电池管理(BMS)系统整体设计(上)
BMS系统方案范文
BMS系统方案范文BMS系统(电池管理系统)是一种电子系统,用于对电池进行监测、控制和保护。
随着电动车、储能系统和可再生能源的快速发展,BMS系统变得越来越重要。
BMS系统能够大大提高电池组的安全性、寿命和性能,同时也能优化能源利用效率。
BMS系统通常由硬件和软件两部分组成。
硬件部分包括传感器、电压和电流测量器、温度传感器、继电器和保险丝等,用于收集电池组的各种参数数据。
软件部分则负责监控和控制电池组,通过预测和响应电池组的状态变化来保护电池,并提供相关数据用于分析和优化。
BMS系统的主要功能包括电池参数监测、电池SOC(State of Charge)、SOH(State of Health)和SOP(State of Power)估计、电池均衡控制、电池温度控制和保护、通信和故障诊断等。
其中,电池参数监测功能包括对电池组的电压、电流、温度等各项参数进行实时监测和记录,以便及时发现电池组的异常状况。
SOC和SOH估计功能通过算法对电池组的放电曲线进行分析,估计电池的剩余电量和健康状况,以便及时提醒用户充电或维护电池。
电池均衡控制功能通过控制电池组内部的均衡器,使各个单体电池之间的电荷均衡,以延长电池的使用寿命和提高能源利用效率。
电池温度控制和保护功能通过监测电池组的温度和控制冷却机制,保持电池在安全和稳定的温度范围内工作,避免过热或过冷对电池造成伤害。
通信功能通过与其他车辆或系统进行数据交换和共享,实现电池组的联网和远程监控。
故障诊断功能通过分析电池组的参数和状态变化,判断电池组的故障类型和位置,提供有效的故障排除和维护方案。
BMS系统的选择应该根据具体的应用需求和电池组的特性来进行。
不同的电池类型、容量和工作环境需要不同的BMS系统。
一般来说,BMS系统应具备高精度的数据采集和处理能力,以保证对电池组的准确监测和控制。
同时,BMS系统应具备较高的安全性和可靠性,以保证电池组在各种工作条件下的安全和稳定运行。
基于bms电池·管理系统的毕业设计
摘要BMS电池管理系统主要由一个主控单元(BMU)和多个单体采集单元(BVT)组成的集散式系统结构。
BMU单元主要是收集电池的相关数据,对电池的数据进行集中的分析和处理,判断当前电池的故障,进行电池系统的预警和报警。
同时BMU 还完成电池的电池电压、母线电压计算、电池电流采样计算、绝缘监测、高压通断控制及电池热管理系统的控制,并根据电池的电流、电压等相关数据进行电池的SOC估算。
BVT单元主要完成单体电池的电压和温度数据采集,并实时和BMU 进行通讯,把采集到得电压、温度数据及电池状态发送个BMU单元。
在车辆运行过程中,电池管理系统和整车控制器或电机控制器进行CAN通讯,电池管理系统实时提供电池电压、充放电电流、电池SOC以及整车控制器需要的其他数据,当电池管理系统或电池系统出现报警时,电池管理系统把报警发送给整车控制器,同时根据报警级别进行限功率处理或请求断开接触器,整车控制器根据报警级别采取相应的控制策略。
关键词:主控单元;多个单体采集单元;整车控制器目录绪论............................................. 错误!未定义书签。
一、 BMS电池设计背景 (2)二、性能特点(一)电池管理系统主要功能 ......................... 错误!未定义书签。
(二) BMS系统的两大单元........................... 错误!未定义书签。
(三)主要参数......................................................... (4)三、BMS电池总体设计方案 (5)(一)BMS电池的原理 (5)(二)BMS电池的元件 (7)四、BMS控制功率表(一)回馈功率表 (17)(二)放电功率表 (17)五、使用注意事项(一)充电控制...................................................................... .. (19)(二)加热控制...................................................................... .. (20)(三)bms电池控制加热流程...................................................................... (21)(四)附件bms原理图................................................................................. . (6)结论 (22)参考文献 (24)致 (25)绪论BMS是BATTERY MANAGEMENT SYSTEM的第一个字母简称组合,称之谓电池管理系统。
电动汽车动力电池管理系统(BMS)设计
电动汽车动力电池管理系统(BMS)设计摘要:本文主要从硬件系统设计、软件系统设计两个方面,对电动汽车中动力电池的内部管理系统(BMS)综合设计,进行了深度的分析与研究,以通过不断地实践研究,积极探索出电动汽车中动力电池的内部管理系统(BMS)最具高效性的综合设计方案,以充分提升电动汽车中动力电池的内部管理系统(BMS)的设计水准,确保电动汽车中动力电池的内部管理系统(BMS)各项功能能够满足于电动汽车实际的应用需求,为我国电动汽车行业的长期发展奠定基础。
关键词:电动汽车;动力电池;管理系统(BMS);设计前言:电动汽车(battery electric vehicle;BEV),主要是指以车载类电源为基本动力,利用电机来驱动车轮达到行驶目地,符合于我国安全法规与交管各项规定的车辆。
基于电动汽车有着环保性特征,所以,其在国内的发展前景相对较为良好。
但是,基于国内电动汽车相关技术还处于初步探索阶段,各项技术还不够成熟,若想实现突破性发展还需作出更多的努力。
电动汽车,它与传统汽车最大的不同之处就在于电动汽车内部包含着一种动力的电池。
在一定程度上,通过该动力电池可实现电动汽车节能化、环保化的行使。
那么,为了能够更好地助推我国电动汽车行业的发展,就需从其内部的动力电池入手,对其所在的管理系统(BMS),进行系统化的分析与研究。
从而能够设计出更具有功能特性的动力电池内部管理系统(BMS),为电动汽车提供强大动力电池内部管理系统支持,进一步推动我国电动汽车行业的快速发展,让其可稳步向着新的发展征程迈进。
1、硬件系统设计基于电池组主要是由多节电池的单体并联与串联而成,实现对所有电池单体实时化监控。
因而,如图1所示,电池内部管理系统主要应用了主从结构,以实现灵活性通讯,提升通讯实际速度。
从板均需具有电池单体的温度与电压检测、CAN总线的通讯等各项功能。
图1 BMS系统框图示图1.1 IMCU系统处理器系统处理器主要选用的是Freescale -9S12DT64型号的MCU系统处理器,该型号MCU系统处理器为16位系统的单片机,主要是由CAN系统的总线模块、PWM的调节器(1个)AD的转换器(2个)定时器(1个)外部串口(1个)内部串口(2个)。
毕业设计(论文)-纯电动汽车电池管理系统(bms)[管理资料]
摘要随着工业发展和社会需求的增加,汽车在社会进步和经济发展中扮演着重要的角色。
汽车工业的迅速发展,推动了机械、能源、橡胶、钢铁等重要产业的发展,但同时也日益面临着环境污染、能源短缺的严重问题。
纯电动汽车以其零排放,噪声低等优点越来越受到世界各国的重视,被称作绿色环保车。
作为发展电动车的关键技术之一的电池管理系统(BMS),是纯电动车产业化的关键。
车载网络数据采集系统就是这样一个电池管理系统,可以直接检测及管理电动汽车的储能电池运行的全过程,实现对车载多级串联锂电池、电池温度、车速等数据的监测、采集和分析。
本论文是基于CAN总线的车载网络数据采集系统选用STM32F103VB作为系统的核心芯片,通过芯片自带的12位ADC对端口电压分别进行采集和监测,并通过CAN网络将采集到的数据发送到汽车仪表盘,为车辆状态量实时监测提供数据来源。
关键词:纯电动车,电池管理系统,电池状态,STM32F103VBAbstractWith industrial development and social demand, vehicle of social progress and economic development play important roles. Although the rapid development of automobile industry promote the machinery, energy, rubber, steel and other important industries, it is increasingly faced with environmental pollution, energy shortages and other serious problems.With the merit of zero-emission, and low noise, the pure electric vehicles which is called green cars has got more and more attention around the world. As one of the key technologies for the development of electric vehicles ,battery management system (BMS) is the point of the pure electric vehicle industry. Vehicle network data acquisition system is a battery management system that can directly detect and manage the storage battery electric vehicles to run the whole process, to achieve the data monitoring, collection and analysis of the on-board multi-level series of lithium battery, battery temperature, speed, and otherThe thesis is based on the vehicle CAN bus data acquisition system to chose STM32F103VB network as the core of the system ADC which comes from the chip collect and monitor the port voltages and sent the collected data to the car dashboard through the CAN network , which offer real-time monitoring of vehicle status amount of data sources.Key words:Pure electric cars, Battery Management Systems, The battery state, STM32F103VB摘要 (1)Abstract (2)第一章前言 (5)本课题研究的目的和意义 (5)车载网络数据采集系统的国内外研究现状 (6)本论文研究的主要工作 (7)第二章车载网络数据采集系统设计的原理 (9)车载网络数据采集系统的功能概述 (9)车载网络数据采集系统的结构 (10)基于STM32的车在网络数据采集系统设计控制框图 (10)信号的采集与处理 (11)车载系统的网络通讯 (12)CAN网络的基本概念 (12)CAN网络在车载数据采集系统中的应用 (13)系统主要性能指标 (14)系统预期误差的评估 (15)第三章基于STM32F103VB数据采集系统的硬件设计 (16)STM32F103VB简介 (16)STM32F103VB电源模块的设计 (18)电源电路的设计 (18)STM32启动模式电路选择设计 (18)STM32F103VB外围接口电路的设计 (19)模数转换器的电路设计 (19)测温电路设计 (20)复位电路的电路设计 (21)STM32F103B通讯电路的设计 (21)CAN通讯接口电路设计 (21)JTAG程序调试接口电路设计 (22)RS485通讯电路设计 (23)第四章基于STM32数据采集系统的软件设计 (25)Keil uVision3平台简介 (25)基于STM32的车在网络数据采集系统的程序设计 (25)数据采集模块程序设计 (26)LCD显示模块程序设计 (27)数据存储模块程序设计 (27)CAN数据通讯模块程序设计 (28)RS485通讯模块程序设计 (28)第五章误差分析与处理 (29)误差概述 (29)误差的主要来源 (29)误差的处理 (29)误差分析 (30)测控系统的非线性 (30)系统工作环境的噪声 (31)系统的稳定性 (31)误差处理 (32)实测电压数据分析 (32)整机PCB板设计 (33)第六章总结与展望 (35)总结 (35)展望 (35)参考文献 (36)致谢 (36)第一章前言本课题研究的目的和意义随着世界工业经济的不断发展和人类需求的不断增长,对全球气候造成严重的影响,二氧化碳排放量增大,臭氧层遭受到破坏等。
电池管理系统整体设计(一)
电池管理系统整体设计(一)引言概述电池管理系统(BMS)是一种用于监控、控制和保护电池组的关键系统。
其设计对于电池的性能和寿命至关重要。
本文将介绍电池管理系统整体设计的第一部分,包括系统架构、功能需求和硬件设计。
一、系统架构1.1 主控单元:负责整个电池管理系统的控制和协调工作。
1.2 通信模块:用于与外部系统进行数据交换和通信。
1.3 传感器模块:监测电池组的各种参数,如温度、电压、电流等。
1.4 保护模块:负责电池组的过流、过压、过温等保护功能。
1.5 显示模块:提供实时的电池信息展示和用户操作界面。
二、功能需求2.1 监测功能:实时监测电池组的各项参数,包括电流、电压、SOC(State of Charge)等。
2.2 控制功能:根据监测数据进行充放电控制,包括电池组的容量均衡和电池的保护控制。
2.3 通信功能:与外部系统进行数据交换和通信,以实现远程监控和控制。
2.4 故障诊断功能:对电池组进行故障诊断,及时发现和处理故障。
2.5 数据存储与分析功能:实时记录和存储电池组的历史数据,并进行数据分析和报告生成。
三、硬件设计3.1 主控单元:选择适当的处理器和存储器,设计相应的电路板布局。
3.2 通信模块:选择合适的通信模块,并与主控单元进行连接。
3.3 传感器模块:选择适当的传感器,并设计相应的电路板布局。
3.4 保护模块:选择合适的保护元件,并与主控单元进行连接。
3.5 显示模块:选择合适的显示器和按键,并设计相应的电路板布局。
总结通过引言概述,本文介绍了电池管理系统整体设计的第一部分,包括系统架构、功能需求和硬件设计。
对于电池管理系统的设计来说,合理的系统架构、满足用户需求的功能设计和合适的硬件选型都是至关重要的。
在下一部分中,我们将继续详细讨论电池管理系统的软件设计和性能优化。
储能应用中的BMS系统设计
储能应用中的BMS系统设计概要:设计了一款适用于储能应用中的电池管理系统。
该系统为3层结构,采用MC33771作为模拟量采样芯片,实现了电池的电压、电流、温度等数据的获取,并在此基础上完成了其他需求功能。
以储能系统中广泛使用的钛酸锂电池为实际测试对象,测试结果表明所设计的BMS系统能够实现对电池各项信息的准确采样,其中电压测量误差不超过2mV,电流采样误差在0.1%以内,并可有效完成各项设定功能,满足储能应用需求。
随着传统能源的日益减少,新能源发电技术凭借环保无污染的优点越来越受到人们的关注,然而新能源发电具有波动性和不确定性,会产生严重的谐波干扰,甚至导致电网崩溃。
为了解决这些问题,一般采用锂电池储能电站的方式降低功率波动对电网造成的危害。
储能电站一般由成千上万的单体电池串并联而成,为了确保这些单体电池能够安全有效运行,需要采用专门的电池管理系统(BMS)对电池进行监控和管理。
现有的BMS系统主要是针对电动汽车设计的,与电动汽车相比,储能系统中含有的串并联单体电池数量更多,导致储能系统结构更加复杂,对BMS系统的处理能力要求也大大提高,因此为了更好地满足储能系统的实际需求,需要对储能中BMS系统的功能和结构进行分析,并在此基础上设计一款适用于储能应用的BMS系统。
为此,基于对储能中BMS系统功能需求的分析及各主流电池管理芯片参数的对比,选择NXP公司生产的MC33771作为BMS系统中的模拟量采样芯片,并设计了3层系统结构,实现电池电压、温度、电流等模拟量的采样,并完成系统其他功能设计。
以钛酸锂电池组为测试对象,结果表明,所设计的BMS系统能够准确采样各种信息并以此为基础实现其他设定的功能,能够满足储能系统的使用需求。
1储能应用中的BMS结构对比目前常见的几种主流电池模拟量采样芯片,MC33771具有更多的电压采样通道以及宽温范围内最高的测量精度,并且采用菊花链通信的方式省去了昂贵的数字隔离器,因此采用MC33771作为模拟量采样芯片。
(完整)电池管理系统(BMS)解决方案
电池管理系统(BMS)解决方案
背景
电池管理系统(Battery Management System,BMS),通常被业内称为新能源汽车电池的“大脑”,与动力电池组、整车控制系统共同构成新能源汽车的三大核心技术。
动力锂离子电池的高能量密度特性使其成为新能源车辆的主要动力源,但由于生产工艺、使用环境的差异导致电池组的不一致性在使用过程中逐渐扩大,可能出现过充、过放和局部过热的危险,严重影响电池组的使用寿命和安全.BMS作为保护动力锂离子电池使用安全的控制系统,时刻监控电池的使用状态,通过必要措施缓解电池组的不一致性,为新能源车辆的使用安全提供保障。
产品功能
针对新能源车辆高压电池组的电池管理系统采用分布式结构,拓扑结构如下图所示:
图一高压电池管理系统拓扑结构
BMU:BMS 总控制器 , 电池组状态计算、充放电控制等
BCU:BMS 从控制器,电池单体电压、温度采集 ,主动/ 被动均衡电路
IVU:电池组电流、总电压采集
绝缘模块:电池组绝缘电阻采集 , 可以与 IVU集成
同时积极开展48V BSG 系统的BMS 的研究。
48V BMS 系统的拓扑结构如下图所示,BMS 控制器负责电池单体电压、温度采集,电池组间的主、被动均衡,电池组参数计算以及充放电控制。
图二电池管理系统拓扑结构产品参数
高压电池管理系统BMU 参数
高压电池管理系统BCU 参数
48V BSG 系统BMS 参数
成功案例
•上海某新能源公司 48V BSG系统 BMS 开发项目•某新能源公司 BMS 控制系统开发
•天津力神电池本体模型及 SOC算法开发
•国内某研究所 600V铅酸电池组管理系统开发。
动力电池及管理系统(BMS)设计技术规范
电池及管理系统设计技术规范编制:校对:审核:批准:有限公司2015年9月目录前言 (3)一、锂离子电池选型 (4)1、范围 (4)2、规范性引用文件 (4)3、术语和定义 (4)4、符号 (4)5、动力蓄电池循环寿命要求 (5)6、动力蓄电池安全要求 (5)7、动力蓄电池电性能要求 (6)8、电池组匹配 (8)9、电池组使用其他注意事项 (9)二、电池管理系统选型 (10)1、术语定义 (10)2、要求 (10)3、试验方法 (12)4、标志 (13)前言综述电动车的的电池就好比汽车油箱里的汽油。
它是由小块单元电池通过串并联方式级联后,通过BMS的管理,将电能传递到高压配电盒,然后分配给驱动电机和各个高压模块(DC/DC、空调压缩机、PTC等)。
电池管理系统(BMS)采用的是一个主控制器(BMU)和多个下一级电池采集模块(LECU)组成模块化动力电池管理系统,是一种具有有效节省电池电能、提高车辆安全性、实现充放电均衡和降低运行成本功能的电池管理系统模式。
高压控制系统的预充电及正负极高压继电器均由BMS控制,设置了充电控制继电器,增加高压充电时的安全性。
动力电池容量和正极材料的选择电池容量的确定,是根据车型电机的功率、运行时的额定电压、电流。
选择出电池包的电压、串并联的形式。
由电机额定的电压可以选择出需要串联电池的个数,由电机运行时的额定电流可以选择出需要并联电池的个数。
具体计算如下:由整车设计的匹配参数,确定好电机的功率和扭矩后,就可以计算出,动力电池包的串并联电池的数目,串联电池的电压U等于电机额定电压,就可推算出串联的电池个数N串=U/3.7(对于三元锂电的锂电池),对于最少并联的电池个数N并=电机运行工况的平均电流/单元电池的容量*续航里程/工况的平均时速。
电池的选择,则要考虑电池正极材料的类型,总的原则是12米以上的客车主要以磷酸铁锂电池为主,6米小型客车和乘用车的主要是三元锂电池为主。
电池管理系统(BMS)的功能性设计
电池管理系统(BMS)的功能性设计董云鹏(江西优特汽车技术有限公司,江西 上饶 334100)摘 要:随着传统汽车的普及,石油能源的需求大幅度增加,加剧了石油能源紧缺的危机。
随之而来的噪音、废气污染等问题愈演愈烈。
在此环境下,新能源汽车行业快速发展,锂离子动力电池系统作为新型能源,被大量运用在新能源汽车上。
电池管理系统(BMS)是锂离子动力电池系统的主要部分,在系统中起着至关重要的作用。
文章主要对电池管理系统(BMS)的功能、控制策略等内容进行阐述。
关键词:BMS;电池管理系统;功能性设计中图分类号:TM912 文献标志码:A 文章编号:1672-3872(2020)06-0134-02——————————————作者简介: 董云鹏(1988—),男,江西赣州人,本科,研究方向:新能源汽车的动力电池和BMS 的设计。
随着经济的发展,汽车数量大幅度增加,噪声污染和废气污染严重,加剧了石油能源紧缺的危机[1]。
在此环境下,新能源汽车应运而生,并快速发展。
锂离子动力电池系统作为新能源汽车的主要新型能源之一,在能量密度和BMS 等方面不断取得关键性的技术突破。
BMS 是锂离子动力电池系统的主要部分,在系统中起着至关重要的作用。
BMS 最核心的功能就是采集动力电池系统的电压、温度、电流、绝缘电阻、高压互锁状态等数据,然后分析数据状态和电池的使用环境,对电池系统充放电过程进行监测和控制,从而在保证电池安全的前提下最大限度地利用动力电池系统储存的能量[2]。
按照功能,可将BMS 分为电池数据采集、电池状态分析、电池安全保护、电池系统能量管理控制、数据通信和储存、故障诊断和管理等部分[3]。
1 电池数据采集电池数据采集包括电压、温度、电流、绝缘电阻、高压互锁状态等数据的采集,能为BMS 提供电池系统的实时数据,为后续的电池系统的状态分析、控制和保护提供依据。
电压采集有每串电芯的电压、电池系统内部总电压Vbat 和电池系统外部总电压Vlink。
浅析锂电池保护板(BMS)系统设计思路(一)
浅析锂电池保护板(BMS)系统设计思路(⼀)什么是BMS? ⾸先必须弄懂⼀个定义,什么是BMS? BMS其实就是BATTERY MANAGEMENT SYSTEM的缩写,中⽂名字叫电池管理系统,顾名思义,是专门⽤来进⾏锂电池运⾏管理的模块,对象是锂电池。
对于⼀般的终端⽤户⽽⾔,锂电池保护板其实并不存在,或者说,他们并不知道正在⾃⼰使⽤的产品中还有这么⼀个东西。
⽐如说电动车,100%的⽤户都知道电动车上⾯有电池,因为电池提供了能源,但我敢保证,最多有1%的⽤户知道还有锂电池保护板这个东西的存在。
BMS的存在感之所以如此低,完全是因为它并不能和⽤户产⽣直接的交流,也并不能与⽤户发⽣频繁的交互,就算是偶尔产⽣了⼀些数据,不过这些数据也是通过某些仪表盘传递给⽤户观测,当⽤户看见仪表盘上的红灯时只会说:“嗯,车⼦好像是坏掉了,质量真差。
” 话说回来,BMS虽然存在感低,不过它存在的意义却是丝毫不亚于仪表,甚⾄可以说是⽐仪表还重要,因为他可以检测出这辆车⼦的能源系统是否坏掉了,只有拥有BMS系统,⽤户才可能在不冒险的情况下知道这辆车到底是好是坏。
如果有⼀个⾏业内的嵌⼊式⼯程师要买⼀辆电动车,在⼀辆没有显⽰仪表和BMS板⼦的电动车中进⾏选择,那么他肯定不敢选后者,因为如果电动车没有了仪表,那么⽤户体验会极差,但如果电动车没有了BMS……与其说是⼀辆电动车,还不如说是⼀辆随时可能发⽣被激活的炸弹。
那么BMS在能源领域为什么如此重要?BMS的存在到底有什么意义?------------------------------------------------------------------------------------------------------------- 本⽂便从⼀个底层⼯程师的⾓度,以电动车⽤的BMS模块作为例⼦专门对锂电池的保护板设计进⾏⼀些探讨,并且会给出⼀个参考⽅案,当然由于笔者能⼒有限,⽔平⼀般,如果⽂中出现了错误或者纰漏,请直接指出。
电动汽车电池管理系统设计方案设计说明 (1)
随着能源枯竭和节能产业的发展,社会对环境保护的呼声,使得零排放电动汽车的研究得到了许多国家的大力支持。
电动汽车的各种特性取决于其动力源——电池。
管理可以提高电池效率,保证电池安全运行在最佳状态,延长电池寿命。
1.1电动汽车目前,全球汽车保有量超过6亿辆,汽车的石油消耗量非常大,达到每年6至70亿桶,可占世界石油产量的一半以上。
长期现代化和规模化开采,石油资源逐渐增加。
筋疲力尽的。
电能来源广泛,人们在用电方面积累了丰富的经验。
进入2 1世纪,电能将成为各种地面交通工具的主要能源。
电动汽车的发展是交通运输业和汽车业发展的必然趋势。
由于电动汽车的显着特点和优势,各国都在发展电动汽车。
中国:早在“九五”时期,我国就将电动汽车列为科技产业重大工程项目。
在全市七尾岛设立示范区。
清华大学、华南理工大学、广东汽车改装厂等单位都参与了电动汽车的研发,丰田汽车公司和通用汽车公司提供样车和技术支持在示范区进行测试.德国:吕根岛测试场是德国联邦教育、科学研究和技术部资助的最大的 EV 和 HEV 测试项目,提供 Mercedes-Benz AG、Volkswagen AG、Opel AG、BMW A G 和 MAN Motors 64 辆 EV 和 HEV经公司测试。
法国:拉罗尔市成为第一个安装电动汽车系统的城市,拥有 12 个充电站,其中 3 个是快速充电站。
标致雪铁龙、雪铁龙和标致雪铁龙集团都参与了电动汽车的建设。
日本:在大阪市,大发汽车公司、日本蓄电池公司和大阪电力公司共同建立了EV和HEV试验区。
1.2 电动汽车电池根据汽车的特点,实用的动力电池一般应具有比能量高、比功率高、自放电少、工作温度范围宽、充电快、使用寿命长、安全可靠等特点。
前景较好的是镍氢电池、铅酸电池、锂离子电池、1.3 电池管理系统(BMS)电池能量管理系统是维持供电系统正常应用、保障电动汽车安全、提高电池寿命的关键技术。
可以保护电池的性能,防止单个电池的早期损坏,方便电动汽车的运行,并具有保护和警示功能。
动力电池的电池管理系统(BMS)简介
动力电池的电池管理系统(BMS)简介动力电池是电动车等电动设备的重要组成部分,其中电池管理系统(Battery Management System,简称BMS)扮演着至关重要的角色。
BMS的作用是有效监控和管理动力电池的状态,确保其在充电、放电和储存过程中的安全性和性能表现。
本文将对动力电池BMS的基本原理、功能和应用进行简要介绍。
一、动力电池BMS的基本原理动力电池BMS是一种集成电子系统,由控制器、传感器、通信模块和电源电路等组成。
其基本原理是通过传感器对动力电池的电压、电流、温度和其他关键参数进行实时监测,并将监测到的数据传输给控制器。
控制器利用这些数据对电池的状态进行评估,然后根据需要采取相应的控制措施,以确保电池在安全范围内运行。
二、动力电池BMS的功能1. 电池状态监测:BMS能够对电池的电压、电流、温度和电池容量等关键参数进行实时监测,及时发现和报告异常情况。
2. 充电管理:BMS能够根据电池的状态实时调节充电功率和充电电流,以确保电池在最佳充电状态下进行充电,延长电池寿命。
3. 放电管理:BMS能够监测电池的电流和负载情况,并根据需求动态调整输出功率,以确保电池在放电过程中的安全性和性能表现。
4. 温度管理:BMS能够监测电池的温度,并根据温度变化调节电池的工作状态,防止电池过热或过冷,提高电池的寿命和性能。
5. 安全保护:BMS能够监测和控制电池的工作状态,当电池发生过放、过充、短路和过温等危险情况时,能及时采取措施进行保护,以避免安全事故的发生。
三、动力电池BMS的应用动力电池BMS广泛应用于电动汽车、混合动力汽车、电动自行车和储能系统等领域。
在电动汽车中,BMS不仅起到了对电池进行管理和保护的作用,还能提高整个车辆的能源利用效率和续航里程。
综上所述,动力电池BMS是动力电池系统中的重要组成部分,通过监测和管理电池的状态,确保其在不同工作状态下的安全性和性能表现。
随着电动交通的快速发展,BMS技术也在不断进步和完善,为电动车辆行驶的安全性和可靠性提供了重要保障。
电池管理系统整体设计
监测电池充放电电流,当电流超过正常范围时, 判断电池可能存在内部短路或外部负载异常等故 障。
温度异常诊断
通过温度传感器监测电池温度,当温度异常升高 或降低时,判断电池可能存在热失控或散热系统 故障。
预警及应急处理措施
预警机制
根据故障诊断结果,及时向用户 发送预警信息,提醒用户关注电 池状态并采取相应措施。
05
能量管理与优化技术
能量管理策略制定
基于规则的能量管理策略
根据电池状态、负载需求等预设规则,进行能量的分配与调度。
基于优化的能量管理策略
采用优化算法,如遗传算法、粒子群算法等,对能量管理策略进行 优化,以提高能量利用效率。
基于学习的能量管理策略
利用机器学习、深度学习等方法,对历史数据进行学习,实现能量 管理策略的自适应调整。
电池过放保护
实时监测电池电量,当电量低于安全阈值时,自动切断放电电路, 避免电池过放。
电池温度保护
通过温度传感器监测电池温度,当温度超过安全范围时,启动散热系 统或切断电源,确保电池在安全温度下运行。
故障诊断方法研究
1 2 3
电压异常诊断
实时监测电池电压,通过对比标准电压曲线,发 现电压异常波动,判断电池是否存在故障。
现状
目前,BMS已经成为电动汽车和可再生能源领域的关键技术之一。许多汽车制 造商和能源公司都在积极研发先进的BMS技术,以提高电池的性能、降低成本 并延长使用寿命。
市场需求分析
1 2
3
电动汽车市场
随着电动汽车市场的不断扩大,对BMS的需求也在持续增长 。电动汽车需要高性能、高安全性和高可靠性的BMS来确保 电池的正常运行和乘客的安全。
设计合理的数据采集系统,包括传感器选择、采样频率和 数据传输方式等,以确保准确、实时地获取电池状态数据。
电池管理系统(BMS)
电池管理系统(BMS)电池管理系统(BMS)概述电池管理系统(BMS)为一套保护动力电池使用安全的控制系统,时刻监控电池的使用状态,通过必要措施缓解电池组的不一致性,为新能源车辆的使用安全提供保障。
恒润科技作为国内优质的动力系统供应商,在控制系统开发方面拥有雄厚的实力和丰富的经验,可以为客户在电池管理系统开发方面提供优质的工程和配套服务。
BMS 的硬件拓扑BMS 硬件的拓扑结构分为集中式和分布式两种类型。
集中式是将电池管理系统的所有功能集中在一个控制器里面,比较合适电池包容量比较小、模组及电池包型式比较固定的场合,可以显著的降低系统成本。
分布式是将BMS 的主控板和从控板分开,甚至把低压和高压的部分分开,以增加系统配置的灵活性,适应不同容量、不同规格型式的模组和电池包。
恒润科技可以提供上述集中式或分布式的各种BMS 硬件方案。
BMS 的状态估算及均衡控制针对电池在制造、使用过程中的不一致性,以及电池容量、内阻随电池生命周期的变化,恒润科技团队创造性的应用多状态联合估计、扩展卡尔曼滤波算法、内阻/ 容量在线识别等方法,实现对电池全生命周期的高精度状态估算。
经测算,针对三元锂电池,常温状态下单体电池SOC 估算偏差可达最大2%,平均估算偏差1%。
同时针对电池单体间的不一致性,使用基于剩余充电电量一致等均衡策略,最大程度的挥电池的最大能效。
电池内短路的快速识别电池内短路是最复杂、最难确定的热失控诱因,是目前电池安全领域的国际难题,可导致灾难性后果。
电池内短路无法从根本上杜绝,目前一般是通过长时间(2 周以上)的搁置观察以期早期发现问题。
在电池的内短路识别方面,恒润科技拥有10 余项世界范围内领先的专利及专利许可。
利用对称环形电路拓扑结构(SLCT)及相关算法,可以在极短时间内(5 分钟内)对多节电池单体进行批量内短路检测,能够识别出0~100kΩ量级的内短路并准确估算内短阻值。
这种方法可显著降低电芯生产企业或模组组装厂家的运营成本,提高电池生产及使用过程的安全性。
48V40AH 电动摩托车锂电池管理系统(BMS)设计方案
CAN-BUS2.0
电 压
电流采集电路
存储器(FRAM+FLASH)
采
短路强制保护电路
集
电 路
驱动处理电路
PACK -
具体功能:(注! 匹配电池为: 默认为磷酸铁锂三元系,可以通过软件修改电池匹配和工作参数。)
1.单体 CELL 过压保护(= 4.25V),恢复电压(= 4.10V)。 2.单体 CELL 欠压保护(= 2.90V),恢复电压(= 3.05V)。 3.PACK 总电压过压保护(= 55.00V),恢复电压(= 54.00V)。 4.PACK 总电压欠压保护(= 37.5V),恢复电压(= 40V)。 5.PACK 连续工作放电电流(= 120A),PACK 最大峰值工作放电电流(= 200A,10 秒)。 6.PACK 放电过流保护(= 200A,20 秒),恢复条件:负载电流 < 120A 自动恢复。 7.PACK 放电短路保护(= 500~600A,0.001 秒),恢复条件:负载电流 < 120A 自动恢复。 8.PACK 充电过流保护(= 50A,3 秒),恢复条件:充电电流 < 40A 自动恢复。 9.PACK 充电短路保护(= 500~600A,0.001 秒),恢复条件:充电电流 < 40A 自动恢复。 10.PACK 电池过温保护(= 65℃,10 秒),恢复温度(= 60℃,10 秒)。4 路温度采集。 11.向 0V 电池充电能力(= 有)。 12.调试接口:RS232 接口,波特率= 9600;数据格式:开始位= 1 位,停止位= 1 位,数据位置= 8 位。 13.通信接口:CAN-BUS 2.0 (DEVIDE_NET),可以与车辆主控制器进行告诉通信,上报电池状态。 14.调试软件:开发专门的 PC 机调试软件,方便 PACK 量产时的整机快速测试和故障维修排查。 15.保护上有 4 个电池 SOC 容量 LED 指示灯和一个指示激活按钮。(可以选配为车载 LCD 液晶显示!) 16.保护板具有精确的电池剩余容量 SOC 的计算能力。 17.电池保护板具有充放电循环次数的统计能力。 18.保护板为共口输出,便于使用接线,见上图。 19.保护板尺寸为:长*宽*厚= 150*100*25 毫米,重量≈500 克。 20.使用寿命为 5 万小时(MTBF=5 万小时)。
1、课题:电池管理系统(BMS)
BMS的主要功能
知豆车用BMS主要功能
电池温度检测功能 电池均衡功能 预充控制功能 热管理功能 充电管理功能 选用数字型温度传感器,支持6个温度监测点 提供被动均衡,均衡电流100mA 控制电池组输出接触器按照一定的顺序接入负载 根据电池的当前温度及状态控制风扇工作 通过与充电机CAN通讯,实现充电控制工作
课题:电池管理系统(BMS)
知豆BMS简介
知豆车用BMS配置
GTBMS005H全功能模块一快 75mV300A分流器一个 线束一套
线束
BMS
分流器
BMS的必要性
BMS的必要性
锂电池为什么要成组后使用?锂电池单体容量过大,容易产生 高温,诱发不安全因素,因此大容量电池必须通过串并联的方式 形成电池组。而单体电池本身的不一致性和使用环境的细微差别, 均会造成电池寿命的差别,大大影响整个电池组的寿命和性能。 BMS作为实时监控、自动均衡、智能充放电的电子部件,起到保 障安全、延长寿命、估算剩余电量等重要功能,是动力和储能电 池组中不可或缺的重要部件。 生产和使用过程均会造成电池性能不一致
冠拓BMS配置程序使用方法简介
实时数据:指示电池组及单体电池电压、电流、温度等实时数据
冠拓BMS配置程序使用方法简介
参数配置:参数配置选项下可以配置BMS系统参数,OEM参数,系统 时间以及其他配置选项,还可读取存储在BMS的报警记录。
冠拓BMS配置程序使用方法简介
OEM参数:霍尔系数、电流电压系数及绝缘系数都是固定不变的, 由于电池组单体电池数量的不同会造成接线表的不同。以国内市场多 氟多160Ah电池接线表为例:
BMS的必要性
电池成组后主要的问题有以下几个方面:
过充/过放。串联的电池组充电/放电时,部分电池可能先于其他 电池充满/放完。继续充电/放电就会造成过充/过放,锂电池的内部 副反应将导致电池容量下降、热失控或者内部短路等问题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
BMS故障
BMS 自检硬 件出现 故障
检测异常
检测正常
整车接到故障警告3次以上 (含),控制停车,同时通 过CAN发送断电控制命令
接到整车断电控制命令后,启动高压 切断流程;未接到整车命令时,持续 上报故障至故障解除;发生故障时, 若动力主线还未接通则禁止接通
绝缘等 级低
电池组输出与 底盘绝缘电阻 小于阀值
绝缘检测模块用来测试判定动力电池组与车体 绝缘是否达标,通过测量直流母线与电底盘之间的 电压,计算得到系统的绝缘电阻值。
硬件设计 ——CAN收发模块
(8)CAN收发模块电路设计
采用CAN收发器来进行MCU与动力总成控制系 统及其他控制器之间CAN通信。CAN通信采用了共 模扼流圈滤波等技术,通信抗干扰能力强,通信比 较稳定。CAN通信能够用于动力总成控制系统与 MCU间的数据通信及程序的标定与诊断。CAN收发 器波特率为250kbps,数据结构采用扩展帧(29位 ID值)。
开始
等待模拟量采集完毕
计算最大、最小充放电电流
计算最大、最小充放电功率
计算最高、最低温度
计算SOC
估算电池组性能指标
系统软件设计——从控模块
从控模块
上电后先完成系统初始化,对一些重要的参数进行赋 值,对相关的外设进行配置和初始化。初始化完成后, 在主循环里执行电压检测、均衡控制、温度检测、热管 理等子程序。
持续上报故障至故障解除
充电电流过大
充电电流超过 阀值
BMS上报的最 大充电电 流的 110%
BMS上报的最 大充电电 流的90%
整车接到故障警告3次以上 (含),按照BMS上传 的最大充电电流的80% 控制电机充电,直至故 障解除;
持续上报故障至故障解除
放电电流过大
放电电流超过 阀值
BMS上报的最 大放电电 流110%
入口
初始化系统
电流检测与SOC计量
总电压与绝缘检测
数据处理与 故障判断
数据存储
处理232通讯
处理CAN0 (内部通信) 处理CAN1 (整车控制器) 处理CAN2 (监控终端、充电机)
系统软件设计——数据处理与SOC估算
数据处理与SOC估算
承担了电池管理系统核心的计算工作,包括电池 组的SOC,最高、最低温度,最大、最小充放电功率, 最大、最小充放电电流,最大、最小模块电压等数据 的分析计算。 SOC的估算在安时计量方法的基础上,采用电池 的OCV-SOC曲线对SOC进行修正。
结 语
我们对电池管理系统的硬件进行了专门设计,对其软 件进行了程序编写,在此基础上对电池管理系统进行了 相关台架匹配测试及整车运行验证,证明本电池管理系 统达到了设计要求,性能可靠。
硬件设计 ——RS232收发模块
(9)RS232收发模块电路设计
RS232收发模块采用芯片MAX232转换电平,采 用标准电路进行通信。 RS232收发模块,用于进行电池组管理系统程 序的标定、参数的修正。 RS232收发模块波特率为19.2kbps
系统软件设计——主控模块
主控模块
系统上电后,首先进行系统的初始化,对一些 重要的参数进行赋值,对相关的外设进行配置和初 始化。初始化完成后,进入主循环,在主循环里循 环执行电流检测和SOC计量,总电压与绝缘检测, 数据处理与故障判断,数据存储,232通讯、CAN0 通讯、CAN1通讯和CAN2通讯这些子程序。
硬件设计 ——温度采集
(6)温度采集电路设计
电池组温度也是影响电池组性能的重要参数,电 池组温度过高或过低会造成电池组不可逆转破坏。本 系统采用数字式温度传感器,把每个温度传感器的地 线、数据线、电源线进行合并,采用一根数据总线来 进行通信,温度检测精度为1℃。
硬件设计 ——绝缘模块
(7)绝缘模块电路设计
单体电压或总 电压超过阀值
单体电压3.65V
单体电压: 3.60V
整车接到故障警告3次以上 (含),控制电机停止对电池 回充,直至故障解除
持续上报故障至故障解除
单体电压2.0V 单体或总电压 过低 单体电压或总 电压低 于阀值 总电压:240V
单体电压2.5V
整车接到故障警告3次以上 (含),整车控制停机, 并提示司机停车充电
500欧/V * V (电池组电压) *1.5
500欧/V * V (电池组电压) *2
整车接到故障警告3次以上 (含),控制停车,同时通 过CAN发送断电控制命令
接到整车断电控制命令后, 启动高压切断流程;未接到 整车命令时,持续上报故障 至故障解除;发生故障时, 若动力主线还未接通则禁止 接通
单体或总电压 过高
初始化系统
电压检测
均衡控制
温度检测
热管理
数据计算处理 与故障判断 数据存储
232通信
CAN通信
故障诊断及保护控制策略
故障名称 描述 故障阀值 故障解除阀值 整车处理方式 BMS处理方式 BMS 温度控制 系统失效 BMS 风扇及 加热控 制失效 检测异常 检测正常 整车接到故障警告3次以上 (含),控制停车,同时通 过CAN发送断电控制命令 接到整车断电控制命令后,启动高压 切断流程;未接到整车命令时,持续 上报故障至故障解除;发生故障时, 若动力主线还未接通则禁止接通
SOC过高
SOC超过阀值
100%
95%
持续上报故障至故障解除
SOC过低
SOC低于阀值
10%
15%
持续上报故障至故障解除
温度过高
温度超过阀值
50℃
45℃
持续上报故障至故障解除,同时控制 启动热管理;发生故障时,若动 力主线还未接通则禁止接通
温度不均衡
最高温度与最 低温度 之差超 过阀值 单体电压与平 均电压 之差超 过阀值
硬件设计 ——温度采集
(5)电压采集电路设计
在整车实际工况中,随着电池组充放电的进行, 电池组的电压不断变化,单体电池之间电压的 一致性也会大大影响电池组的性能,所以也有 必要检测每个单体电池的电压。采用专用的电 压采集芯片对单体电池电压进行模数转换后, 通过光耦将数字信号传至MCU。单体电池电压 的检测精度为10mV
BMS上报的最 大充电电 流的90%
整车接到故障警告3次以上 (含),按照BMS上传 的最大充电电流的80% 控制电机输出,直至故 障解除;
持续上报故障至故障解除
充电温度过低
温度低于阀值
0℃
5℃
整车接到故障警告3次以上 (含),控制电机停止 对电池回充,直至故障 解除
持续上报故障至故障解除,同时控制启 动热管理
5℃
3℃
持续上报故障至故障解除,同时控制启 动热管理
电压不均衡
55mV
40mV
持续上报故障至故障解除,同时控制均 衡电池(均衡在检测到电池差异 时就会启动,不以故障出现为条 件)
SOC偏高
SOC超过阀值
95%
90%
持续上报故障至故障解除
SOC偏低
SOC低于阀值
15%
20%
整车接到故障警告3次以上 (含),按照BMS上传 的最大放电电流的80% 控制电机输出,提示司 机尽快停车充电;
持续上报故障至故障解除
总电压300V 整车接到故障警告3次以上 (含),控制电机停止 对电池回充,直至故障 解除 整车接到故障警告3次以上 (含),整车控制停机, 并提示司机停车充电 整车接到故障警告3次以上 (含),按照BMS上传 的最大充、放电电流的 50%控制电机输出,直 至故障解除; 整车接到故障警告3次以上 (含),按照BMS上传 的最大充、放电电流的 70%控制电机输出,直 至故障解除; 整车接到故障警告3次以上 (含),按照BMS上传 的最大充、放电电流的 70%控制电机输出,直 至故障解除; 整车接到故障警告3次以上 (含),按照BMS上传 的最大充电流的80%控 制电机对电池回充,直 至故障解除;