2019-2020广州市中大附中数学中考模拟试卷(含答案)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

C. 2,0
D. 2,0
4.如图,A,B,P 是半径为 2 的⊙O 上的三点,∠APB=45°,则弦 AB 的长为( )
A.2
B.4
C. 2 2
D. 2
5.在同一坐标系内,一次函数 y ax b 与二次函数 y ax2 8x b 的图象可能是
A.
B.
C.
D.
6.九年级某同学 6 次数学小测验的成绩分别为:90 分,95 分,96 分,96 分,95 分,89
6.B
解析:B 【解析】 【分析】 根据中位数的定义直接求解即可. 【详解】 把这些数从小到大排列为:89 分,90 分,95 分,95 分,96 分,96 分,
则该同学这 6 次成绩的中位数是:
=95 分;
故选:B. 【点睛】 此题考查了确定一组数据的中位数的能力.一些学生往往对这个概念掌握不清楚,计算方 法不明确而误选其它选项,注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶 数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中 间两位数的平均数.
Байду номын сангаас
∴直线 l1 经过点(3,﹣2), l2 经过点(0,﹣4),
设直线 l1 的解析式 y=kx+b,
把(0,4)和(3,﹣2)代入直线 l1 的解析式 y=kx+b,

b 4 3k 4
2

k 2 解得: b 4 ,
故直线 l1 的解析式为:y=﹣2x+4,
设 l2 的解析式为 y=mx+n,
2
OG OB2 BG2 2 ,证出 EOG 是等腰直角三角形,得出
OEG 45 , OE 2OG 2 2 ,求出 OEF 30 ,由直角三角形的性质得出
OF 1 OE 2
2 ,由勾股定理得出 DF
11 ,即可得出答案.
【详解】
解:过点 O 作 OF CD 于点 F , OG AB 于 G ,连接 OB、OD ,如图所示:
则 DF CF , AG BG 1 AB 3 , 2
∴ EG AG AE 2 ,
在 RtBOG 中, OG OB2 BG2 139 2, ∴ EG OG , ∴ EOG 是等腰直角三角形,
∴ OEG 45 , OE 2OG 2 2 , ∵ DEB 75 , ∴ OEF 30 ,
2.下列计算正确的是( )
A.2a+3b=5ab
B.( a-b )2=a 2-b 2 C.( 2x 2 )3=6x 6
D.x8÷x3=x5
3.若直线 l1 经过点 0, 4 ,直线 l2 经过点 3, 2,且 l1 与 l2 关于 x 轴对称,则 l1 与 l2 的交点
坐标为( )
A. 6,0
B. 6,0
分,则该同学这 6 次成绩的中位数是( )
A.94
B.95 分
C.95.5 分
D.96 分
7.如图,在直角坐标系中,直线
y1
2x
2
与坐标轴交于
A、B
两点,与双曲线
y2
k x
( x 0 )交于点 C,过点 C 作 CD⊥x 轴,垂足为 D,且 OA=AD,则以下结论:
① SΔADB SΔADC ;
故选 C.
5.C
解析:C 【解析】 【分析】 x=0,求出两个函数图象在 y 轴上相交于同一点,再根据抛物线开口方向向上确定出 a> 0,然后确定出一次函数图象经过第一三象限,从而得解. 【详解】 x=0 时,两个函数的函数值 y=b, 所以,两个函数图象与 y 轴相交于同一点,故 B、D 选项错误; 由 A、C 选项可知,抛物线开口方向向上, 所以,a>0, 所以,一次函数 y=ax+b 经过第一三象限, 所以,A 选项错误,C 选项正确. 故选 C.
3.D
解析:D 【解析】 【分析】
根据 l1 与 l2 关于 x 轴对称,可知 l2 必经过(0,-4), l1 必经过点(3,-2),然后根据待定系数法 分别求出 l1 、 l2 的解析式后,再联立解方程组即可求得 l1 与 l2 的交点坐标.
【详解】
∵直线 l1 经过点(0,4), l2 经过点(3,2),且 l1 与 l2 关于 x 轴对称,
②当 0<x<3 时, y1 y2 ;
③如图,当 x=3 时,EF= 8 ; 3
④当 x>0 时, y1 随 x 的增大而增大, y2 随 x 的增大而减小.
其中正确结论的个数是( )
A.1
B.2
C.3
D.4
8.若点 P1(x1,y1),P2(x2,y2)在反比例函数 y k (k>0)的图象上,且 x1=﹣ x
考点:反比例函数与一次函数的交点问题.
8.D
解析:D 【解析】
由题意得:
y1
k x1
k x2
y2
,故选 D.
9.C
解析:C 【解析】 【分析】
过点 O 作 OF CD 于点 F , OG AB 于 G ,连接 OB、OD ,由垂径定理得出 DF CF , AG BG 1 AB 3 ,得出 EG AG AE 2 ,由勾股定理得出
底等高三角形面积相等),选项①正确;
∴C(2,2),把
C
坐标代入反比例解析式得:k=4,即
y2
4 x
,由函数图象得:当
0<x
<2 时, y1 y2 ,选项②错误;

x=3
时,
y1
4

y2
4 3
,即
EF=
4
4 3
=
8 3
,选项③正确;
当 x>0 时, y1 随 x 的增大而增大, y2 随 x 的增大而减小,选项④正确,故选 C.
3x 4x 1
23.解不等式组
5x 1>x 2
2
,并把它的解集在数轴上表示出来
24.如图,在 Rt△ABC 中,∠C=90°,∠BAC 的角平分线 AD 交 BC 边于 D.以 AB 上某
一点 O 为圆心作⊙O,使⊙O 经过点 A 和点 D.
(1)判断直线 BC 与⊙O 的位置关系,并说明理由;
15.已知一组数据 6,x,3,3,5,1 的众数是 3 和 5,则这组数据的中位数是_____.
16.当 m ____________时,解分式方程 x 5 m 会出现增根. x3 3x
17.如图,把三角形纸片折叠,使点 B ,点 C 都与点 A 重合,折痕分别为 DE, FG ,若 C 15, AE EG 2 厘米,△ABC 则的边 BC 的长为__________厘米。
x
x
11.下列长度的三根小木棒能构成三角形的是( )
A.2cm,3cm,5cm B.7cm,4cm,2cm C.3cm,4cm,8cm D.3cm,3cm,4cm
12.如图,已知⊙O 的半径是 2,点 A、B、C 在⊙O 上,若四边形 OABC 为菱形,则图中
阴影部分面积为( )
A. 2 π﹣2 3 3
B. 1 π﹣ 3 3
C. 4 π﹣2 3 3
D. 4 π﹣ 3 3
二、填空题
13.已知关于 x 的一元二次方程 mx2+5x+m2﹣2m=0 有一个根为 0,则 m=_____.
14.如图,正方形 ABCD 的边长为 2,点 E 为边 BC 的中点,点 P 在对角线 BD 上移动,则
PE+PC 的最小值是 .
季的到来,实际工作时每天的工作效率比原计划提高了 25%,结果提前 30 天完成了这一任
务.设实际工作时每天绿化的面积为 x 万平方米,则下面所列方程中正确的是( )
A.
60 x
(1
60 25%) x
30
B.
(1
60 25%)
x
60 x
30
C. 60 (1 25%) 60 30
x
x
D. 60 60 (1 25%) 30
情况绘制成如下两幅统计图(尚不完整).
请根据以上信息回答:
(1)本次参加抽样调查的居民有多少人? (2)将两幅不完整的图补充完整; (3)若居民区有 8000 人,请估计爱吃 D 粽的人数; (4)若有外型完全相同的 A、B、C、D 粽各一个,煮熟后,小王吃了两个.用列表或画树 状图的方法,求他第二个吃到的恰好是 C 粽的概率.
7.C
解析:C 【解析】
试题分析:对于直线 y1 2x 2 ,令 x=0,得到 y=2;令 y=0,得到 x=1,∴A(1,0),B
(0,﹣2),即 OA=1,OB=2,在△OBA 和△CDA 中,∵∠AOB=∠ADC=90°,∠OAB=∠
DAC,OA=AD,∴△OBA≌△CDA(AAS),∴CD=OB=2,OA=AD=1,∴ SΔADB SΔADC (同
20.若式子 x 3 在实数范围内有意义,则 x 的取值范围是_____. 三、解答题
21.在一次中学生田径运动会上,根据参加男子跳高初赛的运动员的成绩(单位:m), 绘制出如下的统计图①和图②,请根据相关信息,解答下列问题:
(Ⅰ)图 1 中 a 的值为

(Ⅱ)求统计的这组初赛成绩数据的平均数、众数和中位数;
把(0,﹣4)和(3,2)代入直线 l2 的解析式 y=mx+n,
3m n 2
m 2

n 4
,解得 n 4 ,
∴直线 l2 的解析式为:y=2x﹣4,
y 2x 4
x 2
联立
y 2x 4
,解得:
y
0
即 l1 与 l2 的交点坐标为(2,0).
故选 D. 【点睛】 本题考查了关于 x 轴对称的点的坐标特征、待定系数法求一次函数的解析式即两直线的交 点坐标问题,熟练应用相关知识解题是关键.
4.C
解析:C 【解析】 【分析】 由 A、B、P 是半径为 2 的⊙O 上的三点,∠APB=45°,可得△OAB 是等腰直角三角形,继 而求得答案. 【详解】 解:连接 OA,OB. ∵∠APB=45°, ∴∠AOB=2∠APB=90°. ∵OA=OB=2,
∴AB= OA2 OB2 =2 2 .
(2)若 AC=3,∠B=30°.
①求⊙O 的半径;
②设⊙O 与 AB 边的另一个交点为 E,求线段 BD、BE 与劣弧 DE 所围成的阴影部分的图形
面积.(结果保留根号和 π)
25.先化简( 3 -a+1)÷a2 4a 4 ,并从 0,-1,2 中选一个合适的数作为 a 的值代
a 1
a 1
入求值.
(Ⅲ)根据这组初赛成绩,由高到低确定 9 人进入复赛,请直接写出初赛成绩为 1.65m 的
运动员能否进入复赛.
22.“端午节”是我国的传统佳节,民间历来有吃“粽子”的习俗.我市某食品厂为了解市民
对去年销量较好的肉馅粽、豆沙馅粽、红枣馅粽、蛋黄馅粽(以下分别用 A、B、C、D 表
示)这四种不同口味粽子的喜爱情况,在节前对某居民区市民进行了抽样调查,并将调查
【参考答案】***试卷处理标记,请不要删除
一、选择题
1.C 解析:C 【解析】230000000= 2.3×108 ,故选 C.
2.D
解析:D 【解析】 分析:A.原式不能合并,错误;
B.原式利用完全平方公式展开得到结果,即可做出判断; C.原式利用积的乘方运算法则计算得到结果,即可做出判断; D.原式利用同底数幂的除法法则计算得到结果,即可做出判断. 详解:A.不是同类项,不能合并,故 A 错误; B.(a﹣b)2=a2﹣2ab+b2,故 B 错误; C.( 2x 2 )3=8x 6,故 C 错误; D.x8÷x3=x5,故 D 正确. 故选 D. 点睛:本题考查了完全平方公式,合并同类项,幂的乘方及积的乘方,以及同底数幂的除 法,熟练掌握公式及法则是解答本题的关键.
18.分解因式:2x2﹣18=_____. 19.在一次班级数学测试中,65 分为及格分数线,全班的总平均分为 66 分,而所有成绩 及格的学生的平均分为 72 分,所有成绩不及格的学生的平均分为 58 分,为了减少不及格 的学生人数,老师给每位学生的成绩加上了 5 分,加分之后,所有成绩及格的学生的平均 分变为 75 分,所有成绩不及格的学生的平均分变为 59 分,已知该班学生人数大于 15 人少 于 30 人,该班共有_____位学生.
x2,则( )
A.y1<y2
B.y1=y2
C.y1>y2
D.y1=﹣y2
9.如图,在半径为 13 的 O 中,弦 AB 与 CD 交于点 E , DEB 75 ,
AB 6 , AE 1,则 CD 的长是( )
A. 2 6
B. 2 10
C. 2 11
D. 4 3
10.“绿水青山就是金山银山”.某工程队承接了 60 万平方米的荒山绿化任务,为了迎接雨
2019-2020 广州市中大附中数学中考模拟试卷(含答案)
一、选择题
1.“厉行勤俭节约,反对铺张浪费”势在必行,最新统计数据显示,中国每年浪费食物总量
折合粮食大约是 230000000 人一年的口粮,将 230000000 用科学记数法表示为( )
A.2.3×109 B.0.23×109 C.2.3×108 D.23×107
相关文档
最新文档