【必考题】高二数学上期中试题含答案

合集下载

2023-2024学年河北省部分高中高二(上)期中数学试卷【答案版】

2023-2024学年河北省部分高中高二(上)期中数学试卷【答案版】

2023-2024学年河北省部分高中高二(上)期中数学试卷一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.直线l :2x +√3y −1=0的斜率为( ) A .−2√33B .−√32C .2√33D .√322.若方程x 2+y 2+4x +2y ﹣m =0表示一个圆,则m 的取值范围是( ) A .(﹣∞,﹣5)B .(﹣5,+∞)C .(﹣∞,5)D .(5,+∞)3.已知F 1,F 2分别是椭圆E :x 29+y 25=1的左、右焦点,P 是椭圆E 上一点,若|PF 1|=2,则|PF 2|=( )A .1B .2C .3D .44.如图,在三棱锥P ﹣ABC 中,P A ⊥平面ABC ,AB ⊥AC ,且PD →=3DC →,则BD →在AC →方向上的投影向量为( )A .34AC →B .−23AC →C .−34AC →D .23AC →5.若圆O 1:x 2+y 2=25与圆O 2:(x ﹣7)2+y 2=r 2(r >0)相交,则r 的取值范围为( ) A .[2,10]B .(2,10)C .[2,12]D .(2,12)6.若A (2,2,1),B (0,0,1),C (2,0,0),则点A 到直线BC 的距离为( ) A .2√305B .√305C .2√55D .√557.已知双曲线C :x 2a 2−y 2b2=1(a >0,b >0)的右焦点为F ,过F 作双曲线C 的其中一条渐近线l 的垂线,垂足为A (第一象限),并与双曲线C 交于点B ,若FB →=BA →,则l 的斜率为( ) A .2B .1C .12D .−748.已知实数x ,y 满足2x ﹣y +2=0,则√(x −9)2+y 2+√x 2+y 2−4x −4y +8的最小值为( ) A .3√13B .10+√13C .108D .117二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.如图,在长方体ABCD ﹣A 1B 1C 1D 1中,E ,F 分别是AB ,BC 的中点,则( )A .BC →−A 1A →=AD 1→B .BC →−A 1A →=2AD 1→C .EF →=12A 1C 1→D .EF →=A 1C 1→10.在同一直角坐标系中,直线l :y =mx +1与曲线C :x 2+my 2=1的位置可能是( )A .B .C .D .11.已知F 1,F 2分别是椭圆E :x 2a2+y 2b 2=1(a >b >0)的左、右焦点,P 是椭圆E 上一点,且|PF 1|=43|PF 2|,cos ∠PF 2F 1=35,则下列结论正确的有( ) A .椭圆E 的离心率为57B .椭圆E 的离心率为45C .PF 1⊥PF 2D .若△PF 1F 2内切圆的半径为2,则椭圆E 的焦距为1012.苏州博物馆(图一)是地方历史艺术性博物馆,建筑物的顶端可抽象为如图二所示的上、下两层等高的几何体,其中上层EFGH ﹣NPQM 是正四棱柱,下层底面ABCD 是边长为4的正方形,E ,F ,G ,H 在底面ABCD 的投影分别为AD ,AB ,BC ,CD 的中点,若AF =√5,则下列结论正确的有( )A .该几何体的表面积为32+8√2+4√6B .将该几何体放置在一个球体内,则该球体体积的最小值为36πC .直线CP 与平面ABF 所成角的正弦值为√63D .点M 到平面BFG 的距离为√63三、填空题:本题共4小题,每小题5分,共20分.13.已知点N 是点M (3,3,4)在坐标平面Oxz 内的射影,则|ON →|= . 14.若双曲线C :x 2m+1+y 2m 2−m−2=1的实轴长与虚轴长相等,则m = .15.过点M(√3,0)作圆C :x 2+(y ﹣1)2=1的两条切线,切点分别为A ,B ,则直线AB 的方程为 .16.如图,在正方体ABCD ﹣A 1B 1C 1D 1中,AM =2MB ,N 为DD 1的中点,记平面CMN 与平面ADD 1A 1的交线为l ,则直线l 与直线AC 1所成角的余弦值为 .四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.(10分)已知直线l 1:x +ay ﹣a +2=0与l 2:2ax +(a +3)y +a ﹣5=0. (1)当a =1时,求直线l 1与l 2的交点坐标; (2)若l 1∥l 2,求a 的值.18.(12分)如图,在正四棱锥P ﹣ABCD 中,E ,F 分别为P A ,PC 的中点,DG →=2GP →. (1)证明:B ,E ,G ,F 四点共面.(2)记四棱锥P ﹣BEGF 的体积为V 1,四棱锥P ﹣ABCD 的体积为V 2,求V 1V 2的值.19.(12分)已知P 是圆C :x 2+y 2=12上一动点,过P 作x 轴的垂线,垂足为Q ,点M 满足PQ →=2PM →,记点M 的轨迹为E . (1)求E 的方程;(2)若A ,B 是E 上两点,且线段AB 的中点坐标为(−85,25),求|AB |的值.20.(12分)如图,这是某圆弧形山体隧道的示意图,其中底面AB 的长为16米,最大高度CD 的长为4米,以C 为坐标原点,AB 所在的直线为x 轴建立直角坐标系. (1)求该圆弧所在圆的方程;(2)若某种汽车的宽约为2.5米,高约为1.6米,车辆行驶时两车的间距要求不小于0.5米以保证安全,同时车顶不能与隧道有剐蹭,则该隧道最多可以并排通过多少辆该种汽车?(将汽车看作长方体)21.(12分)如图,在斜三棱柱ABC ﹣A 1B 1C 1中,△ABC 是边长为2的等边三角形,M ,Q 分别为AC ,A 1B 1的中点,且MQ ⊥AB . (1)证明:MC 1⊥AB .(2)若BB 1=4,MQ =√15,求平面MB 1C 1与平面MC 1Q 夹角的余弦值.22.(12分)如图,已知F 1(−√10,0),F 2(√10,0)分别是双曲线E :x 2a 2−y 2b 2=1(a >0,b >0)的左、右焦点,P(−2√103,√63)是E 上一点. (1)求E 的方程.(2)过直线l :x =1上任意一点T 作直线l 1,l 1与E 的左、右两支相交于A ,B 两点.直线l 1关于直线l 对称的直线为l 2(与l 1不重合),l 2与E 的左、右两支相交于C ,D 两点.证明:∠ABD =∠ACD .2023-2024学年河北省部分高中高二(上)期中数学试卷参考答案与试题解析一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.直线l :2x +√3y −1=0的斜率为( ) A .−2√33B .−√32C .2√33D .√32解:将l 的方程转化为y =−2√33x +√33,则l 的斜率为−2√33. 故选:A .2.若方程x 2+y 2+4x +2y ﹣m =0表示一个圆,则m 的取值范围是( ) A .(﹣∞,﹣5)B .(﹣5,+∞)C .(﹣∞,5)D .(5,+∞)解:因为方程x 2+y 2+4x +2y ﹣m =0表示一个圆,所以42+22+4m >0,解得m >﹣5. 故选:B .3.已知F 1,F 2分别是椭圆E :x 29+y 25=1的左、右焦点,P 是椭圆E 上一点,若|PF 1|=2,则|PF 2|=( )A .1B .2C .3D .4解:椭圆E :x 29+y 25=1,可知a =3,因为P 是椭圆E 上一点,所以|PF 1|+|PF 2|=2a =6,所以|PF 2|=6﹣|PF 1|=4. 故选:D .4.如图,在三棱锥P ﹣ABC 中,P A ⊥平面ABC ,AB ⊥AC ,且PD →=3DC →,则BD →在AC →方向上的投影向量为( )A .34AC →B .−23AC →C .−34AC →D .23AC →解:因为P A ⊥平面ABC ,AB ⊥AC ,所以P A ⊥AB ,P A ⊥AC ,故以A 为坐标原点,AB ,AC ,P A 所在直线分别为x ,y ,z 轴建立空间直角坐标系,令AB =a ,AC =b ,P A =c ,则A (0,0,0),B (a ,0,0),C (0,b ,0),D(0,34b ,14c), 则AC →=(0,b ,0),BD →=(−a ,34b ,14c),所以BD →在AC →方向上的投影向量为AC →⋅BD →|AC →|⋅AC →|AC →|=34b 2|b|⋅AC →|b|=34AC →.故选:A .5.若圆O 1:x 2+y 2=25与圆O 2:(x ﹣7)2+y 2=r 2(r >0)相交,则r 的取值范围为( ) A .[2,10]B .(2,10)C .[2,12]D .(2,12)解:∵O 1与O 2相交, ∴|r ﹣5|<|O 1O 2|<|r +5|, 又|O 1O 2|=7,∴|r ﹣5|<7<|r +5|,解得2<r <12. 故选:D .6.若A (2,2,1),B (0,0,1),C (2,0,0),则点A 到直线BC 的距离为( ) A .2√305B .√305C .2√55D .√55解:由题意得,BA →=(2,2,0),BC →=(2,0,−1),则BA →在BC →上的投影向量的模为|BA →⋅BC →||BC →|=√5,则点A 到直线BC 的距离为√|BA →|2−(|BA →⋅BC →||BC →|)2=√(√8)2−(4√5)2=2√305. 故选:A .7.已知双曲线C :x 2a 2−y 2b2=1(a >0,b >0)的右焦点为F ,过F 作双曲线C 的其中一条渐近线l 的垂线,垂足为A (第一象限),并与双曲线C 交于点B ,若FB →=BA →,则l 的斜率为( )A .2B .1C .12D .−74解:由已知直线l 的方程为y =b ax ,即bx ﹣ay =0,点F (c ,0),则|FA|=|bc|√b +(−a)2=b ,因为FB →=BA →,所以B 为线段AF 的中点,则|BF|=b2, 设双曲线C 的左焦点为F 1,则|BF 1|=2a +b2, 在△BFF 1中,由余弦定理可得:cos ∠BFF 1=|BF|2+|FF 1|2−|BF 1|22|BF||FF 1|=b 24+4c 2−(2a+b 2)22×b2×2c=2b−ac, 又cos ∠BFF 1=bc ,所以a =b ,故l 的斜率为1, 故选:B .8.已知实数x ,y 满足2x ﹣y +2=0,则√(x −9)2+y 2+√x 2+y 2−4x −4y +8的最小值为( ) A .3√13B .10+√13C .108D .117解:√(x −9)2+y 2+√x 2+y 2−4x −4y +8=√(x −9)2+y 2+√(x −2)2+(y −2)2, 该式表示直线l :2x ﹣y +2=0上一点到P (9,0),Q (2,2)两点距离之和的最小值. 而P ,Q 两点在l 的同一侧,设点P 关于l 对称的点P ′(x 0,y 0),则{y 0−0x 0−9=−122×x 0+92−y 0+02+2=0,解得{x 0=−7y 0=8,∴P ′(﹣7,8),故√(x −9)2+y 2+√x 2+y 2−4x −4y +8≥|P′Q|=√(−7−2)+(8−2)2=3√13. 故选:A .二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.如图,在长方体ABCD ﹣A 1B 1C 1D 1中,E ,F 分别是AB ,BC 的中点,则( )A .BC →−A 1A →=AD 1→B .BC →−A 1A →=2AD 1→C .EF →=12A 1C 1→D .EF →=A 1C 1→解:BC →−A 1A →=AD →+AA 1→=AD 1→,A 正确,B 不正确,又因为EF →=12A 1C 1→,故C 正确,D 不正确. 故选:AC .10.在同一直角坐标系中,直线l :y =mx +1与曲线C :x 2+my 2=1的位置可能是( )A .B .C .D .解:A .取m =1,则直线l :y =x +1与曲线C :x 2+y 2=1满足图中的位置关系,因此A 正确; B .联立{y =mx +1x 2+my 2=1,化为(1+m 3)x 2+2m 2x +m ﹣1=0,若直线l :y =mx +1与曲线C :x 2+my 2=1有交点,则Δ=4m 4﹣4(1+m 3)(m ﹣1)=m 3﹣m +1>0. 由曲线C :x 2+my 2=1结合图形,则0<1m <1,∴m >1,满足Δ>0,因此B 正确;C .由曲线C :x 2+my 2=1结合图形,则0<1m <1,∴m >1,直线l 与椭圆应该有交点,因此C 不正确;D .由图可知:直线l 经过点(1,0),则m =﹣1,联立{y =−x +1x 2−y 2=1,化为x =1,y =0,即直线l 与双曲线的交点为(1,0),因此D 正确. 故选:ABD .11.已知F 1,F 2分别是椭圆E :x 2a2+y 2b 2=1(a >b >0)的左、右焦点,P 是椭圆E 上一点,且|PF 1|=43|PF 2|,cos ∠PF 2F 1=35,则下列结论正确的有( ) A .椭圆E 的离心率为57B .椭圆E 的离心率为45C .PF 1⊥PF 2D .若△PF 1F 2内切圆的半径为2,则椭圆E 的焦距为10解:A 、B 选项,由椭圆的定义得,|PF 1|+|PF 2|=2a ,已知|PF 1|=43|PF 2|,解得|PF 1|=87a ,|PF 2|=67a ,由cos ∠PF 2F 1=|PF 2|2+|F 1F 2|2−|PF 1|22|PF 2||F 1F 2|=4c 2−47a 2247ac=35, 整理得5a 2+18ac ﹣35c 2=0,即(a +5c )(5a ﹣7c )=0,则a =﹣5c (舍去)或a =75c ,即c a=57,故椭圆E 的离心率为57,故A 正确,B 不正确;C 选项,由a =75c ,得|F 1F 2|=2c =107a ,则|PF 1|2+|PF 2|2=|F 1F 2|2,故PF 1⊥PF 2,故C 正确; D 选项,由PF 1⊥PF 2,△PF 1F 2内切圆的半径为2,得2c =2a ﹣4,因为a =75c ,所以c =5,即椭圆E 的焦距为10,故D 正确. 故选:ACD .12.苏州博物馆(图一)是地方历史艺术性博物馆,建筑物的顶端可抽象为如图二所示的上、下两层等高的几何体,其中上层EFGH ﹣NPQM 是正四棱柱,下层底面ABCD 是边长为4的正方形,E ,F ,G ,H 在底面ABCD 的投影分别为AD ,AB ,BC ,CD 的中点,若AF =√5,则下列结论正确的有( )A .该几何体的表面积为32+8√2+4√6B .将该几何体放置在一个球体内,则该球体体积的最小值为36πC .直线CP 与平面ABF 所成角的正弦值为√63D .点M 到平面BFG 的距离为√63解:设F ,G 在平面ABCD 的投影分别为AB ,BC 的中点R ,S ,由于AF =√5,AB =4,所以F 到平面ABCD 的距离为FR =√AF 2−(12AB)2=1, 由于上、下两层等高,所以P 到平面ABCD 的距离为2,又FG =RS =12AC =2√2,由于GS =FR =1,BS =RB =12×4=2 所以BG =GC =√GS 2+BS 2=√5=BF =AF ,所以△AFB ≌△BGC ,同理可得△CDH ≌△ADE ≌△AFB ≌△BGC ,△BFG ≌△CHG ≌△DEH ≌△AEF , 则点B 到FG 的距离为√BF 2−(12FG)2=√(√5)2−(√2)2=√3,则△ABF 的面积为12AB ⋅FR =12×4×1=2,△BFG 的面积为12×2√2×√3=√6,故该几何体的表面积4×2+4×√6+4×4+2√2×2√2+2√2×4=32+8√2+4√6,故A 正确; 将该几何体放置在一个球体内,要使该球体体积最小,则球心在该几何体上下底面中心所连直线上, 且A 、B 、C 、D ,N 、P 、Q 、M 均在球面上,设球心到下底面ABCD 的距离为x , 由于四边形MNPQ 为边长为2√2的正方形,四边形ABCD 为边长为4的正方形, 则其对角线长度分别为4,4√2,则(2√2)2+x 2=22+(2−x)2,解得x =0,则该球体的半径为2√2,体积为4π3×(2√2)3=64√2π3,故B 错误;以A 为坐标原点建立如图所示的空间直角坐标系,则C (4,4,0),P (2,0,2),B (4,0,0),F (2,0,1),G (4,2,1),M (2,4,2),CP →=(−2,−4,2),BF →=(﹣2,0,1),BG →=(0,2,1),BM →=(﹣2,4,2), 平面ABF 的一个法向量为m →=(0,1,0),则cos <CP →,m →>=−42√6=−√63,设直线CP 与平面ABF 所成角为θ,则sinθ=|cos <CP →,m →>|=√63,故直线CP 与平面ABF 所成角的正弦值为√63,故C 正确; 设平面BFG 的法向量为n →=(x 1,y 1,z 1),则{n →⋅BF →=−2x 1+z 1=0n →⋅BG →=2y 1+z 1=0,令x 1=1,得n →=(1,﹣1,2), 则点M 到平面BFG 的距离为|n →⋅BM →||n →|=222=√63,故D 正确. 故选:ACD .三、填空题:本题共4小题,每小题5分,共20分.13.已知点N 是点M (3,3,4)在坐标平面Oxz 内的射影,则|ON →|= 5 . 解:由题可知,N (3,0,4),则ON →=(3,0,4),∴|ON →|=√32+42=5. 故答案为:5.14.若双曲线C :x 2m+1+y 2m 2−m−2=1的实轴长与虚轴长相等,则m = 1 .解:由题可知(m +1)+(m 2﹣m ﹣2)=0,解得m =1或m =﹣1(舍去),∴m =1. 故答案为:1.15.过点M(√3,0)作圆C :x 2+(y ﹣1)2=1的两条切线,切点分别为A ,B ,则直线AB 的方程为 √3x −y =0 .解:圆C :x 2+(y ﹣1)2=1①,则圆心C (0,1), 以C (0,1),M (√3,0)为直径的圆的方程为:(x −√32)2+(y −12)2=1②,①﹣②可得,√3x −y =0,故直线AB 的方程为√3x −y =0. 故答案为:√3x −y =0.16.如图,在正方体ABCD ﹣A 1B 1C 1D 1中,AM =2MB ,N 为DD 1的中点,记平面CMN 与平面ADD 1A 1的交线为l ,则直线l 与直线AC 1所成角的余弦值为7√111111.解:设I ∩AA 1=P ,连接NP ,MP ,直线NP 即为直线l .易证得MP ∥CN ,由AM =2MB ,N 为DD 1的中点,得AP =13AA 1,以D 为坐标原点,DA .DC ,DD 1所在直线分别为x ,y ,z 轴建立如图所示的空间直角坐标系,设AB =6,则得:N (0,0,3),P (6,0,2),A (6,0,0),C 1(0,6,6), NP →=(6,0,﹣1),AC 1→=(﹣6,6,6), 所以得:|cos <NP →,AC 1→>|=|NP →⋅AC 1→||NP →|⋅|AC 1→|=37×63=7√111111,故直线与直线 AC 1 所成角的余弦值为7√111111.故答案为:7√111111. 四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.(10分)已知直线l 1:x +ay ﹣a +2=0与l 2:2ax +(a +3)y +a ﹣5=0. (1)当a =1时,求直线l 1与l 2的交点坐标; (2)若l 1∥l 2,求a 的值. 解:(1)因为a =1,所以l 1:x +y +1=0,l 2:2x +4y ﹣4=0,即x +2y ﹣2=0, 联立{x +y +1=0x +2y −2=0解得{x =−4y =3,故直线l 1与l 2的交点坐标为(﹣4,3).(2)因为l 1∥l 2,所以2a 2﹣a ﹣3=0,解得a =﹣1或a =32, 当a =﹣1时,l 1与l 2重合,不符合题意. 当a =32时,l 1与l 2不重合,符合题意. 故a =32.18.(12分)如图,在正四棱锥P ﹣ABCD 中,E ,F 分别为P A ,PC 的中点,DG →=2GP →. (1)证明:B ,E ,G ,F 四点共面.(2)记四棱锥P ﹣BEGF 的体积为V 1,四棱锥P ﹣ABCD 的体积为V 2,求V 1V 2的值.解:(1)证明:因为E ,F 分别为P A ,PC 的中点, 所以BE →=12BA →+12BP →,BF →=12BC →+12BP →, 所以BG →=BD →+DG →=BD →+23DP →=BD →+23(BP →−BD →)=13BD →+23BP →=13BA →+13BC →+23BP →=23(12BA →+12BP →)+23(12BC →+12BP →)=23BE →+23BF →, 故B ,E ,G ,F 四点共面;(2)由正四棱锥的对称性知,V 1=2V E ﹣PBG ,V 2=2V A ﹣PBD , 设点E 到平面PBG 的距离为d 1,点A 到平面PBD 的距离为d 2,由E 是P A 的中点得d 2=2d 1, 由DG →=2GP →得S △PBD =3S △PBG ,所以V 1V 2=V E−PBG V A−PBD=13S △PBG ⋅d 113S △PBD ⋅d 2=16.19.(12分)已知P 是圆C :x 2+y 2=12上一动点,过P 作x 轴的垂线,垂足为Q ,点M 满足PQ →=2PM →,记点M 的轨迹为E . (1)求E 的方程;(2)若A ,B 是E 上两点,且线段AB 的中点坐标为(−85,25),求|AB |的值. 解:(1)设M (x ,y ),则Q (x ,0), 因为PQ →=2PM →,则P (x ,2y ), 因为P 在圆C 上,所以x 2+(2y )2=12, 故E 的方程为x 212+y 23=1.(2)设A (x 1,y 1),B (x 2,y 2),若A ,B 是E 上两点,则{x 1212+y 123=1x 2212+y 223=1, 两式相减得x 12−x 2212+y 12−y 223=0,即y 1−y 2x 1−x 2=−x 1+x 24(y 1+y 2).因为线段AB 的中点坐标为(−85,25),所以y 1−y 2x 1−x 2=−x 1+x 24(y 1+y 2)=1,所以k AB =1,则直线AB 的方程为y =x +2.联立方程组{y =x +2x 212+y 23=1,整理得5x 2+16x +4=0,其中Δ>0, 则x 1+x 2=−165,x 1x 2=45, |AB|=√1+12√(x 1+x 2)2−4x 1x 2=4√225. 20.(12分)如图,这是某圆弧形山体隧道的示意图,其中底面AB 的长为16米,最大高度CD 的长为4米,以C 为坐标原点,AB 所在的直线为x 轴建立直角坐标系. (1)求该圆弧所在圆的方程;(2)若某种汽车的宽约为2.5米,高约为1.6米,车辆行驶时两车的间距要求不小于0.5米以保证安全,同时车顶不能与隧道有剐蹭,则该隧道最多可以并排通过多少辆该种汽车?(将汽车看作长方体)解:(1)由圆的对称性可知,该圆弧所在圆的圆心在y轴上,由图形可得A(﹣8,0),B(8,0),D(0,4),设该圆的半径为r米,则r2=82+(r﹣4)2,解得r=10,圆心为(0,﹣6),故该圆弧所在圆的方程为x2+(y+6)2=100.(2)设与该种汽车等高且能通过该隧道的最大宽度为d米,则(d2)2+(6+1.6)2=102,解得d=2√42.24.若并排通过4辆该种汽车,则安全通行的宽度为4×2.5+3×0.5=11.5<2√42.24.隧道能并排通过4辆该种汽车;若并排通过5辆该种汽车,则安全通行的宽度为5×2.5+4×0.5=14.5>2√42.24,故该隧道不能并排通过5辆该种汽车.综上所述,该隧道最多可以并排通过4辆该种汽车.21.(12分)如图,在斜三棱柱ABC﹣A1B1C1中,△ABC是边长为2的等边三角形,M,Q分别为AC,A1B1的中点,且MQ⊥AB.(1)证明:MC1⊥AB.(2)若BB1=4,MQ=√15,求平面MB1C1与平面MC1Q夹角的余弦值.(1)证明:因为△A1B1C1是等边三角形,Q为A1B1的中点,所以C1Q⊥A1B1,又AB∥A1B1,所以C1Q⊥AB,因为MQ⊥AB,C1Q∩MQ=Q,所以AB⊥平面MC1Q,又MC1⊂平面C1MQ,所以MC1⊥AB;(2)解:取AB靠近点A的四等分点N,连接MN,NQ,易证得MN∥C1Q,则MN⊥AB,且MN=√32,由BB 1=4,得QN =3√72,因为MQ =√15,所以MQ 2+MN 2=QN 2, 即MQ ⊥MN ,又MQ ⊥AB ,从而MQ ⊥平面ABC ,以M 为坐标原点,MN 所在直线为x 轴,MQ 所在直线为z 轴,建立如图所示的空间直角坐标系,则M (0,0,0),B 1(0,1,√15),C 1(−√3,0,√15), 则MB 1→=(0,1,√15),MC 1→=(−√3,0,√15), 设平面MB 1C 1的法向量为m →=(x ,y ,z ),则有{m →⋅MB 1→=y +√15z =0m →⋅MC 1→=−√3x +√15z =0,令z =1,得m →=(√5,−√15,1),由图可知,n →=(0,1,0)是平面MC 1Q 的一个法向量,设平面MB 1C 1与平面MC 1Q 的夹角为θ,则cosθ=|m →⋅n →||m →||n →|=√1521=√357.22.(12分)如图,已知F 1(−√10,0),F 2(√10,0)分别是双曲线E :x 2a 2−y 2b 2=1(a >0,b >0)的左、右焦点,P(−2√103,√63)是E 上一点. (1)求E 的方程.(2)过直线l :x =1上任意一点T 作直线l 1,l 1与E 的左、右两支相交于A ,B 两点.直线l 1关于直线l 对称的直线为l 2(与l 1不重合),l 2与E 的左、右两支相交于C ,D 两点.证明:∠ABD =∠ACD .解:(1)∵F 1(−√10,0),F 2(√10,0)分别是双曲线E :x 2a 2−y 2b 2=1(a >0,b >0)的左、右焦点,P(−2√103,√63)是E 上一点,∴{a 2+b 2=10409a2−69b2=1,解得a 2=4,b 2=6,∴E 的方程为x 24−y 26=1.(2)证明:设T (1,m ),由题意得直线l 1的斜率存在且不等于0, 设直线l 的方程为y ﹣m =k (x ﹣1),则直线l 2的方程为y ﹣m =﹣k (x ﹣1), 设A (x 1,y 1),B (x 2,y 2),C (x 3,y 3),D (x 4,y 4), 联立方程组{y −m =k(x −1)x 24−y 26=1,整理得(3﹣2k 2)x 2+(4k 2﹣4km )x ﹣2k 2+4km ﹣2m 2﹣12=0,Δ=(4k 2﹣4km )2﹣(12﹣8k 2)(﹣2k 2+4km ﹣2m 2﹣12)=﹣72k 2﹣48km +24m 2+144>0, 则x 1+x 2=4k 2−4km 2k 2−3,x 1x 2=2k 2−4km+2m 2+122k 2−3,|AT |=√1+k 2|x 1−1|,|BT |=√1+k 2|x 2﹣1|,|CT |=√1+k 2|x 3﹣1|,|DT |=√1+k 2|x 4﹣1|, ∴|AT ||BT |=(1+k 2)|(x 1﹣1)(x 2﹣1)|=(1+k 2)|x 1x 2﹣(x 1+x 2)+1| =(1+k 2)|2k 2−4km+2m 2+122k 2−3−4k 2−4km 2k 2−3+1|=(1+k 2)|2m 2+92k 2−3|,同理,|CT ||DT |=(1+k 2)|2m 2+92k 2−3,∴|AT||DT|=|CT||BT|,∴△ACT ∽△DBT ,∴∠ABD =∠ACD .。

高二上学期期中考试数学试卷含答案

高二上学期期中考试数学试卷含答案

高二级上学期期中考试题数学本试卷共8页,22小题,满分150分,考试时间120分钟。

第一部分选择题(共60分)一、单选题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知直线l 1:2x +my =2,l 2:m 2x +2y =1,且l 1⊥l 2,则m 的值为( )A .0B .-1C .0或1D .0或-12.若一个圆锥的轴截面是面积为1的等腰直角三角形,则该圆锥的侧面积为( )A.2π B .22π C .2πD .4π3.把正方形ABCD 沿对角线AC 折起,当以A ,B ,C ,D 四点为顶点的三棱锥体积最大时,直线BD 和平面ABC 所成角的大小为( )A .90°B .60°C .45°D .30°4.若过点(2,1)的圆与两坐标轴都相切,则圆心到直线230x y --=的距离为( )A B C D 5.下列命题中,正确的是( )A .任意三点确定一个平面B .三条平行直线最多确定一个平面C .不同的两条直线均垂直于同一个平面,则这两条直线平行D .一个平面中的两条直线与另一个平面都平行,则这两个平面平行6.已知M (3,23),N (-1,23),F (1,0),则点M 到直线NF 的距离为( )A. 5 B .23 C . 22D .3 37.已知各顶点都在一个球面上的正四棱柱(其底面是正方形,且侧棱垂直于底面)高为4,体积为16,则这个球的表面积是( )A .20πB .16πC .32πD .24π8.直线:20l x y ++=分别与x 轴、y 轴交于A 、B 两点,点P 在圆22(2)2x y -+=上, 则ABP △面积的取值范围是( ) A .[]26,B .[]48,C .D .⎡⎣二、多选题:本题共4小题,每小题5分,共20分.9.若220x x --<是2x a -<<的充分不必要条件,则实数a 的值可以是( ) A .1B .2C .3D .410.已知,αβ是两个不重合的平面,,m n 是两条不重合的直线,则下列命题正确的是( ) A .若//m n m α⊥,,则n α⊥ B .若//,m n ααβ⋂=,则//m n C .若m α⊥,m β⊥,则//αβ D .若,//,m m n n αβ⊥⊥,则//αβ 11.若直线过点(1,2)A ,且在两坐标轴上截距的绝对值相等,则直线l 方程可能为( ) A .10x y -+=B .30x y +-=C .20x y -=D .10x y --=12.已知四棱锥P ABCD -,底面ABCD 为矩形,侧面PCD ⊥平面ABCD ,BC =CD PC PD ===.若点M 为PC 的中点,则下列说法正确的为( )A .BM ⊥平面PCDB .//PA 面MBDC .四棱锥M ABCD -外接球的表面积为36π D .四棱锥M ABCD -的体积为6第二部分非选择题(90分)三、填空题:本题共4小题,每小题5分,共20分.13.命题“20210x x x ∃<-->,”的否定是______________.14.已知直线l 1的方程为23y x =-+,l 2的方程为42y x =-,直线l 与l 1平行且与l 2在y 轴上的截距相同,则直线l 的斜截式方程为________________.15.若直线:l y kx =与曲线:1M y =+有两个不同交点,则k 的取值范围是________________.16.已知三棱锥S -ABC 的所有顶点都在球O 的球面上,SC 是球O 的直径.若平面SCA ⊥平面SCB ,SA =AC ,SB =BC ,三棱锥S -ABC 的体积为9,则球O 的体积为____________.四、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.17.(本小题满分10分)已知直线l 1的方程为x +2y -4=0,若l 2在x 轴上的截距为32,且l 1⊥l 2.(1)求直线l 1与l 2的交点坐标;(2)已知直线l 3经过l 1与l 2的交点,且在y 轴上的截距是在x 轴上的截距的2倍,求l 3的方程.18.(本小题满分12分)四棱锥P-ABCD 的底面ABCD 为直角梯形,AB ∥CD ,AB ⊥AD ,AB =12CD =1,P A ⊥平面ABCD ,P A =AD = 3.(1)求证:PD ⊥AB ;(2)求四棱锥P-ABCD 的体积.19.(本小题满分12分)已知圆C 的圆心坐标为(a ,0),且圆C 与y 轴相切. (1)已知a =1,M (4,4),点N 是圆C 上的任意一点,求|MN |的最小值;(2)已知a <0,直线l 的斜率为43,且与y 轴交于点20,3⎛⎫- ⎪⎝⎭.若直线l 与圆C 相离,求a 的取值范围.20.(本小题满分12分)在直三棱柱ABC-A 1B 1C 1中,AB =5,AC =3,BC =4,点D 是线段AB 上的动点.(1)当点D 是AB 的中点时,求证:AC 1∥平面B 1CD ;(2)线段AB 上是否存在点D ,使得平面ABB 1A 1⊥平面CDB 1?若存在,试求出AD 的长度;若不存在,请说明理由.21. (本小题满分12分) 如图,多面体ABCDEF 中,四边形ABCD 是菱形,060ABC ∠=,FA ⊥平面ABCD ,//,2 2.FA ED AB FA ED ===求二面角F BC A --的大小的正切值;求点E 到平面AFC 的距离;求直线FC 与平面ABF 所成的角的正弦值.22. (本小题满分12分)已知圆22+=9:O x y ,过点()0,2P -任作圆O 的两条相互垂直的弦AB 、CD ,设M 、N 分别是AB 、CD 的中点,(1)直线MN 是否过定点? 若过,求出该定点坐标,若不过,请说明理由; (2)求四边形ACBD 面积的最大值,并求出对应直线AB 、CD 的方程.高二级上学期期中考试题 数学答案及说明一、选择题:1.D ,2.A ,3.C ,4.B ,5.C ,6.B ,7.D ,8.A ,9.BCD ,10.ACD ,11.ABC ,12.BC.二、填空题:13.0x ∀<,2210x x --≤;14.y =-2x -2;15.13,24⎡⎫⎪⎢⎣⎭;16.36π.题目及详细解答过程:一、单选题(本题共8小题,每小题5分,共40分)1.已知直线l 1:2x +my =2,l 2:m 2x +2y =1,且l 1⊥l 2,则m 的值为( ) A .0 B .-1 C .0或1 D .0或-1 解析:因为l 1⊥l 2,所以2m 2+2m =0,解得m =0或m =-1. 答案:D2.若一个圆锥的轴截面是面积为1的等腰直角三角形,则该圆锥的侧面积为( ) A.2π B .22π C .2π D .4π 解析:设底面圆的半径为r ,高为h ,母线长为l ,由题可知,r =h =22l ,则12(2r )2=1,r =1,l =2.所以圆锥的侧面积为πrl =2π. 答案:A3.把正方形ABCD 沿对角线AC 折起,当以A ,B ,C ,D 四点为顶点的三棱锥体积最大时,直线BD 和平面ABC 所成角的大小为( )A .90°B .60°C .45°D .30°解析:当三棱锥D ­ABC 体积最大时,平面DAC ⊥平面ABC .取AC 的中点O ,则∠DBO 即为直线BD 和平面ABC 所成的角.易知△DOB 是等腰直角三角形,故∠DBO =45°.答案:C4.若过点(2,1)的圆与两坐标轴都相切,则圆心到直线230x y --=的距离为( )A B C D 【答案】B【解析】由于圆上的点()2,1在第一象限,若圆心不在第一象限, 则圆与至少与一条坐标轴相交,不合乎题意,所以圆心必在第一象限, 设圆心的坐标为(),a a ,则圆的半径为a ,圆的标准方程为()()222x a y a a -+-=.由题意可得()()22221a a a -+-=,可得2650a a -+=,解得1a =或5a =,所以圆心的坐标为()1,1或()5,5,圆心到直线的距离均为121132555d ⨯--==; 圆心到直线的距离均为22553255d ⨯--== 圆心到直线230x y --=的距离均为22555d -==; 所以,圆心到直线230x y --=25. 故选:B .5.下列命题中,正确的是( ) A .任意三点确定一个平面 B .三条平行直线最多确定一个平面C .不同的两条直线均垂直于同一个平面,则这两条直线平行D .一个平面中的两条直线与另一个平面都平行,则这两个平面平行 解析:由线面垂直的性质,易知C 正确. 答案:C6.已知M (3,23),N (-1,23),F (1,0),则点M 到直线NF 的距离为( ) A. 5 B .23 C . 22D .3 3解析:易知NF 的斜率k =-3,故NF 的方程为y =-3(x -1),即3x +y -3=0. 所以M 到NF 的距离为|33+23-3|(3)2+12=2 3. 答案:B7.已知各顶点都在一个球面上的正四棱柱(其底面是正方形,且侧棱垂直于底面)高为4,体积为16,则这个球的表面积是( )A .20πB .16πC .32πD .24π解析:由题意知正四棱柱的底面积为4,所以正四棱柱的底面边长为2,正四棱柱的底面对角线长为22,正四棱柱的对角线为2 6.而球的直径等于正四棱柱的对角线,即2R =2 6.所以R = 6.所以S 球=4πR 2=24π. 答案:D8.直线:20l x y ++=分别与x 轴、y 轴交于A 、B 两点,点P 在圆22(2)2x y -+=上,则ABP △面积的取值范围是( ) A .[]26,B .[]48,C .232⎡⎤⎣⎦,D .2232⎡⎤⎣⎦,【答案】A 【解析】直线20x y ++=分别与x 轴,y 轴交于A ,B 两点,()()2,0,0,2A B ∴--,则22AB =.点P 在圆22(2)2x y -+=上,∴圆心为(2,0),则圆心到直线的距离1202222d ++==.故点P 到直线20x y ++=的距离2d 的范围为2,32⎡⎤⎣⎦,则[]22122,62ABP S AB d d ==∈△.故答案为A.二、多选题(每题5分,共20分)9.若220x x --<是2x a -<<的充分不必要条件,则实数a 的值可以是( ) A .1B .2C .3D .4【答案】BCD【解析】:由220x x --<,解得12x -<<.又220x x --<是2x a -<<的充分不必要条件,(1∴-,2)(2-,)a ,则2a .∴实数a 的值可以是2,3,4.故选:BCD .10.已知,αβ是两个不重合的平面,,m n 是两条不重合的直线,则下列命题正确的是( ) A .若//m n m α⊥,,则n α⊥ B .若//,m n ααβ⋂=,则//m n C .若m α⊥,m β⊥,则//αβ D .若,//,m m n n αβ⊥⊥,则//αβ 【答案】ACD 【解析】若m α⊥,则,a b α∃⊂且a b P =使得m a ⊥,m b ⊥,又//m n ,则n a ⊥,n b ⊥,由线面垂直的判定定理得n α⊥,故A 对; 若//m α,n αβ=,如图,设m AB =,平面1111D C B A 为平面α,//m α,设平面11ADD A 为平面β,11A D n αβ⋂==,则m n ⊥,故B 错;垂直于同一条直线的两个平面平行,故C 对;若,//m m n α⊥,则n α⊥,又n β⊥,则//αβ,故D 对; 故选:ACD .11.若直线过点(1,2)A ,且在两坐标轴上截距的绝对值相等,则直线l 方程可能为( ) A .10x y -+= B .30x y +-= C .20x y -= D .10x y --=【答案】ABC【解析】:当直线经过原点时,斜率为20210k -==-,所求的直线方程为2y x =,即20x y -=; 当直线不过原点时,设所求的直线方程为x y k ±=,把点(1,2)A 代入可得12k -=,或12k +=,求得1k =-,或3k =,故所求的直线方程为10x y -+=,或30x y +-=; 综上知,所求的直线方程为20x y -=、10x y -+=,或30x y +-=. 故选:ABC .12.已知四棱锥P ABCD -,底面ABCD 为矩形,侧面PCD ⊥平面ABCD ,23BC =,26CD PC PD ===.若点M 为PC 的中点,则下列说法正确的为( )A .BM ⊥平面PCDB .//PA 面MBDC .四棱锥M ABCD -外接球的表面积为36π D .四棱锥M ABCD -的体积为6 【答案】BC【解析】作图在四棱锥P ABCD -中:为矩形,由题:侧面PCD ⊥平面ABCD ,交线为CD ,底面ABCDBC CD ⊥,则BC ⊥平面PCD ,过点B 只能作一条直线与已知平面垂直,所以选项A错误;连接AC 交BD 于O ,连接MO ,PAC ∆中,OM ∥PA ,MO ⊆面MBD ,PA ⊄面MBD ,所以//PA 面MBD ,所以选项B 正确;四棱锥M ABCD -的体积是四棱锥P ABCD -的体积的一半,取CD 中点N ,连接PN ,PN CD ⊥,则PN平面ABCD ,32PN =,四棱锥M ABCD -的体积112326321223M ABCD V -=⨯⨯⨯⨯=所以选项D 错误.矩形ABCD 中,易得6,3,3AC OC ON ===,PCD 中求得:16,2NM PC ==在Rt MNO 中223MO ON MN =+=即: OM OA OB OC OD ====,所以O 为四棱锥M ABCD -外接球的球心,半径为3, 所以其体积为36π,所以选项C 正确, 故选:BC三、填空题(每题5分,共20分)13.命题“20210x x x ∃<-->,”的否定是______. 【答案】0x ∀<,2210x x --≤【解析】因为特称命题的否定是全称命题,所以,命题20210x x x ∃<-->,, 则该命题的否定是:0x ∀<,2210x x --≤ 故答案为:0x ∀<,2210x x --≤.14.已知直线l 1的方程为23y x =-+,l 2的方程为42y x =-,直线l 与l 1平行且与l 2在y 轴上的截距相同,则直线l 的斜截式方程为________________.解析:由斜截式方程知直线l 1的斜率k 1=-2,又l ∥l 1,所以l 的斜率k =k 1=-2.由题意知l 2在y 轴上的截距为-2,所以l 在y 轴上的截距b =-2.由斜截式方程可得直线l 的方程为y =-2x -2.答案:y =-2x -215.若直线:l y kx =与曲线()2:113M y x =+--有两个不同交点,则k 的取值范围是________________.解析:曲线M :y =1+1-(x -3)2是以(3,1)为圆心,1为半径的,且在直线y =1上方的半圆.要使直线l 与曲线M 有两个不同交点,则直线l 在如图所示的两条直线之间转动,即当直线l 与曲线M 相切时,k 取得最大值34;当直线l 过点(2,1)时,k 取最小值12.故k 的取值范围是13,24⎡⎫⎪⎢⎣⎭. 答案:13,24⎡⎫⎪⎢⎣⎭16.已知三棱锥S -ABC 的所有顶点都在球O 的球面上,SC 是球O 的直径.若平面SCA ⊥平面SCB ,SA =AC ,SB =BC ,三棱锥S -ABC 的体积为9,则球O 的体积为____________.解析:如图,连接OA ,OB .由SA =AC ,SB =BC ,SC 为球O 的直径,知OA ⊥SC ,OB ⊥SC .又由平面SCA ⊥平面SCB ,平面SCA ∩平面SCB =SC ,知OA ⊥平面SCB . 设球O 的半径为r ,则OA =OB =r ,SC =2r ,所以三棱锥S ­ABC 的体积为311323r V SC OB OA ⎛⎫=⨯⋅⋅= ⎪⎝⎭,即r 33=9.所以r =3.所以3344336.33=O V r πππ=⨯=球答案:36π四、解答题(每题5分,共70分)17.(本小题满分10分)已知直线l 1的方程为x +2y -4=0,若l 2在x 轴上的截距为32,且l 1⊥l 2.(1)求直线l 1与l 2的交点坐标;(2)已知直线l 3经过l 1与l 2的交点,且在y 轴上的截距是在x 轴上的截距的2倍,求l 3的方程. 解:(1)设l 2的方程为2x -y +m =0,..........1分因为l 2在x 轴上的截距为32,所以3-0+m =0,m =-3,即l 2:2x -y -3=0.....3分联立⎩⎪⎨⎪⎧x +2y -4=0,2x -y -3=0,得⎩⎪⎨⎪⎧x =2,y =1.所以直线l 1与l 2的交点坐标为(2,1)...........5分 (2)当l 3过原点时,l 3的方程为y =12x ..........6分当l 3不过原点时,设l 3的方程为12x y a a +=...........7分 又直线l 3经过l 1与l 2的交点,所以2112a a+=, 得52a =,l 3的方程为2x +y -5=0...........8分 综上,l 3的方程为y =12x 或2x +y -5=0...........10分18.(本小题满分12分)四棱锥P-ABCD 的底面ABCD 为直角梯形,AB ∥CD ,AB ⊥AD ,AB =12CD =1,PA ⊥平面ABCD ,PA =AD = 3.(1)求证:PD ⊥AB ;(2)求四棱锥P-ABCD 的体积.18.解:(1)证明:因为PA ⊥平面ABCD ,AB ⊂平面ABCD ,所以PA ⊥AB ,..........1分又因为AB ⊥AD ,AD ∩PA =A ,..........3分 所以AB ⊥平面PAD ,..........4分又PD ⊂平面PAD ,..........5分所以AB ⊥PD ...........6分 (2)解:S 梯形ABCD =12(AB +CD )·AD =332,.......8分又PA ⊥平面ABCD ,..........9分所以V 四棱锥P-ABCD =13×S 梯形ABCD ·PA =13×332×3=32...........12分19.(本小题满分12分)已知圆C 的圆心坐标为(a ,0),且圆C 与y 轴相切. (1)已知a =1,M (4,4),点N 是圆C 上的任意一点,求|MN |的最小值; (2)已知a <0,直线l 的斜率为43,且与y 轴交于点20,3⎛⎫- ⎪⎝⎭.若直线l与圆C 相离,求a 的取值范围.19.解:(1)由题意可知,圆C 的方程为(x -1)2+y 2=1...........2分又|MC |=(4-1)2+(4-0)2=5,..........4分 所以|MN |的最小值为5-1=4...........5分(2)因为直线l 的斜率为43,且与y 轴相交于点20,3⎛⎫- ⎪⎝⎭,所以直线l 的方程为y =43x -23.即4x -3y -2=0..........7分因为直线l 与圆C 相离,所以圆心C (a ,0)到直线l 的距离d >r . 则224243a a ->+.........9分又0a <,所以245a a ->-,解得2a >-..........11分 所以a 的取值范围是(-2,0)..........12分20.(本小题满分12分)在直三棱柱ABC-A 1B 1C 1中,AB =5,AC =3,BC =4,点D 是线段AB 上的动点. (1)当点D 是AB 的中点时,求证:AC 1∥平面B 1CD ;(2)线段AB 上是否存在点D ,使得平面ABB 1A 1⊥平面CDB 1?若存在,试求出AD 的长度;若不存在,请说明理由.20.解:(1)证明:如图,连接BC 1,交B 1C 于点E ,连接DE ,则点E 是BC 1的中点,又点D 是AB 的中点,由中位线定理得DE ∥AC 1,.........1分 因为DE ⊂平面B 1CD ,.........2分AC 1⊄平面B 1CD ,.........3分所以AC 1∥平面B 1CD ..........4分(2)解:当CD ⊥AB 时,平面ABB 1A 1⊥平面CDB 1........5分 证明:因为AA 1⊥平面ABC ,CD ⊂平面ABC , 所以AA 1⊥CD ..........6分又CD ⊥AB ,AA 1∩AB =A ,.........7分所以CD ⊥平面ABB 1A 1,因为CD ⊂平面CDB 1,.........8分 所以平面ABB 1A 1⊥平面CDB 1,.........9分故点D 满足CD ⊥AB 时,平面ABB 1A 1⊥平面CDB 1......10分 因为AB =5,AC =3,BC =4,所以AC 2+BC 2=AB 2, 故△ABC 是以角C 为直角的三角形, 又CD ⊥AB ,所以AD =95..........12分22. (本小题满分12分) 如图,多面体ABCDEF 中,四边形ABCD 是菱形,060ABC ∠=,FA ⊥平面ABCD ,//,2 2.FA ED AB FA ED ===求二面角F BC A --的大小的正切值;求点E 到平面AFC 的距离;求直线FC 与平面ABF 所成的角的正弦值.21.解: 作于点G ,连接FG , 四边形ABCD 是菱形,,,为等边三角形,,-----1分平面ABCD ,平面ABCD ,,又,,平面AFG ,BC FG ∴⊥-----2分 G∴为二面角的平面角,------3分----------------------------4分连接AE ,设点E 到平面AFC 的距离为h , 则, ----------------------5分即,也就是,--------------------6分解得:; ------------------------------------------------7分(3)作CH AB ⊥于点H ,连接FH ,ABC ∆为等边三角形,H ∴为AB 的中点,221,3,5,AH CH FH FA AH ===+= FA ⊥平面ABCD ,CH ⊂平面ABCD ,FA CH ∴⊥,----8分 又,CH AB AB AF A ⊥⋂=,CH ∴⊥平面ABF ,-----9分CFH ∴∠为直线FC 与平面ABF 所成的角,-------10分36sin 422CH CFH CF ∴∠===.-----------------12分 22.(本小题满分12分)已知圆22+=9:O x y ,过点()0,2P -任作圆O 的两条相互垂直的弦AB 、CD ,设M 、N 分别是AB 、CD 的中点,(1)直线MN 是否过定点?若过,求出该定点坐标,若不过,请说明理由; (2)求四边形ACBD 面积的最大值,并求出对应直线AB 、CD 的方程.22.解:(1)当直线AB CD 、的斜率存在且不为0,设直线AB 的方程为:()()()112220,,,,y kx k A x y B x y =-≠------------1分由2229+=y kx x y =-⎧⎨⎩得:()221450k x kx +--=--------------------2分 点()0,2P -在圆内,故0∆>. 又 1212222422,21211M M Mx x k k x x x y kx k k k +∴+=∴===-=-+++ 即 2222,11kM k k ⎛⎫- ⎪++⎝⎭--------------------3分AB CD ⊥以1k -代换k 得22222,11k k N k k ⎛⎫-- ⎪++⎝⎭22222222111.22211MNk k k k k k k k k k -+-++∴==+++---------------4分∴直线MN 的方程为:222212121k k y x k k k -⎛⎫+=- ⎪++⎝⎭化简得2112k y x k-=-,故直线MN 恒过定点()01-,--------------------5分 当直线AB CD 、的斜率不存在或为0时,显然直线MN 恒过定点()01-, 综上,直线MN 恒过定点()01-,--------------------.6分 (2) 解法一:圆心O 到直线AB的距离1d =AB ==分 (或由第(1)问得:21AB x =-==以1k -代换k 得CD =)AB CD ⊥∴以1k -代换k 得:CD =分12ACBD S AB CD ∴=⋅==分14=≤= 当且仅当221,1k k k==±时,取等号,故四边形ACBD 面积的最大值为14,--------------------11分对应直线AB 、CD 分别为2,2y x y x =-=--或2,2y x y x =--=-----------12分 解法二:设圆心O 到直线AB 、CD 的距离分别为12,d d 、则22222211229,9AB r d d CD r d d =-=-=-=---------------------7分AB CD ⊥222124d d OP ∴+==--------------------8分()()()2222121221991821818414ACBD S AB CD d d d d OP ∴=⋅=≤-+-=-+=-=-=--------------------10分当且仅当12d d =,即1k =±时,取等号,故四边形ACBD 面积的最大值为14,--------------------11分对应直线AB 、CD 分别为2,2y x y x =-=--或2,2y x y x =--=---------12分。

高二上学期数学期中考试卷(含答案)

高二上学期数学期中考试卷(含答案)

高二上学期数学期中考试卷(含答案)一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.直线10x y +-=的倾斜角为( )A .30B .60︒C .120︒D .135︒ 2.76是等差数列4,7,10,13, 的第( )项A .25B .26C .27D .283.若两条直线210ax y +-=与3610x y --=互相垂直,则a 的值为( )A .4B .-4C .1D .-14.设等差数列{}n a 的前n 项和为n S ,若1073=+a a ,则=9S ( )A .22.5B .45C .67.5D .905. 已知直线l 过()2,1A -,且在两坐标轴上的截距为相反数,那么直线l 的方程是( )A .02=+y x 或30x y -+=B .10x y --=或30x y -+=C .10x y --=或30x y +-=D .02=+y x 或30x y +-= 6.设等比数列{}n a 的前n 项和为147258,9,18,n S a a a a a a ++=++=则9S =( )A .27B .36C .63D .727.已知圆()()111:221=-++y x C ,圆2C 与圆1C 关于直线01=--y x 对称,则圆2C 的方程为( )A .B .C .D .8.若数列{n a }的前n 项和为n S =2133n a +,n S =( )A .123n -B .1(2)3n --C .2123+ D .1(2)3n +- 二、选择题:本题共 4 小题,每小题 5 分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得 5 分,部分选对的得 2 分,有选错的得 0 分.9.一条光线从点()0,1射出,经x 轴反射后与圆22430x y x +-+=相切,则反射光线所在直线的方程是( )A .4330x y --=B .1=yC .3440x y --=D .1y =-10.已知等差数列{}n a 中,410a a =,公差0d <,则使其前n 项和n S 取得最大值的自然数n 是( )A .4B .5C .6D .711.已知圆222450x y x y a +--+-=上有且仅有两个点到直线34150x y --=的距离为1,则实数a 的可能取值为( )A .12-B .8-C .6D .1-12.数列{}n a 的前n 项和为n S ,已知27n S n n =-+,则下列说法正确的是( )A .{}n a 是递增数列B .1014a =-C .当4n >时,0n a <D .当3n =或4时,n S 取得最大值三、填空题:本题共4小题,每小题5分,共20分.13.已知数列{}n a 中,11,111+-==+n n a a a ,则=2022a _________. 14.已知两条直线0162:,033:21=++=-+y x l y ax l ,若12//l l ,则直线1l 与2l 之间的距离=d ______.15.由正数组成的等比数列{}n a 中,若3654=a a a ,则=+++93832313log log log log a a a a .16.点M 在圆()()93522=-+-y x 上,点M 到直线3x +4y -2=0的最短距离为四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分10分)已知△ABC 的三个顶点分别为A (-3,0),B (2,1),C (-2,3),求: (1)BC 边所在直线的方程; (2)BC 边的垂直平分线DE 的方程. 18.(本小题满分12分)已知S n 为等差数列{a n }的前n 项和,且a 3=17,S 7=98. (1)求{a n }的通项公式;(2)求S n 的最大值. 19.(本小题满分12分)已知圆()()2521:22=-+-y x C 及直线()()()R m m y m x m l ∈+=+++47112:.(1)证明:不论m 取什么实数,直线l 与圆C 恒相交; (2)求直线l 被圆C 截得的弦长的最短长度及此时的直线方程. 20.(本小题满分12分)数列{}n a 中13a =,已知1(,)n n a a +在直线2y x =+上. (1)求数列{}n a 的通项公式;(2)若3nn n b a =⋅,求数列{}n b 的前n 项和n T .21.(本小题满分12分)已知等比数列{}n a 中,11a =,且22a 是1a 和14a 的等差中项.数列{}n b 满足,且12712,13,1++=+==n n n b b b b b .(1)求数列{}n a 的通项公式; (2)求数列{}n n a b +的前n 项和n T . 22.(本小题满分12分)已知圆C 过点()6,2A ,且与直线010:1=-+y x l 相切于点()4,6B . (1)求圆C 的方程;(2)过点()24,6P 的直线2l 与圆C 交于N M 、两点,若CMN ∆为直角三角形,求直线2l 的方程;(3)在直线2:3-=x y l 上是否存在一点Q ,过点Q 向圆C 引两切线,切点为F E 、,使QEF ∆为正三角形,若存在,求出点Q 的坐标,若不存在,说明理由.参考答案一、单选题题目 1 2 3 4 5 6 7 8 答案DA AB AC BB二、多选题题目 9 10 11 12 答案ADCDABDCD三、填空题:13.2 14.20107 15.34 16.2 三、解答题:17.解:(1)因为直线BC 经过B (2,1)和C (-2,3)两点,所以BC 的方程为y -13-1=x -2-2-2,即x +2y -4=0.(2)由(1)知,直线BC 的斜率k 1=-12,则直线BC 的垂直平分线DE 的斜率k 2=2.因为BC 边的垂直平分线DE 经过BC 的中点(0,2),所以所求直线方程为y -2=2(x -0), 即2x -y +2=0.18.解:(1)因为{a n }是等差数列,设公差为d ,因为a 3=17,S 77a 4=98所以a 4=14, 由d =a 4﹣a 3=﹣3,所以a n =a 3+(n ﹣3)d =17﹣3(n ﹣3)=﹣3n +26;(2)易知S n,当n =8时,S n 取得最大值S 8=100.19.(1)将直线的方程变形为,令,解得,即直线过定点.因为,所以点在圆内部.所以不论m 为何实数,直线与圆恒相交.(2)由(1)的结论知直线过定点,且当直线时,此时圆心到直线的距离最大,进而被圆所截的弦长最短,故,从而此时,此时,直线方程为,即.20、【解析】(1)∵1(,)n n a a +在直线2y x =+上, ∴12n n a a +=+,即12n n a a +-=∴{}n a 是以3为首项,以2为公差的等差数列.32(1)21n a n n ∴=+-=+.(2)3,(21)3n n n n n b a b n =⋅∴=+⋅231335373(21)3(21)3n n n T n n -∴=⨯+⨯+⨯+⋯+-⋅++⋅ ① 23133353(21)3(21)3n n n T n n +∴=⨯+⨯+⋯+-⋅++⋅ ②由①-②得()23+12332333(21)3n n n T n -=⨯+++⋯+-+⋅()11191392(21)32313n n n n n -++-=+⨯-+⋅=-⋅-,13n n T n +∴=⋅.21、解:(1)设等比数列{}n a 的公比为q 因为11a =,所以222131,a a q q a a q q ====.因为22a 是3a 和14a 的等差中项, 所以23144a a a =+, 即244q q =+, 解得2,q =所以1112n n n a a q --==.(2)因为212n n n b b b +++=, 所以{}n b 为等差数列. 因为171,13b b ==, 所以公差131271d -==-. 故21n b n =-.所以1122n n n T a b a b a b =++++⋯++()()1212n n a a a b b b =++⋅⋅⋅++++⋯+2121212112()2n n n n n -+-=+=+--22、(1)设圆心坐标为,则,解得:,圆的半径, 圆的方程为:.(2)为直角三角形,,,则圆心到直线的距离;当直线斜率不存在,即时,满足圆心到直线的距离;当直线斜率存在时,可设,即,,解得:,,即;综上所述:直线的方程为或.(3)假设在直线存在点,使为正三角形,,,设,,解得:或,存在点或,使为正三角形.。

北京市2023-2024学年高二上学期期中数学试题含答案

北京市2023-2024学年高二上学期期中数学试题含答案

北京市2023—2024学年第一学期期中阶段练习高二数学(答案在最后)2023.11班级____________姓名____________学号____________本试卷共3页,共150分.考试时长120分钟.考生务必将答案写在答题纸上,在试卷上作答无效.一、选择题:本大题共10道小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项符合题目的要求.把正确答案涂写在答题卡上相应的位置..................1.已知(1,3),(3,5)A B --,则直线AB 的斜率为()A.2 B.1C.12D.不存在【答案】A 【解析】【分析】由斜率公式,可求出直线AB 的斜率.【详解】由(1,3),(3,5)A B --,可得35213AB k --==--.故选:A.2.圆222430x y x y +-++=的圆心为().A.(1,2)-B.(1,2)- C.(2,4)- D.(2,4)-【答案】A 【解析】【分析】先将圆的一般方程化为标准方程,从而可求出其圆心坐标.【详解】由222430x y x y +-++=,得22(1)(2)2x y -++=,所以圆心为(1,2)-,故选:A3.一个椭圆的两个焦点分别是()13,0F -,()23,0F ,椭圆上的点P 到两焦点的距离之和等于8,则该椭圆的标准方程为()A.2216428x y += B.221167x y += C.221169x y += D.22143x y +=【答案】B 【解析】【分析】利用椭圆的定义求解即可.【详解】椭圆上的点P 到两焦点的距离之和等于8,故28,4a a ==,且()13,0F -,故2223,7c b a c ==-=,所以椭圆的标准方程为221167x y +=.故选:B4.任意的k ∈R ,直线13kx y k -+=恒过定点()A.()0,0 B.()0,1 C.()3,1 D.()2,1【答案】C 【解析】【分析】将直线方程整理成斜截式,即可得定点.【详解】因为13kx y k -+=,即()31y k x =-+,所以直线13kx y k -+=恒过定点()3,1.故选:C.5.已知圆221:1C x y +=与圆222:870C x y x +-+=,则圆1C 与圆2C 的位置关系是()A.相离B.相交C.内切D.外切【答案】D 【解析】【分析】求出两圆的圆心和半径,得到12124C C r r ==+,得到两圆外切.【详解】圆221:1C x y +=的圆心为()10,0C ,半径为11r =,圆()22222:87049C x y x x y +-+=⇒-+=,故圆心()24,0C ,半径为23r =,则12124C C r r ==+,所以圆1C 与圆2C 的位置关系是外切.故选:D6.过点1,22P ⎛⎫- ⎪⎝⎭的直线l 与圆2214x y +=有公共点,则直线l 的倾斜角取值范围是()A.π5π,26⎡⎤⎢⎥⎣⎦ B.2π,π3⎡⎫⎪⎢⎣⎭C.π22π,3⎡⎤⎢⎥⎣⎦D.5π,π6⎡⎫⎪⎢⎣⎭【答案】A 【解析】【分析】利用直线与圆的位置关系及倾斜角与斜率的关系计算即可.【详解】易知圆的半径为12,圆心为原点,当倾斜角为π2时,即直线l 方程为12x =-,此时直线l 与圆相切满足题意;当斜率存在时,不妨设直线l方程为122y k x ⎛⎫=++ ⎪⎝⎭,则圆心到其距离为12d =≤,解不等式得33k ≤-,所以直线l 的倾斜角取值范围为π5π,26⎡⎤⎢⎥⎣⎦故选:A7.“1a =-”是“直线1:430l ax y +-=与直线()2:320l x a y +-+=平行的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】A 【解析】【分析】求出当12l l //时实数的值,再利用集合的包含关系判断可得出结论.【详解】当12l l //时,()34a a -=,即2340a a --=,解得1a =-或4.当1a =-时,直线1l 的方程为430x y -+=,直线2l 的方程为420x y -+=,此时12l l //;当4a =时,直线1l 的方程为304x y +-=,直线2l 的方程为20x y ++=,此时12l l //.因为{}1-{}1,4-,因此,“1a =-”是“直线1:430l ax y +-=与直线()2:320l x a y +-+=平行”的充分不必要条件.故选:A.8.如图,在平行六面体1111ABCD A B C D -中,12AA AD AB ===,2BAD π∠=,113BAA A AD π∠=∠=,则11AB AD ⋅=()A.12B.8C.6D.4【答案】B 【解析】【分析】根据空间向量加法的运算性质,结合空间向量数量积的运算性质和定义进行求解即可.【详解】()()21111111AB AD AB AA AD AA AB AD AB AA AD AA AA ⋅=+⋅+=⋅+⋅+⋅+ 211110222228,22AB AD ⇒⋅=+⨯⨯+⨯⨯+= 故选:B9.数学家欧拉在1765年提出定理:三角形的外心、重心、垂心依次位于同一直线上,且重心到外心的距离是重心到垂心距离的一半.这条直线被后人称为三角形的欧拉线,已知△ABC 的顶点()2,0A ,()1,2B ,且AC BC =,则△ABC 的欧拉线的方程为()A.240x y --=B.240x y +-=C.4210x y ++=D.2410x y -+=【答案】D 【解析】【分析】由题设条件求出AB 垂直平分线的方程,且△ABC 的外心、重心、垂心都在垂直平分线上,结合欧拉线的定义,即垂直平分线即为欧拉线.【详解】由题设,可得20212AB k -==--,且AB 中点为3(,1)2,∴AB 垂直平分线的斜率112AB k k =-=,故垂直平分线方程为131()12224x y x =-+=+,∵AC BC =,则△ABC 的外心、重心、垂心都在垂直平分线上,∴△ABC 的欧拉线的方程为2410x y -+=.故选:D10.曲线33:1C x y +=.给出下列结论:①曲线C 关于原点对称;②曲线C 上任意一点到原点的距离不小于1;③曲线C 只经过2个整点(即横、纵坐标均为整数的点).其中,所有正确结论的序号是A.①② B.②C.②③D.③【答案】C 【解析】【分析】将(),x y --代入,化简后可确定①的真假性.对x 分成0,0,01,1,1x x x x x <=<<=>等5种情况进行分类讨论,得出221x y +≥,由此判断曲线C 上任意一点到原点的距离不小于1.进而判断出②正确.对于③,首先求得曲线C 的两个整点()()0,1,1,0,然后证得其它点不是整点,由此判断出③正确.【详解】①,将(),x y --代入曲线33:1C x y +=,得331x y +=-,与原方程不相等,所以曲线C 不关于原点对称,故①错误.②,对于曲线33:1C x y +=,由于331y x =-,所以y =,所以对于任意一个x ,只有唯一确定的y和它对应.函数y =是单调递减函数.当0x =时,有唯一确定的1y =;当1x =时,有唯一确定的0y =.所以曲线C 过点()()0,1,1,0,这两点都在单位圆上,到原点的距离等于1.当0x <时,1y >,所以221x y +>>.当1x >时,0y <,所以221x y +>>.当01x <<时,01y <<,且()()()()223322221110x y x y x y x x y y -+=+-+=-+-<,所以221x y +>>.综上所述,曲线C 上任意一点到原点的距离不小于1,所以②正确.③,由②的分析可知,曲线C 过点()()0,1,1,0,这是两个整点.由331x y +=可得()331x y -=-,当0x ≠且1x ≠时,若x 为整数,31x -必定不是某个整数的三次方根,所以曲线C 只经过两个整点.故③正确.综上所述,正确的为②③.故选:C【点睛】本小题主要考查根据曲线方程研究曲线的性质,属于中档题.二、填空题:本大题共5小题,共25分.把答案填在答题纸中相应的横线上................11.已知空间()2,3,1a = ,()4,2,b x =- ,a b ⊥ ,则b =_____.【答案】【解析】【分析】根据空间向量的垂直,根据数量积的坐标表示,建立方程,结合模长公式,可得答案.【详解】由a b ⊥ ,且()2,3,1a = ,()4,2,b x =- ,则860a b x ⋅=-++=r r ,解得2x =,故b =r.故答案为:12.已知过点(0,2)的直线l 的方向向量为(1,6),点(,)A a b 在直线l 上,则满足条件的一组,a b 的值依次为__________.【答案】1;8【解析】【分析】根据方向向量设出直线l 的方程,再由点(0,2)求出其方程,从而得出62b a =+,即可得出答案.【详解】直线l 的方向向量为(1,6),可设直线l 的方程为60x y C -+=因为点(0,2)在直线l 上,所以2C =,即直线l 为620x y -+=所以620a b -+=,即62b a =+可取1a =,则8b =故答案为:1;813.在正方体ABCD A B C D -''''中,E 是C D ''的中点,则异面直线DE 与AC 所成角的余弦值为______.【答案】10【解析】【分析】利用正方体的特征构造平行线,利用勾股定理及余弦定理解三角形即可.【详解】如图所示,取A B ''的中点F ,易得//AF DE ,则FAC ∠或其补角为所求角,不妨设正方体棱长为2,则,3,AF FC FC AC '====,由余弦定理知:222cos 210AF AC FC FAC AF AC +-∠==⋅,则FAC ∠为锐角,即异面直线DE 与AC 所成角.故答案为:1010.14.将一张坐标纸对折,如果点()0,m 与点()()2,22m m -≠重合,则点()4,1-与点______重合.【答案】()1,2--【解析】【分析】先求线段AB 的中垂线方程,再根据点关于直线对称列式求解即可.【详解】已知点()0,A m 与点()2,2B m -,可知线段AB 的中点为1,122mm M ⎛⎫-+ ⎪⎝⎭,且212AB mk m -==--,则线段AB 的中垂线的斜率1k =,则线段AB 的中垂线方程为1122m m y x ⎛⎫⎛⎫-+=--⎪ ⎪⎝⎭⎝⎭,即20x y -+=,设点()4,1-关于直线20x y -+=的对称点为(),a b ,则114412022b a a b -⎧=-⎪⎪+⎨-+⎪-+=⎪⎩,解得12a b =-⎧⎨=-⎩,所以所求点为()1,2--.故答案为:()1,2--.15.给定两个不共线的空间向量a 与b,定义叉乘运算:a b ⨯ .规定:(i )a b ⨯ 为同时与a,b垂直的向量;(ii )a,b ,a b ⨯三个向量构成右手系(如图1);(iii )sin ,a b a b a b ⨯=.如图2,在长方体1111ABCD A B C D -中,2AB AD ==,14AA =.给出下列四个结论:①1AB AD AA ⨯= ;②AB AD AD AB ⨯=⨯;③()111AB AD AA AB AA AD AA +⨯=⨯+⨯ ;④()11111ABCD A B C D V AB AD CC -=⨯⋅.其中,正确结论的序号是______________.【答案】①③④【解析】【分析】由新定义逐一核对四个选项得答案.【详解】解: ||||||sin902214AB AD AB AD ⨯=︒=⨯⨯=,且1AA 分别与,AB AD 垂直,∴1AB AD AA ⨯= ,故①正确;由题意,1AB AD AA ⨯= ,1AD AB A A ⨯=,故②错误;AB AD AC +=,∴11|()|||41AB AD AA AC AA +⨯=⨯=⨯= 且1()AB AD AA +⨯ 与DB 共线同向, 1||2418AB AA ⨯=⨯⨯= ,1AB AA ⨯ 与DA 共线同向,1||2418AD AA ⨯=⨯⨯= ,1AD AA ⨯ 与DB共线同向,11||AB AA AD AA ∴⨯+⨯= 11AB AA AD AA ⨯+⨯ 与DB共线同向,故③正确;11()||||||sin90cos022416AB AD CC AB AD CC ⨯=⨯⨯︒⨯︒=⨯⨯=,故④成立.故答案为:①③④.三、解答题:本大题共6题,共85分.解答应写出文字说明、演算步骤或证明过程,并把答案...写在答题纸中相应位置上............16.在平面直角坐标系中,已知(3,9),(2,2),(5,3)A B C -,线段AC 的中点M ;(1)求过M 点和直线BC 平行的直线方程;(2)求BC 边的高线所在直线方程.【答案】(1)3170x y -+=(2)30x y +=【解析】【分析】(1)根据(3,9),(2,2),(5,3)A B C -,求得点M 的坐标,和直线直线BC 的斜率,写出直线方程;(2)根据13BC k =,得到BC 边的高线的斜率,写出直线方程;【小问1详解】解:因为(3,9),(2,2),(5,3)A B C -,所以()1,6M ,13BC k =,所以过M 点和直线BC 平行的直线方程为()1613y x -=-,即3170x y -+=;【小问2详解】因为13BC k =,所以BC 边的高线的斜率为-3,所以BC 边的高线所在直线方程()933y x -=-+,即30x y +=17.如图,在边长为2的正方体1111ABCD A B C D -中,E 为线段1BB 的中点.(1)求证:1//BC 平面1AED ;(2)求点1A 到平面1AED 的距离;(3)直线1AA 与平面1AED 所成角的正弦值.【答案】(1)证明见解析(2)43(3)23【解析】【分析】(1)证明出四边形11ABC D 为平行四边形,可得出11//BC AD ,利用线面平行的判定定理可证得结论成立;(2)以点A 为坐标原点,AD 、AB 、1AA 所在直线分别为x 、y 、z 轴建立空间直角坐标系,利用空间向量法可求得点1A 到平面1AED 的距离;(3)利用空间向量法可求得直线1AA 与平面1AED 所成角的正弦值.【小问1详解】证明:在正方体1111ABCD A B C D -中,11//AB C D 且11AB C D =,故四边形11ABC D 为平行四边形,则11//BC AD ,因为1BC ⊄平面1AED ,1AD ⊂平面1AED ,因此,1//BC 平面1AED .【小问2详解】解:以点A 为坐标原点,AD 、AB 、1AA 所在直线分别为x 、y 、z 轴建立如下图所示的空间直角坐标系,则()0,0,0A 、()10,0,2A 、()0,2,1E 、()12,0,2D ,所以,()10,0,2AA = ,()12,0,2AD = ,()0,2,1AE = ,设平面1AED 的法向量为(),,n x y z = ,则122020n AD x z n AE y z ⎧⋅=+=⎪⎨⋅=+=⎪⎩ ,取2z =-,可得()2,1,2n =- ,所以,点1A 到平面1AED 的距离为143AA n d n⋅== .【小问3详解】解:因为11142cos ,233AA n AA n AA n ⋅<>===⨯⋅ ,因此,直线1AA 与平面1AED 所成角的正弦值为23.18.已知圆C 的圆心在直线20x y -=上,且与x 轴相切于点()1,0.(1)求圆C 的方程;(2)若圆C 直线:0l x y m -+=交于A ,B 两点,____,求m 的值.从下列三个条件中任选一个补充在上面问题中并作答:条件①:圆C 被直线l 分成两段圆弧,其弧长比为2:1;条件②:2AB =;条件③:90ACB ∠=︒.【答案】(1)()()22124x y -+-=(2)答案见解析【解析】【分析】(1)利用几何关系求出圆心的坐标即可;(2)任选一个条件,利用选择的条件,求出圆心到直线的距离,然后列方程求解即可.【小问1详解】设圆心坐标为(),C a b ,半径为r .由圆C 的圆心在直线20x y -=上,知:2a b =.又 圆C 与x 轴相切于点()1,0,1a ∴=,2b =,则02r b =-=.∴圆C 圆心坐标为()1,2,则圆C 的方程为()()22124x y -+-=【小问2详解】如果选择条件①:120ACB ∠=°,而2CA CB ==,∴圆心C 到直线l 的距离1cos 60d CA =⨯= ,则1d ==,解得1m +或1+.如果选择条件②和③:AB =,而2CA CB ==,∴圆心C 到直线l 的距离d =,则d ==,解得1m =-或3.如果选择条件③:90ACB ∠=︒,而2CA CB ==,∴圆心C 到直线l 的距离cos 45d CA ⨯== ,则d ==,解得1m =-或3.19.如图,四棱锥P ABCD -中,AD ⊥平面ABP ,,90,2,3,BC AD PAB PA AB AD BC m ∠=︒==== ,E 是PB 的中点.(1)证明:AE ⊥平面PBC ;(2)若二面角C AE D --的余弦值是33,求m 的值;(3)若2m =,在线段A 上是否存在一点F ,使得PF CE ⊥.若存在,确定F 点的位置;若不存在,说明理由.【答案】(1)证明见解析(2)1(3)不存在,理由见解析【解析】【分析】(1)推导出⊥BC 平面PAB .,AE BC AE PB ⊥⊥.由此能证明AE ⊥平面PBC ;(2)建立空间直角坐标系A xyz -,利用向量法能求出m 的值;(3)设()()0,0,03F t t ≤≤,当2m =,()0,0,2C ,()()2,0,,1,1,2PF t CE ==-- ,由PF CE ⊥知,0PF CE ⋅= ,220,1t t --==-,这与03t ≤≤矛盾,从而在线段AD 上不存在点F ,使得PF CE ⊥.【小问1详解】证明:因为AD ⊥平面PAB ,BC AD ∥,所以⊥BC 平面PAB ,又因为AE ⊂平面PAB ,所以AE BC ⊥.在PAB 中,PA AB =,E 是PB 的中点,所以AE PB ⊥.又因为BC PB B = ,,BC PB ⊂平面PBC ,所以AE ⊥平面PBC .【小问2详解】因为AD ⊥平面PAB ,,AB PA ⊂平面PAB ,所以,AD AB AD PA ⊥⊥,又因为PA AB ⊥,所以如图建立空间直角坐标系A xyz -.则()()()()()()0,0,0,0,2,0,0,2,,1,1,0,2,0,0,0,0,3A B C m E P D ,则()0,2,AC m = ,()1,1,0AE = ,设平面AEC 的法向量为 =s s .则00AC n AE n ⎧⋅=⎪⎨⋅=⎪⎩ 即200y mz x y +=⎧⎨+=⎩,令1x =,则1y =-,2z m =,故21,1,n m ⎛⎫=- ⎪⎝⎭.因为AD ⊥平面PAB ,PB ⊂平面PAB ,所以AD PB ⊥,又AE PB ⊥,,,AD AE A AD AE ⋂=⊂平面AED ,所以PB ⊥平面AED .又因为()2,2,0PB =- ,所以取平面AED 的法向量为()2,2,0PB =-所以cos ,3n PB n PB n PB⋅== ,3=,解得21m =.又因为0m >,所以1m =;【小问3详解】结论:不存在.理由如下:证明:设()()0,0,03F t t ≤≤.当2m =时,()0,0,2C ,()()2,0,,1,1,2PF t CE =-=-- ,由PF CE ⊥知0PF CE ⋅= ,220,1t t --==-,这与03t ≤≤矛盾,所以在线段AD 上不存在点F ,使得PF CE ⊥.20.已知圆()22:1C x a y -+=与直线1y x --=交于M 、N 两点,点P 为线段MN 的中点,O 为坐标原点,直线OP 的斜率为13-.(1)求a 的值及MON △的面积;(2)若圆C 与x 轴交于,A B 两点,点Q 是圆C 上异于,A B 的任意一点,直线QA 、QB 分别交:4l x =-于,R S 两点.当点Q 变化时,以RS 为直径的圆是否过圆C 内的一定点,若过定点,请求出定点;若不过定点,请说明理由.【答案】(1)12,2MON a S =-=(2)()4-【解析】【分析】(1)先确定直线OP 的方程,联立直线方程求得P 点坐标,利用垂径定理及两直线垂直的斜率关系计算可得a ,再根据点到直线的距离公式、弦长公式计算求面积即可;(2)设QA 方程,含参表示QB 方程,求出,R S 坐标,从而求出以RS 为直径的圆的方程,利用待定系数法计算即可.【小问1详解】由题知:直线OP 方程为13y x =-,则由113y x y x =--⎧⎪⎨=-⎪⎩,得到3212x y ⎧=-⎪⎪⎨⎪=⎪⎩,即31,22P ⎛⎫- ⎪⎝⎭, 点P 为线段MN 的中点,MN PC ∴⊥,即1021132MN PC k k a -⋅=-⨯=-+,2a ∴=-,即圆心−2,0;C ∴到直线=1y x --距离为2d ==,MN ∴==,又O 到直线=1y x --的距离为22,MN 边上的高为22.11222MON S ∴=⨯= .【小问2详解】由上可知()()3,0,1,0A B --,不妨设直线QA 的方程为()3y k x =+,其中0k ≠,在直线QA 的方程中,令4x =-,可得()4,R k --,因为QA QB ⊥,则直线QB 的方程为()11y x k =-+,在直线QB 的方程中,令4x =-,可得3y k =,即点34,S k ⎛⎫- ⎪⎝⎭,则线段RS 的中点为234,2k F k ⎛⎫-- ⎪⎝⎭,半径平方为2232k k ⎛⎫+ ⎪⎝⎭,所以,以线段MN 为直径的圆的方程为()2222233422k k x y k k ⎛⎫⎛⎫-+++-= ⎪ ⎪⎝⎭⎝⎭,即()2223430k x y y k -++--=,由()2430031x y x ⎧+-=⎪=⎨⎪-<<-⎩,解得40x y ⎧=-+⎪⎨=⎪⎩,因此,当点Q 变化时,以RS 为直径的圆恒过圆C内的定点()4-+.21.已知{}1,2,,n S = ,A S ⊆,{}12,T t t S =⊆,记{}(),1,2i i A x x a t a A i ==+∈=,用X 表示有限集合X 的元素个数.(1)若4n =,12A A =∅ ,分别指出{}1,2,3A =和{}1,2,4A =时,集合T 的情况(直接写出结论);(2)若6n =,12A A =∅ ,求12A A ⋃的最大值;(3)若7n =,4A =,则对于任意的A ,是否都存在T ,使得12A A =∅ 说明理由.【答案】(1){}1,4(2)10(3)不一定存在,理由见解析【解析】【分析】(1)由已知得12t t a b -≠-,其中,a b A ∈,当{}1,2,3A =时,12t t ,相差3;由此可求得T ,当{}1,2,4A =时,同理可得;(2)若6n =,12A A =∅ ,{}123456S =,,,,,,当{}2,3,4,5,6A =时,则12t t ,相差5,所以{}1,6T =,A 中至多有5个元素,所以12,A A 也至多有5个元素,求出12,A A 得出结果;(3)举反例{}1,2,5,7A =和{}{}1,2,3,4,1,6A T ==,根据题意检验即可说明.【小问1详解】若12A A =∅ ,则12t t a b -≠-,其中,a b A ∈,否则12t a t b +=+,12A A ⋂≠∅,若4n =,当{}1,2,3A =时,211-=,312-=,所以121,2t t -≠,则1t ,2t 相差3,因为1,2,3,4S =,{}12,T t t S =⊆,所以{}1,4T =;当{}1,2,4A =时,211-=,422-=,413-=,所以121,2,3t t -≠,因为1,2,3,4S =,{}12,T t t S =⊆,所以T 不存在;【小问2详解】若6n =,12A A =∅ ,{}123456S =,,,,,,当A S =时,211-=,514-=,523-=,716-=,72=5-,752-=,所以A S ≠,121,2,3,4,5t t -≠,所以T 不存在;所以A 中至多有5个元素;当{}2,3,4,5,6A =时,321-=,422-=,523-=,624-=,所以121,2,3,4t t -≠,则1t ,2t 相差5,所以{}1,6T =;{}(),1,2i i A x x a t a A i ==+∈=,所以{}1345,6,7A =,,,{}28910,11,12A =,,,{}12345,6,7,8910,11,12A A = ,,,,.因为A 中至多有5个元素,所以1A ,2A 也至多有5个元素,所以12A A ⋃的最大值为10.【小问3详解】不一定存在,理由如下:例如{}1,2,5,7A =,则211-=514-=,523-=,716-=,72=5-,752-=,则1t ,2t 相差不可能1,2,3,4,5,6,这与{}{}12,1,2,3,4,5,6,7T t t =⊆矛盾,故不都存在T ;例如{}{}1,2,3,4,1,6A T ==,不妨令121,6t t ==,则{}{}122,3,4,5,7,8,9,10A A ==,满足12A A =∅ .【点睛】关键点点睛:对于新定义问题,要充分理解定义,并把定义进行转化为已知的知识点或结论,方便解题.。

2024-2025学年高二数学上学期期中必刷题精选(压轴6类考点专练)(原卷版)

2024-2025学年高二数学上学期期中必刷题精选(压轴6类考点专练)(原卷版)

高二上学期期中必刷题精选(压轴6类考点专练)一、单选题1.(24-25高三上·云南玉溪·阶段练习)在下图所示直四棱柱1111ABCD A B C D -中,底面ABCD 为菱形,π1,3AB DAB =Ð=,12AA =,动点P 在体对角线1BD 上,则顶点B 到平面APC 距离的最大值为( )A .12BCD2.(24-25高二上·广东东莞·阶段练习)在正方体1111ABCD A B C D -中,平面a 经过点B ,D ,平面b 经过点A ,1D ,当平面a ,b 分别截正方体所得截面面积最大时,平面a 与平面b 的夹角的余弦值为( )ABC .12D .133.(24-25高二上·河北·在正三棱柱111ABC A B C -中,2AB =,1AA =2BC BO =uuu r uuu r ,M 为棱11B C 上的动点,N 为线段AM 上的动点,且MN MOMOMA=,则线段MN 长度的最小值为( )A .2BC D 4.(24-25高二上·云南大理·阶段练习)在长方体1111ABCD A B C D -中,2AB AD ==,11AA =,O 是AC 的中点,点P 在线段11A C上,若直线OP 与平面1ACD 所成的角为q ,则sin q 的取值范围是( )A.B.C.D .5.(24-25高二上·重庆·阶段练习)长方体11ABCD ABC D -,1AB BC ==,12BB =,动点P 满足1(,[0,1])BP BC BBl m l m =+Îuuu r uuur uuur,1AP BD ^,则二面角P AD B --的正切值的取值范围是( )A .10,4éùêúëûB .10,2éùêúëûC .11,42éùêúëûD .1,12éùêúëû二、多选题6.(24-25高二上·江西南昌·阶段练习)在长方体1111ABCD A B C D -中,12,4AB BC CC ===,点E 在棱1AA 上,且13AE EA =.点M 为线段11B D 上动点(包括端点),则下列结论正确的是( )A .当点M 为11B D 中点时,1C M ^平面11BB D DB .过E 点作与直线1BD 垂直的截面a ,则直线AD 与截面aC .三棱锥E BDM -的体积是定值D .点M 到直线1BC 7.(24-25高二上·吉林·阶段练习)在棱长为1的正方体1111ABCD A B C D -中,P 为棱1BB 上一点,且12B P PB =,Q 为正方形11BB C C 内一动点(含边界),则下列说法中正确的是( )A .若1D Q ∥平面1A PD ,则动点Q 的线段B .存在点Q ,使得1D Q ⊥平面1A PDC .三棱锥1Q A PD -的最大体积为518D .若1D Q ,且1D Q 与平面1A PD 所成的角为q ,则sin q 三、填空题8.(24-25高二上·北京·阶段练习)如图,在四棱锥P ABCD -中,PA ^底面ABCD ,DAB Ð为直角,//AB CD ,AD CD ==2AB ,E ,F 分别为PC ,CD 的中点,(0)PA kAB k =>,且二面角E BD C --的平面角大于30°,则k 的取值范围是 .9.(湖北省问津教育联合体2024-2025学年高二上学期10月联考数学试卷)正方体1111ABCD A B C D -中,点E 是1AA 的中点,点F 为正方形11AA B B 内一动点,且//CF 平面1DEC ,若异面直线CF 与11A D 所成角为q ,则cos q 的最小值为 .一、单选题1.(24-25高二上·江西·阶段练习)点()2,3-关于直线2230x y +-=对称的点的坐标为( )A .37,22æö-ç÷èøB .73,22æö-ç÷èøC .53,22æö-ç÷èøD .35,22æö-ç÷èø2.(24-25高二上·全国·课后作业)已知直线1l 过点()2,4A ,与x 轴交于点()3,0B ,直线1l 与2l 关于y 轴对称,则直线2l 的方程为( )A .4120x y +-=B .4120x y -+=C .45120x y +-=D .45120x y -+=3.(2025高三·全国·专题练习)已知0x y +=)AB .CD .4.(24-25高二上·天津·开学考试)已知点()3,6A -和()1,2B ,在x 轴上求一点M ,使AM BM +最小,那么点M 的坐标为( )A .()2,0-B .()1,0C .()4.4,0D .()0,05.(24-25高二上·云南玉溪·期中)一光线过点(2,4),经倾斜角为3π4的且过(0,1)的直线l 反射后过点(5,0),则反射后的光线不会经过下列哪个点( )A .11,2æö-ç÷èøB .32,8æö-ç÷èøC .13,4æö-ç÷èøD .14,4æö-ç÷èø6.(24-25高二上·全国·课后作业)若点M 在直线:1l y x =--上,则点M 到点()()2,1,3,4A B 的距离之和的最小值为( )A .BC .D .7.(24-25高二上·辽宁沈阳·阶段练习)直线1(1):220l x m y m ++--=与直线2:(1)220l m x y m +---=相交于点P ,对任意实数m ,直线12,l l 分别恒过定点,A B ,则||||PA PB +的最大值为( )A .2B .C .D .48.(24-25高二上·江苏南通·阶段练习)已知P ,Q 是直线:10l x y -+=上两动点,且||PQ (4,6)A -,(0,6)B ,则||||||AP PQ QB ++的最小值为( )A.10B.10C.D .12一、单选题1.(24-25高二上·重庆·阶段练习)已知点A 、B 在圆22:16O x y +=上,且AB 的中点M 在圆22:(2)1C x y -+=上,则弦长AB 的最小值为( )A.B.C.D.2.(24-25高二上·辽宁沈阳·阶段练习)若经过点()1,2且半径大于1的圆与两坐标轴都相切,若该圆上至少有三个不同的点到直线0x y c -+=的距离等于52,则实数c 的取值范围是( )A.æçèB .55,22æö-ç÷èøC.éêëD .55,22éù-êúëû3.(24-25高二上·山东菏泽·阶段练习)已知直线1:310(R)l mx y m m --+=Î与直线2:310(R)l x my m m +--=Î相交于点P ,则P 到直线0x y +=的距离d 的取值范围是( )A.B.C.D.4.(24-25高二上·四川自贡·阶段练习).已知点(,)P x y 为直线240l x y ++=:上的动点,过P 点作圆22:(1)1C x y +-=的切线PA ,PB ,切点为,A B ,则PAB V 周长的最小值为()A.4B.5C.4D.4+5.(24-25高二上·湖南长沙·阶段练习)已知,A B 两点的坐标分别为()()0,1,1,0A B ,两条直线1:10l mx y -+=和()2:10l x my m +-=ÎR 的交点为P ,则AP BP +的最大值为( )ABC .1D .26.(24-25高二上·江苏徐州·阶段练习)已知圆()22:11C x y -+=,直线:(1)l y k x =+,若直线与x 轴交于点A ,过直线l 上一点P 作圆C 的切线,切点为T,且PA =,则k 的取值范围是( ).A.éêëB .11,33éù-êúëûC.13éùêúëûD.13é-êë7.(24-25高二上·黑龙江鹤岗·阶段练习)设m ÎR ,22:260M x y x y +--=e .若动直线1:20l x my m +--=与M e 交于点A ,C ,动直线2210:mx y l m --+=与M e 交于点B ,D ,则AC BD +的最大值是( )A.B.C.D.8.(24-25高二上·安徽阜阳·阶段练习)已知圆()()221122:(4)4,,,,C x y A x y B x y -+=是圆上的两个动点,且AB =,则112211x y x y -++-+的最大值为( )A.10-B1+C.5D.10+一、单选题1.(23-24高二上·湖南常德·阶段练习)如图,已知12F F 、分别是双曲线2222:1(0,0)x y C a b a b -=>>的左、右焦点,现以2F 为圆心作一个通过双曲线中心的圆并且交双曲线C 于M N 、两点.若直线1MF 是圆2F 的切线,则该双曲线的离心率为( )A1BC.D22.(24-25高三上·浙江·阶段练习)已知双曲线2222:1(0,0)x y C a b a b -=>>的左焦点为1F ,O 为坐标原点,若在C 的右支上存在关于x 轴对称的两点,P Q ,使得1PF Q △为正三角形,且1OQ F P ^,则C 的离心率为()A B .1C D .13.(2022·陕西榆林·模拟预测)已知双曲线2222:1(0,0)x y C a b a b -=>>的左,右焦点分别为1F ,2F ,点P 在双曲线C 的右支上,直线1PF 与双曲线C 的一条渐近线垂直,垂足为H ,若114PF HF =,则双曲线C 的离心率为( )A .73B .53C D 4.(24-25高二上·全国·课后作业)已知椭圆2222:1(0)x y C a b a b+=>>的左、右焦点为12,,,F F P Q 为C 在第一象限的两个动点,且1212π,6PF QF PF F l =Ð=uuu r uuuu r ,若123PF QF =,则C 的离心率为( )A B .12C D 5.(24-25高三上·海南海口·阶段练习)已知椭圆C :22221(0)x y a b a b+=>>的左、右焦点分别为1F ,2F ,P是C 上一点,且212PF F F ^,H 是线段1PF 上靠近1F 的四等分点,且10OH PF ×=uuur uuu r,则C 的离心率为( )A B 1C 1D 6.(2025·四川巴中·模拟预测)已知12,F F 是椭圆2222:1(0)x yC a b a b+=>>的左,右焦点,A ,B 是椭圆C 上的两点.若122F A F B =uuu r uuu u r ,且1π4AF F Ð=,则椭圆C 的离心率为( )A .13BCD .237.(24-25高二上·浙江温州·阶段练习)已知椭圆2222:1(0)x y C a b a b +=>>的左、右焦点分别为12,F F ,过1F 的直线与椭圆C 交于,M N 两点,若21225MNF MF F S S =V V 且2121F F N F NF ÐÐ=,则椭圆C 的离心率为( )A .35B C .13D 8.(24-25高二上·全国·课后作业)已知椭圆()22112211:10x yE a b a b +=>>与双曲线()22222222:10,0x y C a b a b -=>>共焦点,12,F F 分别为左、右焦点,点P 为E 与C 的一个交点,且12120F PF Ð=°,设E 与C 的离心率分别为12,e e ,则2212e e +的取值范围是( )A .)+¥B .)+¥C .()2,+¥D .()3,+¥一、单选题1.(24-25高二上·全国·课后作业)已知抛物线2:24C y x =的焦点为F ,定点()6,3,Q P 为C 上一动点,则PF PQ +的最小值为( )A .12B .14C .16D .182.(23-24高三上·广东广州·期中)直线l 经过抛物线24y x =的焦点F ,且与抛物线交于A ,B 两点.若3AF BF =,则AB =( )A .83B .3C .163D .323.(24-25高二上·全国·课后作业)已知点,A B 为抛物线22y x =上异于原点的两个动点,若AB 4=,则线段AB 中点的横坐标的最小值为( )A .1B .32C .53D .24.(2024·辽宁锦州·模拟预测)抛物线2:4C y x =的焦点为F ,准线为l ,A 为C 上一点,以点F 为圆心,以AF 为半径的圆与l 交于点B ,D ,与x 轴交于点M ,N ,若AB FM =uuu r uuuu r,则AM =uuuu r ( )A.B.C.D.5.(23-24高二下·浙江·2:4C x y =,过抛物线C 焦点的直线交抛物线C 于A B 、两点,交圆22:20E x y y +-=于M N 、两点,其中A M 、位于第一象限,则14AM BN+的最小值为( )A .2B .3C .4D .56.(23-24高二下·山东烟台·阶段练习)已知,A B 为抛物线()220y px p =>上的两个动点,以AB 为直径的圆C 经过抛物线的焦点F ,且面积为4π,若过圆心C 作该抛物线准线l 的垂线,垂足为D ,则CD 的最大值为( ).A .4B.C.D .67.(2024·西藏林芝·模拟预测)已知抛物线28y x =上一点P 到准线的距离为1d ,到直线:43120l x y -+=的距离为2d ,则12d d +的最小值为( )A .1B .2C .3D .48.(24-25高三上·内蒙古赤峰·阶段练习)已知抛物线2:2(0)C y px p =>的焦点为F ,过点F 的直线l 与抛物线C 交于(,A B A 在第一象限)两点,O 为坐标原点,若39AB BF ==,则OAB △的面积是( )A.B .6C.D .12一、解答题1.(24-25高二上·陕西西安·阶段练习)已知椭圆()2222:10x y C a b a b +=>>的左焦点为,F P 是椭圆上任意一点,PF 的最大值为3,最小值为1.(1)求椭圆的标准方程;(2)已知1,12M æöç÷èø是椭圆内一点,过点M 任做一条直线与椭圆交于B C 、两点,求以M 为中点的弦所在的直线方程.2.(24-25高三上·福建泉州·阶段练习)已知双曲线2222:1(0,0)x y C a b a b -=>>,右焦点到双曲线C 的一条渐近线的距离为1A ,B 在双曲线C 上,线段AB 的中点为(2,)(0)M m m m ≠.(1)求双曲线C 的标准方程;(2)O 为坐标原点,若OAB △的面积为23,求直线AB 的方程.3.(24-25高三上·云南大理·开学考试)已知椭圆2222:1(0)x y C a b a b+=>>过点()3,1P ,焦距为,斜率为13-的直线l 与椭圆C 相交于异于点P 的,M N 两点,且直线,PM PN 均不与x 轴垂直.(1)求椭圆C 的方程.(2)记直线PM 的斜率为1k ,直线PN 的斜率为2k ,证明:12k k 为定值.(3)若MN A =为椭圆C 的上顶点,求AMN V 的面积.4.(23-24高二上·江苏南通·2:2(0)y px p =>的焦点为F ,O 为坐标原点,M 为抛物线上一点,且3MF OF =,MFO △(1)求E 的方程;(2)若不过点F 的直线l 与E 交于A ,B 两点,ABF △的重心在直线2y =上,且13.AF BF +=则满足条件的直线l 是否存在,若存在求出直线l 的方程;若不存在,请说明理由.5.(24-25高三上·黑龙江大庆·阶段练习)已知双曲线2222:1(0,0)x y C a b a b -=>>的左、右焦点分别为12,F F ,点(A 在C 上,且离心率e =(1)求双曲线C 的方程;(2)记点A 在x 轴上的射影为点B ,过点B 的直线l 与C 交于M ,N 两点.探究:2211||||BM BN +是否为定值,若是,求出该定值;若不是,请说明理由.6.(24-25高二上·江苏连云港·阶段练习)如图,已知椭圆2222:1(0)x y C a b a b+=>>过点()3,1P ,焦距为13-的直线l 与椭圆C 相交于异于点P 的,M N 两点,且直线,PM PN 均不与x 轴垂直.(1)求椭圆C 的方程;(2)若MN =MN 的方程;(3)记直线PM 的斜率为1k ,直线PN 的斜率为2k ,证明:12k k 为定值.7.(24-25高二上·黑龙江·期中)已知动点(,)P x y 到定点(2,0)F 的距离与动点P 到定直线2x =-的距离相等,若动点P 的轨迹记为曲线C .(1)求C 的方程;(2)不过点F 的直线与C 交于横坐标不相等的A ,B 两点,且6AF BF +=,若AB 的垂直平分线交x 轴于点N ,证明:N 为定点.8.(24-25高三上·江苏南通·阶段练习)设抛物线2:4C y x =的焦点为F ,点(2,0)D ,过F 的直线交C 于,M N 两点,直线,MD ND 与C 的另一个交点分别为,A B ,记直线,MN AB 的斜率分别为12,k k .(1)求证:12k k 为定值;(2)直线AB 是否过定点?若过定点,求出定点坐标.9.(2024高三下·河南·专题练习)动点(),P x y 与定点()2,0F 的距离和它到定直线1:2l x =的距离的比是2,记动点P 的轨迹为曲线C .(1)求C 的方程;(2)过()2,0R -的直线l 与C 交于,A B 两点,且(0)RA aRB a =>uuu r uuu r ,若点M 满足AM aMB =uuuu r uuu r ,证明:点M 在一条定直线上.10.(2024·青海海南·二模)已知双曲线2222:1(0,0)x y C a b a b-=>>的虚轴长为(3,2)P -在C 上.设直线l 与C 交于A ,B 两点(异于点P ),直线AP 与BP 的斜率之积为13.(1)求C 的方程;(2)证明:直线l 的斜率存在,且直线l 过定点.11.(24-25高二上·广西梧州·阶段练习)已知O 为坐标原点,动点P 到x 轴的距离为d ,且22||OP d l m =+,其中,l m 均为常数,动点P 的轨迹称为(),l m 曲线.(1)若1,2m æöç÷èø曲线为焦点在y 轴上的椭圆,求m 的取值范围.(2)设曲线Ω为19,8æö-ç÷èø曲线,斜率为()0k k ≠的直线l 过Ω的右焦点,且与Ω交于,A B 两个不同的点.(i )若2k =,求AB ;(ii )若点B 关于x 轴的对称点为点D ,证明:直线AD 过定点.12.(23-24高二下·广东惠州·阶段练习)已知抛物线2:2(0)C x py p =>的焦点F 关于直线2y =-的对称点为()0,5-.(1)求C 的方程;(2)若O 为坐标原点,过焦点F 且斜率为1的直线l 交C 于A B 、两点,求|AB |;(3)过点()4,1M 的动直线l 交C 于不同的,A B 两点,N 为线段AB 上一点,且满足AM BN AN BM ×=×,证明:点N 在某定直线上,并求出该定直线的方程.。

高二上学期期中考试数学试卷Word版含答案

高二上学期期中考试数学试卷Word版含答案

高二数学一、选择题(本大题共12小题,每小题5分,共60分)1.对命题“0x R ∃∈,200240x x -+>”的否定正确的是( ) A.0x R ∃∈, 200240x x -+> B.x R ∀∈, 2240x x -+≤ C.x R ∀∈, 2240x x -+>D.x R ∀∈, 2240x x -+≥2. 已知命题p 及命题q ,则命题“p ∧q ”为假是命题“p ∨q ”为假的 A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件3.已知ABC △的三个内角满足sin sin sin 511:13A B C =:::,则ABC △是 A .等腰三角形 B .锐角三角形 C .直角三角形D .钝角三角形4.ABC △的内角,,A B C 的对边分别为,,a b c ,分别根据下列条件解三角形,其中有两解的是( )A.2,4,120a b A ===︒B.3,2,45a b A ===︒C. 6,60b c C ===︒D.4,3,30b c C ===︒5.设等差数列|{}n a 的前n 项和为n S ,若2372a a a =,540S =,则7a =( ) A.13B.15C.20D.226.等比数列{}n a 的前n 项和为n S ,若418a a =,则51S S =( ) A.32B.31C.16D.157.已知数列{}n a 前n 项和2n S n =-,则数列{}n a 是( ) A.递增数列B.递减数列C.常数列D.摆动数列8.若数列{n a }满足111n na a +=-,且12a =,则2010a = ( )A .-1B .12C .2D .329.若关于x 的不等式2210x ax ++>在[)0,∞上恒成立,则实数a 的取值范围是( ) A.()1,+∞B.[)1,+∞C.()1,-+∞D.[)1,-+∞10.已知a b >,且1ab =,则22a b a b+-的最小值是( )A .3B.2+C .2D.11.设x ,y 满足24020330x y x y x y +-≥⎧⎪-+≥⎨⎪--≤⎩,则21y z x =+的范围()A.19,27⎡⎤⎢⎥⎣⎦B.118,27⎡⎤⎢⎥⎣⎦C.161,5⎡⎤⎢⎥⎣⎦D.81,5⎡⎤⎢⎥⎣⎦12.如图,在ABC ∆中,AD 为BC 边上的高,2AE ED =,3BAC π∠=,3AB =,2AC =,则AE CE ⋅uu u r uur的值为( )A.67- B.23-C.-2D.23二.填空题(本大题共4小题,每题5分,共20分)13.在△ABC 中,A =45°,c =2,则AC 边上的高等于_________________.14.数列{}n a 中,若1111n n na a a n +==+,,则n a = ______ . 15.给出下列结论:①若p q ∨为真命题,则p 、q 均为真命题;②已知,p q 为两个命题,若p q ∨“”为假命题,则()()“”p q ⌝⌝∧为真命题;③若命题命题则命题是假命题;④“若0,xy =则0x =且0y =”的逆否命题为真命题. 其中正确的结论有____.16.在数列{}n a 中,11a =,()211nn n a a ++-=,记n S 是数列{}n a 的前n 项和,则60S =三.解答题(本大题共6小题,共70分)17.(本大题10分)在ABC ∆中,内角A 、B 、C 的对边分别是a ,b ,c,且222b c a +-=.(Ⅰ)求A ;(Ⅱ)若a =1b =,求ABC ∆的面积.18.(本大题12分)已知等比数列{}n a 的公比2q =,且2341a a a ,,+成等差数列.(1)求1a 及n a ;(2)设n n b a n +=,求数列{}n b 的前5项和5S .19.(本大题12分)已知m R ∈,命题p :对任意[]0,1x ∈,不等式22log (1)23x m m+-≥-恒成立;命题q :存在[]1,1x ∈-,使得112xm ⎛⎫≤- ⎪⎝⎭成立.(Ⅰ)若p 为真命题,求m 的取值范围;(Ⅱ)若p 且q 为假,p 或q 为真,求m 的取值范围.20.(本大题12分)在公差为d 的等差数列{}n a 中,16a d =,1a N ∈,d N ∈,且1a d >. (1)求{}n a 的通项公式;(2)若1a ,4a ,13a 成等比数列,求数列11n n a a +⎧⎫⎨⎬⎩⎭的前n 项和n S .21.(本大题12分)在ABC ∆ 中,角A B C ,, 所对的边分别为a b c ,, .已知cos (2)cos ,b C a c B b =-=(1)若2c =,求ABC ∆的周长;(2)若ABC ∆为锐角三角形,求a c - 的取值范围.22.(本大题12分)在数列{}n a ,{}n b 中,已知1111,2n n a a a +==,且()*1212(1)(41),6n b b nb n n n n N ++⋯+=+-∈.(Ⅰ)求数列{}n a 和{}n b 的通项公式; (Ⅱ)求数列{}n n a b 的前n 项和n T .高二数学答案一.选择题1.B 【解析】因为特称命题的否定是全称命题,所以,命题“存在2000,240x R x x ∈-+>”的否定是:2,240x R x x ∀∈-+≤”,故选B.2..B 【解析】若命题“p ∧q ”为假命题,则p 为假命题,q 为假命题;p 为真命题,q 为假命题;p 为假命题,q 为真命题。

人教版高二上学期期中考试数学试题与答案解析(共两套)

人教版高二上学期期中考试数学试题与答案解析(共两套)

人教版高二上学期期中考试数学试题(一) (本卷满分150分,考试时间120分钟)测试范围:选择性必修第一册:第一章、第二章、第三章一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一个选项是符合题目要求的.1.已知两个非零向量)(111z y x a ,,=,)(222z y x b ,,=,则这两个向量在一条直线上的充要条件是( )。

A 、||||b b a a ::= B 、212121z z y y x x == C 、0212121=++z z y y x x D 、存在非零实数k ,使b k a =2.已知焦点在x 轴上的双曲线的焦距为32,焦点到渐近线的距离为2,则双曲线的方程为( )。

A 、1222=-y xB 、1222=-y xC 、1222=-x y D 、1222=-x y3.若直线m my x +=+2与圆012222=+--+y x y x 相交,则实数m 的取值范围为( )。

A 、)(∞+-∞, B 、)0(,-∞ C 、)0(∞+, D 、)0()0(∞+-∞,, 4.点)24(-,P 与圆422=+y x 上任一点连线的中点的轨迹方程是( )。

A 、1)1()2(22=++-y x B 、4)1()2(22=++-y x C 、1)1()2(22=-++y x D 、4)2()4(22=-++y x5.若P 、Q 分别为直线01243=-+y x 与0586=++y x 上任意一点,则||PQ 的最小值为( )。

A 、59 B 、1029 C 、518 D 、5296.已知椭圆C :12222=+b y a x (0>>b a )的左焦点1F ,过点1F 作倾斜角为 30的直线与圆222b y x =+相交的弦长为b 3,则椭圆的离心率为( )。

A 、21 B 、22 C 、43 D 、237.已知点1F 是抛物线C :py x 22=的焦点,点2F 为抛物线C 的对称轴与其准线的交点,过2F 作抛物线C 的切线,切点为A ,若点A 恰好在以1F 、2F 为焦点的双曲线上,则双曲线的离心率为( )。

高二上学期数学期中试题(含答案)

高二上学期数学期中试题(含答案)

高二(上)期中数学试卷第Ⅰ卷(选择题)一、选择题(每小题4分,共12小题,共48分)1.已知数列{n a }的通项公式是n a =252+n n (n ∈*N ),则数列的第5项为( ) A.110 B.16 C.15 D.12 2.在△ABC 中,a b c 、、分别是三内角A B C 、、的对边, ︒=︒=45,75C A ,2b =,则此三角形的最小边长为( )A .46B .322C .362D . 42 3(理).在等差数列{n a }中,已知,21=a ,1332=+a a 则654a a a ++等于( )A.40B.42C.43D.453(文).已知等差数列a n 中,a 2+a 4=6,则a 1+a 2+a 3+a 4+a 5=( ) A . 30 B . 15 C . D .4. 下列说法中正确的是( )A .若ac >bc ,则a >bB .若a 2>b 2,则a >bC .若1a >1b ,则a <bD .若a <b ,则a <b5. 在ABC ∆中,A,B,C 的对边分别为a,b,c ,已知bc c b a ++=222,则A 等于( )A. 120B. 60C. 45D. 306.已知等差数列{}n a 的前n 项和为n S ,若5418a a -=,则8S 等于( )A .36B .54C .72D .187(理). 不等式0442>-+-x x 的解集是( )A.RB.ΦC.),0(+∞D.)0,(-∞7(文).不等式x (2﹣x )≤0的解集为( )A . {x|0≤x≤2}B . {x|x≤0,或x≥2}C . {x|x≤2}D .{x|x≥0} 8. 在等比数列{n a }中,若2101-=⋅a a ,则74a a ⋅的值为( )A.-4B.-2C.4D.29. 已知等比数列{a n }的公比为2,前4项的和是1,则前8项的和为( )A .15B .17C .19D .2110.在一座20m 高的观测台测得对面一水塔塔顶得仰角为 60,塔底的俯角为 45,那么这座水塔的高度是( )mA.)331(20+ B.)26(20+ C.)26(10+ D. )31(20+ 11(理). 下列函数中最小值为4的是 ( )A. x x y 4+= B.x x y sin 4sin += (0﹤x ﹤π) C. x x y -⋅+=343 D.10log 4lg x x y += 11(文).设x >1,则x+的最小值是( ) A . 4 B . 5 C . 6 D . 712.设x ,y ∈R 且,则z=x+2y 的最小值等于( )A . 2B . 3C . 5D .9第Ⅱ卷(非选择题)二、填空题(每小题4分,共4小题,共16分)13(理).在等差数列{}n a 中,11=a ,2=d ,9=n S ,则项数n=13(文).在等差数列{a n }中,a 3=7,a 5=a 2+6,则a 6=14.在等比数列{a n }中,若a 3=2,a 6=2,则公比q= .15. 在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .若a =2,b =2,sin B+cos B =2,则角A 的大小为________16.若角α、β满足,则α﹣β的取值范围是三、解答题(共5小题,共56分)17. (理、10分)在ABC ∆中,A B 、为锐角,角A B C 、、所对的边分别为a b c 、、,且21a b -=-,510sin ,sin 510A B == (1)求b a ,的值;(2)求角C 和边c 的值。

山东省 2023~2024学年第一学期期中高二数学试题[含答案]

山东省 2023~2024学年第一学期期中高二数学试题[含答案]

42
2 y
22
4
,化
为 (x 2)2 ( y 1)2 1,故选 A.
考点:1、圆的标准方程;2、“逆代法”求轨迹方程.
【方法点晴】本题主要考查圆的标准方程、“逆代法”求轨迹方程,属于难题.求轨迹方程的常见方法有:①直
接法,设出动点的坐标
x,
y
,根据题意列出关于
x,
y
的等式即可;②定义法,根据题意动点符合已知曲
y 1 mx 2m R
5. 在平面直角坐标系中,动圆
与直线
相切,则面积最
大的圆的标准方程为( )
x 12 y 12 4
A.
x 12 y 12 5
B.
x 12 y 12 6
C. 【答案】B
x 12 y 12 8
D.
【解析】
【分析】据题意分析可知直线经过定点 P ;圆的圆心到直线距离的最大时,圆的半径最大,即可得到面积
当直线 x ay 1 0 与直线 ax y 1 0 相互垂直时, a 1 不一定成立,所以“ a 1 ”是“直线
x ay 1 0 与直线 ax y 1 0 相互垂直”的非必要条件.
所以“ a 1 ”是“直线 x ay 1 0 与直线 ax y 1 0 相互垂直”的充分非必要条件.
2023~2024 学年第一学期期中高二数学试题
(选择性必修一检测) 2023.11
说明:本试卷满分 150 分,分为第 I 卷(选择题)和第 II 卷(非选择题)两部分,第 I 卷为 第 1 页至第 3 页,第 II 卷为第 3 页至第 4 页.试题答案请用 2B 铅笔或 0.5mm 签字笔填涂到 答题卡规定位置上,书写在试题上的答案无效.考试时间 120 分钟.

高二上学期期中考试数学试题(带答案)

高二上学期期中考试数学试题(带答案)

高二上学期期中考试数学试题(带答案)高二上学期期中考试数学试题(带答案)注:题号后(A)表示1-7班必做,(B)表示8班必做。

)完卷时间:120分钟,总分:150分)一、选择题:(本大题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

)1.设$a,b,c\in R$,且$a>b$,则()A.$ac>bc$B.$\frac{1}{a}<\frac{1}{b}$C.$a^2>b^2$D.$a^3>b^3$2.已知数列$\{a_n\}$是公差为2的等差数列,且$a_1,a_2,a_5$成等比数列,则$a_2=$()A.$-2$B.$-3$C.$2$D.$3$3.已知集合$A=\{x\in R|x^2-4x-12<0\},B=\{x\in R|x<2\}$,则$A\cap B=$()A.$\{x|x<6\}$B.$\{x|-2<x<2\}$C.$\{x|x>-2\}$D.$\{x|2\leq x<6\}$4.若变量$x,y$满足约束条件$\begin{cases}x+y\leq 4\\x\geq 1\end{cases}$,则$z=2x+y$的最大值和最小值分别为()A.4和3B.4和2C.3和2D.2和55.已知等比数列$\{a_n\}$的前三项依次为$a-1,a+1,a+4$,则$a_n=$A.$4\cdot (\frac{3}{2})^{n-1}$B.$4\cdot (\frac{2}{3})^{n-1}$C.$4\cdot (\frac{3}{2})^{n-2}$D.$4\cdot (\frac{2}{3})^{n-2}$6.在$\triangle ABC$中,边$a,b,c$的对角分别为$A,B,C$,且$\sin^2 A+\sin^2 C-\sin A\sin C=\sin^2 B$。

2023-2024学年湖北省部分省级示范高中高二(上)期中数学试卷【答案版】

2023-2024学年湖北省部分省级示范高中高二(上)期中数学试卷【答案版】

2023-2024学年湖北省部分省级示范高中高二(上)期中数学试卷一、选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.已知点A (2,0),B (0,4),若过P (﹣6,﹣8)的直线l 与线段AB 相交,则实数k 的取值范围为( ) A .k ≤1B .k ≥2C .k ≥2或k ≤1D .1≤k ≤22.圆 C 1:(x +2)2+(y ﹣2)2=4和圆C 2:(x ﹣2)2+(y ﹣5)2=16的位置关系是( ) A .外离B .相交C .内切D .外切3.若圆C 经过点A (2,5),B (4,3),且圆心在直线l :3x ﹣y ﹣3=0 上,则圆C 的方程为( ) A .(x ﹣2)2+(y ﹣3)2=4 B .(x ﹣2)2+(y ﹣3)2=8 C .(x ﹣3)2+(y ﹣6)2=2D .(x ﹣3)2+(y ﹣6)2=104.已知直线ax +3y +2a =0和2x +(a +1)y ﹣2=0平行,则实数a 的值等于( ) A .a =2或a =﹣3B .a =2C .a =﹣3D .a =﹣2或a =35.如图,在平行六面体ABCD ﹣A 1B 1C 1D 1中,M 为A 1C 1,B 1D 1的交点.若AB →=a →,AD →=b →,AA 1→=c →,则向量BM →=( )A .−12a →+12b →+c →B .12a →+12b →+c →C .−12a →−12b →+c →D .12a →−12b →+c →6.若椭圆x 29+y 24=1的弦AB 被点P (1,1)平分,则AB 所在直线的方程为( )A .4x +9y ﹣13=0B .9x +4y ﹣13=0C .x +2y ﹣3=0D .x +3y ﹣4=07.若直线l :kx ﹣y ﹣2=0与曲线C :√1−(y −1)2=x ﹣1有两个不同的交点,则实数k 的取值范围是( ) A .k >43B .43<k ≤2C .43<k ≤2或−2≤k <−43D .43<k ≤48.吹奏乐器“埙”(如图1)在古代通常是用陶土烧制的,一种埙的外轮廓的上部是半椭圆,下部是半圆.半椭圆y 2a 2+x 2b 2=1(y ≥0,a >b >0且为常数)和半圆x 2+y 2=b 2(y <0)组成的曲线C 如图2所示,曲线C 交x 轴的负半轴于点A ,交y 轴的正半轴于点G ,点M 是半圆上任意一点,当点M 的坐标为(√22,−12)时,△AGM 的面积最大,则半椭圆的方程是( )A .4x 23+y 22=1(y ≥0)B .16x 29+y 23=1(y ≥0)C .2x 23+4y 23=1(y ≥0)D .4x 23+2y 23=1(y ≥0)二、多选题(本大题共4小题,每小题5分,共20分.在每小题给出的选项中,有2个或2个以上选项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.) 9.下面结论正确的是( )A .若事件A 与B 是互斥事件,则A 与B 也是互斥事件 B .若事件A 与B 是相互独立事件,则A 与B 也是相互独立事件C .若P (A )=0.6,P (B )=0.2,A 与B 相互独立,那么P (A +B )=0.8D .若P (A )=0.8,P (B )=0.7,A 与B 相互独立,那么P(AB)=0.2410.已知直线l :kx ﹣y ﹣k =0,圆M :x 2+y 2+Dx +Ey +1=0的圆心坐标为(2,1),则下列说法正确的是( ) A .直线l 恒过点(0,1)B .D =﹣4,E =﹣2C .直线l 被圆M 截得的最短弦长为2√2D .当k =1时,圆M 上存在无数对点关于直线l 对称 11.设椭圆x 29+y 23=1的右焦点为F ,直线y =m(0<m <√3)与椭圆交于A ,B 两点,则( ) A .|AF |+|BF |=6B .△ABF 的周长的取值范围是[6,12]C .当m =1时,△ABF 的面积为√6D .当m =√32时,△ABF 为直角三角形12.已知正方体ABCD ﹣A 1B 1C 1D 1的棱长为2,点P 为平面ABCD 内一动点,则下列说法正确的是( ) A .若点P 在棱AD 上运动,则A 1P +PC 的最小值为2+2√2B .若点P 是棱AD 的中点,则平面PBC 1截正方体所得截面的周长为2√5+3√2C .若点P 满足PD 1⊥DC 1,则动点P 的轨迹是一条直线 D .若点P 在直线AC 上运动,则P 到棱BC 1的最小距离为2√33三、填空题(本大题共4小题,每小题5分,共20分.把答案填写在答题卡上相应位置的横线上.) 13.若以连续掷两次骰子分别得到的点数m 、n 作为点P 的坐标,则点P 落在圆x 2+y 2=16内的概率是 .14.已知两点A (﹣3,﹣4),B (6,3)到直线l :ax +y +1=0的距离相等,则实数a 的值等于 . 15.古希腊著名数学家阿波罗尼斯发现了平面内到两个定点A ,B 的距离之比为定值λ(λ≠1)的点的轨迹是圆,此圆被称为“阿波罗尼斯圆”.在平面直角坐标系中,已知A (1,0),B (4,0),若动点P 满足|PA||PB|=12,设点P 的轨迹为C ,过点(1,2)作直线l ,C 上恰有三个点到直线l 的距离为1,则满足条件的一条直线l 的方程为 . 16.已知椭圆x 2a 2+y 2b 2=1(a >b >0),F 1,F 2分别是椭圆的左、右焦点,A 是椭圆的下顶点,直线AF 2交椭圆于另一点P ,若|PF 1|=|P A |,则椭圆的离心率为 .四、解答题(本大题共6小题,第17小题10分,其余各小题每题12分,共70分.解答应写出文字说明,证明过程或演算步骤.)17.(10分)甲、乙两名魔方爱好者在30秒内复原魔方的概率分别是0.8和0.6.如果在30秒内将魔方复原称为“复原成功”,且每次复原成功与否相互之间没有影响,求:(1)甲复原三次,第三次才成功的概率;(2)甲、乙两人在第一次复原中至少有一人成功的概率. 18.(12分)已知△ABC 中,A (﹣2,1),B (4,3).(1)若C (3,﹣2),求BC 边上的高AD 所在直线的一般式方程; (2)若点M (3,1)为边AC 的中点,求BC 边所在直线的一般式方程.19.(12分)如图,在长方体ABCD ﹣A 1B 1C 1D 1中,AB =3,AD =AA 1=2,点E 在AB 上,且AE =1. (1)求直线A 1E 与BC 1所成角的余弦值; (2)求点B 到平面A 1EC 的距离.20.(12分)已知点A (1,2),圆C :x 2+y 2+2mx +2y +2=0. (1)若过点A 可以作两条圆的切线,求m 的取值范围;(2)当m =﹣2时,过直线2x ﹣y +3=0上一点P 作圆的两条切线PM 、PN ,求四边形PMCN 面积的最小值.21.(12分)已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的右焦点为F(√3,0),长半轴长与短半轴长的比值为2.(1)求椭圆C 的方程;(2)设经过点A (1,0)的直线l 与椭圆C 相交于不同的两点M ,N .若点B (0,1)在以线段MN 为直径的圆上,求直线l 的方程.22.(12分)如图1,已知ABFE 是直角梯形,EF ∥AB ,∠ABF =90°,∠BAE =60°,C 、D 分别为BF 、AE 的中点,AB =5,EF =1,将直角梯形ABFE 沿CD 翻折,使得二面角F ﹣DC ﹣B 的大小为60°,如图2所示,设N 为BC 的中点.(1)证明:FN ⊥AD ;(2)若M 为AE 上一点,且AMAE =λ,则当λ为何值时,直线BM 与平面ADE 所成角的正弦值为5√714.2023-2024学年湖北省部分省级示范高中高二(上)期中数学试卷参考答案与试题解析一、选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.已知点A (2,0),B (0,4),若过P (﹣6,﹣8)的直线l 与线段AB 相交,则实数k 的取值范围为( ) A .k ≤1B .k ≥2C .k ≥2或k ≤1D .1≤k ≤2解:过P (﹣6,﹣8)的直线l 与线段AB 相交,如图所示:可得k AP ≤k ≤k PB , 即0−(−8)2−(−6)≤k ≤4−(−8)0−(−6),即k ∈[1,2].故选:D .2.圆 C 1:(x +2)2+(y ﹣2)2=4和圆C 2:(x ﹣2)2+(y ﹣5)2=16的位置关系是( ) A .外离B .相交C .内切D .外切解:两个圆的圆心分别为 C 1(﹣2,2)、C 2:(2,5),半径分别为2、4,两圆的圆心距 C 1C 2=√(2+2)2+(5−2)2=5,大于半径之差而小于半径之和,故两个圆相交, 故选:B .3.若圆C 经过点A (2,5),B (4,3),且圆心在直线l :3x ﹣y ﹣3=0 上,则圆C 的方程为( ) A .(x ﹣2)2+(y ﹣3)2=4 B .(x ﹣2)2+(y ﹣3)2=8 C .(x ﹣3)2+(y ﹣6)2=2D .(x ﹣3)2+(y ﹣6)2=10解:圆C 经过点A (2,5),B (4,3),可得线段AB 的中点为(3,4),又 k AB =5−32−4=−1,所以线段AB 的中垂线的方程为y ﹣4=x ﹣3,即x ﹣y +1=0. 由{x −y +1=03x −y −3=0,解得{x =2y =3,即C (2,3),圆C 的半径 r =√(2−2)2+(5−3)2=2, 所以圆C 的方程为 (x ﹣2)2+(y ﹣3)2=4. 故选:A .4.已知直线ax +3y +2a =0和2x +(a +1)y ﹣2=0平行,则实数a 的值等于( ) A .a =2或a =﹣3B .a =2C .a =﹣3D .a =﹣2或a =3解:由直线ax +3y +2a =0和2x +(a +1)y ﹣2=0平行, 可得{a(a +1)=2×33×(−2)≠2a(a +1),解得a =2或a =﹣3.故选:A .5.如图,在平行六面体ABCD ﹣A 1B 1C 1D 1中,M 为A 1C 1,B 1D 1的交点.若AB →=a →,AD →=b →,AA 1→=c →,则向量BM →=( )A .−12a →+12b →+c →B .12a →+12b →+c →C .−12a →−12b →+c →D .12a →−12b →+c →解:∵在平行六面体ABCD ﹣A 1B 1C 1D 1中,M 为A 1C 1,B 1D 1的交点. AB →=a →,AD →=b →,AA 1→=c →,∴向量BM →=BB 1→+12B 1D 1→=BB 1→+12(BA →+AD →) =−12a →+12b →+c →.故选:A . 6.若椭圆x 29+y 24=1的弦AB 被点P (1,1)平分,则AB 所在直线的方程为( )A .4x +9y ﹣13=0B .9x +4y ﹣13=0C .x +2y ﹣3=0D .x +3y ﹣4=0解:设A (x 1,y 1),B (x 2,y 2),则{x 129+y 124=1x 229+y 224=1,所以x 12−x 229+y 12−y 224=0,整理得y 1−y 2x 1−x 2=−4(x 1+x 2)9(y 1+y 2),因为P (1,1)为弦AB 的中点,所以x 1+x 2=2,y 1+y 2=2, 所以k AB =y 1−y2x 1−x 2=−4(x 1+x 2)9(y 1+y 2)=−49,所以弦AB 所在直线的方程为y −1=−49(x −1),即4x +9y ﹣13=0. 故选:A .7.若直线l :kx ﹣y ﹣2=0与曲线C :√1−(y −1)2=x ﹣1有两个不同的交点,则实数k 的取值范围是( ) A .k >43B .43<k ≤2C .43<k ≤2或−2≤k <−43D .43<k ≤4解:直线l :kx ﹣y ﹣2=0恒过定点(0,﹣2),∵√1−(y −1)2=x −1,得到(x ﹣1)2+(y ﹣1)2=1(x ≥1),∴曲线C 表示以点(1,1)为圆心,半径为1,且位于直线x =1右侧的半圆(包括点(1,2),(1,0)),如下图所示:当直线l 经过点(1,0)时,l 与曲线C 有两个不同的交点,此时k =2; 当l 与半圆相切时,则由题可得√k 2+1=1,解得k =43,由图可知,当43<k ≤2时,l 与曲线C 有两个不同的交点. 故选:D .8.吹奏乐器“埙”(如图1)在古代通常是用陶土烧制的,一种埙的外轮廓的上部是半椭圆,下部是半圆.半椭圆y 2a 2+x 2b 2=1(y ≥0,a >b >0且为常数)和半圆x 2+y 2=b 2(y <0)组成的曲线C 如图2所示,曲线C 交x 轴的负半轴于点A ,交y 轴的正半轴于点G ,点M 是半圆上任意一点,当点M 的坐标为(√22,−12)时,△AGM 的面积最大,则半椭圆的方程是( )A .4x 23+y 22=1(y ≥0)B .16x 29+y 23=1(y ≥0)C .2x 23+4y 23=1(y ≥0)D .4x 23+2y 23=1(y ≥0)解:由点M(√22,−12)在半圆上,所以b =√32,G (0,a ),A (﹣b ,0), 要使△AGM 的面积最大,可平行移动AG ,当AG 与半圆相切于M(√22,−12)时,M 到直线AG 的距离最大, 此时OM ⊥AG ,即k OM •k AG =﹣1; 又k OM =−12√22=−√22,k AG =a b ,∴−√22⋅a b =−1,∴a =√2b =√62,所以半椭圆的方程为4x 23+2y 23=1(y ≥0).故选:D .二、多选题(本大题共4小题,每小题5分,共20分.在每小题给出的选项中,有2个或2个以上选项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.) 9.下面结论正确的是( )A .若事件A 与B 是互斥事件,则A 与B 也是互斥事件 B .若事件A 与B 是相互独立事件,则A 与B 也是相互独立事件C .若P (A )=0.6,P (B )=0.2,A 与B 相互独立,那么P (A +B )=0.8D .若P (A )=0.8,P (B )=0.7,A 与B 相互独立,那么P(AB)=0.24解:A 中,由互斥事件的定义可知,事件A 、B 互斥,则A 与B 也是互斥事件不成立, 比如事件A 、B 是对立事件,则A 与B 是同一事件,显然不互斥,故A 错误; B 中,若A 与B 相互独立,则A 与B ,B 与A ,A 与B 都是相互独立事件,故B 正确;C 中,如果A 与B 相互独立,则P (A +B )=P (A )+P (B )﹣P (AB )=0.8﹣0.12=0.68,故C 错误;D 中,如果A 与B 相互独立,则P(AB)=P(A)P(B)=P(A)(1−P(B))=0.8×(1−0.7)=0.24,故D 正确. 故选:BD .10.已知直线l :kx ﹣y ﹣k =0,圆M :x 2+y 2+Dx +Ey +1=0的圆心坐标为(2,1),则下列说法正确的是( ) A .直线l 恒过点(0,1) B .D =﹣4,E =﹣2C .直线l 被圆M 截得的最短弦长为2√2D .当k =1时,圆M 上存在无数对点关于直线l 对称解:对于A ,直线l :kx ﹣y ﹣k =0⇒k (x ﹣1)﹣y =0,恒过点(1,0),所以A 不正确;对于B ,圆M :x 2+y 2+Dx +Ey +1=0的圆心坐标为(−D2,−E2),所以D =﹣4,E =﹣2,所以B 正确; 对于C ,圆M :x 2+y 2﹣4x ﹣2y +1=0⇒(x ﹣2)2+(y ﹣1)2=4的圆心坐标为(2,1),圆的半径为2. 直线l :kx ﹣y ﹣k =0,恒过点(1,0),圆的圆心到定点的距离为:√12+12=√2<2,直线与圆相交, 直线l 被圆M 截得的最短弦长为2√4−2=2√2,所以C 正确;对于D ,当k =1时,直线方程为:x ﹣y ﹣1=0,经过圆的圆心,所以圆M 上存在无数对点关于直线l 对称,所以D 正确. 故选:BCD . 11.设椭圆x 29+y 23=1的右焦点为F ,直线y =m(0<m <√3)与椭圆交于A ,B 两点,则( ) A .|AF |+|BF |=6B .△ABF 的周长的取值范围是[6,12]C .当m =1时,△ABF 的面积为√6D .当m =√32时,△ABF 为直角三角形解:∵椭圆方程为x 29+y 23=1,∴a =3,b =√3,c =√6,设椭圆的左焦点为F ',则|AF '|=|BF |,∴|AF |+|BF |=|AF |+|AF '|=2a =6,∴A 选项正确; ∵△ABF 的周长为|AB |+|AF |+|BF |,又|AF |+|BF |=6,易知|AB |的范围是(0,6), ∴△ABF 的周长的范围是(6,12),∴B 选项错误;将y =1与椭圆方程联立,解得A(−√6,1),B(√6,1),∴S △ABF =12×2√6×1=√6,∴C 选项正确;将y =√32与椭圆方程联立,可解得A(−3√32,√32),B(3√32,√32),又易知F(√6,0), ∴AF →⋅BF →=(√6+3√32)(√6−3√32)+(√32)2=0,∴△ABF 为直角三角形,∴D 选项正确. 故选:ACD .12.已知正方体ABCD ﹣A 1B 1C 1D 1的棱长为2,点P 为平面ABCD 内一动点,则下列说法正确的是( ) A .若点P 在棱AD 上运动,则A 1P +PC 的最小值为2+2√2B .若点P 是棱AD 的中点,则平面PBC 1截正方体所得截面的周长为2√5+3√2C .若点P 满足PD 1⊥DC 1,则动点P 的轨迹是一条直线D .若点P 在直线AC 上运动,则P 到棱BC 1的最小距离为2√33解:对于A :如图将平面ABCD 展开与平面ADD 1A 1处于一个平面,连接A 1C 与AD 交于点P , 此时A 1P +PC 取得最小值,即(A 1P +PC)min =√22+42=2√5,故A 错误;对于B :如图取DD 1的中点E ,连接BP 、PE 、C 1E 、AD 1, 因为点P 是棱AD 的中点,所以PE ∥AD 1且PE =12AD 1,又AB ∥C 1D 1且AB =C 1D 1,所以四边形ABC 1D 1为平行四边形,所以AD 1∥BC 1, 所以PE ∥BC 1,所以四边形EPBC 1即为平面PBC 1截正方体所得截面, 又BC 1=2√2,PE =12AD 1=√2,BP =EC 1=√12+22=√5, 所以截面周长为3√2+2√5,故B 正确;对于C :如图,DC 1⊥D 1C ,BC ⊥平面DCC 1D 1,DC 1⊂平面DCC 1D 1, 所以DC 1⊥BC ,又D 1C ∩BC =C ,D 1C ,BC ⊂平面BCD 1A 1, 所以DC 1⊥平面BCD 1A 1,因为平面ABCD ∩平面BCD 1A 1=BC , D 1∈平面BCD 1A 1,P ∈平面ABCD ,又PD 1⊥DC 1,所以P 在直线BC 上,即动点P 的轨迹是一条直线,故C 正确;对于D :如图建立空间直角坐标系,则B (2,2,0),C 1(0,2,2),设P (a ,2﹣a ,0)(a ∈[0,2]), 所以BC 1→=(−2,0,2),BP →=(a −2,−a ,0), 所以P 到棱BC 1的距离d =√|BP →|2−(BC 1→⋅BP →|BC 1→|)2=√32a 2−2a +2=√32(a −23)2+43,所以当a =23时d min =√43=2√33,故D 正确.故选:BCD .三、填空题(本大题共4小题,每小题5分,共20分.把答案填写在答题卡上相应位置的横线上.) 13.若以连续掷两次骰子分别得到的点数m 、n 作为点P 的坐标,则点P 落在圆x 2+y 2=16内的概率是29.解:由题意知,本题是一个古典概型,试验发生包含的事件是连续掷两次骰子分别得到的点数m 、n 作为点P 的坐标,共有6×6=36种结果, 而满足条件的事件是点P 落在圆x 2+y 2=16内,列举出落在圆内的情况:(1,1)(1,2)(1,3) (2,1)(2,2)(2,3)(3,1)(3,2),共有8种结果, 根据古典概型概率公式得到P =836=29, 故答案为:2914.已知两点A (﹣3,﹣4),B (6,3)到直线l :ax +y +1=0的距离相等,则实数a 的值等于 −79或−13. 解:∵两点A (﹣3,﹣4),B (6,3)到直线l :ax +y +1=0的距离相等, ∴√a 2+1=√a 2+1,化为|3a +3|=|6a +4|.∴6a +4=±(3a +3),解得a =−79或−13. 故答案为:a =−79或−13.15.古希腊著名数学家阿波罗尼斯发现了平面内到两个定点A ,B 的距离之比为定值λ(λ≠1)的点的轨迹是圆,此圆被称为“阿波罗尼斯圆”.在平面直角坐标系中,已知A (1,0),B (4,0),若动点P 满足|PA||PB|=12,设点P 的轨迹为C ,过点(1,2)作直线l ,C 上恰有三个点到直线l 的距离为1,则满足条件的一条直线l 的方程为 x =1或3x ﹣4y +5=0(写出一条即可) . 解:因为A (1,0),B (4,0),点P 满足|PA||PB|=12,设P (x ,y ),则2222=12,化简得x 2+y 2=4,因为圆C 上恰有三个点到直线l 的距离为1,所以圆心到直线的距离为1. 若直线l 的斜率不存在,直线l 的方程为x =1;若直线l 的斜率存在,设直线l 的方程为y ﹣2=k (x ﹣1),即kx ﹣y ﹣k +2=0, d =|−k+2|√k +1=1,解得k =34,直线l 的方程为:3x ﹣4y +5=0.故答案为:x =1或3x ﹣4y +5=0(写出一条即可).16.已知椭圆x 2a 2+y 2b 2=1(a >b >0),F 1,F 2分别是椭圆的左、右焦点,A 是椭圆的下顶点,直线AF 2交椭圆于另一点P ,若|PF 1|=|P A |,则椭圆的离心率为 √33解:如图所示,∵点P 在椭圆上,∴|PF 1|+|PF 2|=2a , ∵点A 是椭圆的下顶点,∴|AF 1|=|AF 2|=a ,又∵|PF 1|=|P A |=|PF 2|+|AF 2|=|PF 2|+a =2a ﹣|PF 1|+a =3a ﹣|PF 1|, ∴|PF 1|=3a 2,|PF 2|=12a , 在△PF 1A 中,|PF 1|=3a 2,|P A |=3a2,|AF 1|=a , 由余弦定理可得:cos ∠F 1AP =|AF 1|2+|PA|2−|PF 1|22|AF 1||AP|=13,∴sin 2∠F 1AO =1−cos∠F 1AP 2=13, ∴sin ∠F 1AO =√33,又∵sin ∠F 1AO =ca , ∴离心率e =ca =√33, 故答案为:√33.四、解答题(本大题共6小题,第17小题10分,其余各小题每题12分,共70分.解答应写出文字说明,证明过程或演算步骤.)17.(10分)甲、乙两名魔方爱好者在30秒内复原魔方的概率分别是0.8和0.6.如果在30秒内将魔方复原称为“复原成功”,且每次复原成功与否相互之间没有影响,求:(1)甲复原三次,第三次才成功的概率;(2)甲、乙两人在第一次复原中至少有一人成功的概率.解:记“甲第i 次复原成功”为事件A i ,“乙第i 次复原成功”为事件B i , 依题意,P (A i )=0.8,P (B i )=0.6.(1)“甲第三次才成功”为事件A 1A 2A 3,且三次复原过程相互独立, 所以,P(A 1A 2A 3)=P(A 1)P(A 2)P(A 3)=0.2×0.2×0.8=0.032. (2)“甲、乙两人在第一次复原中至少有一人成功”为事件C . 所以P(C)=1−P(A 1⋅B 1)=1−P(A 1)⋅P(B 1)=1−0.2×0.4=0.92. 18.(12分)已知△ABC 中,A (﹣2,1),B (4,3).(1)若C (3,﹣2),求BC 边上的高AD 所在直线的一般式方程; (2)若点M (3,1)为边AC 的中点,求BC 边所在直线的一般式方程.解:(1)因为B (4,3),C (3,﹣2), 所以k BC =−2−33−4=5, 因为AD 是BC 边上的高, 所以k AD ⋅k BC =−1⇒k AD =−15,所以高AD 所在直线的方程为y −1=−15(x +2)⇒x +5y −3=0; (2)因为点M (3,1)为边AC 的中点,所以{3=−2+C x21=1+C y 2⇒C(8,1),因此BC 边所在直线的方程为y−33−1=x−44−8⇒x +2y −10=0.19.(12分)如图,在长方体ABCD ﹣A 1B 1C 1D 1中,AB =3,AD =AA 1=2,点E 在AB 上,且AE =1. (1)求直线A 1E 与BC 1所成角的余弦值; (2)求点B 到平面A 1EC 的距离.解:(1)由题意,建立如图所示空间直角坐标系,A 1(2,0,2),E(2,1,0),A 1E →=(0,1,−2),B(2,3,0),C 1(0,3,2),BC 1→=(−2,0,2), 设直线A 1E 与直线BC 1所成角为α,则cosα=|A 1E →⋅BC 1→|A 1E →|⋅|BC 1→||=5×22=√105.(2)由题意C(0,3,0),EC →=(−2,2,0), 设平面A 1EC 的法向量为n →=(x ,y ,z),则{n →⋅A 1E →=y −2z =0n →⋅EC →=−2x +2y =0,取n →=(2,2,1),又BE →=(0,−2,0),所以B 到平面A 1EC 的距离为|n →⋅BE →|n →||=|−43|=43.20.(12分)已知点A (1,2),圆C :x 2+y 2+2mx +2y +2=0. (1)若过点A 可以作两条圆的切线,求m 的取值范围;(2)当m =﹣2时,过直线2x ﹣y +3=0上一点P 作圆的两条切线PM 、PN ,求四边形PMCN 面积的最小值.解:(1)由题意得A (1,2)在圆外, 则1+4+2m +6>0,即m >−112, 又4m 2+4﹣8>0,即m >1或m <﹣1, 所以−112<m <−1或m >1;故m 的取值范围为(−112,﹣1)∪(1,+∞); (2)m =﹣2时,圆方程为(x ﹣2)2+(y +1)2=3, 则圆的半径r =√3,圆心C (2,﹣1),∴S 四边形PMCN =|PM|⋅r =√3|PM|=√3⋅√|PC|2−r 2=√3⋅√|PC|2−3. 直线方程为2x ﹣y +3=0,设圆心(2,﹣1)到直线2x ﹣y +3=0的距离为d ,∴|PC|min =d =|2×2−(−1)+3|5=85,∴(S 四边形PMCN )min =√3√645−3=√3√495=75√15. 21.(12分)已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的右焦点为F(√3,0),长半轴长与短半轴长的比值为2.(1)求椭圆C 的方程;(2)设经过点A (1,0)的直线l 与椭圆C 相交于不同的两点M ,N .若点B (0,1)在以线段MN 为直径的圆上,求直线l 的方程.解:(1)由题可知c =√3,ab =2,a 2=b 2+c 2,∴a =2,b =1.∴椭圆C 的方程为x 24+y 2=1.(2)易知当直线l 的斜率为0或直线l 的斜率不存在时,不合题意.当直线l 的斜率存在且不为0时,设直线l 的方程为x =my +1,M (x 1,y 1),N (x 2,y 2). 联立{x =my +1x 2+4y 2=4,消去x ,可得(4+m 2)y 2+2my ﹣3=0. Δ=16m 2+48>0,y 1+y 2=−2m 4+m 2,y 1y 2=−34+m 2. ∵点B 在以MN 为直径的圆上,∴BM →⋅BN →=0.∵BM →⋅BN →=(my 1+1,y 1−1)⋅(my 2+1,y 2−1)=(m 2+1)y 1y 2+(m ﹣1)(y 1+y 2)+2=0, ∴(m 2+1)⋅−34+m 2+(m −1)⋅−2m4+m 2+2=0, 整理,得3m 2﹣2m ﹣5=0, 解得m =﹣1或m =53.∴直线l 的方程为x +y ﹣1=0或3x ﹣5y ﹣3=0.22.(12分)如图1,已知ABFE 是直角梯形,EF ∥AB ,∠ABF =90°,∠BAE =60°,C 、D 分别为BF 、AE 的中点,AB =5,EF =1,将直角梯形ABFE 沿CD 翻折,使得二面角F ﹣DC ﹣B 的大小为60°,如图2所示,设N 为BC 的中点.(1)证明:FN ⊥AD ;(2)若M 为AE 上一点,且AM AE=λ,则当λ为何值时,直线BM 与平面ADE 所成角的正弦值为5√714. 解:(1)证明:如图1,已知ABFE 是直角梯形,EF ∥AB ,∠ABF =90°,∠BAE =60°,C 、D 分别为BF 、AE 的中点,AB =5,EF =1,将直角梯形ABFE 沿CD 翻折,使得二面角F ﹣DC ﹣B 的大小为60°,如图2所示,设N 为BC 的中点.∵由图1得:DC ⊥CF ,DC ⊥CB ,且CF ∩CB =C ,∴在图2中DC ⊥平面BCF ,∠BCF 是二面角F ﹣DC ﹣B 的平面角,则∠BCF =60°, ∴△BCF 是正三角形,且N 是BC 的中点,FN ⊥BC , 又DC ⊥平面BCF ,FN ⊂平面BCF ,可得FN ⊥CD , ∵BC ∩CD =C ,BC ,CD ⊂平面ABCD . ∴FN ⊥平面ABCD ,∵AD ⊂平面ABCD ,∴FN ⊥AD .(2)∵FN ⊥平面ABCD ,过点N 做AB 平行线NP ,∴以点N 为原点,NP ,NB 、NF 所在直线分别为x 轴、y 轴、z 轴建立空间直角坐标系N ﹣xyz ,如图,则A(5,√3,0),B(0,√3,0),D(3,−√3,0),E (1,0,3), 设M (x 0,y 0,z 0)则AM →=(x 0−5,y 0−√3,z 0),AE →=(−4,−√3,3), AD →=(−2,−2√3,0),DE →=(−2,√3,3).∵AM →=λAE →,∴{x 0−5=−4λy 0=√3−√3λz 0=3λ⇒{x 0=5−4λy 0=√3−√3λz 0=3λ.∴M(5−4λ,√3−√3λ,3λ),∴BM →=(5−4λ,−√3λ,3λ), 设平面ADE 的法向量为n →=(x ,y ,z)则{n →⋅AD →=0n →⋅DE →=0⇒{−2x −2√3y =0−2x +√3y +3z =0,取x =√3,得n →=(√3,−1,√3), 设直线BM 与平面ADE 所成角为θ, ∴sinθ=|cos〈n →,BM →〉|=|n →⋅BM →||n →|⋅|BM →|=5√3√3+1+3⋅√28λ−40λ+25=5√714,∴28λ2﹣40λ+13=0,解得λ=12或λ=1314. 故当λ为12或1314时,直线BM 与平面ADE 所成角的正弦值为5√714.。

2023-2024学年湖北省部分重点中学高二(上)期中数学试卷【答案版】

2023-2024学年湖北省部分重点中学高二(上)期中数学试卷【答案版】

2023-2024学年湖北省部分重点中学高二(上)期中数学试卷一、单项选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.两条不同直线l 1,l 2的方向向量分别为m →=(1,1,−2),n →=(2,−2,1),则这两条直线( ) A .相交或异面 B .相交C .异面D .平行2.已知椭圆C :x 2m+1+y 2m=1的离心率为12,则m =( )A .13B .1C .3D .43.一束光线从点A(−√3,3)射出,沿倾斜角为150°的直线射到x 轴上,经x 轴反射后,反射光线所在的直线方程为( ) A .y =√3x −2B .y =−√3x +2C .y =−√33x +2D .y =√33x −24.实数x ,y 满足x 2﹣4x +y 2﹣6y +9=0,则y−1x+1的取值范围是( ) A .[512,+∞)B .[125,+∞)C .[0,125]D .[0,512]5.已知△ABC 的顶点A (﹣2,1),AC 边上的高BE 所在直线方程为x +y ﹣5=0,AC 边上中线BD 所在的直线方程为3x ﹣5y +1=0,则高BE 的长度为( ) A .√22B .√2C .2√2D .3√26.在四面体ABCD 中,已知△ABD 为等边三角形,△ABC 为等腰直角三角形,斜边AB =4,CD =2√7,则二面角C ﹣AB ﹣D 的大小为( ) A .π6B .π3C .2π3D .5π67.已知椭圆x 2a 2+y 2b 2=1(a >b >0)的右焦点为F (c ,0)(b >c ),上顶点为B ,直线l :3√3x ﹣4y ﹣21=0交椭圆于P ,Q 两点,若F 恰好为△BPQ 的重心,则椭圆的离心率为( ) A .√55B .12C .√22D .√328.已知中心在原点O ,焦点在y 轴上,且离心率为√23的椭圆与经过点C (﹣2,0)的直线l 交于A ,B 两点,若点C 在椭圆内,△OAB 的面积被x 轴分成两部分,且△OAC 与△OBC 的面积之比为3:1,则△OAB 面积的最大值为( ) A .8√73B .4√73C .24√77D .12√77二、多项选择题:本大题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求,全部选对的得5分,部分选对的得2分,有选错的得0分. 9.已知椭圆C :x 24+y 23=1,F 1,F 2分别是椭圆的左,右焦点,P 为椭圆上任意一点.下列说法中正确的是( ) A .椭圆离心率为√32B .|PF 1|的最小值为1C .|PF 1|+|PF 2|=2D .0≤∠F 1PF 2≤π310.下列说法正确的是( )A .已知点A (2,1),B(−1,2√3),若过P (1,0)的直线l 与线段AB 相交,则直线l 的倾斜角范围为[π4,2π3]B .“a =1”是“直线ax ﹣y +1=0与直线x ﹣ay ﹣2=0互相平行”的充要条件C .曲线C 1:x 2+y 2+2x =0与C 2:x 2+y 2﹣4x ﹣8y +m =0恰有四条公切线,则m 的取值范围为4<m <20D .圆x 2+y 2=2上有且仅有2个点到直线l :x ﹣y +1=0的距离都等于√2211.如图,在多面体ABCDEP 中,P A ⊥平面ABCD ,四边形ABCD 是正方形,且DE ∥P A ,P A =AB =2DE =2,M ,N 分别是线段BC ,PB 的中点,Q 是线段DC 上的一个动点(不含端点D ,C ),则下列说法正确的是( )A .存在点Q ,使得NQ ⊥PBB .不存在点Q ,使得异面直线NQ 与PE 所成的角为30°C .三棱锥Q ﹣AMN 体积的取值范围为(13,23)D .当点Q 运动到DC 中点时,DC 与平面QMN 所成的余弦值为√6612.椭圆有如下的光学性质,从椭圆的一个焦点出发的光线射到椭圆镜面后反射,反射光线经过另一个焦点.现椭圆C 的焦点在x 轴上,中心在坐标原点,左、右焦点分别为F 1、F 2.一束光线从F 1射出,经椭圆镜面反射至F 2,若两段光线总长度为6,且椭圆的离心率为√53,左顶点和上顶点分别为A ,B .则下列说法正确的是( ) A .椭圆的标准方程为x 29+y 24=1B .若点P 在椭圆上,则sin ∠F 1PF 2的最大值为19C .若点P 在椭圆上,|BP |的最大值为9√55D .过直线y =x +2上一点M 分别作椭圆的切线,交椭圆于P ,Q 两点,则直线PQ 恒过定点(−92,2) 三、填空题:本大题共4题,每小题5分,共计20分.13.圆C 1:x 2+y 2=1与圆C 2:(x ﹣1)2+(y +2)2=4的公共弦所在的直线方程为 .14.所有棱长都为1的平行六面体ABCD ﹣A 1B 1C 1D 1中,若M 为A 1C 1与B 1D 1的交点,∠BAD =60°,∠DAA 1=∠BAA 1=30°,则|BM →|的值为 . 15.已知椭圆C :x 2a 2+y 2a 2−1=1(a >1)的左,右焦点分别为F 1,F 2,过点F 1且垂直于x 轴的直线与椭圆交于A 、B 两点,AF 2、BF 2分别交y 轴于P 、Q 两点,△PQF 2的周长为4.过F 2作∠F 2AF 1外角平分线的垂线与直线BA 交于点N ,则|ON |= .16.已知直线l 与圆O :x 2+y 2=4交于A (x 1,y 1),B (x 2,y 2)两点,且|AB|=2√3,则|3x 1+4y 1﹣10|+|3x 2+4y 2﹣10|的最大值为 .四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.(10分)在平面直角坐标系中,已知射线OA :x ﹣y =0(x ≥0),OB :x +2y =0(x ≥0).过点P (3,0)作直线分别交射线OA ,OB 于点A ,B . (1)已知点B (6,﹣3),求点A 的坐标;(2)当线段AB 的中点为P 时,求直线AB 的方程.18.(12分)如图,ABCD 和ABEF 是不在同一平面上的两个矩形,DM →=13DB →,AN →=13AE →,记AB →=a →,AD →=b →,AF →=c →.请用基底{a →,b →,c →},表示下列向量: (1)FC →; (2)MN →.19.(12分)已知圆C ,圆C 1:(x +3)2+y 2=9,圆C 2:(x −1)2+y 2=9,这三个圆有一条公共弦. (1)当圆C 的面积最小时,求圆C 的标准方程; (2)在(1)的条件下,直线l 同时满足以下三个条件:(i )与直线√19x +y −3=0垂直; (ii )与圆C 相切;(iii )在y 轴上的截距大于0,若直线l 与圆C 2交于D ,E 两点,求|DE |.20.(12分)如图,在四棱锥P ﹣ABCD 中,底面是边长为2的菱形,∠ABC =π3,H 为BC 的中点,P A =PB =PH =√2.E 为PD 上的一点,已知PD =4PE . (1)证明:平面P AB ⊥平面ABCD ; (2)求平面EAC 与平面P AB 夹角的余弦值.21.(12分)已知A(−√3,1),B ,M 是椭圆C 上的三点,其中A 、B 两点关于原点O 对称,直线MA 和MB 的斜率满足k MA •k MB =−13. (1)求椭圆C 的标准方程;(2)点Q 是椭圆C 长轴上的不同于左右顶点的任意一点,过点Q 作斜率不为0的直线l ,l 与椭圆的两个交点分别为P 、N ,若1|PQ|+1|QN|为定值,则称点Q 为“稳定点”,问:是否存在这样的稳定点?若有,试求出所有的“稳定点”,并说明理由;若没有,也请说明理由. 22.(12分)已知椭圆E :x 2a 2+y 2b 2=1(a >b >0)的焦距为4√3,且点P(2,√3)在椭圆E 上.(1)求椭圆E 的方程;(2)若A 、B 、Q 是椭圆E 上的三点,且直线AB 与x 轴不垂直,点O 为坐标原点,OQ →=λOA →+μOB →,则当△AOB 的面积最大时,求λ2+μ2的值.2023-2024学年湖北省部分重点中学高二(上)期中数学试卷参考答案与试题解析一、单项选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.两条不同直线l 1,l 2的方向向量分别为m →=(1,1,−2),n →=(2,−2,1),则这两条直线( ) A .相交或异面 B .相交C .异面D .平行解:令m →=λn →,即(1,1,﹣2)=λ(2,﹣2,1),则{1=2λ1=−2λ−2=λ,此方程组无解,则直线l 1,l 2不平行,即相交或异面.故选:A . 2.已知椭圆C :x 2m+1+y 2m=1的离心率为12,则m =( )A .13B .1C .3D .4解:椭圆C :x 2m+1+y 2m=1,可得a 2=m +1,b 2=m , 所以该椭圆的离心率e =c a =√1−b 2a2=√1−m m+1=12,则m =3.故选:C .3.一束光线从点A(−√3,3)射出,沿倾斜角为150°的直线射到x 轴上,经x 轴反射后,反射光线所在的直线方程为( ) A .y =√3x −2B .y =−√3x +2C .y =−√33x +2 D .y =√33x −2解:由题意知,入射光线所在直线的斜率为tan150°=−√33, 所以入射光线为y ﹣3=−√33(x +√3),整理得y =−√33x +2,令y =0,得x =2√3,所以入射光线与x 轴的交点为(2√3,0), 由对称性知,反射光线的斜率为√33, 所以反射光线的方程为y ﹣0=√33(x ﹣2√3),即y =√33x ﹣2.故选:D .4.实数x ,y 满足x 2﹣4x +y 2﹣6y +9=0,则y−1x+1的取值范围是( ) A .[512,+∞) B .[125,+∞) C .[0,125] D .[0,512] 解:方程x 2﹣4x +y 2﹣6y +9=0,即(x ﹣2)2+(y ﹣3)2=4,所以(x ,y )是以(2,3)为圆心,半径为2的圆上的点,y−1x+1表示点(x ,y )与点(﹣1,1)连线的斜率,设直线y ﹣1=k (x +1),kx ﹣y +1+k =0与圆(x ﹣2)2+(y ﹣3)2=4相切, (2,3)到直线kx ﹣y +1+k =0的距离√k 2+1=√k 2+1=2,解得k =0或k =125,所以y−1x+1的取值范围是[0,125]. 故选:C .5.已知△ABC 的顶点A (﹣2,1),AC 边上的高BE 所在直线方程为x +y ﹣5=0,AC 边上中线BD 所在的直线方程为3x ﹣5y +1=0,则高BE 的长度为( ) A .√22B .√2C .2√2D .3√2解:根据题意,由{x +y −5=03x −5y +1=0,解得{x =3y =2,可知B (3,2).由直线BE 的方程为x +y ﹣5=0,且AC 、BE 相互垂直,可知k AC =−1kBE=1,结合点A (﹣2,1),得直线AC 的方程为y ﹣1=x +2,即x ﹣y +3=0, 因为点B 到直线AC 的距离d =|3−2+3|1+1=2√2,所以AC 边上的高BE 的长度等于2√2.故选:C .6.在四面体ABCD 中,已知△ABD 为等边三角形,△ABC 为等腰直角三角形,斜边AB =4,CD =2√7,则二面角C ﹣AB ﹣D 的大小为( ) A .π6B .π3C .2π3D .5π6解:如图,取AB 中点M ,连接CM ,DM ,因为△ABD 为等边三角形,△ABC 为等腰直角三角形,所以CM ⊥AB ,DM ⊥AB , 故∠CMD 即为二面角C ﹣AB ﹣D 的平面角. 因为AB =4,所以CM =2,DM =2√3,所以cos ∠CMD =CM 2+DM 2−CD 22⋅CM⋅DM =4+12−282×2×2√3=−√32,所以∠CMD =5π6,即二面角C ﹣AB ﹣D 的大小为5π6.故选:D .7.已知椭圆x 2a 2+y 2b 2=1(a >b >0)的右焦点为F (c ,0)(b >c ),上顶点为B ,直线l :3√3x ﹣4y ﹣21=0交椭圆于P ,Q 两点,若F 恰好为△BPQ 的重心,则椭圆的离心率为( ) A .√55B .12C .√22D .√32解:不妨设P (x 1,y 1),Q (x 2,y 2),线段PQ 的中点M (x 0,y 0),因为点F 是△BPQ 的重心,所以BF →=2FM →,即(c ,﹣b )=2(x 0﹣c ,y 0),所以x 0=3c 2,y 0=−b2, 此时x 1+x 2=2x 0=3c ,y 1+y 2=2y 0=﹣b , 因为点M 在直线l 上,所以3√3•3c 2−4•(−b2)﹣21=0,即9√3c +4b ﹣42=0,①因为P ,Q 两点均在椭圆上,所以{ x 12a 2+y 12b 2=1x 22a 2+y 22b 2=1,两式作差得(x 1+x 2)(x 1−x 2)a 2+(y 1+y 2)(y 1−y 2)b 2=0,则直线l 的斜率k =y 2−y 1x 2−x 1=−b 2(x 1+x 2)a 2(y 1+y 2)=−b 2⋅3c a 2⋅(−b)=3√34,即√3a 2=4bc ,②又a 2=b 2+c 2,b >c ③联立①②③,解得a =2c ,b =√3c ,则椭圆的离心率e =c a =12. 故选:B .8.已知中心在原点O ,焦点在y 轴上,且离心率为√23的椭圆与经过点C (﹣2,0)的直线l 交于A ,B 两点,若点C 在椭圆内,△OAB 的面积被x 轴分成两部分,且△OAC 与△OBC 的面积之比为3:1,则△OAB 面积的最大值为( ) A .8√73B .4√73 C .24√77D .12√77解:设椭圆的方程为y 2a 2+x 2b 2=1(a >b >0),设直线l 的方程为x =my ﹣2,A (x 1,y 1),B (x 2,y 2),联立{y 2a 2+x 2b 2=1x =my −2,整理得:(b 2+a 2m 2)y 2﹣4ma 2y +4a 2﹣a 2b 2=0,由椭圆的离心率e =c a =√1−b 2a2=√23,得b 2=79a 2,代入上式并整理得:(7+9m 2)y 2﹣36my +36﹣7a 2=0, 则y 1+y 2=36m 7+9m 2,y 1y 2=36−7a 27+9m 2, 由△OAC 与△OBC 的面积之比为3:1,则y 1=﹣3y 2,则y 2=−18m7+9m 2, 所以△OAB 的面积为S △OAC +S △OBC =12×|OC |×|y 1|+12|OC |×|y 2|=|y 1﹣y 2|=4|y 2| =4×18|m|7+9m 2≤4×18|m|2√7×9m 2=4×18|m|6√7|m|=12√77,当且仅当9m 2=7,即m =±√73时,等号成立, 故△OAB 面积的最大值为12√77.故选:D .二、多项选择题:本大题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求,全部选对的得5分,部分选对的得2分,有选错的得0分. 9.已知椭圆C :x 24+y 23=1,F 1,F 2分别是椭圆的左,右焦点,P 为椭圆上任意一点.下列说法中正确的是( ) A .椭圆离心率为√32B .|PF 1|的最小值为1C .|PF 1|+|PF 2|=2D .0≤∠F 1PF 2≤π3解:因为椭圆C :x 24+y 23=1,F 1,F 2分别是椭圆的左,右焦点,P 为椭圆上任意一点,故a =2,b =√3,c =√4−3=1,故椭圆离心率为ca=12,A 不对;|PF 1|的最小值为:a ﹣c =1,B 对; |PF 1|+|PF 2|=2a =4,C 不对;当P 与A 重合,即为短轴端点时,∠F 1PF 2取最大值,此时|AF 1|=|AF 2|=a =|F 2F 1|,故∠F 1PF 2=π3,所以0≤∠F 1PF 2≤π3,故D 正确. 故选:BD .10.下列说法正确的是( )A .已知点A (2,1),B(−1,2√3),若过P (1,0)的直线l 与线段AB 相交,则直线l 的倾斜角范围为[π4,2π3] B .“a =1”是“直线ax ﹣y +1=0与直线x ﹣ay ﹣2=0互相平行”的充要条件C .曲线C 1:x 2+y 2+2x =0与C 2:x 2+y 2﹣4x ﹣8y +m =0恰有四条公切线,则m 的取值范围为4<m <20D .圆x 2+y 2=2上有且仅有2个点到直线l :x ﹣y +1=0的距离都等于√22解:A 选项,k P A =1−02−1=1,所以直线P A 的倾斜角为π4, k PB =2√3−0−1−1=−√3,所以直线PB 的倾斜角为2π3, 所以直线l 的倾斜角范围为[π4,2π3],A 选项正确.B 选项,由a ×(﹣a )=(﹣1)×1,解得a =±1, 当a =1时,两直线为x ﹣y +1=0,x ﹣y ﹣2=0,两直线平行;当a =﹣1时,两直线为﹣x ﹣y +1=0.x +y ﹣2=0,即x +y ﹣1=0,x +y ﹣2=0,两直线平行, 所以a =1是直线ax ﹣y +1=0与直线x ﹣ay ﹣2=0互相平行的充分不必要条件,所以B 选项错误. C .选项,C 1:x 2+y 2+2x =0即(x +1)2+y 2=1,是圆心为C 1(﹣1,0),半径r 1=1, 圆x 2+y 2﹣4x ﹣8y +m =0,即(x ﹣2)2+(y ﹣4)2=20﹣m 要表示圆,则20﹣m >0即m <20, 此时圆心为C 2(2,4),半径为√20−m ,两圆有四条公切线,所以两圆外离,所以5>1+√20−m ,解得4<m <20,C 选项正确. D 选项,圆x 2+y 2=2的圆心为(0,0),半径为√2,圆心到直线x ﹣y +1=0的距离为√2=√22, 所以圆 x 2+y 2=2上有且仅有3个点到直线l :x ﹣y +1=0的距离都等于√22,所以D 选项错误. 故选:AC .11.如图,在多面体ABCDEP 中,P A ⊥平面ABCD ,四边形ABCD 是正方形,且DE ∥P A ,P A =AB =2DE =2,M ,N 分别是线段BC ,PB 的中点,Q 是线段DC 上的一个动点(不含端点D ,C ),则下列说法正确的是( )A .存在点Q ,使得NQ ⊥PBB .不存在点Q ,使得异面直线NQ 与PE 所成的角为30°C .三棱锥Q ﹣AMN 体积的取值范围为(13,23)D .当点Q 运动到DC 中点时,DC 与平面QMN 所成的余弦值为√66解:以A 为坐标原点,分别以AB ,AD ,AP 所在直线为x 轴,y 轴,z 轴,建立空间直角坐标系,则A (0,0,0),B (2,0,0),C (2,2,0),D (0,2,0),E (0,2,1),P (0,0,2),N (1,0,1),M (2,1,0),对于A ,假设存在点Q (m ,2,0)(0<m <2),使得NQ ⊥PB , ∵NQ →=(m ﹣1,2,﹣1),PB →=(2,0,﹣2),∴NQ →⋅PB →=2(m ﹣1)+2=0,解得m =0,不合题意,故A 错误;对于B ,假设存在点Q (m ,2,0)(0<m <2),使得异面直线NQ 与PE 所成的角为30°, ∵NQ →=(m ﹣1,2,﹣1),PE →=(0,2,﹣1), ∴|cos <NQ →,PE →>|=|NQ →⋅PE →||NQ →|⋅|PE →|=5√(m−1)+5⋅√5=cos30°=√32,解得m =1±√153,不符合0<m <2, ∴不存在点Q ,使得异面直线NQ 与PE 所成角为30°,故B 正确; 对于C ,连接AQ ,AM ,AN ,DQ =m ,(0<m <2),CQ =2﹣m ,∵S △AMQ =S ABCD ﹣S △ABM ﹣S △QCM ﹣S △ADQ =4﹣1−12(2−m)−m =2−m2, 点N 到平面AMQ 的距离为d =12PA =1, ∴V Q ﹣AMN =V N ﹣AMQ =13(2−m 2)=23−m 6, ∵0<m <2,∴V Q ﹣AMN ∈(13,23),故C 正确; 对于D ,当点Q 运动到DC 中点时,Q (1,2,0), ∵N (1,0,1),M (2,1,0),∴NQ →=(0,2,﹣1),NM →=(1,1,﹣1), 设n →=(x ,y ,z )是平面QMN 的法向量,则{n →⋅NQ →=2y −z =0n →⋅NM →=x +y −z =0,令y =1,则n →=(1,1,2),∵DC →=(2,0,0),设直线DC 与平面QMN 所成的角为θ,∴sin θ=|cos <DC →,n →>|=|DC →⋅n →||DC →|⋅|n →|=22×6=√66,故D 错误. 故选:BC .12.椭圆有如下的光学性质,从椭圆的一个焦点出发的光线射到椭圆镜面后反射,反射光线经过另一个焦点.现椭圆C 的焦点在x 轴上,中心在坐标原点,左、右焦点分别为F 1、F 2.一束光线从F 1射出,经椭圆镜面反射至F 2,若两段光线总长度为6,且椭圆的离心率为√53,左顶点和上顶点分别为A ,B .则下列说法正确的是( ) A .椭圆的标准方程为x 29+y 24=1B .若点P 在椭圆上,则sin ∠F 1PF 2的最大值为19C .若点P 在椭圆上,|BP |的最大值为9√55D .过直线y =x +2上一点M 分别作椭圆的切线,交椭圆于P ,Q 两点,则直线PQ 恒过定点(−92,2) 解:选项A ,设椭圆的标准方程为x 2a 2+y 2b 2=1(a >b >0),焦距为2c ,由题意知,2a =6,离心率e =c a =√53, 所以a =3,c =√5,b =√a 2−c 2=2, 所以椭圆的方程为x 29+y 24=1,即选项A 正确;选项B ,当点P 位于椭圆的上或下顶点时,OP 平分∠F 1PF 2,且sin ∠OPF 2=ca =√53,cos ∠OPF 2=ba =23,所以sin ∠F 1PF 2=sin2∠OPF 2=2sin ∠OPF 2•cos ∠OPF 2=2×√53×23=4√59>19,即选项B 错误; 选项C ,设点P (x 0,y 0),其中y 0∈[﹣2,2],则x 029+y 024=1,即x 02=9(1−14y 02),而B (0,2),所以|BP |2=x 02+(y 0−2)2=9(1−14y 02)+y 02−4y 0+4=−54y 02−4y 0+13=−54(y 0+85)2+815,在[﹣2,−85]上单调递增,在[−85,2]上单调递减, 所以当y 0=−85时,|BP |2取得最大值815,此时|BP |max =√815=9√55,即选项C 正确;选项D ,设点M (x 1,y 1),则y 1=x 1+2①, 过点M 作椭圆的切线,切点弦所在的直线方程为x 1x 9+y 1y 4=1,即直线PQ 的方程为x 1x 9+y 1y 4=1②,联立①②,消去y 1可得,4x 1x +9x 1y +18y ﹣36=0,整理得,(4x +9y )x 1+18y ﹣36=0,令{18y −36=04x +9y =0,解得{x =−92y =2, 所以直线PQ 恒过定点(−92,2),即选项D 正确. 故选:ACD .三、填空题:本大题共4题,每小题5分,共计20分.13.圆C 1:x 2+y 2=1与圆C 2:(x ﹣1)2+(y +2)2=4的公共弦所在的直线方程为 x ﹣2y ﹣1=0 . 解:圆C 1:x 2+y 2=1与圆C 2:(x ﹣1)2+(y +2)2=4,两圆方程相减可得x 2+y 2﹣[(x ﹣1)2+(y +2)2]=1﹣4,即x ﹣2y ﹣1=0, 则两圆的公共弦所在直线方程为x ﹣2y ﹣1=0. 故答案为:x ﹣2y ﹣1=0.14.所有棱长都为1的平行六面体ABCD ﹣A 1B 1C 1D 1中,若M 为A 1C 1与B 1D 1的交点,∠BAD =60°,∠DAA 1=∠BAA 1=30°,则|BM →|的值为√52. 解:因为BM →=BB 1→+B 1M →=BB 1→+12(B 1A 1→+B 1C 1→)=−12AB →+12AD →+AA 1→,所以BM →2=(−12AB →+12AD →+AA 1→)2=14AB →2+14AD →2+AA 1→2−12AB →⋅AD →−AA 1→⋅AB →+AD →⋅AA 1→=14×1+14×1+1−12×1×1×cos60°−1×1×cos30°+1×1×cos30°=54, 所以|BM →|=√52. 故答案为:√52. 15.已知椭圆C :x 2a 2+y 2a 2−1=1(a >1)的左,右焦点分别为F 1,F 2,过点F 1且垂直于x 轴的直线与椭圆交于A 、B 两点,AF 2、BF 2分别交y 轴于P 、Q 两点,△PQF 2的周长为4.过F 2作∠F 2AF 1外角平分线的垂线与直线BA 交于点N ,则|ON |= √17 . 解:如图,∵PQ ∥AB ,∴|PQ||AB|=|PF 2||AF 2|=|QF 2||BF 2|=12,∵△PQF 2的周长为4,∴△ABF 2的周长|AF 1|+|AF 2|+|BF 1|+|BF 2|=4a =8 ∴a =2,∴椭圆方程为x 24+y 23=1,c 2=4﹣3=1,F 1(﹣1,0),直线AB 垂直x 轴,设A (﹣1,y 0),不妨设y 0>0, 则14+y 023=1,解得y 0=32,即A(−1,32),∴|AF 2|2=|AF 1|2+|F 1F 2|2=94+4=254,即|AF 2|=52, ∵∠F 2AF 1外角平分线AT 的垂线与直线BA 交于点N , ∴|AF 2|=|AN|=52,又|AF 1|=32, ∴|NF 1|=52+32=4,则|ON|2=|NF 1|2+|F 1O|2=42+1=17, ∴|ON|=√17, 故答案为:√17.16.已知直线l 与圆O :x 2+y 2=4交于A (x 1,y 1),B (x 2,y 2)两点,且|AB|=2√3,则|3x 1+4y 1﹣10|+|3x 2+4y 2﹣10|的最大值为 30 . 解:|3x 1+4y 1−10|5+|3x 2+4y 2−10|5的几何意义为点A ,B 到直线3x +4y ﹣10=0的距离之和,根据梯形中位线知其最大值是AB 的中点M 到直线3x +4y ﹣10=0的距离的2倍, 由题可知,圆O :x 2+y 2=4的圆心O (0,0),半径为2,|AB|=2√3, 则|OM|=√22−(232)2=1,所以AB 的中点M 的轨迹是以原点O 为圆心,1为半径的圆, 故点M 到直线3x +4y ﹣10=0的最大距离√32+42+1=3,所以|3x 1+4y 1−10|5+|3x 2+4y 2−10|5的最大值为2×3=6,则|3x 1+4y 1﹣10|+|3x 2+4y 2﹣10|的最大值为30. 故答案为:30.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.(10分)在平面直角坐标系中,已知射线OA :x ﹣y =0(x ≥0),OB :x +2y =0(x ≥0).过点P (3,0)作直线分别交射线OA ,OB 于点A ,B . (1)已知点B (6,﹣3),求点A 的坐标;(2)当线段AB 的中点为P 时,求直线AB 的方程. 解:(1)由题意知,k BP =0−(−3)3−6=−1, 因为P (3,0),所以直线BP 的方程为y =﹣(x ﹣3),即x +y ﹣3=0, 联立{x +y −3=0x −y =0(x ≥0),解得{x =32y =32,即A(32,32).(2)不妨设A (a ,a ),B (﹣2b ,b ),a >0,b <0, 则线段AB 的中点为(a−2b 2,a+b2), 因为线段AB 的中点为P ,所以{a−2b2=3a+b 2=0,解得{a =2b =−2, 所以A (2,2),B (4,﹣2),所以直线AB 的斜率为2−(−2)2−4=−2,因为直线AB 经过点P (3,0),所以直线AB 的方程为y =﹣2(x ﹣3),即2x +y ﹣6=0, 故直线AB 的方程为2x +y ﹣6=0.18.(12分)如图,ABCD 和ABEF 是不在同一平面上的两个矩形,DM →=13DB →,AN →=13AE →,记AB →=a →,AD →=b →,AF →=c →.请用基底{a →,b →,c →},表示下列向量: (1)FC →; (2)MN →.解:(1)FC →=FA →+AB →+BC →=−AF →+AB →+AD →=a →+b →−c →.(2)MN →=AN →−AM →=AN →−(AD →+DM →)=13AE →−(AD →+13DB →)=13(AB →+AF →)﹣[AD →+13(AB →−AD →)] =13(a →+c →)﹣[b →+13(a →−b →)] =(13−1)b →+13c →=−23b →+13c →. 19.(12分)已知圆C ,圆C 1:(x +3)2+y 2=9,圆C 2:(x −1)2+y 2=9,这三个圆有一条公共弦. (1)当圆C 的面积最小时,求圆C 的标准方程; (2)在(1)的条件下,直线l 同时满足以下三个条件: (i )与直线√19x +y −3=0垂直; (ii )与圆C 相切;(iii )在y 轴上的截距大于0,若直线l 与圆C 2交于D ,E 两点,求|DE |. 解:(1)依题意,由{(x +3)2+y 2=9(x −1)2+y 2=9,解得{x =−1y =−√5或{x =−1y =√5, 因此圆C 1与圆C 2的公共弦的两个端点坐标分别为M(−1,−√5),N(−1,√5), 当圆C 的面积最小时,MN 是圆C 的直径,则圆C 的圆心为(﹣1,0),半径为√5, 所以圆C 的标准方程是(x +1)2+y 2=5;(2)因为直线l 与直线√19x +y −3=0垂直,则设直线l 的方程为x −√19y +m =0, 而直线l 与圆C 相切,则有d =|−1+0+m|2√5=√5,解得m =1或m =﹣9,又因为l 在y 轴上的截距大于0,即√190,所以m =11,即直线l 的方程为x −√19y +11=0,而圆C 2的圆心C 2(1,0),半径r 2=3, 点C 2到直线l :x −√19y +11=0 的距离为d 2=|1+0+11|25=6√55,于是得|DE|=2√r 22−d 22=2√9−(655)2=6√55.20.(12分)如图,在四棱锥P﹣ABCD中,底面是边长为2的菱形,∠ABC=π3,H为BC的中点,P A=PB=PH=√2.E为PD上的一点,已知PD=4PE.(1)证明:平面P AB⊥平面ABCD;(2)求平面EAC与平面P AB夹角的余弦值.(1)证明:取AB中点O,连接PO,HO,∵P A=PB,O为AB中点,∴PO⊥AB,∵PA=√2,OA=12AB=1,∴PO=√PA2−OA2=1,∵四边形ABCD为菱形,∠ABC=π3,∴△ABC为等边三角形,∴AC=2,又O,H分别为AB,BC中点,∴OH=12AC=1,∴OH2+PO2=PH2,即PO⊥OH,∵OH∩AB=O,OH,AB⊂平面ABCD,PO⊄平面ABCD,∴PO⊥平面ABCD,∵PO⊂平面P AB,∴平面P AB⊥平面ABCD;(2)解:连接CO,由(1)知:△ABC为等边三角形,∴CO⊥AB,CO=√3,以O为坐标原点,OC、OB、OP所在直线分别为x,y,z轴,建立如图所示空间直角坐标系,则A(0,−1,0),C(√3,0,0),D(√3,−2,0),P(0,0,1),H(√32,12,0), ∴AC →=(√3,1,0),PD →=(√3,−2,−1),PH →=(√32,12,−1),PA →=(0,−1,−1), 由PD =4PE 得:PE →=(√34,−12,−14), ∴EA →=PA →−PE →=(−√34,−12,−34), 设平面EAC 的法向量为m →=(x ,y ,z),则{AC →⊥m →EA →⊥m →⇒⇒{AC →⋅m →=0EA →⋅m →=0⇒⇒{√3x +y =0−√34x −y 2−34z =0, 令z =1,解得:x =√3,y =−3,∴m →=(√3,−3,1), ∵x 轴⊥平面P AB ,∴平面P AB 的一个法向量ℎ→=(1,0,0), 设平面EAC 与平面P AB 的夹角为θ, 则cosθ=|cos <m →,ℎ→>|=|m →⋅ℎ→||m →|⋅|ℎ→|=3√13=√3913,所以平面EAC 与平面P AB 夹角的余弦值为√3913. 21.(12分)已知A(−√3,1),B ,M 是椭圆C 上的三点,其中A 、B 两点关于原点O 对称,直线MA 和MB 的斜率满足k MA •k MB =−13. (1)求椭圆C 的标准方程;(2)点Q 是椭圆C 长轴上的不同于左右顶点的任意一点,过点Q 作斜率不为0的直线l ,l 与椭圆的两个交点分别为P 、N ,若1|PQ|+1|QN|为定值,则称点Q 为“稳定点”,问:是否存在这样的稳定点?若有,试求出所有的“稳定点”,并说明理由;若没有,也请说明理由. 解:(1)设M (x ,y ),易知B(√3,−1), 由k MA ⋅k MB =−13,得x+√3⋅x−√3=−13,化简得x 26+y 22=1,故椭圆C 的标准方程为x 26+y 22=1.(2)∵点Q 是椭圆C 长轴上的不同于A 、B 的任意一点, 故可设直线PN 的方程为x =my +x 0,P (x 1,y 1),N (x 2,y 2), 由{x =my +x 0x 26+y 22=1,得(m 2+3)y 2+2mx 0y +x 02−6=0, ∴y 1+y 2=−2mx 0m 2+3,y 1y 2=x 02−6m 2+3,Δ>0恒成立.又|PQ|=√1+m 2|y 1|,|QN|=√1+m 2|y 2|, ∴1|PQ|+1|QN|=√1+m2(1|y 1|+1|y 2|)=√1+m 212−y 1y 2,=1√1+m 2√(y1+y 2)2−4y 1y 2−y 1y 2=1√1+m 2⋅√(−2mx 0m 2+3)2−4⋅x 02−6m 2+3−x 02−6m 2+3=26−x 02√6m 2−3x 02+18m 2+1=26−x 02√6(m 2+6−x 022)m 2+1, 要使其值为定值,则6−x 022=1,故当x 02=4,即x 0=±2时,1|PQ|+1|QN|=√6.综上,存在这样的稳定点Q (±2,0). 22.(12分)已知椭圆E :x 2a 2+y 2b 2=1(a >b >0)的焦距为4√3,且点P(2,√3)在椭圆E 上.(1)求椭圆E 的方程;(2)若A 、B 、Q 是椭圆E 上的三点,且直线AB 与x 轴不垂直,点O 为坐标原点,OQ →=λOA →+μOB →,则当△AOB 的面积最大时,求λ2+μ2的值.解:(1)由题意得,{2c =4√34a 2+3b 2=1a 2−b 2=c 2,解之得{a 2=16b 2=4c =2√3,故椭圆E 的方程为x 216+y 24=1;(2)设A (x 1,y 1),B (x 2,y 2),Q (x 0,y 0),直线AB 的方程为y =kx +t . 将y =kx +t 代入x 216+y 24=1,整理得(1+4k 2)x 2+8ktx +4t 2﹣16=0,Δ=(8kt )2﹣4(1+4k 2)(4t 2﹣16)>0,即16k 2+4﹣t 2>0, 则x 1+x 2=−8kt 1+4k2,x 1x 2=4t 2−161+4k2,故|AB|=√1+k 2|x 1−x 2|=√1+k 2⋅√(x 1+x 2)2−4x 1x 2=√1+k 2⋅4√16k 2−t 2+41+4k2.又原点O 到直线AB 的距离为d =|t|√1+k,所以S △AOB=12|AB|×d =12⋅√1+k 2⋅4√16k 2−t 2+41+4k 2⋅|t|√1+k=2√(16k 2−t 2+4)t 21+4k 2≤16k 2+41+4k 2=4, 当且仅当16k 2﹣t 2+4=t 2,即2+8k 2=t 2……①时,等号成立. 由OQ →=λOA →+μOB →,得{x 0=λx 1+μx 2,y 0=λy 1+μy 2,代入x 0216+y 024=1,整理得λ2(x 1216+y 124)+μ2(x 2216+y 224)+2λμ(x 1x 216+y 1y 24)=1,即λ2+μ2+2λμ(x 1x 216+y 1y 24)=1⋯⋯②.而x 1x 216+y 1y 24=x 1x 216+(kx 1+t)(kx 2+t)4=(1+4k 2)x 1x 2+4kt(x 1+x 2)+4t 216=(1+4k 2)×4t 2−161+4k2+4kt×(−8kt 1+4k2)+4t216=t 2−2−8k22(1+4k 2).由①可知x 1x 216+y 1y 24=0,代入②式得λ2+μ2=1.故λ2+μ2=1的值为1.。

(必考题)数学高二上期中经典练习题(含答案解析)

(必考题)数学高二上期中经典练习题(含答案解析)

一、选择题1.(0分)[ID :13012]如图所示,墙上挂有边长为a 的正方形木板,它的四个角的空白部分都是以正方形的顶点为圆心,半径为2a的圆弧,某人向此板投镖,假设每次都能击中木板,且击中木板上每个点的可能性都一样,则它击中阴影部分的概率是 ( )A .18π-B .4π C .14π-D .与a 的值有关联2.(0分)[ID :13000]“三个臭皮匠,赛过诸葛亮”,这是我们常说的口头禅,主要是说集体智慧的强大. 假设李某智商较高,他独自一人解决项目M 的概率为10.3P =;同时,有n 个水平相同的人也在研究项目M ,他们各自独立地解决项目M 的概率都是0.1.现在李某单独研究项目M ,且这n 个人组成的团队也同时研究项目M ,设这个n 人团队解决项目M 的概率为2P ,若21P P ≥,则n 的最小值是( ) A .3B .4C .5D .63.(0分)[ID :12995]在区间上随机取两个数,x y ,记1p 为事件“12x y +≥”的概率,2p 为事件“12x y -≤”的概率,3p 为事件“12xy ≤”的概率,则 ( ) A .123p p p << B .231p p p << C .312p p p << D .321p p p <<4.(0分)[ID :12988]甲、乙两名射击运动员分别进行了5次射击训练,成绩(单位:环)如下:甲:7,8,8,8,9 乙:6,6,7,7,10;若甲、乙两名运动员的平均成绩分别用12,x x 表示,方差分别为2212,S S 表示,则( )A .221212,x x s s >> B .221212,x x s s >< C .221212,x x s s << D .221212,x x s s <> 5.(0分)[ID :12984]某学校10位同学组成的志愿者组织分别由李老师和张老师负责,每次献爱心活动均需该组织4位同学参加.假设李老师和张老师分别将各自活动通知的信息独立,随机地发给4位同学,且所发信息都能收到.则甲同学收到李老师或张老师所发活动通知的信息的概率为( )A .25B .1225C .1625D .456.(0分)[ID :12971]我国数学家陈景润在哥德巴赫猜想的研究中做出了重大贡献,哥德巴赫猜想是:“任一大于2的偶数都可以写成两个质数之和”,如32=13+19.在不超过32的质数中,随机选取两个不同的数,其和等于30的概率为( ) A .111B .211C .355D .4557.(0分)[ID :12969]某城市2017年的空气质量状况如下表所示: 污染指数T 3060100110130140概率P110 16 13 730 215 130其中污染指数50T ≤时,空气质量为优;50100T <≤时,空气质量为良;100150T <≤时,空气质量为轻微污染,该城市2017年空气质量达到良或优的概率为( )A .35B .1180C .119D .568.(0分)[ID :12965]微信中有个“微信运动”,记录一天行走的步数,小王的“微信步数排行榜”里有120个人,今天,他发现步数最少的有0.85万步,最多的有1.79万步.于是,他做了个统计,作出下表,请问这天大家平均走了多少万步?( )A .1.19B .1.23C .1.26D .1.319.(0分)[ID :12950]下列命题:①对立事件一定是互斥事件;②若A ,B 为两个随机事件,则P(A∪B)=P(A)+P(B);③若事件A ,B ,C 彼此互斥,则P(A)+P(B)+P(C)=1;④若事件A ,B 满足P(A)+P(B)=1,则A 与B 是对立事件. 其中正确命题的个数是( ) A .1 B .2C .3D .410.(0分)[ID :12934]某程序框图如图所示,若输出的结果是126,则判断框中可以是( )A .6?i >B .7?i >C .6?i ≥D .5?i ≥11.(0分)[ID :12930]某厂家为了解销售轿车台数与广告宣传费之间的关系,得到如表统计数据表:根据数据表可得回归直线方程y bx a =+,其中ˆ 2.4b=,a y bx =-,据此模型预测广告费用为9万元时,销售轿车台数为( ) 广告费用x (万元) 2 3 4 5 6 销售轿车y (台数)3461012A .17B .18C .19D .2012.(0分)[ID :13016]同时掷三枚硬币,至少有1枚正面向上的概率是( ) A .78B .58C .38D .1813.(0分)[ID :13025]执行右面的程序框图,若输入的,,a b k 分别为1,2,3,则输出的M =( )A .203B .72C .165D .15814.(0分)[ID :12972]《九章算术》是我国古代内容极为丰富的一部数学专著,书中有如下问题:今有女子善织,日增等尺,七日织28尺,第二日,第五日,第八日所织之和为15尺,则第十五日所织尺数为( )A .13B .14C .15D .1615.(0分)[ID :13023]为了解某社区居民的家庭年收入所年支出的关系,随机调查了该社区5户家庭,得到如下统计数据表: 收入x (万元)8.28.610.011.311.9支出y (万元)6.27.58.0 8.59.8根据上表可得回归直线方程ˆˆˆybx a =+,其中ˆˆˆ0.76,b a y bx ==-,据此估计,该社区一户收入为15万元家庭年支出为( ) A .11.4万元B .11.8万元C .12.0万元D .12.2万元二、填空题16.(0分)[ID :13120]判断大小a =log 30.5,b =log 32,c =log 52,d =log 0.50.25,则a 、b 、c 、d 大小关系为_____________.17.(0分)[ID :13119]下列说法正确的个数有_________(1)已知变量x 和y 满足关系23y x =-+,则x 与y 正相关;(2)线性回归直线必过点(),x y ;(3)对于分类变量A 与B 的随机变量2k ,2k 越大说明“A 与B 有关系”的可信度越大 (4)在刻画回归模型的拟合效果时,残差平方和越小,相关指数2R 的值越大,说明拟合的效果越好.18.(0分)[ID :13112]某人向边长分别为5,12,13的三角形区域内随机丢一粒芝麻,假设芝麻落在区域内的任意一点是等可能的,则其恰落在离三个顶点距离都大于2的地方的概率为__ .19.(0分)[ID :13107]连续抛掷一颗骰子2次,则掷出的点数之和不超过9的概率为______.20.(0分)[ID :13081]执行如图所示的算法流程图,则输出x 的值为__________.21.(0分)[ID :13073]某单位为了了解用电量y (度)与气温x (℃之间的关系,随机统计了某4天的用电量与当天气温(如表),并求得线性回归方程ˆ360yx =-为: x c9 14 -1y 184830d不小心丢失表中数据c ,d ,那么由现有数据知3c d -____________.22.(0分)[ID :13051]执行如图所示的程序框图,如果输出3s =,则正整数M 为__________.23.(0分)[ID :13049]执行如图所示的程序框图,如果输出1320s =,则正整数M 为__________.24.(0分)[ID :13048]计算机执行如图所示的程序后,输出的结果是__________.25.(0分)[ID :13046]某路公共汽车每5分钟发车一次,某乘客到乘车点的时刻是随机的,则他候车时间不超过3分钟的概率是_______.三、解答题26.(0分)[ID :13220]为保护农民种粮收益,促进粮食生产,确保国家粮食安全,调动广大农民生产粮食的积极性,从2014年开始,国家实施了对种粮农民直接补贴的政策通过对2014~2018年的数据进行调查,发现某地区发放粮食补贴额x (单位:亿元)与该地区粮食产量y (单位:万亿吨)之间存在着线性相关关系,统计数据如下表: 年份 2014 2015 2016 2017 2018 补贴额x /亿元 9 10 12 11 8 粮食产量y /万亿2526313721(1)请根据上表所给的数据,求出y 关于x 的线性回归直线方程ˆˆybx a =+; (2)通过对该地区粮食产量的分析研究,计划2019年在该地区发放粮食补贴7亿元,请根据(1)中所得到的线性回归直线方程,预测2019年该地区的粮食产量.参考公式:()()()121ˆniii nii x x y y bx x ==--=-∑∑,ˆˆay bx =-.27.(0分)[ID:13207]如图,从参加环保知识竞赛的学生中抽出60名,将其成绩(均为整数)整理后画出的频率分布直方图如下,观察图形,回答下列问题:(1)79.589.5这一组的频数、频率分别是多少?(2)估计这次环保知识竞赛的及格率(60分及以上为及格)和平均数?28.(0分)[ID:13185]现将甲、乙两个学生在高二的6次数学测试的成绩(百分制)制成如图所示的茎叶图,进入高三后,由于改进了学习方法,甲、乙这两个学生的考试成绩预计同时有了大的提升:若甲(乙)的高二任意一次考试成绩为x,则甲(乙)的高三对应x .的考试成绩预计为4(1)试预测:高三6次测试后,甲、乙两个学生的平均成绩分别为多少?谁的成绩更稳定?(2)若已知甲、乙两个学生的高二6次考试成绩分别由低到高进步的,定义y为高三的任意一次考试后甲、乙两个学生的当次成绩之差的绝对值,求y的平均值.29.(0分)[ID:13155]从某校期中考试数学试卷中,抽取样本,考察成绩分布,将样本分成5组,绘成频率分布直方图,图中各小组的长方形面积之比从左至右依次为1:3:6:4:2,第一组的频数是4.(1)求样本容量及各组对应的频率;(2)根据频率分布直方图估计成绩的平均分和中位数(结果保留两位小数).30.(0分)[ID:13135]某校举行书法比赛,下图为甲乙两人近期8次参加比赛的成绩的茎叶图。

2024高二数学期中考试题及答案

2024高二数学期中考试题及答案

2024高二数学期中考试题及答案一、选择题(每小题3分,共计60分)1. 已知函数f(x)=2x^3-3x^2-12x+5,求f(-1)的值是多少?A) -9 B) -7 C) 7 D) 92. 若集合A={1,2,3,4},集合B={2,3,4,5},则A∪B的元素个数是多少?A) 4 B) 5 C) 7 D) 83. 设函数f(x)=4x-1,g(x)=2x+3,求满足f(g(x))=1的x的值。

A) 0 B) -1 C) 1 D) 24. 在等差数列an中,若a1=3,d=4,an=19,则n的值是多少?A) 4 B) 5 C) 6 D) 75. 已知直角三角形的两条直角边分别为3和4,求斜边的长度是多少?A) 5 B) 7 C) 25 D) 49二、填空题(每小题4分,共计40分)1. 若集合A={1,2,3,4,5},集合B={4,5,6,7},则A∩B的元素个数是_________。

2. 设函数f(x)=3x+2,则f(-1)的值是_________。

3. 在等差数列an中,若a1=2,d=3,an=23,则n的值是_________。

4. 男生与女生的比例是3:5,班级总人数为80,女生人数是_________。

5. 若正方形的边长为x+2,其面积是_________。

6. 已知平行四边形的底边长为5,高为3,其面积是_________。

7. 若正方形的对角线长为10,边长是_________。

8. 设函数f(x)=x^2+2x-1,g(x)=x-1,则f(g(2))的值是_________。

9. 若直角三角形的两条直角边分别为6和8,斜边的长度是_________。

10. 设集合A={a,b,c},集合B={c,d,e},则A×B的元素个数是_________。

三、解答题(共计40分)1. 若函数f(x)满足f(2x-1)=2x^2-2x,则求f(x)的表达式。

2. 已知数列{an}的通项公式为an=n^2-3n-4,求数列{an}的首项和前6项的和。

2024学年云南省高二数学第一学期期中试题卷附答案解析

2024学年云南省高二数学第一学期期中试题卷附答案解析

2024学年云南省高二数学第一学期期中试题卷.本卷满分150分,考试时间120分钟2024.11一、单选题(本大题共8小题)1.已知集合{}24A x x =≤,{}10B x x =->,则A B = ()A .[)2,1-B .(]1,2C .[)0,1D .(),1-∞2.复数()()1i 3i --在复平面内对应的点位于()A .第一象限B .第二象限C .第三象限D .第四象限3.直线0x y ++=的倾斜角为()A .π3B .π4C .3π4D .π24.已知命题p :x ∃∈R ,210x x -+≤,命题q :0x ∀≥,e sin x x ≥,则()A .p 和q 都是真命题B .p ⌝和q 都是真命题C .p 和q ⌝都是真命题D .p ⌝和q ⌝都是真命题5.已知圆22:(3)1A x y +-=与圆B 关于直线y x =对称,则圆B 的方程为()A .221x y +=B .22(3)(3)1x y -+-=C .22(3)1x y ++=D .22(3)1x y -+=6.已知正方体的内切球半径为)A.B .36πC .9πD .27π7.已知函数()()131,2log 1,2ax x f x x x +<⎧⎪=⎨+≥⎪⎩,在R 上单调递减,则a 的取值范围是()A .(],0-∞B .(]0,1C .(],1-∞-D .[)1,0-8.已知O 为坐标原点,点A 在圆()()22221x y -+-=上运动,则线段OA 的中点P 的轨迹方程为()A .()()22111x y -+-=B .()()22112x y -+-=C .()()221112x y -+-=D .()()221114x y -+-=二、多选题(本大题共3小题)9.已知()1,8,11A ,()2,6,9B ,()3,4,10C ,()1,8,14D ,则()A .3AB = B .直线AB 的一个方向向量为1,1,12⎛⎫-- ⎪⎝⎭C .,,,A B CD 四点共面D .点C 到直线AB 的距离为10.已知函数()2sin 4π3f x x ⎛⎫=- ⎪⎝⎭,则下列说法正确的是()A .点π,012⎛⎫⎪⎝⎭是()f x 图象的一个对称中心B .()f x 的单调递增区间为π5ππ,π2424k k ⎡⎤-++⎢⎥⎣⎦,k ∈ZC .()f x 在6ππ,12⎛⎤- ⎥⎝⎦上的值域为⎡-⎣D .将()f x 的图象先向右平移π24个单位长度,再将所有点的横坐标缩短为原来的12(纵坐标不变),得到函数()g x 的图象,则()cos8g x x=11.已知圆1C :()()2224x a y ++-=与圆2C :()()2224x y a -+-=,则下列结论正确的是()A .若圆1C 与圆2C 外切,则2a =或2-B .当1a =时,圆1C 与圆2C 的公共弦所在直线的方程为3y x =C .若圆1C 与圆2C 关于点()1,3-对称,则4a =-D .当0a =时,对任意的R λ∈,曲线W :()()2211440x y x y λλλ+++--=恒过圆1C 与圆2C 的交点三、填空题(本大题共3小题)12.从1至5这5个整数中随机取2个不同的数,则这2个数的乘积为奇数的概率为.13.已知点()0,1,1A ,()3,1,2B -,()1,4,1C --,()3,6,D x ,若A ,B ,C ,D 四点共面,则x =.14.如图,在四棱台体1111ABCD A B C D -中,1AA ⊥平面ABCD ,底面ABCD 为正方形,122AB AA ==114A B =,P 为线段1C D 的中点,直线1D P 与平面11AB D 所成角的大小为.四、解答题(本大题共5小题)15.已知ABC V 的三个顶点的坐标分别为()2,0A ,()4,2B ,()1,3C .(1)求过点C 且与直线AB 平行的直线的方程;(2)求BC 边上的高所在直线的方程.16.某社团为统计居民运动时长,调查了某小区100名居民平均每天的运动时长(单位:h ),并根据统计数据分为[)1,1.5,[)1.5,2,[)2,2.5,[)2.5,3,[)3,3.5,[]3.5,4六个小组(所调查的居民平均每天的运动时长均在[]1,4内),得到的频率分布直方图如图所示.(1)求出图中m 的值,并估计这100名居民平均每天的运动时长的中位数;(2)按分组用分层随机抽样的方法从平均每天运动时长在[)2.5,3,[]3.5,4这两个时间段内的居民中抽出6人分享运动心得,若再从这6人中选出2人发言,求这2人来自不同分组的概率.17.记ABC V 的内角A ,B ,C 的对边分别为a ,b ,c ,已知cos 2A A -=.(1)求角A ;(2)若3a =,求ABC V 的面积的最大值18.已知直线():1l y k x =+,圆22:4440C x y x y +--+=.(1)若直线l 与圆C 相切,求k 的值;(2)记圆C 的圆心为C ,若直线l 与圆C 交于A ,B 两点,ABC V 为等边三角形,求k 的值.19.如图,在几何体ABCDEF 中,已知四边形ABCD 是边长为2的正方形,EA ⊥平面ABCD ,EA FC ∥,22EA FC ==.(1)求异面直线EB 与DF 所成角的余弦值(2)证明:平面EBD ⊥平面BDF .(3)若M 是几何体ABCDEF 内的一个动点,且()()12AM t AB AD t AE =++- (102t ≤≤),点N 满足()CN CF CB CD CF λμλμ++=++ ,2MN =,求AM AN ⋅的最小值.参考答案1.【答案】A【详解】由24x ≤得:22x -≤≤,即[]2,2A =-;由10x ->得:1x <,即(),1B =-∞,[)2,1A B ∴=- .故选:A.2.【答案】D【详解】()()21i 3i 34i i 24i --=-+=- ,()()1i 3i ∴--在复平面内对应的点为()2,4-,位于第四象限.故选:D.3.【答案】C【详解】由0x y ++=得y x =-,所以直线的斜率1k =-,即tan 1k α==-,又[)0,πα∈,所以倾斜角3π4α=.故选:C.4.【答案】B【详解】对于p 而言,22131024x x x ⎛⎫-+=-+> ⎪⎝⎭,故p 是假命题,p ⌝是真命题.对于q 而言,0x ∀≥,e 1sin x x ≥≥,故q 是真命题,q ⌝是假命题.综上,p ⌝和q 都是真命题.故选:B.5.【答案】D【详解】由题意可得,圆A 的圆心坐标为()0,3,圆A 和圆B 的半径均为1,设圆心()0,3A 关于直线y x =的对称点为(),B a b ,则311322b aa b -⎧⨯=-⎪⎪⎨+⎪=⎪⎩,解得30a b =⎧⎨=⎩,所以圆B 的标准方程为22(3)1x y -+=.故选:D 6.【答案】B【详解】因为正方体的内切球半径为设外接球的半径为R ,则()(2223R =⨯,所以3R =,故外接球的体积为34π36π3R =.故选:B.7.【答案】D【详解】因为()f x 在R 上单调递减,所以13021log 3a a <⎧⎪⎨+≥⎪⎩,解得10a -≤<,则a 的取值范围是[)1,0-.故选:D 8.【答案】D【详解】设()00,A x y ,(),P x y ,则02x x =,02y y =,即02x x =,02y y =①.因为点A 在圆()()22221x y -+-=上运动,所以满足()()2200221x y -+-=②.把①代入②,得()()2222221x y -+-=,即()()221114x y -+-=.故线段OA 的中点P 的轨迹方程为()()221114x y -+-=.故选:D9.【答案】ACD【详解】3AB ==,A 正确;()1,2,2AB =--,B 错误;由题意得()2,4,4CD =- ,则2CD AB =-,所以,,,A B C D 四点共面,C 正确;()2,4,1AC =--,AC = ,AC ⋅ 28212AB =++=,则点C 到直线AB的距离为D 正确.故选:ACD.10.【答案】AC【详解】因为πππ2sin 4012123f ⎛⎫⎛⎫=⨯-= ⎪ ⎪⎝⎭⎝⎭,所以点π,012⎛⎫ ⎪⎝⎭是()f x 图象的一个对称中心,A 正确;令πππ2π42π232k x k -+≤-≤+(k ∈Z ),则ππ5ππ242242k k x -+≤≤+(k ∈Z ),故()f x 的单调递增区间为ππ5ππ,242242k k ⎡⎤-++⎢⎥⎣⎦(k ∈Z ),B 错误;因为ππ,126x ⎛⎤∈- ⎥⎝⎦,所以π2ππ4,333x ⎛⎤-∈- ⎥⎝⎦,故()f x 在ππ,126⎛⎤- ⎥⎝⎦上的值域为⎡-⎣,C 正确;将()f x 的图象先向右平移π24个单位长度,可得函数πππ2sin 42sin 4cos 4632y x x x ⎛⎫⎛⎫=--=-=- ⎪ ⎪⎝⎭⎝⎭的图象,再将所有点的横坐标缩短为原来的12(纵坐标不变),可得()cos8g x x =-的图象,D 错误.故选:AC 11.【答案】ABD【详解】圆1C 的圆心为(),2a -,半径12r =,圆2C 的圆心为()2,a ,半径22r =.若圆1C 与圆2C 外切,则4,解得2a =或2-,A 正确.当1a =时,圆1C :()()22124x y ++-=,圆2C :()()22214x y -+-=,将两圆的方程作差可得圆1C 与圆2C 的公共弦所在直线的方程为3y x =,B 正确.若圆1C 与圆2C 关于点()1,3-对称,则212,232,a a -+=-⨯⎧⎨+=⨯⎩解得4a =,C 错误.当0a =时,圆1C :2240x y y +-=,圆2C :2240x x y -+=,则()()()2222221144440x y x y x y y x x y λλλλ+++--=+-+-+=,所以对任意的R λ∈,曲线W 恒过圆1C 与圆2C 的交点,D 正确.故选:ABD.12.【答案】310/0.3【详解】根据题意知样本空间()()()()()()()()()(){}Ω1,2,1,3,1,4,1,5,2,3,2,4,2,5,3,4,3,5,4,5=,所以()Ω10n =,事件A 为这2个数的乘积为奇数,所以()()(){}1,3,1,5,3,5A =,则()3n A =,所以()()()3Ω10n A P A n ==,故答案为:310.13.【答案】3-【详解】由题可知()3,2,1AB =- ,()1,3,2AC =-- ,()3,5,1AD x =- ,因为A ,B ,C ,D 四点共面,所以AD m = AB n AC +(m ,n ∈R ),()()()()3,5,13,2,11,3,23,23,2x m n m n m n m n -=-+--=--+-,即3323521m n m n m n x -=⎧⎪-+=⎨⎪-=-⎩,解得2m =,3n =,所以3x =-.故答案为:3-.14.【答案】π2【详解】根据题意建立如图所示的空间直角坐标系,则0,0,0,()12,0,2B ,()10,2,2D ,()12,2,2C ,()0,4,0D ,()1,3,1P ,()11,1,1D P =-,()12,0,2AB = ,()10,2,2AD = ,设平面11AB D 的法向量为(),,n x y z =,则11220220n AB x z n AD y z ⎧⋅=+=⎪⎨⋅=+=⎪⎩ ,则平面11AB D 的一个法向量()1,1,1n =- ,所以1D P n ∥,即直线1D P ⊥平面11AB D ,故直线1D P 与平面11AB D 所成角的大小为π2.故答案为:π2.15.【答案】(1)20x y -+=(2)360x y --=【详解】(1)由()2,0A ,()4,2B 可知20142AB k -==-,故所求直线的方程为31y x -=-,即20x y -+=.(2)易知231413BC k -==--,则所求直线的斜率为3,故所求直线的方程为()32y x =-,即360x y --=.16.【答案】(1)0.5m =,2.4h (2)13.【详解】(1)由()0.20.420.30.10.51m ++++⨯=,解得0.5m =.因为()()0.20.40.50.3,0.20.40.50.50.55+⨯=++⨯=,所以中位数在[)2,2.5内,设中位数为x ,则()0.320.50.5x +-⨯=,得 2.4x =,即估计这100名居民平均每天的运动时长的中位数为2.4h.(2)由题知,平均每天运动时长在[)2.5,3,[]3.5,4内的频率分别为0.5,0.1,则应从平均每天运动时长在[)2.5,3,[]3.5,4内的居民中分别抽出5人,1人.记[)2.5,3时间段内的5人分别为a ,b ,c ,d ,e ,记[]3.5,4时间段内的1人为M ,则从这6人中选出2人的基本事件有(),a b ,(),a c ,(),a d ,(),a e ,(),a M ,(),b c ,(),b d ,(),b e ,(),b M ,(),c d ,(),c e ,(),c M ,(),d e ,(),d M ,(),e M 共15个,2人来自不同分组的基本事件(),a M ,(),b M ,(),c M ,(),d M ,(),e M ,共5个,所以这2人来自不同分组的概率为51153=.17.【答案】(1)2π3(2)334.【详解】(1)由cos 2A A -=,可得1cos 122A A -=,即πsin 16A ⎛⎫-= ⎪⎝⎭,因为()0,πA ∈,所以ππ62A -=,解得2π3A =.(2)由余弦定理可得222222cos 9a b c bc A b c bc =+-=++=,因为222b c bc +≥,所以39bc ≤,则3bc ≤,所以ABC V 的面积1sin 24S bc A ==4≤,当且仅当b c ==.故ABC ∆的面积的最大值为.18.【答案】(1)0k =或125k =.(2)6306k =【详解】(1)由圆C 的方程224440x y x y +--+=可知圆心(2,2)C ,半径2r =.直线:(1)l y k x =+,即0kx y k -+=.因为直线l 与圆C相切,则2=.解得0k =或125k =.(2)因为ABC V 为等边三角形,所以圆心C 到直线l的距离2d ===同样根据点到直线距离公式=化简得261210k k -+=.解得k =19.【答案】(1)1010(2)证明见解析(3)2-【详解】(1)以A 为坐标原点,AB ,AD ,AE 所在直线分别为x ,y ,z 轴建立空间直角坐标系.()0,2,0D ,()2,2,1F ,()0,0,2E ,()2,0,0B ,则()2,0,1DF = ,()2,0,2EB =-,cos ,10DF EB DF EB DF EB⋅==,故异面直线EB 与DF所成角的余弦值为(2)取BD 的中点O ,连接OE ,OF ,则()1,1,0O ,所以()1,1,2OE =-- ,()1,1,1OF = ,()2,2,1EF =- ,()0,2,2ED =-,所以OE OE == OF OF == ,3EF EF == ,则222OE OF EF +=,所以OE OF ⊥.ED ED == EB EB ==,则ED EB =,又O 为DB 中点,所以OE DB ⊥,OF DB O = ,所以OE ⊥平面BDF .因为OE ⊂平面EBD ,所以平面EBD ⊥平面BDF .(3)因为()()()12212AM t AB AD t AE t AO tAE =++-=+- (102t ≤≤),所以M 在线段OE 上.因为()CN CF CB CD CF λμλμ++=++ ,所以FN FB FD λμ=+,故N 在平面BDF 上.()()AM AN AO OM AO ON ⋅=+⋅+ ()()22AO AO OM ON OM ON AO AO OM ON =+⋅++⋅=+⋅+ ;设G 为MN 的中点,所以()()22AM AN AO OM AO ON AO OG ⋅=+⋅+=+⋅ ,因为2MN =,所以1OG =,故AO OG ⋅≥AM AN ⋅ 的最小值为2-。

【必考题】高二数学上期中试题(及答案)

【必考题】高二数学上期中试题(及答案)
(Ⅰ)利用散点图判断, 和 (其中 , 为大于 的常数)哪一个更适合作为年研发费用 和年销售量 的回归方程类型(只要给出判断即可,不必说明理由);
(Ⅱ)对数据作出如下处理:令 , ,得到相关统计量的值如下表:
根据(Ⅰ)的判断结果及表中数据,求 关于 的回归方程;
(Ⅲ)已知企业年利润 (单位:千万元)与 , 的关系为 (其中 ),根据(Ⅱ)的结果,要使得该企业下一年的年利润最大,预计下一年应投入多少研发费用?
【详解】
总的可选答案有:AB,AC,AD,BC,BD,CD,
ABC,ABD,ACD,BCD,ABCD,共11个,
而正确的答案只有1个,
即得5分的概率为 .
故选:C.
【点睛】
本题考查了古典概型的基本知识,关键是弄清一共有多少个备选答案,属于中档题.
3.B
解析:B
【解析】
【分析】
根据随机模拟试验的的性质以及几何概型概率公式列方程求解即可.
A. B. C. D.
9.执行如图所示的程序框图,若输出的结果为 ,则输入 的值可以为
A. B. C. D.
10.已知甲盒中仅有1个球且为红球,乙盒中有 个红球和 个篮球 ,从乙盒中随机抽取 个球放入甲盒中.
(a)放入 个球后,甲盒中含有红球的个数记为 ;
(b)放入 个球后,从甲盒中取1个球是红球的概率记为 .
第一循环: ;
第二循环: ;
第三循环: ,
要使的输出的结果为48,根据选项可知 ,故选C.
【点睛】
本题主要考查了循环结构的计算与输出问题,其中解答中正确理解循环结构的程序框图的计算功能,逐次准确计算是解答的关键,着重考查了运算与求解能力,属于基础题.
10.A
解析:A

高二上学期期中考试数学试卷含答案(共5套)

高二上学期期中考试数学试卷含答案(共5套)

高二上学期期中考试数学试题本卷分Ⅰ(选择题)、Ⅱ卷(非选择题)两部分,其中Ⅰ卷1至2页,第二卷2至4页,共150分,考试时间120分钟。

第Ⅰ卷(选择题,共60分)一、单选题:本题共12个小题,每小题5分1.“”是“”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件2.有下列四个命题:(1)“若,则,互为倒数”的逆命题;(2)“面积相等的三角形全等”的否命题;(3)“若,则有实数解”的逆否命题;(4)“若,则”的逆否命题.其中真命题为()A.(1)(2)B.(2)(3)C.(4)D.(1)(2)(3)3.若则为()A.等边三角形 B.等腰直角三角形C.有一个内角为30°的直角三角形 D.有一个内角为30°的等腰三角形4.已知.若“”是真命题,则实数a的取值范围是A.(1,+∞)B.(-∞,3)C.(1,3)D.5.的内角,,的对边分别为,,,若,,,则的面积为A.B.C.D.6.已知中,,则等于()A.B.或C.D.或7.等差数列的前项和为,若,则等于()A.58B.54C.56D.528.已知等比数列中,,,则()A.2B.C.D.49.已知,则z=22x+y的最小值是A.1 B.16 C.8 D.410.若关于的不等式的解集为,则的取值范围是()A.B.C.D.11.当a>0,关于代数式,下列说法正确的是()A.有最小值无最大值B.有最大值无最小值C.有最小值也有最大值D.无最小值也无最大值12.在△ABC中,AB=2,C=,则AC+BC的最大值为A.B.3C.4D.2第Ⅱ卷(非选择题,共90分)二、填空题:共4个小题,每小题5分,共20分13.命题的否定是______________.14.已知的三边长构成公差为2的等差数列,且最大角的正弦值为,则这个三角形的周长为________.15.已知数列{a n}的前n项和为S n,a1=1,当n≥2时,a n+2S n-1=n,则S2 017的值____ ___ 16.已知变量满足约束条件若目标函数的最小值为2,则的最小值为__________.三、解答题:共6题,共70分,解答应写出必要的文字说明、证明过程或演算步骤。

(必考题)数学高二上期中经典习题(含答案解析)

(必考题)数学高二上期中经典习题(含答案解析)

一、选择题1.(0分)[ID :13007]函数()log a x x f x x=(01a <<)的图象大致形状是( )A .B .C .D .2.(0分)[ID :12992]从区间[]0,2随机抽取4n 个数1232,,,...,n x x x x ,1232,,,...,n y y y y 构成2n 个数对()11,x y ,()22,x y ,…,()22,n n x y ,其中两数的平方和小于4的数对有m 个,则用随机模拟的方法得到的圆周率疋的近似值为( ) A .2m nB .2mnC .4m nD .16m n3.(0分)[ID :12990]如图1为某省2019年1~4月快递义务量统计图,图2是该省2019年1~4月快递业务收入统计图,下列对统计图理解错误的是( )A .2019年1~4月的业务量,3月最高,2月最低,差值接近2000万件B .2019年1~4月的业务量同比增长率超过50%,在3月最高C .从两图来看2019年1~4月中的同一个月快递业务量与收入的同比增长率并不完全一致D .从1~4月来看,该省在2019年快递业务收入同比增长率逐月增长4.(0分)[ID :12966]用秦九韶算法求多项式()54227532f x x x x x x =+++++在2x =的值时,令05v a =,105v v x =+,…,542v v x =+,则3v 的值为( ) A .83B .82C .166D .1675.(0分)[ID :12965]微信中有个“微信运动”,记录一天行走的步数,小王的“微信步数排行榜”里有120个人,今天,他发现步数最少的有0.85万步,最多的有1.79万步.于是,他做了个统计,作出下表,请问这天大家平均走了多少万步?( )A.1.19B.1.23C.1.26D.1.316.(0分)[ID:12960]我国明朝数学家程大位著的《算法统宗》里有一道闻名世界的题目:“一百馒头一百僧,大僧三个更无争.小僧三人分一个,大小和尚各几丁?”.如右图所示的程序框图反映了对此问题的一个求解算法,则输出n的值为()A.20B.25C.30D.357.(0分)[ID:12959]为计算11111123499100S=-+-++-…,设计了下面的程序框图,则在空白框中应填入A .1i i =+B .2i i =+C .3i i =+D .4i i =+8.(0分)[ID :12931]已知函数()cos3xf x π=,根据下列框图,输出S 的值为( )A .670B .16702C .671D .6729.(0分)[ID :13024]已知平面区域()20,4y x y y x ⎧⎫≥⎧⎪⎪Ω=⎨⎨≤-⎪⎪⎩⎩,直线2y mx m =+和曲线24y x =-M ,向区域Ω上随机投一点A ,点A 落在区域M 内的概率为()P M .若01m ≤≤,则()P M 的取值范围为( ) A .202,π-⎛⎤⎥π⎝⎦B .202,π+⎛⎤⎥π⎝⎦C .212,π+⎡⎤⎢⎥π⎣⎦D .212,π-⎡⎤⎢⎥π⎣⎦10.(0分)[ID :13022]在发生某公共卫生事件期间,有专业机构认为该事件在一段时间没有发生在规模群体感染的标志为“连续10天,每天新增疑似病例不超过7人”.根据过去10天甲、乙、丙、丁四地新增疑似病例数据,一定符合该标志的是 A .甲地:总体均值为3,中位数为4 B .乙地:总体均值为1,总体方差大于0 C .丙地:中位数为2,众数为3D .丁地:总体均值为2,总体方差为311.(0分)[ID :13018]采用系统抽样方法从960人中抽取32人做问卷调查,为此将他们随机编号为1,2,...,960,分组后某组抽到的号码为41.抽到的32人中,编号落入区间[]401,755 的人数为( ) A .10B .11C .12D .1312.(0分)[ID :13013]已知P 是△ABC 所在平面内﹣点,20PB PC PA ++=,现将一粒黄豆随机撒在△ABC 内,则黄豆落在△PBC 内的概率是( ) A .23B .12C .13D .1413.(0分)[ID :13009]一个盒子里装有大小相同的10个黑球、12个红球、4个白球,从中任取2个,其中白球的个数记为X,则下列概率等于11222422226C C C C +的是 ( ) A .P(0<X≤2) B .P(X≤1) C .P(X=1)D .P(X=2)14.(0分)[ID :13006]右边程序框图的算法思路源于我国古代数学名著《九章算术》中的“更相减损术”.执行该程序框图,若输入,a b 分别为14,18,则输出的a =( )A .0B .2C .4D .1415.(0分)[ID :12980]某单位有职工750人,其中青年职工350人,中年职工250人,老年职工150人,为了了解该单位职工的健康情况,用分层抽样的方法从中抽取样本 . 若样本中的青年职工为7人,则样本容量为 A .7B .15C .25D .35二、填空题16.(0分)[ID :13118]古代“五行”学说认为:“物质分金、木、水、火、土五种属性,金克木,木克土,土克水,水克火,火克金”,从五种不同属性的物质中随机抽取两种,则抽取的两种物质不相克的概率为_________17.(0分)[ID :13117]已知直线l 的极坐标方程为2sin()24πρθ-=A 的极坐标为7)4π,则点A到直线l的距离为____.18.(0分)[ID:13099]从某居民区随机抽取10个家庭,获得第i个家庭的月收入x i(单位:千元)与月储蓄y i(单位:千元)的数据资料,算得101iix=∑=80,101iiy=∑=20,110ii ix y=∑=184,1210iix=∑=720.则家庭的月储蓄y对月收入x的线性回归方程为__________.附:线性回归方程y=bx+a中,1221ni iiniix y nxybx nx==-=-∑∑,a=y-b x,其中x,y为样本平均值.线性回归方程也可写为ˆy=ˆb x+ˆa.19.(0分)[ID:13088]假设在5秒内的任何时刻,两条不相关的短信机会均等地进入同一部手机,若这两条短信进入手机的时间之差小于2秒,手机就会受到干扰,则手机受到干扰的概率为_________________20.(0分)[ID:13083]用秦九韶算法计算多项式f(x)=2x4-x3+3x2+7,在求x=2时对应的值时,v3的值为___.21.(0分)[ID:13075]已知样本数据12345,,,,a a a a a的方差222222123451(20)5s a a a a a=++++-,则样本数据1234521,21,21,21,21a a a a a+++++的平均数为__________.22.(0分)[ID:13065]已知一组数据分别是,10,2,5,2,4,2x,若这组数据的平均数、中位数、众数成等差数列,则数据x的所有可能值为__________.23.(0分)[ID:13055]从2个黄球,3个红球中随机取出两个球,则两球颜色不同的概率是______.24.(0分)[ID:13034]在—次对人体脂肪百分比和年龄关系的研究中,研究人员获得如下一组样本数据:由表中数据求得y关于x的线性回归方程为0.6ˆˆy x a=+,若年龄x的值为50,则y的估计值为.25.(0分)[ID:13104]在长为10cm的线段AB上任取一点P,并以线段AP为边作正方形,这个正方形的面积介于225cm与249cm之间的概率为__________.三、解答题26.(0分)[ID :13221]画出解关于x 的不等式0ax b +<的程序框图,并用语句描述. 27.(0分)[ID :13214]现从某医院中随机抽取了7位医护人员的关爱患者考核分数(患者考核:10分制),用相关的特征量y 表示;医护专业知识考核分数(试卷考试:100分制),用相关的特征量x 表示,数据如下表:x9888 96 91 90 92 96y 9.98.6 9.59.0 9.1 9.29.8(1)求y 关于x 的线性回归方程(计算结果精确到0.01);(2)利用(1)中的线性回归方程,分析医护专业考核分数的变化对关爱患者考核分数的影响,并估计当某医护人员的医护专业知识考核分数为95分时,他的关爱患者考核分数(精确到0.1).参考公式及数据:回归直线方程ˆˆˆybx a =+中斜率和截距的最小二乘法估计公式分别为 121(x x)(y y)ˆˆˆ,(x x)niii nii ba y bx ==--==--∑∑,其中72193,9.3,()()9.9i ii x y x x y y ===--=∑. 28.(0分)[ID :13175]端午节吃粽子是我国的传统习俗,设一盘中装有10个粽子,其中豆沙粽2个,肉粽3个,白粽5个,这三种粽子的外观完全相同,从中任意选取3个. (1)求三种粽子各取到1个的概率.(2)设X 表示取到的豆沙粽个数,求X 的分布列与数学期望.29.(0分)[ID :13170]某保险公司有一款保险产品的历史收益率(收益率=利润÷保费收入)的频率分布直方图如图所示:(1)试估计这款保险产品的收益率的平均值;(2)设每份保单的保费在20元的基础上每增加x 元,对应的销量为y (万份).从历史销售记录中抽样得到如下5组x 与y 的对应数据:x 元25 30 38 45 52 销量为y (万份)7.57.16.05.64.8由上表,知x 与y 有较强的线性相关关系,且据此计算出的回归方程为10.0ˆybx =-.(ⅰ)求参数b 的值;(ⅱ)若把回归方程10.0ˆybx =-当作y 与x 的线性关系,用(1)中求出的收益率的平均值作为此产品的收益率,试问每份保单的保费定为多少元时此产品可获得最大利润,并求出最大利润.注:保险产品的保费收入=每份保单的保费⨯销量.30.(0分)[ID :13143]某学校随机抽取部分学生调查其上学路上所需时间(单位:分钟),并将所得数据制成频率分布直方图(如图),若上学路上所需时间的范围为[]0,100,样本数据分组为[)0,20,[)20,40,[)40,60,[)60,80,[]80,100.(1)求直方图中a 的值;(2)如果上学路上所需时间不少于40分钟的学生可申请在学校住宿,若招收学生1200人,请估计所招学生中有多少人可以申请住宿; (3)求该校学生上学路上所需的平均时间.【参考答案】2016-2017年度第*次考试试卷 参考答案**科目模拟测试一、选择题 1.C 2.B 3.D 4.A 5.C 6.B 7.B 8.C10.D11.C12.B13.B14.B15.B二、填空题16.【解析】五种抽出两种的抽法有种相克的种数有5种故不相克的种数有5种故五种不同属性的物质中随机抽取两种则抽取的两种物质不相克的概率是故答案为17.【解析】直线的直角坐标方程为点的直角坐标为所以点到直线的距离为18.y=03x-04【解析】由题意知又由此得故所求回归方程为故答案为19.【解析】【分析】根据几何概型的概率公式求出对应的测度即可得到结论【详解】分别设两个互相独立的短信收到的时间为xy则所有事件集可表示为0≤x≤50≤y≤5由题目得如果手机受则到干扰的事件发生必有|x20.【解析】f(x)=2x4-x3+3x2+7=(((2x-1)x+3)x)x+7∴v0=2v1=2×2-1=3v2=3×2+3=9v3=9×2=18故答案为:1821.或【解析】设样本数据的平均数为则方差:结合可得:即样本数据的平均数为2或-2则样本数据的平均数为:或故答案为或点睛:平均数与方差都是重要的数字特征是对总体的一种简明的描述它们所反映的情况有着重要的实22.-11或3或17【解析】分析:设出未知数根据这组数的平均数中位数众数依次成等差数列列出关系式因为所写出的结果对于x的值不同所得的结果不同所以要讨论x的三种不同情况详解:由题得这组数据的平均数为众数是23.【解析】两球颜色不同的概率是24.【解析】【分析】【详解】试题分析:由题意可得将代入解得所以线性回归方程为再将代入得故答案为考点:回归分析及线性回归方程25.【解析】若以线段为边的正方形的面积介于与之间则线段的长介于与之间满足条件的点对应的线段长为而线段的总长度为故正方形的面积介于与之间的概率故答案为:三、解答题27.28.29.30.2016-2017年度第*次考试试卷参考解析【参考解析】**科目模拟测试一、选择题1.C解析:C【解析】【分析】确定函数是奇函数,图象关于原点对称,x>0时,f(x)=log a x(0<a<1)是单调减函数,即可得出结论.【详解】由题意,f(﹣x)=﹣f(x),所以函数是奇函数,图象关于原点对称,排除B、D;x>0时,f(x)=log a x(0<a<1)是单调减函数,排除A.故选C.【点睛】本题考查函数的图象,考查函数的奇偶性、单调性,正确分析函数的性质是关键.2.B解析:B【解析】【分析】根据随机模拟试验的的性质以及几何概型概率公式列方程求解即可.【详解】如下图:由题意,从区间[]0,2随机抽取的2n 个数对()11,x y ,()22,x y ,…,()22,n n x y ,落在面积为4的正方形内,两数的平方和小于4对应的区域为半径为2的圆内,满足条件的区域面积为2124ππ⋅=,所以由几何概型可知42π=m n ,所以2π=m n. 故选:B【点睛】本题主要考查几何概型,属于中档题.3.D解析:D 【解析】 【分析】由题意结合所给的统计图确定选项中的说法是否正确即可. 【详解】对于选项A : 2018年1~4月的业务量,3月最高,2月最低, 差值为439724111986-=,接近2000万件,所以A 是正确的;对于选项B : 2018年1~4月的业务量同比增长率分别为55%,53%,62%,58%,均超过50%,在3月最高,所以B 是正确的;对于选项C :2月份业务量同比增长率为53%,而收入的同比增长率为30%,所以C 是正确的;对于选项D ,1,2,3,4月收入的同比增长率分别为55%,30%,60%,42%,并不是逐月增长,D 错误. 本题选择D 选项. 【点睛】本题主要考查统计图及其应用,新知识的应用等知识,意在考查学生的转化能力和计算求解能力.4.A解析:A 【解析】 【分析】利用秦九韶算法,求解即可. 【详解】利用秦九韶算法,把多项式改写为如下形式:()((((75)3)1)1)2f x x x x x =+++++按照从里到外的顺序,依次计算一次多项式当2x =时的值:07v =172519v =⨯+=2192341v =⨯+=3412183v =⨯+=故选:A【点睛】本题主要考查了秦九韶算法的应用,属于中档题.5.C解析:C【解析】【分析】根据频率分布直方图中平均数的计算方法求解即可.【详解】由题,区间[)[)[)[)0.8,1.0,1.0,1.2,1.2,1.4,1.6,1.8所占频率分别为:0.20.50.1,0.2 1.250.25,0.2 2.250.45,0.20.250.05,⨯=⨯=⨯=⨯=故区间[)1.4,1.6所占频率为10.10.250.450.050.15----=. 故0.90.1 1.10.25 1.30.45 1.50.15 1.70.05 1.26x =⨯+⨯+⨯+⨯+⨯=.故选:C【点睛】本题主要考查了补全频率分布直方图的方法以及根据频率分布直方图计算平均数的问题.属于中档题.6.B解析:B【解析】【分析】模拟执行程序框图,只要按照程序框图规定的运算方法逐次计算,直到达到输出条件即可得到输出的n 的值.【详解】输出20,80,100n m s ==≠;21,79,100n m s ==≠;22,78,100n m s ==≠;23,77,100n m s ==≠;24,76,100n m s ==≠;25,75,100n m s ===,退出循环,输出25n =,故选B.【点睛】本题主要考查程序框图的循环结构流程图,属于中档题. 解决程序框图问题时一定注意以下几点:(1) 不要混淆处理框和输入框;(2) 注意区分程序框图是条件分支结构还是循环结构;(3) 注意区分当型循环结构和直到型循环结构;(4) 处理循环结构的问题时一定要正确控制循环次数;(5) 要注意各个框的顺序,(6)在给出程序框图求解输出结果的试题中只要按照程序框图规定的运算方法逐次计算,直到达到输出条件即可.7.B解析:B【解析】分析:根据程序框图可知先对奇数项累加,偶数项累加,最后再相减.因此累加量为隔项. 详解:由11111123499100S =-+-+⋯+-得程序框图先对奇数项累加,偶数项累加,最后再相减.因此在空白框中应填入2i i =+,选B. 点睛:算法与流程图的考查,侧重于对流程图循环结构的考查.先明晰算法及流程图的相关概念,包括选择结构、循环结构、伪代码,其次要重视循环起点条件、循环次数、循环终止条件,更要通过循环规律,明确流程图研究的数学问题,是求和还是求项.8.C解析:C【解析】【分析】根据框图的流程,依次计算前六次的运算结果,判断终止运行的n 值,再根据余弦函数的周期性计算即可.【详解】由程序框图知:第一次运行()11cos32f π==,10.1122S n =+=+=; 第二次运行()212cos 32f π==-,12S =,213n =+=, 第三次运行()3cos 1f π==-,12S =,314n =+=, 第四次运行()414cos32f π==-,12S =,415n =+=, 第五次运行()515cos 32f π==,1S =,6n =, 第六次运行()6cos21f π==,2S =,7n =,直到2016n =时,程序运行终止, 函数cos 3n y π=是以6为周期的周期函数,201563355=⨯+,又()()2016cos336cos 21381f ππ==⨯=,∴若程序运行2016次时,输出2336672S =⨯=,∴程序运行2015次时,输出33621671S =⨯-=.故选C .【点睛】本题考查了循环结构的程序框图,根据框图的流程判断算法的功能是解答本题的关键.9.D解析:D【解析】【分析】判断平面区域,利用特殊值法排除选项,然后利用特殊法,即可求解相应概率的范围,得到答案.【详解】由题意知,平面区域()20,4y x y y x ⎧⎫≥⎧⎪⎪⎪Ω=⎨⎨⎬≤-⎪⎪⎪⎩⎩⎭,表示的图形是半圆是半圆以及内部点的集合,如图所示,又由直线2y mx m =+过半圆24y x =-上一点(2,0)-,当0m =时直线与x 轴重合,此时()1P M =,故可排除,A B ,若1m =,如图所示,可求得2()2P M ππ-=, 所以()P M 的取值范围为212,π-⎡⎤⎢⎥π⎣⎦.【点睛】本题主要考查了集合概型的应用,其中解答中判断平面区域,利用特殊值法排除选项,然后利用特殊法,求解相应概率的范围是解答的关键,着重考查了分析问题和解答问题的能力,属于中档试题.10.D解析:D【解析】试题分析:由于甲地总体均值为,中位数为,即中间两个数(第天)人数的平均数为,因此后面的人数可以大于,故甲地不符合.乙地中总体均值为,因此这天的感染人数总数为,又由于方差大于,故这天中不可能每天都是,可以有一天大于,故乙地不符合,丙地中中位数为,众数为,出现的最多,并且可以出现,故丙地不符合,故丁地符合.考点:众数、中位数、平均数、方差11.C解析:C【解析】【分析】由题意可得抽到的号码构成以11为首项、以30为公差的等差数列,求得此等差数列的通项公式为a n=30n﹣19,由401≤30n﹣21≤755,求得正整数n的个数,即可得出结论.【详解】∵960÷32=30,∴每组30人,∴由题意可得抽到的号码构成以30为公差的等差数列,又某组抽到的号码为41,可知第一组抽到的号码为11,∴由题意可得抽到的号码构成以11为首项、以30为公差的等差数列,∴等差数列的通项公式为a n=11+(n﹣1)30=30n﹣19,由401≤30n﹣19≤755,n为正整数可得14≤n≤25,∴做问卷C的人数为25﹣14+1=12,故选C.【点睛】本题主要考查等差数列的通项公式,系统抽样的定义和方法,根据系统抽样的定义转化为等差数列是解决本题的关键,比较基础.12.B解析:B【解析】【分析】推导出点P到BC的距离等于A到BC的距离的12.从而S△PBC=12S△ABC.由此能求出将一粒黄豆随机撒在△ABC内,黄豆落在△PBC内的概率.【详解】以PB、PC为邻边作平行四边形PBDC,则PB PC+=PD,∵20PB PC PA++=,∴2PB PC PA+=-,∴2PD PA=-,∴P是△ABC边BC上的中线AO的中点,∴点P到BC的距离等于A到BC的距离的12.∴S△PBC=12S△ABC.∴将一粒黄豆随机撒在△ABC内,黄豆落在△PBC内的概率为:P=PBC ABC S S =12. 故选B .【点睛】本题考查概率的求法,考查几何概型等基础知识,考运算求解能力,考查化归与转化思想、函数与方程思想,考查创新意识、应用意识,是中档题.13.B解析:B【解析】【分析】由题意知本题是一个古典概型,由古典概型公式分别求得P (X=1)和P (X=0),即可判断等式表示的意义. 【详解】由题意可知112224222226261,0C C C P X P X C C ⋅====:()() , ∴11222422225C C C C +表示选1个白球或者一个白球都没有取得即P (X≤1), 故选B .【点睛】本题是一个古典概型问题,这种问题在高考时可以作为文科的一道解答题,古典概型要求能够列举出所有事件和发生事件的个数,本题可以用组合数表示出所有事件数.14.B解析:B【解析】【分析】【详解】由a=14,b=18,a <b ,则b 变为18﹣14=4,由a >b ,则a 变为14﹣4=10,由a >b ,则a 变为10﹣4=6,由a >b ,则a 变为6﹣4=2,由a <b ,则b 变为4﹣2=2,由a=b=2,则输出的a=2.故选B .15.B解析:B【解析】试题分析:抽样比是,所以样本容量是.考点:分层抽样二、填空题 16.【解析】五种抽出两种的抽法有种相克的种数有5种故不相克的种数有5种故五种不同属性的物质中随机抽取两种则抽取的两种物质不相克的概率是故答案为 解析:12【解析】五种抽出两种的抽法有2510C =种,相克的种数有5种,故不相克的种数有5种,故五种不同属性的物质中随机抽取两种,则抽取的两种物质不相克的概率是12,故答案为12. 17.【解析】直线的直角坐标方程为点的直角坐标为所以点到直线的距离为 解析:522【解析】直线l 的直角坐标方程为1y x -= ,点A 的直角坐标为(2,2)- ,所以点A 到直线l 的距2215222++=. 18.y =03x -04【解析】由题意知又由此得故所求回归方程为故答案为 解析:y =0.3x -0.4【解析】 由题意知1118012010,8,21010n n i i i i n x x y y n n =========∑∑, 又222172010880n i i xnx =-=-⨯=∑,1184108224ni i i x y nxy =-=-⨯⨯=∑, 由此得240.3ˆˆˆ,20.380.480b a y bx ===-=-⨯=-,故所求回归方程为ˆy 0.30.4x =-,故答案为ˆy0.30.4x =-. 19.【解析】【分析】根据几何概型的概率公式求出对应的测度即可得到结论【详解】分别设两个互相独立的短信收到的时间为xy 则所有事件集可表示为0≤x≤50≤y≤5由题目得如果手机受则到干扰的事件发生必有|x 解析:1625【解析】【分析】根据几何概型的概率公式求出对应的测度,即可得到结论.【详解】分别设两个互相独立的短信收到的时间为x ,y .则所有事件集可表示为0≤x≤5,0≤y≤5.由题目得,如果手机受则到干扰的事件发生,必有|x-y|≤2.三个不等式联立,则该事件即为x-y=2和y-x=2在0≤x≤5,0≤y≤5的正方形中围起来的图形即图中阴影区域而所有事件的集合即为正方型面积52=25, 阴影部分的面积2125252162-⨯-=() , 所以阴影区域面积和正方形面积比值即为手机受到干扰的概率为1625. 【点睛】本题主要考查几何概型的概率的计算,分别求出对应区域的面积是解决本题的关键,比较基础. 20.【解析】f(x)=2x4-x3+3x2+7=(((2x-1)x+3)x)x+7∴v0=2v1=2×2-1=3v2=3×2+3=9v3=9×2=18故答案为:18解析:【解析】f (x )=2x 4-x 3+3x 2+7=(((2x -1)x +3)x )x +7,∴v 0=2,v 1=2×2-1=3,v 2=3×2+3=9,v 3=9×2=18.故答案为:18.21.或【解析】设样本数据的平均数为则方差:结合可得:即样本数据的平均数为2或-2则样本数据的平均数为:或故答案为或点睛:平均数与方差都是重要的数字特征是对总体的一种简明的描述它们所反映的情况有着重要的实 解析:5或3-【解析】设样本数据的平均数为a ,则方差:()()522152215522115221522115125125512555155i i i i i i i i i i i i i s a a a aa a a a a a a a a a a a =======-=-+⎛⎫=-+ ⎪⎝⎭⎛⎫=-⨯+ ⎪⎝⎭⎛⎫=- ⎪⎝⎭∑∑∑∑∑∑ 结合()222222123451205s a a a a a =++++-可得:2520,2a a =∴=±, 即样本数据12345,,,,a a a a a 的平均数为2或-2,则样本数据1234521,21,21,21,21a a a a a +++++的平均数为:2215⨯+=或()2213⨯-+=-.故答案为5或3-.点睛:平均数与方差都是重要的数字特征,是对总体的一种简明的描述,它们所反映的情况有着重要的实际意义,平均数、中位数、众数描述其集中趋势,方差和标准差描述其波动大小.要注意其区别与联系.22.-11或3或17【解析】分析:设出未知数根据这组数的平均数中位数众数依次成等差数列列出关系式因为所写出的结果对于x 的值不同所得的结果不同所以要讨论x 的三种不同情况详解:由题得这组数据的平均数为众数是解析:-11或3或17【解析】分析:设出未知数,根据这组数的平均数、中位数、众数依次成等差数列,列出关系式,因为所写出的结果对于x 的值不同所得的结果不同,所以要讨论x 的三种不同情况. 详解:由题得这组数据的平均数为10252422577x x +++++++=,众数是2, 若x ≤2,则中位数为2,此时x=﹣11, 若2<x <4,则中位数为x ,此时2x=2527x ++,x=3, 若x ≥4,则中位数为4,2×4=2527x ++,x=17, 所有可能值为﹣11,3,17.故填 -11或3或17.点睛:本题考查众数,中位数,平均数,考查等差数列的性质,考查未知数的分类讨论,是一个综合题目,这是一个易错题目.在求数列的中位数时,必须分类讨论,不能不分类讨论.23.【解析】两球颜色不同的概率是 解析:35【解析】 两球颜色不同的概率是252363105C ⨯== 24.【解析】【分析】【详解】试题分析:由题意可得将代入解得所以线性回归方程为再将代入得故答案为考点:回归分析及线性回归方程解析:32【解析】【分析】【详解】试题分析: 由题意可得30,20x y ==将()30,20代入0.6ˆˆyx a =+解得ˆ2a =,所以线性回归方程为0.62ˆyx =+,再将50x =代入0.62ˆy x =+得ˆ32y =,故答案为32. 考点: 回归分析及线性回归方程.25.【解析】若以线段为边的正方形的面积介于与之间则线段的长介于与之间满足条件的点对应的线段长为而线段的总长度为故正方形的面积介于与之间的概率故答案为: 解析:15【解析】若以线段AP 为边的正方形的面积介于225cm 与249cm 之间,则线段AP 的长介于5cm 与7cm 之间,满足条件的P 点对应的线段长为2cm ,而线段AB 的总长度为10cm ,故正方形的面积介于225cm 与249cm 之间的概率21105P ==. 故答案为:15.三、解答题26.见解析【解析】【分析】【详解】解:流程图如下:程序如下:INPUT a ,bIF a =0 THENIF b <0 THENPRINT “任意实数”ELSEPRINT “无解”ELSEIF a >0 THENPRINT “x <“;﹣b /aELSEPRINT “x >“;﹣b /aENDIFENDIFENDIFEND点睛:解决算法问题的关键是读懂程序框图,明晰顺序结构、条件结构、循环结构的真正含义,本题巧妙而自然地将算法、不等式、交汇在一起,用条件结构来进行考查.这类问题可能出现的错误:①读不懂程序框图;②条件出错;③计算出错.27.(1) ˆ0.12 1.93yx =-. (2) 随着医护专业知识的提高,个人的关爱患者的心态会变得更温和,耐心。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

【必考题】高二数学上期中试题含答案一、选择题1.如图所示,墙上挂有边长为a 的正方形木板,它的四个角的空白部分都是以正方形的顶点为圆心,半径为2a的圆弧,某人向此板投镖,假设每次都能击中木板,且击中木板上每个点的可能性都一样,则它击中阴影部分的概率是 ( )A .18π-B .4π C .14π-D .与a 的值有关联2.一组数据如下表所示:x1 2 3 4y e3e 4e 6e已知变量y 关于x 的回归方程为+0.5ˆbx ye =,若5x =,则预测y 的值可能为( ) A .5eB .112eC .132eD .7e3.设样本数据1210,,,x x x L 的均值和方差分别为1和4,若(i i y x a a =+为非零常数,1,2,,10)i =L ,则1210,,,y y y L 的均值和方差分别为( )A .1,4a +B .1,4a a ++C .1,4D .1,4a +4.从区间[]0,2随机抽取4n 个数1232,,,...,n x x x x ,1232,,,...,n y y y y 构成2n 个数对()11,x y ,()22,x y ,…,()22,n n x y ,其中两数的平方和小于4的数对有m 个,则用随机模拟的方法得到的圆周率疋的近似值为( ) A .2m nB .2mnC .4m nD .16m n5.AQI 即空气质量指数,AQI 越小,表明空气质量越好,当AQI 不大于100时称空气质量为“优良”.如图是某市3月1日到12日AQI 的统计数据.则下列叙述正确的是( )A.这12天的AQI的中位数是90B.12天中超过7天空气质量为“优良”C.从3月4日到9日,空气质量越来越好D.这12天的AQI的平均值为1006.以下茎叶图记录了甲、乙两组各五名学生在一次英语听力测试中的成绩(单位:分).已知甲组数据的中位数为15,乙组数据的平均数为16.8,则x,y的值分别为()A.2,5 B.5,5 C.5,8 D.8,87.微信中有个“微信运动”,记录一天行走的步数,小王的“微信步数排行榜”里有120个人,今天,他发现步数最少的有0.85万步,最多的有1.79万步.于是,他做了个统计,作出下表,请问这天大家平均走了多少万步?()A.1.19B.1.23C.1.26D.1.318.执行如图的程序框图,则输出x的值是 ( )A.2018B.2019C.12D.29.为计算11111123499100S=-+-++-…,设计了下面的程序框图,则在空白框中应填入A.1i i=+B.2i i=+C.3i i=+D.4i i=+10.我国古代名著《庄子g天下篇》中有一句名言“一尺之棰,日取其半,万世不竭”,其意思为:一尺的木棍,每天截取一半,永远都截不完.现将该木棍依此规律截取,如图所示的程序框图的功能就是计算截取7天后所剩木棍的长度(单位:尺),则①②③处可分别填入的是( )A .17?,,+1i s s i i i≤=-= B .1128?,,2i s s i i i≤=-= C .17?,,+12i s s i i i ≤=-= D .1128?,,22i s s i i i≤=-= 11.从区间[]0,1随机抽取2n 个数1x ,2x ,…,n x ,1y ,2y ,…,n y ,构成n 个数对()11,x y ,()22,x y ,…,(),n n x y ,其中两数的平方和小于1的数对共有m 个,则用随机模拟的方法得到的圆周率π的近似值为 A .4n mB .2n mC .4mnD .2mn12.某产品的广告费用x 与销售额y 的统计数据如下表: 广告费用(万元)4235销售额(万元)49263954根据上表可得回归方程ˆˆˆybx a =+中的ˆb 为9.4,据此模型预报广告费用为6万元时销售额为 A .63.6万元B .65.5万元C .67.7万元D .72.0万元二、填空题13.在5张卡片上分别写有数字1,2,3,4,5,然后将它们混合,再任意排列成一行,则得到的数能被2或5整除的概率是___________.14.从标有1,2,3,4,5的五张卡中,依次抽出2张,则在第一次抽到奇数的情况下,第二次抽到偶数的概率为________;15.在区间[]3,3-上随机取一个数x ,使得11x +≥成立的概率为______.16.甲乙两人一起去游“西安世园会”,他们约定,各自独立地从1到6号景点中任选4个进行游览,每个景点参观1小时,则最后一小时他们同在一个景点的概率是________.17.某单位为了了解用电量y (度)与气温x (℃之间的关系,随机统计了某4天的用电量与当天气温(如表),并求得线性回归方程ˆ360yx =-为:不小心丢失表中数据c ,d ,那么由现有数据知3c d -____________.18.高二某班有学生56人,现将所有同学随机编号,用系统抽样的方法,抽取一个容量为4的样本,已知5号、33号、47号学生在样本中,则样本中还有一个学生的编号为__________.19.已知函数log 2,3()(5)3,3a x x f x a x x ->⎧=⎨--≤⎩()满足对任意的实数12x x ≠,都有()()12120f x f x x x ->-成立,则实数a 的取值范围为______________;20.已知变量,x y 之间的一组数据如下表:则y 与x 的线性回归方程y b x a ∧∧∧=+必过点_______________三、解答题21.某市环保部门对该市市民进行了一次垃圾分类知识的网络问卷调查,每一位市民仅有一次参加机会,通过随机抽样,得到参加问卷调查的1000人的得分(满分:100分)数据,统计结果如下表所示.(1)已知此次问卷调查的得分Z 服从正态分布(),210N μ,μ近似为这1000人得分的平均值(同一组中的数据用该组区间的中点值为代表),请利用正态分布的知识求()3679.5P Z <≤;(2)在(1)的条件下,环保部门为此次参加问卷调查的市民制定如下奖励方案. (ⅰ)得分不低于μ的可以获赠2次随机话费,得分低于μ的可以获赠1次随机话费; (ⅱ)每次赠送的随机话费和相应的概率如下表.现市民甲要参加此次问卷调查,记X 为该市民参加问卷调查获赠的话费,求X 的分布列及数学期望.14.5≈,若()2,X Nμσ:,则()0.6827P X μσμσ-<≤+=,()220.9545P X μσμσ-<≤+=,()330.9973P X μσμσ-<≤+=.22.某车间为了规定工时额定,需要确定加工零件所花费的时间,为此作了6次试验,得到数据如下:(1)试对上述变量x 与y 的关系进行相关性检验,如果x 与y 具有线性相关关系,求出y 对x 的回归直线方程;(2)根据(1)的结论,你认为每小时加工零件的数量额定为多少(四舍五入为整数)比较合理?附:相关性检验的临界值表()()nniii ix x y y x y nx yr ---==∑∑()()()1122211n niii ii i nni i i i x x y y x y nx ybx xx nx====---==--∑∑∑∑$,$$yabx =+$42.0≈27.5≈23.自从高中生通过高校自主招生可获得加分进入高校的政策出台后,自主招生越来越受到高中生家长的重视.某机构为了调查A 城市和B 城市的高中家长对于自主招生的关注程度,在这两个城市中抽取了100名高中生家长进行了调查,得到下表:(1)完成上面的列联表;(2)根据上面列联表的数据,是否有95%的把握认为家长对自主招生关注与否与所处城市有关;(3)为了进一步研究家长对自主招生的直法,该机构从关注的学生家长里面,按照分层抽样方法抽取了5人,并再从这5人里面抽取2人进行采访,求所抽取的2人恰好,A B 两城市各一人的概率.附:()()()()()22n ad bc K a b c d a c b d -=++++(其中n a b c d =+++).0k2.072 2.7063.841 5.024 6.63524.已知椭圆的焦距为2,离心率12e =. (Ⅰ)求椭圆的方程;(Ⅱ)设点P 是椭圆上一点,且1260F PF ∠=o,求△F 1PF 2的面积.25.某校100名学生期中考试语文成绩的频率分布直方图如图所示,其中成绩分组区间是:[50,60),[60,70),[70,80),[80,90),[90,100].(1)求图中a 的值;(2)根据频率分布直方图,估计这100名学生语文成绩的平均分;(3)若这100名学生语文成绩某些分数段的人数(x )与数学成绩相应分数段的人数(y )之比如下表所示,求数学成绩在[50,90)之外的人数. 分数段 [50,60) [60,70) [70,80) [80,90) x ∶y1∶12∶13∶44∶526.某保险公司有一款保险产品的历史收益率(收益率=利润÷保费收入)的频率分布直方图如图所示:(1)试估计这款保险产品的收益率的平均值;(2)设每份保单的保费在20元的基础上每增加x 元,对应的销量为y (万份).从历史销售记录中抽样得到如下5组x 与y 的对应数据:x 元25 30 38 45 52 销量为y (万份)7.57.16.05.64.8由上表,知x 与y 有较强的线性相关关系,且据此计算出的回归方程为10.0ˆybx =-.(ⅰ)求参数b 的值;(ⅱ)若把回归方程10.0ˆybx =-当作y 与x 的线性关系,用(1)中求出的收益率的平均值作为此产品的收益率,试问每份保单的保费定为多少元时此产品可获得最大利润,并求出最大利润.注:保险产品的保费收入=每份保单的保费⨯销量.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【解析】试题分析:本题考查几何概型问题,击中阴影部分的概率为222()214aa a ππ-=-.考点:几何概型,圆的面积公式. 2.C解析:C 【解析】 【分析】令ln z y $=,求得,x z 之间的数据对照表,结合样本中心点的坐标满足回归直线方程,即可求得b ;再令5x =,即可求得预测值y . 【详解】将式子两边取对数,得到$ln 0.5y bx =+,令ln z y $=,得到0.5z bx =+, 根据已知表格数据,得到,x z 的取值对照表如下:x1 2 34 z134612342.54x +++==,1346 3.54z +++==, 利用回归直线过样本中心点,即可得3.5 2.50.5b =+, 求得 1.2b =,则 1.20.5z x =+, 进而得到$ 1.2+0.5x y e =,将5x =代入, 解得136.52y e e ==.故选:C .【点睛】本题考查利用样本中心点坐标满足回归直线方程求参数值,以及由回归方程进行预测值得求解,属中档题.3.A解析:A 【解析】试题分析:因为样本数据1210,,,x x x L 的平均数是1,所以1210,,...y y y 的平均数是121012101210 (1101010)y y y x a x a x a x x x a a ++++++++++++==+=+;根据i i y x a =+(a 为非零常数,1,2,,10i =L ),以及数据1210,,,x x x L 的方差为4可知数据1210,,,y y y L 的方差为2144⨯=,综上故选A. 考点:样本数据的方差和平均数.4.B解析:B 【解析】 【分析】根据随机模拟试验的的性质以及几何概型概率公式列方程求解即可. 【详解】 如下图:由题意,从区间[]0,2随机抽取的2n 个数对()11,x y ,()22,x y ,…,()22,n n x y ,落在面积为4的正方形内,两数的平方和小于4对应的区域为半径为2的圆内,满足条件的区域面积为2124ππ⋅=,所以由几何概型可知42π=m n ,所以2π=m n. 故选:B【点睛】本题主要考查几何概型,属于中档题.5.C解析:C 【解析】这12天的AQI 指数值的中位数是959293.52+= ,故A 不正确;这12天中,空气质量为“优良”的有95,85,77,67,72,92共6天,故B 不正确;;从4日到9日,空气质量越来越好,,故C 正确;这12天的AQI 指数值的平均值为110,故D 不正确. 故选 C .6.C解析:C 【解析】试题分析:由题意得5x =,116.8(915101824)85y y =+++++⇒=,选C. 考点:茎叶图7.C解析:C 【解析】 【分析】根据频率分布直方图中平均数的计算方法求解即可. 【详解】由题,区间[)[)[)[)0.8,1.0,1.0,1.2,1.2,1.4,1.6,1.8所占频率分别为:0.20.50.1,0.2 1.250.25,0.2 2.250.45,0.20.250.05,⨯=⨯=⨯=⨯=故区间[)1.4,1.6所占频率为10.10.250.450.050.15----=. 故0.90.1 1.10.25 1.30.45 1.50.15 1.70.05 1.26x =⨯+⨯+⨯+⨯+⨯=. 故选:C 【点睛】本题主要考查了补全频率分布直方图的方法以及根据频率分布直方图计算平均数的问题.属于中档题.8.D解析:D 【解析】 【分析】模拟执行程序框图,依次写出每次循环得到的x ,y 的值,当2019y = 时,不满足条件退出循环,输出x 的值即可得解. 【详解】解:模拟执行程序框图,可得2,0x y ==.满足条件2019y <,执行循环体,1,1x y =-=;满足条件2019y <,执行循环体,1,22x y == ; 满足条件2019y <,执行循环体,2,3x y ==;满足条件2019y <,执行循环体,1,4x y =-= ; …观察规律可知,x 的取值周期为3,由于20196733⨯=,可得: 满足条件2019y <,执行循环体,当2,2019x y == ,不满足条件2019y <,退出循环,输出x 的值为2. 故选D . 【点睛】本题主要考查了循环结构的程序框图,依次写出每次循环得到的x ,y 的值,根据循环的周期,得到跳出循环时x 的值是解题的关键.9.B解析:B 【解析】分析:根据程序框图可知先对奇数项累加,偶数项累加,最后再相减.因此累加量为隔项.详解:由11111123499100S =-+-+⋯+-得程序框图先对奇数项累加,偶数项累加,最后再相减.因此在空白框中应填入2i i =+,选B.点睛:算法与流程图的考查,侧重于对流程图循环结构的考查.先明晰算法及流程图的相关概念,包括选择结构、循环结构、伪代码,其次要重视循环起点条件、循环次数、循环终止条件,更要通过循环规律,明确流程图研究的数学问题,是求和还是求项.10.B解析:B 【解析】 【分析】分析程序中各变量的作用,再根据流程图所示的顺序,可得该程序的作用是累加并输出S 的值,由此可得到结论. 【详解】由题意,执行程序框图,可得: 第1次循环:11,42S i =-=; 第2次循环:111,824S i =--=;第3次循环:1111,16248S i =--==; 依次类推,第7次循环:11111,256241288S i =----==L , 此时不满足条件,推出循环,其中判断框①应填入的条件为:128?i ≤, 执行框②应填入:1S S i=-,③应填入:2i i =. 故选:B . 【点睛】本题主要考查了循环结构的程序框图的应用,其中解答中正确理解程序框图的含义是解答的关键,着重考查了分析问题和解答问题的能力,属于基础题.11.C解析:C 【解析】此题为几何概型.数对(,)i i x y 落在边长为1的正方形内,其中两数的平方和小于1的数落在四分之一圆内,概型为41m P n π==,所以4mnπ=.故选C . 12.B解析:B 【解析】 【分析】 【详解】试题分析:4235492639543.5,4244x y ++++++====Q , ∵数据的样本中心点在线性回归直线上,回归方程ˆˆˆybx a =+中的ˆb 为9.4, ∴42=9.4×3.5+a , ∴ˆa=9.1, ∴线性回归方程是y=9.4x+9.1,∴广告费用为6万元时销售额为9.4×6+9.1=65.5 考点:线性回归方程二、填空题13.【解析】【分析】首先计算出五位数的总的个数然后根据可被或整除的五位数的末尾是偶数或计算出满足的五位数的个数根据古典概型的概率计算公式求出概率即可【详解】因为五位数的总个数为:能被或整除的五位数的个数解析:35【解析】 【分析】首先计算出五位数的总的个数,然后根据可被2或5整除的五位数的末尾是偶数或5计算出满足的五位数的个数,根据古典概型的概率计算公式求出概率即可. 【详解】因为五位数的总个数为:55A =120,能被2或5整除的五位数的个数为:443A =72⨯, 所以7231205P ==. 故答案为:35. 【点睛】本题考查排列组合在数字个数问题方面的应用,难度一般.涉及到不同数字组成的几位数个数问题时,若要求数字不重复,可以通过排列数去计算相应几位数的个数.14.【解析】【分析】设事件A 表示第一张抽到奇数事件B 表示第二张抽取偶数则P (A )P (AB )利用条件概率计算公式能求出在第一次抽到奇数的情况下第二次抽到偶数的概率【详解】解:从标有12345的五张卡片中依 解析:12【解析】 【分析】设事件A 表示“第一张抽到奇数”,事件B 表示“第二张抽取偶数”,则P (A )35=,P (AB )3235410=⨯=,利用条件概率计算公式能求出在第一次抽到奇数的情况下,第二次抽到偶数的概率. 【详解】解:从标有1、2、3、4、5的五张卡片中,依次抽出2张,设事件A 表示“第一张抽到奇数”,事件B 表示“第二张抽取偶数”, 则P (A )35=,P (AB )3235410=⨯=, 则在第一次抽到奇数的情况下,第二次抽到偶数的概率为:P (A|B )()()3P AB 1103P A 25===. 【点睛】本题考查概率的求法,考查条件概率等基础知识,考查运算求解能力.15.【解析】【分析】求出不等式的解集计算长度运用几何概型即可求出概率【详解】或则在区间上随机取一个数x 使得成立的概率为故答案为【点睛】本题考查了几何概型中的长度型概率只需将题目中的含有绝对值不等式进行求 解析:23【解析】 【分析】求出不等式的解集,计算长度,运用几何概型即可求出概率 【详解】11x +≥Q0x ∴≥或2x ≤-则在区间[]33-,上随机取一个数x ,使得11x +≥成立的概率为4263= 故答案为23【点睛】本题考查了几何概型中的长度型概率,只需将题目中的含有绝对值不等式进行求解,然后计算出长度,即可得到结果16.【解析】【分析】所有的游览情况共有种则最后一小时他们同在一个景点的游览方法共有种由此求得最后一小时他们同在一个景点的概率【详解】所有的游览情况共有 种则最后一小时他们同在一个景点的游览方法共有 种解析:16 【解析】 【分析】所有的游览情况共有4466A A ⋅ 种,则最后一小时他们同在一个景点的游览方法共有 33556A A ⋅⋅ 种,由此求得最后一小时他们同在一个景点的概率.【详解】所有的游览情况共有4466A A ⋅ 种,则最后一小时他们同在一个景点的游览方法共有 33556A A ⋅⋅ 种,故则最后一小时他们同在一个景点的概率为 33554466616A A A A ⋅⋅=⋅, 故答案为 16. 【点睛】本题考查古典概型及其概率计算公式的应用,属于基础题.17.【解析】分析:由题意首先确定样本中心点然后结合回归方程过样本中心点整理计算即可求得最终结果详解:由题意可得:回归方程过样本中心点则:即:整理可得:故答案为:270点睛:(1)正确理解计算的公式和准确解析:【解析】分析:由题意首先确定样本中心点,然后结合回归方程过样本中心点整理计算即可求得最终结果.详解:由题意可得:91412244c c x ++-+==,1848309644d dy ++++==, 回归方程过样本中心点,则:962236044d c ++=⨯-, 即:()96322240d c +=+-, 整理可得:3270c d -=. 故答案为:270.点睛:(1)正确理解计算$,ba $的公式和准确的计算是求线性回归方程的关键. (2)回归直线方程y bx a =+$$$必过样本点中心(),x y .(3)在分析两个变量的相关关系时,可根据样本数据作出散点图来确定两个变量之间是否具有相关关系,若具有线性相关关系,则可通过线性回归方程来估计和预测.18.【解析】∵高二某班有学生56人用系统抽样的方法抽取一个容量为4的样本∴样本组距为56÷4=14则5+14=19即样本中还有一个学生的编号为19 解析:19【解析】∵高二某班有学生56人,用系统抽样的方法,抽取一个容量为4的样本, ∴样本组距为56÷4=14, 则5+14=19,即样本中还有一个学生的编号为19.19.【解析】为单独递增函数所以点睛:已知函数的单调性确定参数的值或范围要注意以下两点:(1)若函数在区间上单调则该函数在此区间的任意子区间上也是单调的;(2)分段函数的单调性除注意各段的单调性外还要注意 解析:45a ≤<【解析】()()12120f x f x x x ->-⇒ log 2,3()(5)3,3a x x f x a x x ->⎧=⎨--≤⎩()为单独递增函数,所以15045log (32)3(5)3aa a a a >⎧⎪->⇒≤<⎨⎪-≥--⎩ 点睛:已知函数的单调性确定参数的值或范围要注意以下两点:(1)若函数在区间[,]a b 上单调,则该函数在此区间的任意子区间上也是单调的;(2)分段函数的单调性,除注意各段的单调性外,还要注意衔接点的取值;(3)复合函数的单调性,不仅要注意内外函数单调性对应关系,而且要注意内外函数对应自变量取值范围20.【解析】由题意∴x 与y 组成的线性回归方程必过点(154) 解析:()1.5,4【解析】由题意,()()110123 1.5,1357444x y =+++==+++= ∴x 与y 组成的线性回归方程必过点(1.5,4)三、解答题21.(1)0.8186;(2)见解析. 【解析】 【分析】(1)根据题中所给的统计表,利用公式计算出平均数μ的值,再利用数据之间的关系将36、79.5表示为362μσ=-,79.5μσ=+,利用题中所给数据,以及正态分布的概率密度曲线的对称性,求出对应的概率;(2)根据题意,高于平均数和低于平均数的概率各为12,再结合得20元、40元的概率,分析得出话费的可能数据都有哪些,再利用公式求得对应的概率,进而得出分布列,之后利用离散型随机变量的分布列求出其数学期望. 【详解】 (1)由题意可得352545150552006525075225851009550651000μ⨯+⨯+⨯+⨯+⨯+⨯+⨯==,易知14.5σ=≈,36652965214.52μσ∴=-=-⨯=-,79.56514.5μσ=+=+,()()()()3679.522P Z P Z P Z P Z μσμσμσμμμσ∴<≤=-<≤+=-<≤+<≤+()()0.95450.6827022.818622P X P X μσμσμσμσ+===-<≤++-<≤+;(2)根据题意,可得出随机变量X 的可能取值有20、40、60、80元,()13320248P X ==⨯=,()1113313402424432P X ==⨯+⨯⨯=,()113360224416P X ==⨯⨯⨯=,()11118024432P X ==⨯⨯=.所以,随机变量X 的分布列如下表所示:所以,随机变量X 的数学期望为2040608083216322EX =⨯+⨯+⨯+⨯=. 【点睛】本题考查概率的计算,涉及到平均数的求法、正态分布概率的计算以及离散型随机变量分布列及其数学期望,在解题时要弄清楚随机变量所满足的分布列类型,结合相应公式计算对应事件的概率,考查计算能力,属于中等题. 22.(1)答案见解析.(2)96 【解析】 【分析】(1)根据表中所给数据,计算出||r ,即可求得答案.(2)每小时加工零件的数量,即60x =,将60x =代入ˆ0.65757yx =+,即可求得答案. 【详解】(1)由表中数据得:6117950i ii x y==∑,6219100i i x ==∑,62139158i i y ==∑,35,80x y ==∴0.05||0.997r r ==>从而有95%的把握认为x 与y 之间具有线性相关关系,∴此求回归直线方程是有意义的.计算得:ˆˆ0.657,57ba== ∴ˆ0.65757yx =+ (2)Q 每小时加工零件的数量,即60x =将60x =代入ˆ0.65757y x =+ ˆ96.42y= 故每小时加工零件的数量额定为96比较合理 【点睛】本题考查回归直线方程以及应用,考查基本分析与求解能力,属基本题.23.(1)详见解析;(2)有95%的把握认为家长对自主招生的关注与否与所处城市有关;(3)0.6. 【解析】 【分析】(1)根据相关数据完成.(2)根据2K 的观测值的计算公式求解,再对应2K 下结论.,(3)关注的人共有50人,根据分层抽样的方法,A 城市2人,B 城市3人,算出从5人抽取两的方法数,,A B 两城市各取一人的方法数,再代入古典概型的概率公式求解. 【详解】(1)(2)由题意,得K 的观测值为()()()()()()22100203030304 3.84150505050n ad bc k a b c d a c b d -⨯⨯-⨯===>++++⨯⨯⨯,所以有95%的把握认为家长对自主招生的关注与否与所处城市有关. (3)关注的人共有50人,按照分层抽样的方法,A 城市2人,B 城市3人.从5人抽取两人有2510C =种不同的方法,,A B 两城市各取一人有1123236C C =⨯=种不同的方法,故所抽取的2人恰好,A B 两城市各一人的概率为11322560.610C C C ==. 【点睛】本题主要考查独立性检验的应用和古典概型的概率,还考查了运算求解的能力,属于中档题.24.(Ⅰ)22143x y +=或22143y x +=(Ⅱ【解析】 【分析】(Ⅰ)由已知可得1c =,再由离心率求得2a =,结合隐含条件求得b 的值,从而求得椭圆的方程;(Ⅱ)在焦点三角形中利用余弦定理求得|PF 1||PF 2|=4,代入三角形的面积公式得答案. 【详解】(Ⅰ)椭圆方程可设为2222222211x y y x a b a b+=+=或且c =1,又12c e a ==,得a =2, ∴b 2=a 2-c 2=4-1=3,∴椭圆的方程为22143x y +=或22143y x +=.(Ⅱ)在△PF 1F 2中,由余弦定理可得:22212124||2c PF PF PF PF cos =+-∠F 1PF 2, 即212124()2PF PF PF PF =+--2|PF 1||PF 2|×cos 60°,∴4=16-3|PF 1||PF 2|,即|PF 1||PF 2|=4.∴△F 1PF 2的面积S =12|PF 1||PF 2|sin 60°=142⨯= 【点睛】该题考查的是有关椭圆的问题,涉及到的知识点有椭圆的标准方程的求解,椭圆焦点三角形的面积,余弦定理,属于简单题目. 25.(1)0.005a =(2)73 (分)(3)10 【解析】 【分析】(1)由频率分布直方图的性质列方程即可得到a 的值; (2)由平均数加权公式可得平均数,计算出结果即可;(3)按表中所给的数据分别计算出数学成绩在分数段的人数,从总人数中减去这些段内的人数即可得出数学成绩在[5090,)之外的人数.26.(1)0.275;(2)(ⅰ)0.1b =;(ⅱ)99万元 【解析】试题分析:(1)根据平均值为0.275各组的组中值与面积的乘积之和,计算得;(2)(ⅰ)先求得38x =; 6.2y =,由10y bx =-,得1038 6.2b -=.解得0.1b =;(ⅱ)易得这款保险产品的保费收入为()()()()220100.13600.140f x x x x =+-=--⇒当40x =,即每份保单的保费为60元时,保费收入最大为360万元⇒预计这款保险产品的最大利润为3600.27599⨯=万元.试题解析:(1)收益率的平均值为0.050.10.150.20.250.25⨯+⨯+⨯0.350.30.450.10.050.050.275+⨯+⨯+⨯=. (2)(ⅰ)25303845521903855x ++++===; 7.57.1 6.0 5.6 4.831 6.255y ++++===由10y bx =-,得1038 6.2b -=.解得0.1b =.(ⅱ)设每份保单的保费为()20x +元,则销量为100.1y x =-. 则这款保险产品的保费收入为()()()20100.1f x x x =+-万元. 于是,()()2220080.13600.140f x x x x =+-=--.所以,当40x =,即每份保单的保费为60元时,保费收入最大为360万元. 预计这款保险产品的最大利润为3600.27599⨯=万元.。

相关文档
最新文档