案 B3.(必修 5P56 例 1 改编 ) 等比数列 { a n } 中,若 a 1= 27, a 9 =1, q>0, S n 是其前 n 项和,则 S 6= ________.243解析 由 a 1=27, a 9=1知, 1= 27·q 8,243 2432又由 q>0,解得 q=1,327 1-163=364所以 S6=.1 91-3答案364 94.(2018 东·北三省四校二模)已知数列 { a n} 满足 a n+1- a n= 2,a1=- 5,则 |a1|+ |a2 |++ |a6|= ()A.9B.15C.18D.30解析由题意知 { a n}是以 2 为公差的等差数列,又1=-5,所以|a12 6a |+ |a|++ |a |= |-5|+ |- 3|+ |- 1|+ 1+3+ 5= 5+ 3+ 1+ 1+ 3+ 5=18.答案C5.(2019 昆·明诊断 )已知数列 { a n} , { b n } 的前 n 项和分别为n n+1 2 -2,S n, T n, b n- a n= 2 +1,且 S n+ T n= 2 + n则 2T n= ________________.解析由题意知T n- S n= b1- a1+ b2- a2++b n-a n=n+2n+1-2,又 S n+ T n= 2n+1+ n2-2,所以 2T n= T n-S n+S n+ T n= 2n+2+ n(n+1) -4.答案n+2+n(n+ 1)- 4 26.(2019 河·北“五个一”名校质检 )若 f(x)+f(1- x)=4,a n= f(0) +f1++ fn-1+ f(1)(n∈* n n n),则数列{ a }的通项公式为 ________.解析由 f(x)+ f(1-x)=4,可得 f(0) + f(1) =4,,f 1 + fn-1= 4,所以 2a n= [f(0) + f(1)] +f 1+f n-1n n n n++ [f(1)+ f(0)] =4(n+ 1),即 a n= 2(n+1).答案a n= 2(n+ 1)3【例 1】 (2019 ·郴州质检 )已知在等比数列 { a n } 中, a 1= 1,且 a 1, a 2, a 3- 1 成等差数列 . (1) 求数列 { a n } 的通项公式;(2) 若数列 { b n } 满足 b n = 2n - 1+ a n (n ∈* ) ,数列 { b n } 的前 n 项和为 S n ,试比较 S n 与 n 2+ 2n 的大小 . 解 (1) 设等比数列 { a n } 的公比为 q ,∵a 1,a 2, a 3- 1 成等差数列, ∴ 2a 2= a 1+ (a 3- 1)= a 3,∴ q =a 3=2, a 2∴ a n =a 1q n -1= 2n -1(n ∈* ).(2) 由 (1)知 b n = 2n - 1+ a n = 2n -1+ 2n -1, ∴S n =(1+ 1)+ (3+ 2)+ (5+ 22)+ + (2n - 1+ 2n -1) = [1 +3+ 5+ + (2n - 1)]+ (1+ 2+ 22+ + 2n -1)1+( 2n -1)1-2n2 n= 2 ·n + 1- 2 = n + 2 - 1. ∵S n -(n 2+2n )=- 1<0 ,∴ S n <n 2+ 2n . 规律方法1.若数列 { c n } 的通项公式为 c n = a n ±b n ,且 { a n } , { b n } 为等差或等比数列,可采用分组求和法求数 列{ c n } 的前 n 项和 .a n , n 为奇数,2.若数列 { c n } 的通项公式为 c n = 其中数列 { a n } , { b n } 是等比数列或等差数列,可采用分组求 b n ,n 为偶数,和法求 { a n } 的前 n 项和 .【训练 1】 (2019 ·南昌一模 )已知等差数列 { a n } 的前 n 项和为 S n ,且 a 1=1, S 3+ S 4= S 5. (1) 求数列 { a n } 的通项公式;(2) 令 b n = (- 1)n -1a n ,求数列 { b n } 的前 2n 项和 T 2n .解 (1) 设等差数列 { a n } 的公差为 d ,由 S 3+ S 4= S 5可得 a 1+ a 2+ a 3= a 5,即 3a 2=a 5, ∴3(1+ d)= 1+ 4d ,解得 d = 2. ∴ a n =1+ (n - 1)× 2= 2n - 1.(2) 由 (1)可得 b n = (-1) n -1·(2n -1).∴T 2n =1- 3+ 5-7+ + (2n - 3)- (2n - 1)= (- 2)× n =- 2n.4a n+1【例 2】 (2019 ·郑州模拟 )已知数列 { a n } 的前 n 项和为 S n ,且 a 2= 8, S n =2 -n -1.(1) 求数列 { a n } 的通项公式;2× 3n (2) 求数列a n a n +1的前n 项和Tn .解 (1) ∵a 2= 8, S n =a n+1- n -1, 2∴ a 1=S 1=a 2- 2=2, 2当 n ≥ 2 时, a n = S n - S n -1=a n+1- n -1-a n- n ,22 即 a n +1= 3a n + 2,又 a 2= 8= 3a 1+ 2,∴a n +1= 3a n + 2, n ∈*, ∴ a n +1+ 1=3(a n +1) ,∴数列 { a n +1} 是等比数列,且首项为 a 1+ 1= 3,公比为 3,∴ a n +1= 3× 3n -1= 3n ,∴ a n =3n - 1.2× 3n= 2×3n1 1(2) ∵n n+1= n- n +1.a n a n +1 ( 3 -1)( 3- 1)3 -13 - 1∴数列2× 3n的前n 项和a n a n +1 1 -2 1 +1- 1+ +111 - 1T n =- 1 23n- n + 1= n +1.3-1 33 - 1 3 - 13 - 13 - 12 3- 1规律方法 1.利用裂项相消法求和时, 应注意抵消后并不一定只剩下第一项和最后一项, 也有可能前面剩两项,后面也剩两项 .2.将通项公式裂项后,有时候需要调整前面的系数,使裂开的两项之差和系数之积与原通项公式相等. 【训练 2】 设 S n 为等差数列 { a n } 的前 n 项和,已知 S 3= a 7, a 8- 2a 3=3. (1) 求 a n ;1 (2) 设 b n =S n ,求数列 { b n } 的前 n 项和 T n . 解 (1) 设数列 { a n } 的公差为 d ,3a 1+ 3d = a 1+6d ,由题意得 ( a 1+ 7d )- 2( a 1+ 2d )= 3,5解得 a 1= 3, d = 2,∴ a n =a 1+ (n - 1)d = 2n +1.(2) 由 (1)得 S n = na 1+n (n -1)d = n(n +2), 211 11 ∴b n=n (n +2)=2 n -n +2. ∴ T n = b 1+ b 2+ + b n -1+ b n 1 11- 11 - 11- 1=2 1-3 + 24 + + n - 1 n + 1 + n n + 2=11+ 1- 1 - 1 2 2 n +1 n + 2 3 1 1 +1= 4- 2 n+1 n + 2.考点三 错位相减法求和【例 3】 已知 { a n } 是各项均为正数的等比数列,且 a 1 + a 2= 6, a 1a 2= a 3.(1) 求数列 { a n } 的通项公式;(2){ b n } 为各项非零的等差数列,其前n 项和为 S n ,已知 S 2n +1= b n b n + 1,求数列b n的前 n 项和 T n .a n解 (1) 设{ a n } 的公比为 q ,a 1( 1+ q )= 6,由题意知22a 1q = a 1q ,又 a n >0,解得a 1= 2,所以 a n = 2n.q =2,( 2n + 1)( b 1+ b 2n+1)(2) 由题意知: S 2n +1 == (2n + 1)b n + 1,2又 S 2n +1= b n b n +1,b n +1≠ 0,所以 b n = 2n + 1.令 c n =b n ,则c n = 2n +1 a n 2n ,因此 T n = c 1+ c 2+ + c n3 5 72n - 1 + 2n + 1= + 23 2- n ,2 2 +2 ++ n 121 T n = 3 5 72n - 1+ 2n + 1,又 2+3+ 4+ + n 2 n + 1 2 2 2 2 26两式相减得1 =3+ 1 11 2n + 1+ 2+ + - 1 - +,2Tn22 22n 2n12n + 5所以 T n = 5-2n .规律方法1.一般地,如果数列 { a n } 是等差数列, { b n } 是等比数列,求数列 { a n ·b n } 的前 n 项和时,可采用错 位相减法 .2.用错位相减法求和时,应注意:(1) 要善于识别题目类型,特别是等比数列公比为负数的情形.n nn -qS n ” 的 (2) 在写出 “S ”与“qS ”的表达式时应特别注意将两式 “ 错项对齐 ” ,以便于下一步准确地写出 “S 表达式 .【训练 3】 已知等差数列 { a n } 满足: a n +1>a n ( n ∈ * ),a 1= 1,该数列的前三项分别加上 1,1,3 后成等比数 列, a n + 2log 2b n =- 1.(1) 分别求数列 { a n } , { b n } 的通项公式; (2) 求数列 { a n ·b n } 的前 n 项和 T n .解 (1) 设等差数列 { a n } 的公差为 d ,则 d>0,由 a 1= 1, a 2= 1+d , a 3= 1+2d 分别加上 1, 1,3 后成等比数列,得(2 +d)2=2(4+ 2d),解得 d = 2(舍负 ),所以 a n = 1+ (n - 1)× 2= 2n -1.1又因为 a n + 2log 2b n =- 1,所以 log 2b n =- n ,则 b n =2n .1 (2) 由 (1)知 a n ·b n = (2n - 1) ·2n ,则 T n = 1 3 5 2n - 121+ 22+ 23++ 2n ,①11352n - 1 ,②T n = 2+ 3+ 4+ + n + 12 2 2 2 2 由①-②,得1 1 + 2× 1 1 11 2n - 1 T n =2 2+3 + 4+ + n - n +1 .2 2 2 22 2 711-1∴1T n=1+2×4 2n- 1 2n- 11-n+ 1 ,2 21-22∴T n= 1+ 2-2 2n-1 4+2n- 1=3-3+ 2n n- 1-2n = 3-n2n .2 2[ 思维升华 ]非等差、等比数列的一般数列求和,主要有两种思想1.转化的思想,即将一般数列设法转化为等差或等比数列,这一思想方法往往通过通项分解或错位相消来完成;2.不能转化为等差或等比的特殊数列,往往通过裂项相消法、错位相减法、倒序相加法等来求和.[ 易错防范 ]1.直接应用公式求和时,要注意公式的应用范围,如当等比数列公比为参数(字母 )时,应对其公比是否为1进行讨论 .2.在应用错位相减法时,要注意观察未合并项的正负号.3.在应用裂项相消法时,要注意消项的规律具有对称性,即前剩多少项则后剩多少项.基础巩固题组(建议用时: 40 分钟 )一、选择题1.(2017 全·国Ⅲ卷 )等差数列 { a n} 的首项为 1,公差不为0.若 a2,a3,a6成等比数列,则 { a n} 前 6 项的和为 ()A.- 24B.-3C.3D.8解析设 { a n} 的公差为d,根据题意得a23= a2·a6,8即( a1+ 2d) 2= (a1+ d)(a1+ 5d),解得 d=- 2,所以数列 { a n} 的前 6 项和为 S6= 6a1+6× 56×5× (-2)=- 24. 2d= 1× 6+ 2答案 A2.数列 { a n} 的通项公式为a n=(- 1)n-1·(4n-3),则它的前100 项之和 S100等于 ()A.200B. -200C.400D. - 400解析S100= (4×1- 3)- (4× 2- 3)+ (4× 3- 3)--(4× 100-3)=4×[(1-2)+(3-4)++(99-100)]=4× ( -50)=- 200.答案 B3.数列 { a n} 的通项公式是a n= 1 ,前 n 项和为 9,则 n 等于 ()n+n+ 1A.9B.99C.10D.1001= n+1- n,解析因为 a n=n+n+1所以 S n= a1+ a2++ a n= ( n+ 1-n)+ ( n-n-1)++(3- 2)+ ( 2-1)=n+ 1- 1,令 n+ 1-1= 9,得 n= 99.答案 B4.(2019 合·肥调研 )已知n 为数列2n+1的前 n 项和,若 m>T10+1 013恒成立,则整数m 的最小值为 () nT2A.1 026B.1 025C.1 024D.1 023n1 n12 + 1解析∵2n= 1+2 ,∴T n= n+ 1-2n,∴T10 +1 013= 11-1 1 10+1 013=1 024- 10,2 2又 m>T10+ 1 013 恒成立,∴整数 m 的最小值为 1 024.答案C95.(2019 厦·门质检 )已知数列 { a n} 满足 a n+1+ (- 1)n+1a n= 2,则其前100 项和为 ()A.250B.200C.150D.100解析当 n= 2k(k∈a2k+2+ a2k+1= 2,∴ a2k+1+ a2k-1= 4,a2k+2+ a2 k= 0,∴ { a n} 的前 100 项和= (a1+ a3)++ (a97+a99)+ (a2+a4)++(a98+a100)=25× 4+25× 0=100.答案D二、填空题6.已知正项数列{ a n } 满足 a2n+1- 6a2n= a n+1a n.若 a1= 2,则数列 { a n } 的前 n 项和 S n= ________.解析由 a2n+1- 6a2n= a n+1a n,得( a n+1- 3a n)(a n+1+2a n) =0,又 a n>0,所以 a n+1= 3a n,又 a1= 2,所以 { a n} 是首项为2,公比为3 的等比数列,n故S n=2(1-3)=3n-1.1- 3答案 3n- 17.(2019 武·汉质检 )设数列 {( n2+ n)a n} 是等比数列,且a1=1, a2=1,则数列 {3 n a n} 的前 15 项和为 ________.6 541 1 1 1 n- 1解析等比数列 2 ,故公比为 2 1 1{( n + n)a n} 的首项为2a1=,第二项为 6a2 =3 ,所以 ( n + n) a n=·=n,3 9 3 3 3 1 n 1 1 1 1 1 15所以 a n=n 2 ,则 3 a n= 2=n-,其前 n 项和为1-n+1, n= 15 时,为 1-16=16.3 ( n +n)n + n n+ 1答案15168.(2019 福·州调研 )已知数列 { na n} 的前 n 项和为 S n,且 a n= 2n,且使得 S n-na n+1+ 50<0 的最小正整数n 的值为________.10解析S n = 1×21+2× 22+ + n × 2n , 则 2S n = 1× 22+ 2×23++n × 2n +1,两式相减得-S n =2+ 22+ +2n - n ·2n+ 1= 2( 1-2n) 1, - n ·2n + 1- 2n + 1故 S n = 2+ (n - 1) ·2.又 a n = 2n ,∴S n -na n +1+ 50=2+ (n - 1) ·2n +1- n ·2n +1+50=52- 2n +1, 依题意 52- 2n +1<0 ,故最小正整数 n 的值为 5.答案5三、解答题2n + n *9.已知数列 { a n } 的前 n 项和 S n =, n ∈.2(1) 求数列 { a n } 的通项公式;(2) 设 b n = 2a n +(-1)n a n ,求数列 { b n } 的前 2n 项和 . 解 (1)当 n = 1 时, a 1= S 1= 1;当 n ≥ 2 时, a = S - S - =n 2+n - ( n -1) 2+( n - 1) =n.nnn 12 2a 1 也满足 a n =n ,故数列 { a n } 的通项公式为 a n = n. (2) 由 (1)知 a n = n ,故b n = 2n + (- 1)n n.记数列 { b n } 的前 2n 项和为 T 2n ,则 T 2n =(2 1+22+ + 22n )+ (- 1+ 2-3+ 4- + 2n).记 A = 21+ 22+ + 22n , B =- 1+ 2-3+ 4- + 2n ,2n则A = 2( 1- 2 )=22n +1-2,1- 2B = (- 1+ 2)+ (- 3+ 4)+ + [ - (2n -1)+ 2n]= n.2 n + 1故数列 { b n } 的前 2n 项和 T 2 n = A + B =2+ n - 2.1110.设数列 { a n } 的前 n 项和为 S n , a 1= 2, a n +1= 2+ S n (n ∈* ). (1) 求数列 { a n } 的通项公式; (2) 设 b n = 1+ log 2 (a n ) 1的前 n 项和 T n < 1 . 2,求证:数列b n b n +1 6(1) 解 因为 a n +1= 2+ S n (n ∈* ), 所以 a n = 2+ S n -1(n ≥ 2),所以 a n +1-a n =S n - S n -1= a n , 所以 a n +1=2a n (n ≥ 2).又因为 a 2= 2+a 1=4, a 1= 2,所以 a 2= 2a 1, 所以数列 { a n } 是以 2 为首项, 2 为公比的等比数列,则 a n = 2·2n -1= 2n (n ∈* ).(2) 证明因 b n = 1+ log 2(a n )2,则 b n = 2n + 1.则 1 = 1 1 - 1,b n b n +1 2 2n + 1 2n + 3 所以 T n = 1 1 1 1 1 + + 1 - 1 2 - + -2n +3 3 5 5 7 2n +1 = 1 1111 12 -2n + 3 = -2( 2n + 3)<6.36能力提升题组(建议用时: 20 分钟 ) n1= 1, a n + 1- a n ≥2(n ∈*n 为{ a n} 的前 n 项和,则 ()11.(2019 广·州模拟 )已知数列 { a } 满足 a),且 SA. a n ≥ 2n +1B.S n ≥n 2C.a n ≥ 2n -1D.S n ≥2n -1解析由题意得a 2- a 1≥ 2, a 3- a 2≥ 2, a 4- a 3≥2,, a n -a n -1≥ 2,∴ a 2-a 1+ a 3- a 2+ a 4- a 3+ +a n - a n -1≥ 2(n - 1), ∴ a n -a 1≥ 2(n - 1),∴ a n ≥2n - 1,∴ a 1≥1, a 2≥ 3,a 3≥ 5, , a n ≥2n - 1, ∴ a 1+a 2+ a 3+ + a n ≥1+ 3+ 5+ + 2n -1,12∴S n ≥n ( 1+ 2n - 1) =n 2.2答案 B12.已知数列 { a n } 中, a n =- 4n + 5,等比数列 { b n } 的公比 q 满足 q = a n - a n -1(n ≥2) 且 b 1= a 2,则 |b 1|+ |b 2|+|b 3|+ + |b n |= ________.解析由已知得b 1= a 2=- 3, q =- 4,∴b n =(-3)× n 1 n 1(- 4) -, ∴ |b n |= 3×4- ,即{| b n为首项, 4 为公比的等比数列, |}是以 33( 1- 4n )∴|b 1 |+ |b 2|+ + |b n |= =4n - 1.1-4答案 4n - 1n1=________. 13.(2017 全·国 Ⅱ 卷)等差数列 { a n } 的前 n 项和为 S n , a 3= 3, S 4= 10,则∑k =1S k解析设等差数列 { a n } 的公差为 d ,则a 3= a 1+ 2d = 3,a 1= 1, n ( n - 1)n (n + 1)由4= 4a 1+ 4× 3得∴S n =n × 1+ × 1=2,d = 1.2S2 d = 10,1211= = 2 n-n + 1 .Snn ( n + 1)n1+1- 1+ 1- 1+ +1-11-1∴∑11111 = 21- 2nk = 1S k = S 1+ S 2+ S 3++S n 2233 4n n + 1 =2n + 1=.n + 1答案2nn + 114.(2019 河·南、河北两省联考 )已知数列 { a n } 的前 n 项和为 S n , a 1= 5,nS n +1- (n + 1)S n = n 2+ n.S n (1) 求证:数列n为等差数列;(2) 令 b n = 2n a n ,求数列 { b n } 的前 n 项和 T n .13(1) 证明 由 nS n + 1- (n + 1)S n = n 2+ n 得S n+1-S n=1,n + 1 n又S 1=5,所以数列S n 是首项为 5,公差为 1 的等差数列 . 1n(2) 解由(1) 可知Sn n = 5+ (n -1) =n + 4,所以 S n = n 2+ 4n.当 n ≥ 2 时, a n = S n - S n -1=n 2+4n - (n - 1)2- 4(n - 1)=2n + 3. 又 a 1= 5 也符合上式,所以 a n = 2n +3(n ∈*),所以b n =(2n +3)2n , 所以 T n = 5×2+ 7× 22+ 9× 23+ + (2n +3)2n ,①2T n = 5× 22+ 7×23+ 9× 24+ + (2n + 1)2n + (2n + 3)2n +1,② 所以②-①得T n =(2n +3)2n+1-10-(23+24+ +2n +1)=(2n +3)2n+1-10-23(1-2n -1)1-2= (2 n + 3)2n +1- 10- (2n +2- 8)= (2n +1)2n +1- 2.14。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第六章数列高考导航知识网络6.1 数列的概念与简单表示法典例精析题型一 归纳、猜想法求数列通项【例1】根据下列数列的前几项,分别写出它们的一个通项公式: (1)7,77,777,7 777,… (2)23,-415,635,-863,… (3)1,3,3,5,5,7,7,9,9,…【解析】(1)将数列变形为79·(10-1),79(102-1),79(103-1),…,79(10n -1),故a n =79(10n -1).(2)分开观察,正负号由(-1)n+1确定,分子是偶数2n ,分母是1×3,3×5,5×7, …,(2n -1)(2n +1),故数列的通项公式可写成a n =(-1)n+1)12)(12(2+-n n n.(3)将已知数列变为1+0,2+1,3+0,4+1,5+0,6+1,7+0,8+1,9+0,….故数列的通项公式为a n =n +2)1(1n-+.【点拨】联想与转换是由已知认识未知的两种有效的思维方法,观察归纳是由特殊到一般的有效手段,本例的求解关键是通过分析、比较、联想、归纳、转换获得项与项序数的一般规律,从而求得通项.【变式训练1】如下表定义函数f (x ):对于数列{a n },a 1=4,a n =f (n -1 2 008 ) A.1B.2C.3D.4【解析】a 1=4,a 2=1,a 3=5,a 4=2,a 5=4,…,可得a n +4=a n . 所以a 2 008=a 4=2,故选B.题型二 应用a n =⎪⎩⎪⎨⎧≥-=-)2(),1(11n S S n S n n求数列通项【例2】已知数列{a n }的前n 项和S n ,分别求其通项公式: (1)S n =3n -2; (2)S n =18(a n +2)2 (a n >0).【解析】(1)当n =1时,a 1=S 1=31-2=1,当n ≥2时,a n =S n -S n -1=(3n -2)-(3n -1-2)=2×3n -1,又a 1=1不适合上式,故a n =⎪⎩⎪⎨⎧≥⨯=-)2(32),1(11n n n(2)当n =1时,a 1=S 1=18(a 1+2)2,解得a 1=2,当n ≥2时,a n =S n -S n -1=18(a n +2)2-18(a n -1+2)2,所以(a n -2)2-(a n -1+2)2=0,所以(a n +a n -1)(a n -a n -1-4)=0, 又a n >0,所以a n -a n -1=4, 可知{a n }为等差数列,公差为4,所以a n =a 1+(n -1)d =2+(n -1)·4=4n -2, a 1=2也适合上式,故a n =4n -2.【点拨】本例的关键是应用a n =⎪⎩⎪⎨⎧≥-=-)2(),1(11n S S n S n n求数列的通项,特别要注意验证a 1的值是否满足“n ≥2”的一般性通项公式.【变式训练2】已知a 1=1,a n =n (a n +1-a n )(n ∈N *),则数列{a n }的通项公式是( ) A.2n -1B.(n +1n)n -1C.n 2D.n【解析】由a n =n (a n +1-a n )⇒a n +1a n =n +1n. 所以a n =a n a n -1×a n -1a n -2×…×a 2a 1=n n -1×n -1n -2×…×32×21=n ,故选D.题型三 利用递推关系求数列的通项【例3】已知在数列{a n }中a 1=1,求满足下列条件的数列的通项公式: (1)a n +1=a n 1+2a n ;(2)a n +1=2a n +2n +1.【解析】(1)因为对于一切n ∈N *,a n ≠0,因此由a n +1=a n 1+2a n 得1a n +1=1a n +2,即1a n +1-1a n=2.所以{1a n }是等差数列,1a n =1a 1+(n -1)·2=2n -1,即a n =12n -1.(2)根据已知条件得a n +12n +1=a n 2n +1,即a n +12n +1-a n2n =1.所以数列{a n 2n }是等差数列,a n 2n =12+(n -1)=2n -12,即a n =(2n -1)·2n -1.【点拨】通项公式及递推关系是给出数列的常用方法,尤其是后者,可以通过进一步的计算,将其进行转化,构造新数列求通项,进而可以求得所求数列的通项公式.【变式训练3】设{a n }是首项为1的正项数列,且(n +1)·a 2n +1-na 2n +a n +1a n =0(n =1,2,3,…),求a n .【解析】因为数列{a n }是首项为1的正项数列, 所以a n a n +1≠0,所以(n +1)a n +1a n -na n a n +1+1=0,令a n +1a n=t ,所以(n +1)t 2+t -n =0, 所以[(n +1)t -n ](t +1)=0,得t =n n +1或t =-1(舍去),即a n +1a n =nn +1.所以a 2a 1·a 3a 2·a 4a 3·a 5a 4·…·a n a n -1=12·23·34·45·…·n -1n ,所以a n =1n .总结提高1.给出数列的前几项求通项时,常用特征分析法与化归法,所求通项不唯一.2.由S n 求a n 时,要分n =1和n ≥2两种情况.3.给出S n 与a n 的递推关系,要求a n ,常用思路是:一是利用S n -S n -1=a n (n ≥2)转化为a n 的递推关系,再求其通项公式;二是转化为S n 的递推关系,先求出S n 与n 之间的关系,再求a n .6.2 等差数列典例精析题型一 等差数列的判定与基本运算 【例1】已知数列{a n }前n 项和S n =n 2-9n .(1)求证:{a n }为等差数列;(2)记数列{|a n |}的前n 项和为T n ,求 T n 的表达式. 【解析】(1)证明:n =1时,a 1=S 1=-8,当n ≥2时,a n =S n -S n -1=n 2-9n -[(n -1)2-9(n -1)]=2n -10, 当n =1时,也适合该式,所以a n =2n -10 (n ∈N *). 当n ≥2时,a n -a n -1=2,所以{a n }为等差数列. (2)因为n ≤5时,a n ≤0,n ≥6时,a n >0. 所以当n ≤5时,T n =-S n =9n -n 2,当n ≥6时,T n =||a 1+||a 2+…+||a 5+||a 6+…+||a n =-a 1-a 2-…-a 5+a 6+a 7+…+a n =S n -2S 5=n 2-9n -2×(-20)=n 2-9n +40,所以,【点拨】根据定义法判断数列为等差数列,灵活运用求和公式.【变式训练1】已知等差数列{a n }的前n 项和为S n ,且S 21=42,若记b n =1391122a a a --,则数列{b n }( )A.是等差数列,但不是等比数列B.是等比数列,但不是等差数列C.既是等差数列,又是等比数列D.既不是等差数列,又不是等比数列【解析】本题考查了两类常见数列,特别是等差数列的性质.根据条件找出等差数列{a n }的首项与公差之间的关系从而确定数列{b n }的通项是解决问题的突破口.{a n }是等差数列,则S 21=21a 1+21×202d =42.所以a 1+10d =2,即a 11=2.所以b n =1391122a a a--=22-(2a 11)=20=1,即数列{b n }是非0常数列,既是等差数列又是等比数列.答案为C.题型二 公式的应用【例2】设等差数列{a n }的前n 项和为S n ,已知a 3=12,S 12>0,S 13<0. (1)求公差d 的取值范围;(2)指出S 1,S 2,…,S 12中哪一个值最大,并说明理由. 【解析】(1)依题意,有S 12=12a 1+12×(12-1)d 2>0,S 13=13a 1+13×(13-1)d2<0,即⎩⎨⎧<+>+②① 06 011211d a d a由a 3=12,得a 1=12-2d .③将③分别代入①②式,得⎩⎨⎧<+>+03,0724d d所以-247<d <-3.(2)方法一:由d <0可知a 1>a 2>a 3>…>a 12>a 13,因此,若在1≤n ≤12中存在自然数n ,使得a n >0,a n +1<0, 则S n 就是S 1,S 2,…,S 12中的最大值. 由于S 12=6(a 6+a 7)>0,S 13=13a 7<0, 即a 6+a 7>0,a 7<0,因此a 6>0,a 7<0, 故在S 1,S 2,…,S 12中,S 6的值最大.方法二:由d <0可知a 1>a 2>a 3>…>a 12>a 13,因此,若在1≤n ≤12中存在自然数n ,使得a n >0,a n +1<0, 则S n 就是S 1,S 2,…,S 12中的最大值.故在S 1,S 2,…,S 12中,S 6的值最大.【变式训练2】在等差数列{a n }中,公差d >0,a 2 008,a 2 009是方程x 2-3x -5=0的两个根,S n 是数列{a n }的前n 项的和,那么满足条件S n <0的最大自然数n = .【解析】由题意知⎩⎨⎧<-=>=+,05,030092008 2009 2008 2a a a a 又因为公差d >0,所以a 2 008<0,a 2 009>0. 当n =4 015时,S 4 015=a 1+a 4 0152×4 015=a 2 008×4 015<0;当n =4 016时,S 4 016=a 1+a 4 0162×4 016=a 2 008+a 2 0092×4 016>0.所以满足条件S n <0的最大自然数n =4 015.题型三 性质的应用【例3】某地区2010年9月份曾发生流感,据统计,9月1日该地区流感病毒的新感染者有40人,此后,每天的新感染者人数比前一天增加40人;但从9月11日起,该地区医疗部门采取措施,使该种病毒的传播得到控制,每天的新感染者人数比前一天减少10人.(1)分别求出该地区在9月10日和9月11日这两天的流感病毒的新感染者人数; (2)该地区9月份(共30天)该病毒新感染者共有多少人?【解析】(1)由题意知,该地区9月份前10天流感病毒的新感染者的人数构成一个首项为40,公差为40的等差数列.所以9月10日的新感染者人数为40+(10-1)×40=400(人). 所以9月11日的新感染者人数为400-10=390(人).(2)9月份前10天的新感染者人数和为S 10=10(40+400)2=2 200(人),9月份后20天流感病毒的新感染者的人数,构成一个首项为390,公差为-10的等差数列. 所以后20天新感染者的人数和为T 20=20×390+20(20-1)2×(-10)=5 900(人).所以该地区9月份流感病毒的新感染者共有2 200+5 900=8 100(人).【变式训练3】设等差数列{a n }的前n 项和为S n ,若S 4≥10,S 5≤15,则a 4的最大值为 .【解析】因为等差数列{a n }的前n 项和为S n ,且S 4≥10,S 5≤15,所以5+3d 2≤a 4≤3+d ,即5+3d ≤6+2d ,所以d ≤1,所以a 4≤3+d ≤3+1=4,故a 4的最大值为4.总结提高1.在熟练应用基本公式的同时,还要会用变通的公式,如在等差数列中,a m =a n +(m -n )d .2.在五个量a 1、d 、n 、a n 、S n 中,知其中的三个量可求出其余两个量,要求选用公式要恰当,即善于减少运算量,达到快速、准确的目的.3.已知三个或四个数成等差数列这类问题,要善于设元,目的仍在于减少运算量,如三个数成等差数列时,除了设a ,a +d ,a +2d 外,还可设a -d ,a ,a +d ;四个数成等差数列时,可设为a -3m ,a -m ,a +m ,a +3m .4.在求解数列问题时,要注意函数思想、方程思想、消元及整体消元的方法的应用.6.3 等比数列典例精析题型一 等比数列的基本运算与判定【例1】数列{a n }的前n 项和记为S n ,已知a 1=1,a n +1=n +2n S n(n =1,2,3,…).求证: (1)数列{S nn}是等比数列;(2)S n +1=4a n .【解析】(1)因为a n +1=S n +1-S n ,a n +1=n +2n S n ,所以(n +2)S n =n (S n +1-S n ).整理得nS n +1=2(n +1)S n ,所以S n +1n +1=2·S nn ,故{S nn }是以2为公比的等比数列.(2)由(1)知S n +1n +1=4·S n -1n -1=4a nn +1(n ≥2),于是S n +1=4(n +1)·S n -1n -1=4a n (n ≥2).又a 2=3S 1=3,故S 2=a 1+a 2=4.因此对于任意正整数n ≥1,都有S n +1=4a n .【点拨】①运用等比数列的基本公式,将已知条件转化为关于等比数列的特征量a 1、q 的方程是求解等比数列问题的常用方法之一,同时应注意在使用等比数列前n 项和公式时,应充分讨论公比q 是否等于1;②应用定义判断数列是否是等比数列是最直接,最有依据的方法,也是通法,若判断一个数列是等比数列可用a n +1a n=q (常数)恒成立,也可用a 2n +1 =a n ·a n +2 恒成立,若判定一个数列不是等比数列则只需举出反例即可,也可以用反证法.【变式训练1】等比数列{a n }中,a 1=317,q =-12.记f (n )=a 1a 2…a n ,则当f (n )最大时,n 的值为( )A.7B.8C.9D.10【解析】a n =317×(-12)n -1,易知a 9=317×1256>1,a 10<0,0<a 11<1.又a 1a 2…a 9>0,故f (9)=a 1a 2…a 9的值最大,此时n =9.故选C.题型二 性质运用【例2】在等比数列{a n }中,a 1+a 6=33,a 3a 4=32,a n >a n +1(n ∈N *). (1)求a n ;(2)若T n =lg a 1+lg a 2+…+lg a n ,求T n .【解析】(1)由等比数列的性质可知a 1a 6=a 3a 4=32, 又a 1+a 6=33,a 1>a 6,解得a 1=32,a 6=1, 所以a 6a 1=132,即q 5=132,所以q =12,所以a n =32·(12)n -1=26-n .(2)由等比数列的性质可知,{lg a n }是等差数列, 因为lg a n =lg 26-n =(6-n )lg 2,lg a 1=5lg 2,所以T n =(lg a 1+lg a n )n 2=n (11-n )2lg 2.【点拨】历年高考对性质考查较多,主要是利用“等积性”,题目“小而巧”且背景不断更新,要熟练掌握.【变式训练2】在等差数列{a n }中,若a 15=0,则有等式a 1+a 2+…+a n =a 1+a 2+…+a 29-n (n <29,n ∈N *)成立,类比上述性质,相应地在等比数列{b n }中,若b 19=1,能得到什么等式?【解析】由题设可知,如果a m =0,在等差数列中有a 1+a 2+…+a n =a 1+a 2+…+a 2m -1-n (n <2m -1,n ∈N *)成立, 我们知道,如果m +n =p +q ,则a m +a n =a p +a q , 而对于等比数列{b n },则有若m +n =p +q ,则a m a n =a p a q , 所以可以得出结论:若b m =1,则有b 1b 2…b n =b 1b 2…b 2m -1-n (n <2m -1,n ∈N *)成立. 在本题中则有b 1b 2…b n =b 1b 2…b 37-n (n <37,n ∈N *). 题型三 综合运用【例3】设数列{a n }的前n 项和为S n ,其中a n ≠0,a 1为常数,且-a 1,S n ,a n +1成等差数列. (1)求{a n }的通项公式;(2)设b n =1-S n ,问是否存在a 1,使数列{b n }为等比数列?若存在,则求出a 1的值;若不存在,说明理由.【解析】(1)由题意可得2S n =a n +1-a 1.所以当n ≥2时,有⎩⎨⎧-=-=-+11,1122a a S a a S n n n n两式相减得a n +1=3a n (n ≥2). 又a 2=2S 1+a 1=3a 1,a n ≠0,所以{a n }是以首项为a 1,公比为q =3的等比数列. 所以a n =a 1·3n -1.(2)因为S n =a 1(1-q n )1-q =-12a 1+12a 1·3n ,所以b n =1-S n =1+12a 1-12a 1·3n .要使{b n }为等比数列,当且仅当1+12a 1=0,即a 1=-2,此时b n =3n .所以{b n }是首项为3,公比为q =3的等比数列. 所以{b n }能为等比数列,此时a 1=-2.【变式训练3】已知命题:若{a n }为等差数列,且a m =a ,a n =b (m <n ,m 、n ∈N *),则a m +n =bn -amn -m .现在已知数列{b n }(b n >0,n ∈N *)为等比数列,且b m =a ,b n =b (m <n ,m ,n ∈N *),类比上述结论得b m +n = .【解析】n -m b na m.总结提高1.方程思想,即等比数列{a n }中五个量a 1,n ,q ,a n ,S n ,一般可“知三求二”,通过求和与通项两公式列方程组求解.2.对于已知数列{a n }递推公式a n 与S n 的混合关系式,利用公式a n =S n -S n -1(n ≥2),再引入辅助数列,转化为等比数列问题求解.3.分类讨论思想:当a 1>0,q >1或a 1<0,0<q <1时,等比数列{a n }为递增数列;当a 1>0,0<q <1或a 1<0,q >1时,{a n }为递减数列;q <0时,{a n }为摆动数列;q =1时,{a n }为常数列.6.4 数列求和典例精析题型一 错位相减法求和【例1】求和:S n =1a +2a 2+3a 3+…+nan .【解析】(1)a =1时,S n =1+2+3+…+n =n (n +1)2.(2)a ≠1时,因为a ≠0, S n =1a +2a 2+3a 3+…+nan ,①1a S n =1a 2+2a 3+…+n -1a n +n an +1.② 由①-②得(1-1a )S n =1a +1a 2+…+1a n -n a n +1=1a (1-1a n )1-1a-n a n +1, 所以S n =a (a n -1)-n (a -1)a n (a -1)2. 综上所述,S n =⎪⎪⎩⎪⎪⎨⎧≠----=+).1()1()1()1(),1(2)1(2a a a a n a a a n n n n 【点拨】(1)若数列{a n }是等差数列,{b n }是等比数列,则求数列{a n ·b n }的前n 项和时,可采用错位相减法;(2)当等比数列公比为字母时,应对字母是否为1进行讨论;(3)当将S n 与qS n 相减合并同类项时,注意错位及未合并项的正负号.【变式训练1】数列{2n -32n -3}的前n 项和为( ) A.4-2n -12n -1 B.4+2n -72n -2 C.8-2n +12n -3 D.6-3n +22n -1 【解析】取n =1,2n -32n -3=-4.故选C. 题型二 分组并项求和法【例2】求和S n =1+(1+12)+(1+12+14)+…+(1+12+14+…+12n -1). 【解析】和式中第k 项为a k =1+12+14+…+12k -1=1-(12)k 1-12=2(1-12k ). 所以S n =2[(1-12)+(1-122)+…+(1-12n )] =])111([2个n +⋯++-(12+122+…+12n )] =2[n -12(1-12n )1-12]=2[n -(1-12n )]=2n -2+12n -1. 【变式训练2】数列1, 1+2, 1+2+22,1+2+22+23,…,1+2+22+…+2n -1,…的前n 项和为( ) A.2n -1B.n ·2n -nC.2n +1-nD.2n +1-n -2 【解析】a n =1+2+22+…+2n -1=2n -1,S n =(21-1)+(22-1)+…+(2n -1)=2n +1-n -2.故选D.题型三 裂项相消法求和【例3】数列{a n }满足a 1=8,a 4=2,且a n +2-2a n +1+a n =0 (n ∈N *).(1)求数列{a n }的通项公式;(2)设b n =1n (14-a n )(n ∈N *),T n =b 1+b 2+…+b n (n ∈N *),若对任意非零自然数n ,T n >m 32恒成立,求m 的最大整数值.【解析】(1)由a n +2-2a n +1+a n =0,得a n +2-a n +1=a n +1-a n ,从而可知数列{a n }为等差数列,设其公差为d ,则d =a 4-a 14-1=-2, 所以a n =8+(n -1)×(-2)=10-2n .(2)b n =1n (14-a n )=12n (n +2)=14(1n -1n +2), 所以T n =b 1+b 2+…+b n =14[(11-13)+(12-14)+…+(1n -1n +2)] =14(1+12-1n +1-1n +2)=38-14(n +1)-14(n +2)>m 32, 上式对一切n ∈N *恒成立.所以m <12-8n +1-8n +2对一切n ∈N *恒成立. 对n ∈N *,(12-8n +1-8n +2)min =12-81+1-81+2=163, 所以m <163,故m 的最大整数值为5. 【点拨】(1)若数列{a n }的通项能转化为f (n +1)-f (n )的形式,常采用裂项相消法求和.(2)使用裂项相消法求和时,要注意正负项相消时,消去了哪些项,保留了哪些项.【变式训练3】已知数列{a n },{b n }的前n 项和为A n ,B n ,记c n =a n B n +b n A n -a n b n (n ∈N *),则数列{c n }的前10项和为( )A.A 10+B 10B.A 10+B 102C.A 10B 10D.A 10B 10【解析】n =1,c 1=A 1B 1;n ≥2,c n =A n B n -A n -1B n -1,即可推出{c n }的前10项和为A 10B 10,故选C. 总结提高1.常用的基本求和法均对应数列通项的特殊结构特征,分析数列通项公式的特征联想相应的求和方法既是根本,也是关键.2.数列求和实质就是求数列{S n }的通项公式,它几乎涵盖了数列中所有的思想策略、方法和技巧,对学生的知识和思维有很高的要求,应充分重视并系统训练.6.5 数列的综合应用典例精析题型一 函数与数列的综合问题【例1】已知f (x )=log a x (a >0且a ≠1),设f (a 1),f (a 2),…,f (a n )(n ∈N *)是首项为4,公差为2的等差数列.(1)设a 是常数,求证:{a n }成等比数列;(2)若b n =a n f (a n ),{b n }的前n 项和是S n ,当a =2时,求S n .【解析】(1)f (a n )=4+(n -1)×2=2n +2,即log a a n =2n +2,所以a n =a 2n +2, 所以a n a n -1=a 2n +2a2n =a 2(n ≥2)为定值,所以{a n }为等比数列. (2)b n =a n f (a n )=a 2n +2log a a 2n +2=(2n +2)a 2n +2, 当a =2时,b n =(2n +2) ·(2)2n +2=(n +1) ·2n +2, S n =2·23+3·24+4·25+…+(n +1) ·2n +2, 2S n =2·24+3·25+…+n ·2n +2+(n +1)·2n +3, 两式相减得-S n =2·23+24+25+…+2n +2-(n +1)·2n +3=16+24(1-2n -1)1-2-(n +1)·2n +3, 所以S n =n ·2n +3. 【点拨】本例是数列与函数综合的基本题型之一,特征是以函数为载体构建数列的递推关系,通过由函数的解析式获知数列的通项公式,从而问题得到求解.【变式训练1】设函数f (x )=x m +ax 的导函数f ′(x )=2x +1,则数列{1f (n )}(n ∈N *)的前n 项和是( ) A.n n +1 B.n +2n +1C.n n +1D.n +1n 【解析】由f ′(x )=mx m -1+a =2x +1得m =2,a =1.所以f (x )=x 2+x ,则1f (n )=1n (n +1)=1n -1n +1.所以S n =1-12+12-13+13-14+…+1n -1n +1=1-1n +1=n n +1.故选C. 题型二 数列模型实际应用问题【例2】某县位于沙漠地带,人与自然长期进行着顽强的斗争,到2009年底全县的绿化率已达30%,从2010年开始,每年将出现这样的局面:原有沙漠面积的16%将被绿化,与此同时,由于各种原因,原有绿化面积的4%又被沙化.(1)设全县面积为1,2009年底绿化面积为a 1=310,经过n 年绿化面积为a n +1,求证:a n +1=45a n +425; (2)至少需要多少年(取整数)的努力,才能使全县的绿化率达到60%?【解析】(1)证明:由已知可得a n 确定后,a n +1可表示为a n +1=a n (1-4%)+(1-a n )16%,即a n +1=80%a n +16%=45a n +425. (2)由a n +1=45a n +425有,a n +1-45=45(a n -45), 又a 1-45=-12≠0,所以a n +1-45=-12·(45)n ,即a n +1=45-12·(45)n , 若a n +1≥35,则有45-12·(45)n ≥35,即(45)n -1≤12,(n -1)lg 45≤-lg 2, (n -1)(2lg 2-lg 5)≤-lg 2,即(n -1)(3lg 2-1)≤-lg 2,所以n ≥1+lg 21-3lg 2>4,n ∈N *, 所以n 取最小整数为5,故至少需要经过5年的努力,才能使全县的绿化率达到60%.【点拨】解决此类问题的关键是如何把实际问题转化为数学问题,通过反复读题,列出有关信息,转化为数列的有关问题.【变式训练2】规定一机器狗每秒钟只能前进或后退一步,现程序设计师让机器狗以“前进3步,然后再后退2步”的规律进行移动.如果将此机器狗放在数轴的原点,面向正方向,以1步的距离为1单位长移动,令P (n )表示第n 秒时机器狗所在的位置坐标,且P (0)=0,则下列结论中错误的是( )A.P (2 006)=402B.P (2 007)=403C.P (2 008)=404D.P (2 009)=405【解析】考查数列的应用.构造数列{P n },由题知P (0)=0,P (5)=1,P (10)=2,P (15)=3.所以P (2 005)=401,P (2 006)=401+1=402,P (2 007)=401+1+1=403,P (2 008)=401+3=404,P (2 009)=404-1=403.故D 错.题型三 数列中的探索性问题【例3】{a n },{b n }为两个数列,点M (1,2),A n (2,a n ),B n (n -1n ,2n)为直角坐标平面上的点. (1)对n ∈N *,若点M ,A n ,B n 在同一直线上,求数列{a n }的通项公式;(2)若数列{b n }满足log 2C n =a 1b 1+a 2b 2+…+a n b n a 1+a 2+…+a n,其中{C n }是第三项为8,公比为4的等比数列,求证:点列(1,b 1),(2,b 2),…,(n ,b n )在同一直线上,并求此直线方程.【解析】(1)由a n -22-1=2n -2n -1n-1,得a n =2n . (2)由已知有C n =22n -3,由log 2C n 的表达式可知: 2(b 1+2b 2+…+nb n )=n (n +1)(2n -3),①所以2[b 1+2b 2+…+(n -1)b n -1]=(n -1)n (2n -5).②①-②得b n =3n -4,所以{b n }为等差数列.故点列(1,b 1),(2,b 2),…,(n ,b n )共线,直线方程为y =3x -4.【变式训练3】已知等差数列{a n }的首项a 1及公差d 都是整数,前n 项和为S n (n ∈N *).若a 1>1,a 4>3,S3≤9,则通项公式a n=.【解析】本题考查二元一次不等式的整数解以及等差数列的通项公式.由a1>1,a4>3,S3≤9得令x=a1,y=d得在平面直角坐标系中画出可行域如图所示.符合要求的整数点只有(2,1),即a1=2,d=1.所以a n=2+n -1=n+1.故答案填n+1.总结提高1.数列模型应用问题的求解策略(1)认真审题,准确理解题意;(2)依据问题情境,构造等差、等比数列,然后应用通项公式、前n项和公式以及性质求解,或通过探索、归纳构造递推数列求解;(3)验证、反思结果与实际是否相符.2.数列综合问题的求解策略(1)数列与函数综合问题或应用数学思想解决数列问题,或以函数为载体构造数列,应用数列的知识求解;(2)数列的几何型综合问题,探究几何性质和规律特征建立数列的递推关系式,然后求解问题.。

相关文档
最新文档