人大版,贾俊平,第五版,统计学 第7章 参数估计
统计学(贾俊平)第五版课后习题答案(完整版)
统计学(第五版)贾俊平课后习题答案(完整版)第一章思考题1.1什么是统计学统计学是关于数据的一门学科,它收集,处理,分析,解释来自各个领域的数据并从中得出结论。
1.2解释描述统计和推断统计描述统计;它研究的是数据收集,处理,汇总,图表描述,概括与分析等统计方法。
推断统计;它是研究如何利用样本数据来推断总体特征的统计方法。
1.3统计学的类型和不同类型的特点统计数据;按所采用的计量尺度不同分;(定性数据)分类数据:只能归于某一类别的非数字型数据,它是对事物进行分类的结果,数据表现为类别,用文字来表述;(定性数据)顺序数据:只能归于某一有序类别的非数字型数据。
它也是有类别的,但这些类别是有序的。
(定量数据)数值型数据:按数字尺度测量的观察值,其结果表现为具体的数值。
统计数据;按统计数据都收集方法分;观测数据:是通过调查或观测而收集到的数据,这类数据是在没有对事物人为控制的条件下得到的。
实验数据:在实验中控制实验对象而收集到的数据。
统计数据;按被描述的现象与实践的关系分;截面数据:在相同或相似的时间点收集到的数据,也叫静态数据。
时间序列数据:按时间顺序收集到的,用于描述现象随时间变化的情况,也叫动态数据。
1.4解释分类数据,顺序数据和数值型数据答案同1.31.5举例说明总体,样本,参数,统计量,变量这几个概念对一千灯泡进行寿命测试,那么这千个灯泡就是总体,从中抽取一百个进行检测,这一百个灯泡的集合就是样本,这一千个灯泡的寿命的平均值和标准差还有合格率等描述特征的数值就是参数,这一百个灯泡的寿命的平均值和标准差还有合格率等描述特征的数值就是统计量,变量就是说明现象某种特征的概念,比如说灯泡的寿命。
1.6变量的分类变量可以分为分类变量,顺序变量,数值型变量。
变量也可以分为随机变量和非随机变量。
经验变量和理论变量。
1.7举例说明离散型变量和连续性变量离散型变量,只能取有限个值,取值以整数位断开,比如“企业数”连续型变量,取之连续不断,不能一一列举,比如“温度”。
统计学第五版贾俊平版课后答案
统计学第五版贾俊平版课后题答案(部分)第7章抽样与参数估计7.1(1)已知: EMBED Equation.3 , EMBED Equation.3 , EMBED Equation.3。
, EMBED Equation.3 , EMBED Equation.3样本均值的抽样标准差 EMBED Equation.3。
(2)估计误差 EMBED Equation.3。
7.2(1)已知: EMBED Equation.3 , EMBED Equation.3 , EMBED Equation.3。
, EMBED Equation.3 , EMBED Equation.3。
样本均值的抽样标准差 EMBED Equation.3。
(2)估计误差 EMBED Equation.3(3)由于总体标准差已知,所以总体均值 EMBED Equation.3 的95%的置信区间为:,即(115.8,124.2)。
EMBED Equation.37.3已知: EMBED Equation.3 , EMBED Equation.3 , EMBED Equation.3。
, EMBED Equation.3 , EMBED Equation.3由于总体标准差已知,所以总体均值 EMBED Equation.3 的95%的置信区间为:,即(87818.856,121301.144)。
EMBED Equation.37.4(1)已知: EMBED Equation.3 , EMBED Equation.3 , EMBED Equation.3。
, EMBED Equation.3 , EMBED Equation.3由于 EMBED Equation.3 为大样本,所以总体均值 EMBED Equation.3 的90%的置信区间为:,即(79.026,82.974)。
EMBED Equation.3。
(2)已知: EMBED Equation.3 , EMBED Equation.3由于 EMBED Equation.3 为大样本,所以总体均值 EMBED Equation.3 的95%的置信区间为:,即(78.648,83.352)。
统计学第五版课后答案(贾俊平)
第四章统计数据的概括性度量4.1 一家汽车零售店的10名销售人员5月份销售的汽车数量(单位:台)排序后如下:2 4 7 10 10 10 12 12 14 15要求:(1)计算汽车销售量的众数、中位数和平均数。
(2)根据定义公式计算四分位数。
(3)计算销售量的标准差。
(4)说明汽车销售量分布的特征。
解:Statistics10Missing 0Mean 9.60Median 10.00Mode 10Std. Deviation 4.169Percentiles 25 6.2550 10.0075单位:周岁19 15 29 25 2423 21 38 22 1830 20 19 19 1623 27 22 34 2441 20 31 17 23要求;(1)计算众数、中位数:排序形成单变量分值的频数分布和累计频数分布:网络用户的年龄(2)根据定义公式计算四分位数。
Q1位置=25/4=6.25,因此Q1=19,Q3位置=3×25/4=18.75,因此Q3=27,或者,由于25和27都只有一个,因此Q3也可等于25+0.75×2=26.5。
(3)计算平均数和标准差;Mean=24.00;Std. Deviation=6.652(4)计算偏态系数和峰态系数:Skewness=1.080;Kurtosis=0.773(5)对网民年龄的分布特征进行综合分析:分布,均值=24、标准差=6.652、呈右偏分布。
如需看清楚分布形态,需要进行分组。
1、确定组数:()lg 25lg() 1.398111 5.64lg(2)lg 20.30103n K =+=+=+=,取k=6 2、确定组距:组距=( 最大值 - 最小值)÷ 组数=(41-15)÷6=4.3,取53、分组频数表网络用户的年龄 (Binned)分组后的直方图:客都进入一个等待队列:另—种是顾客在三千业务窗口处列队3排等待。
统计学(第五版)贾俊平-课后思考题和练习题答案(最终完整版)
统计学(第五版)贾俊平课后思考题和练习题答案(最终完整版)整理by__kiss—ahuang第一部分思考题第一章思考题1.1什么是统计学统计学是关于数据的一门学科,它收集,处理,分析,解释来自各个领域的数据并从中得出结论.1.2解释描述统计和推断统计描述统计;它研究的是数据收集,处理,汇总,图表描述,概括与分析等统计方法。
推断统计;它是研究如何利用样本数据来推断总体特征的统计方法。
1。
3统计学的类型和不同类型的特点统计数据;按所采用的计量尺度不同分;(定性数据)分类数据:只能归于某一类别的非数字型数据,它是对事物进行分类的结果,数据表现为类别,用文字来表述;(定性数据)顺序数据:只能归于某一有序类别的非数字型数据.它也是有类别的,但这些类别是有序的。
(定量数据)数值型数据:按数字尺度测量的观察值,其结果表现为具体的数值。
统计数据;按统计数据都收集方法分;观测数据:是通过调查或观测而收集到的数据,这类数据是在没有对事物人为控制的条件下得到的。
实验数据:在实验中控制实验对象而收集到的数据.统计数据;按被描述的现象与实践的关系分;截面数据:在相同或相似的时间点收集到的数据,也叫静态数据.时间序列数据:按时间顺序收集到的,用于描述现象随时间变化的情况,也叫动态数据.1.4解释分类数据,顺序数据和数值型数据答案同1。
31。
5举例说明总体,样本,参数,统计量,变量这几个概念对一千灯泡进行寿命测试,那么这千个灯泡就是总体,从中抽取一百个进行检测,这一百个灯泡的集合就是样本,这一千个灯泡的寿命的平均值和标准差还有合格率等描述特征的数值就是参数,这一百个灯泡的寿命的平均值和标准差还有合格率等描述特征的数值就是统计量,变量就是说明现象某种特征的概念,比如说灯泡的寿命.1.6变量的分类变量可以分为分类变量,顺序变量,数值型变量。
变量也可以分为随机变量和非随机变量.经验变量和理论变量。
1。
7举例说明离散型变量和连续性变量离散型变量,只能取有限个值,取值以整数位断开,比如“企业数”连续型变量,取之连续不断,不能一一列举,比如“温度”.1.8统计应用实例人口普查,商场的名意调查等。
贾俊平《统计学》复习笔记课后习题详解及典型题详解(参数估计)【圣才出品】
∧
定义:点估计是用样本统计量θ的某个取值直接作为总体参数 θ 的估计值。 局限性:一个点估计值的可靠性是由它的抽样标准误差来衡量的,这表明一个具体的点 估计值无法给出估计的可靠性的度量,因此不能完全依赖于一个点估计值,而应围绕点估计 值构造总体参数的一个区间。 (2)区间估计 区间估计的基本思想:在点估计的基础上,给出总体参数估计的一个区间范围,该区间 通常由样本统计量加减估计误差得到。进行区间估计时,根据样本统计量的抽样分布能够对 样本统计量与总体参数的接近程度给出一个概率度量。 置信区间:在区间估计中,由样本统计量所构造的总体参数的估计区间。
著性水平表示区间估计的不可靠概率。置信度愈大(即估计的可靠性愈大),则置信区间相
应也愈大(即估计准确性愈小)。
3.评价估计量的标准
2 / 57
圣才电子书
(1)无偏性
十万种考研考证电子书、题库视频学习平台
指估计量抽样分布的数学期望等于被估计的总体参数。
∧
∧
∧
设总体参数为 θ,所选择的估计量为θ,若有 E(θ)=θ,则称θ为 θ 的无偏估计量。
1 / 57
圣才电子书 十万种考研考证电子书、题库视频学习平台
置信下限:置信区间的最小值。
置信上限:置信区间的最大值。
置信水平(也称为置信度或置信系数):将构造置信区间的步骤重复多次,置信区间中
包含总体参数真值的次数所占的比例。
∧
∧
区间估计的数学定义:若用两个统计量θ1(x1,x2,…,xn)和θ2(x1,x2,…,xn)
存在“可能包含”或“可能不包含”的问题。
③在实际问题中,进行估计时往往只抽取一个样本,此时所构造的是与该样本相联系的
统计学(第五版)贾俊平-课后思考题和练习题答案(完整版)
统计学(第五版)贾俊平课后思考题和练习题答案(最终完整版)第一部分思考题第一章思考题1。
1什么是统计学统计学是关于数据的一门学科,它收集,处理,分析,解释来自各个领域的数据并从中得出结论。
1。
2解释描述统计和推断统计描述统计;它研究的是数据收集,处理,汇总,图表描述,概括与分析等统计方法。
推断统计;它是研究如何利用样本数据来推断总体特征的统计方法。
1。
3统计学的类型和不同类型的特点统计数据;按所采用的计量尺度不同分;(定性数据)分类数据:只能归于某一类别的非数字型数据,它是对事物进行分类的结果,数据表现为类别,用文字来表述;(定性数据)顺序数据:只能归于某一有序类别的非数字型数据.它也是有类别的,但这些类别是有序的。
(定量数据)数值型数据:按数字尺度测量的观察值,其结果表现为具体的数值。
统计数据;按统计数据都收集方法分;观测数据:是通过调查或观测而收集到的数据,这类数据是在没有对事物人为控制的条件下得到的.实验数据:在实验中控制实验对象而收集到的数据。
统计数据;按被描述的现象与实践的关系分;截面数据:在相同或相似的时间点收集到的数据,也叫静态数据。
时间序列数据:按时间顺序收集到的,用于描述现象随时间变化的情况,也叫动态数据。
1.4解释分类数据,顺序数据和数值型数据答案同1.31.5举例说明总体,样本,参数,统计量,变量这几个概念对一千灯泡进行寿命测试,那么这千个灯泡就是总体,从中抽取一百个进行检测,这一百个灯泡的集合就是样本,这一千个灯泡的寿命的平均值和标准差还有合格率等描述特征的数值就是参数,这一百个灯泡的寿命的平均值和标准差还有合格率等描述特征的数值就是统计量,变量就是说明现象某种特征的概念,比如说灯泡的寿命。
1.6变量的分类变量可以分为分类变量,顺序变量,数值型变量。
变量也可以分为随机变量和非随机变量。
经验变量和理论变量。
1。
7举例说明离散型变量和连续性变量离散型变量,只能取有限个值,取值以整数位断开,比如“企业数”连续型变量,取之连续不断,不能一一列举,比如“温度”。
统计学(第五版)贾俊平 课后思考题和练习题答案(最终完整版)
统计学(第五版)贾俊平课后思考题和练习题答案(最终完整版)整理by__kiss-ahuang第一部分思考题第一章思考题1.1什么是统计学统计学是关于数据的一门学科,它收集,处理,分析,解释来自各个领域的数据并从中得出结论。
1.2解释描述统计和推断统计描述统计;它研究的是数据收集,处理,汇总,图表描述,概括与分析等统计方法。
推断统计;它是研究如何利用样本数据来推断总体特征的统计方法。
1.3统计学的类型和不同类型的特点统计数据;按所采用的计量尺度不同分;(定性数据)分类数据:只能归于某一类别的非数字型数据,它是对事物进行分类的结果,数据表现为类别,用文字来表述;(定性数据)顺序数据:只能归于某一有序类别的非数字型数据。
它也是有类别的,但这些类别是有序的。
(定量数据)数值型数据:按数字尺度测量的观察值,其结果表现为具体的数值。
统计数据;按统计数据都收集方法分;观测数据:是通过调查或观测而收集到的数据,这类数据是在没有对事物人为控制的条件下得到的。
实验数据:在实验中控制实验对象而收集到的数据。
统计数据;按被描述的现象与实践的关系分;截面数据:在相同或相似的时间点收集到的数据,也叫静态数据。
时间序列数据:按时间顺序收集到的,用于描述现象随时间变化的情况,也叫动态数据。
1.4解释分类数据,顺序数据和数值型数据答案同1.31.5举例说明总体,样本,参数,统计量,变量这几个概念对一千灯泡进行寿命测试,那么这千个灯泡就是总体,从中抽取一百个进行检测,这一百个灯泡的集合就是样本,这一千个灯泡的寿命的平均值和标准差还有合格率等描述特征的数值就是参数,这一百个灯泡的寿命的平均值和标准差还有合格率等描述特征的数值就是统计量,变量就是说明现象某种特征的概念,比如说灯泡的寿命。
1.6变量的分类变量可以分为分类变量,顺序变量,数值型变量。
变量也可以分为随机变量和非随机变量。
经验变量和理论变量。
1.7举例说明离散型变量和连续性变量离散型变量,只能取有限个值,取值以整数位断开,比如“企业数”连续型变量,取之连续不断,不能一一列举,比如“温度”。
人大统计学笔记
《统计学》(贾俊平)1 参数估计1.参数估计:统计推断的重要内容之一,以抽样和抽样分布为基础,用样本统计量来估计未知总体参数。
2.估计量:估计总体参数的统计量。
3.估计值:用具体样本计算出的估计量的值,即估计量的实现。
4.点估计:用某个估计值作为总体参数的估计。
5.区间估计:以点估计为基础,给出总体参数估计的一个区间范围,由点估计量加减边际误差得到。
能由抽样分布给出估计量与总体参数接近程度的概率度量,即置信水平。
6.置信区间:总体参数的估计区间。
统计学家在某种程度上确信它会包含总体参数真值,是随机区间。
7.置信水平(置信度):重复构造置信区间多次,其中包含总体参数真值的区间个数所占的比例。
它是针对随机区间而言的。
8.估计量评价标准:无偏性、有效性、一致性。
9.理论基础 ①大数定律:揭示了大量随机现象均值的稳定性。
常见的有伯努利大数定律(频率稳定性),辛钦大数定律(简单随机样本均值依概率收敛于总体均值),切比雪夫大数定律。
是用样本估计总体的理论基础。
②中心极限定理:揭示了独立同分布随机变量之和的极限分布是正态分布。
常见的有伯努利试验场合、独立同分布试验场合的中心极限定理。
是区间估计和假设检验的理论基础。
③抽样分布基本定理(正态假定)a. 2~(,/)X N n μσ;b. 222(1)/~(1)n S n σχ--;c. X 与2S 相互独立;d.~(1)X t n -; e. 2212122212/~(1,1) ()/S S F n n σσ--独立样本;f.221212~(2) (=)X Y t n n σσ+-独立样本,。
10.单总体参数估计①目标量:μ,π,2σ。
②影响因素:a.是否是正态总体;b.总体方差是否已知;c.是大样本还是小样本。
③抽样分布a.~(0,1)X Z N =; b.~(1) ~~(0,1) () t n X t N -⎧=⎨⎩,大样本; c.~(0,1) (5()5)Z N np n n p =≥-≥大样本,,;d. 2222(1)/~(1)n S n χσχ=--。
贾俊平统计学第7章
z } 1
2
n
2
z
2
2
z
2
P{ z 2
X
2
z 2 } 1
P{ z 2 X z 2 } 1 n n P{ X z 2 X z 2 } 1 n n [X z 2 , X z 2 ] 这就是说随机区间 n n 它以1-α的概率包含总体 X的数学期望μ。
作者:贾俊平,中国人民大学统计学院 22 由定义可知,此区间即为μ的置信区间。
n
7 - 22
统计学
STATISTICS 这就是说随机区间 (第五版 )
2
z
2
2
z
2
[X z 2 , X z 2 ] n n
它以1-α的概率包含总体X的数学期望μ。 由定义可知,此区间即为μ的置信区间。 其置信度为 1-α。
作者:贾俊平,中国人民大学统计学院
2. 无法给出估计值接近总体参数程度的信息
7 - 10
统计学
STATISTICS (第五版)
区间估计
(interval estimate)
1. 2.
在点估计的基础上,给出总体参数估计的一个区间 范围,该区间由样本统计量加减估计误差而得到 根据样本统计量的抽样分布能够对样本统计量与总 体参数的接近程度给出一个概率度量
统计学
STATISTICS 定义 (第五版)
设
是总体X的 一个未知参数,
若存在随机区间 [1 , 2 ], 对于给定的 0 1, 若满足
P{1 2 } 1
则称区间 [1 , 2 ] 是 的置信水平(置信度)为 1 的置信区间. 1 和 2 分别称为置信下限和置信上限 (双侧置信区间).
统计学第五版(贾俊平)课后习题答案
300~ 350 400
30 -13520652.3 1036628411.8
400~ 450 42 500
533326.9 12442517.1
500~ 550 600
18
33765928.7 4164351991.6
600以上 650 11 122527587.627364086138.8 合计 — 120 38534964.451087441648.4
7.8已知:总体服从正态分布,但未知,为小样本,,。 根据样本数据计算得:,。 总体均值的95%的置信区间为: ,即(7.11,12.89)。
7.9已知:总体服从正态分布,但未知,为小样本,,。 根据样本数据计算得:,。 从家里到单位平均距离的95%的置信区间为: ,即(7.18,11.57)。
7.10(1)已知: ,,,。 由于为大样本,所以零件平均长度的95%的置信区间为: ,即(148.87,150.13)。 (2)在上面的估计中,使用了统计中的中心极限定理。该定理表明: 从均值为、方差为的总体中,抽取容量为的随机样本,当充分大时(通 常要求),样本均值的抽样分布近似服从均值为、方差为的正态分布。
7.13已知:总体服从正态分布,但未知,为小样本,,。 根据样本数据计算得:,。 网络公司员工平均每周加班时间的90%的置信区间为: ,即(10.36,16.76)。
7.14(1)已知:,,,。 总体总比例的99%的置信区间为: ,即(0.32,0.70); (2)已知:,,,。 总体总比例的95%的置信区间为: ,即(0.78,0.86); (3)已知:,,,。 总体总比例的90%的置信区间为: ,即(0.46,0.50)。
500~600 550 18 9900
600以上 650 11 7150
(完整版)统计学贾俊平考研知识点总结
统计学重点笔记第一章导论一、比较描述统计和推断统计:数据分析是通过统计方法研究数据,其所用的方法可分为描述统计和推断统计。
(1)描述性统计:研究一组数据的组织、整理和描述的统计学分支,是社会科学实证研究中最常用的方法,也是统计分析中必不可少的一步。
内容包括取得研究所需要的数据、用图表形式对数据进行加工处理和显示,进而通过综合、概括与分析,得出反映所研究现象的一般性特征。
(2)推断统计学:是研究如何利用样本数据对总体的数量特征进行推断的统计学分支。
研究者所关心的是总体的某些特征,但许多总体太大,无法对每个个体进行测量,有时我们得到的数据往往需要破坏性试验,这就需要抽取部分个体即样本进行测量,然后根据样本数据对所研究的总体特征进行推断,这就是推断统计所要解决的问题。
其内容包括抽样分布理论,参数估计,假设检验,方差分析,回归分析,时间序列分析等等。
(3)两者的关系:描述统计是基础,推断统计是主体二、比较分类数据、顺序数据和数值型数据:根据所采用的计量尺度不同,可以将统计数据分为分类数据、顺序数据和数值型数据。
(1)分类数据是只能归于某一类别的非数字型数据。
它是对事物进行分类的结果,数据表现为类别,是用文字来表达的,它是由分类尺度计量形成的。
(2)顺序数量是只能归于某一有序类别的非数字型数据。
也是对事物进行分类的结果,但这些类别是有顺序的,它是由顺序尺度计量形成的。
(3)数值型数据是按数字尺度测量的观察值。
其结果表现为具体的数值,现实中我们所处理的大多数都是数值型数据。
总之,分类数据和顺序数据说明的是事物的本质特征,通常是用文字来表达的,其结果均表现为类别,因而也统称为定型数据或品质数据;数值型数据说明的是现象的数量特征,通常是用数值来表现的,因此可称为定量数据或数量数据。
三、比较总体、样本、参数、统计量和变量:(1)总体是包含所研究的全部个体的集合。
通常是我们所关心的一些个体组成,如由多个企业所构成的集合,多个居民户所构成的集合。
统计学(第五版)贾俊平-课后思考题和练习题答案(完整版)
统计学(第五版)贾俊平课后思考题和练习题答案(最终完整版)第一部分思考题第一章思考题1.1什么是统计学统计学是关于数据的一门学科,它收集,处理,分析,解释来自各个领域的数据并从中得出结论。
1。
2解释描述统计和推断统计描述统计;它研究的是数据收集,处理,汇总,图表描述,概括与分析等统计方法。
推断统计;它是研究如何利用样本数据来推断总体特征的统计方法。
1.3统计学的类型和不同类型的特点统计数据;按所采用的计量尺度不同分;(定性数据)分类数据:只能归于某一类别的非数字型数据,它是对事物进行分类的结果,数据表现为类别,用文字来表述;(定性数据)顺序数据:只能归于某一有序类别的非数字型数据.它也是有类别的,但这些类别是有序的.(定量数据)数值型数据:按数字尺度测量的观察值,其结果表现为具体的数值.统计数据;按统计数据都收集方法分;观测数据:是通过调查或观测而收集到的数据,这类数据是在没有对事物人为控制的条件下得到的。
实验数据:在实验中控制实验对象而收集到的数据。
统计数据;按被描述的现象与实践的关系分;截面数据:在相同或相似的时间点收集到的数据,也叫静态数据。
时间序列数据:按时间顺序收集到的,用于描述现象随时间变化的情况,也叫动态数据。
1。
4解释分类数据,顺序数据和数值型数据答案同1。
31。
5举例说明总体,样本,参数,统计量,变量这几个概念对一千灯泡进行寿命测试,那么这千个灯泡就是总体,从中抽取一百个进行检测,这一百个灯泡的集合就是样本,这一千个灯泡的寿命的平均值和标准差还有合格率等描述特征的数值就是参数,这一百个灯泡的寿命的平均值和标准差还有合格率等描述特征的数值就是统计量,变量就是说明现象某种特征的概念,比如说灯泡的寿命。
1。
6变量的分类变量可以分为分类变量,顺序变量,数值型变量。
变量也可以分为随机变量和非随机变量.经验变量和理论变量。
1.7举例说明离散型变量和连续性变量离散型变量,只能取有限个值,取值以整数位断开,比如“企业数"连续型变量,取之连续不断,不能一一列举,比如“温度”。
统计学贾俊平第7章 参数估计
7.1 7.2 7.3 7.4
参数估计
参数估计的一般问题 一个总体参数的区间估计 两个总体参数的区间估计 样本容量的确定
1
All rights reserved
1
引例
美国《华尔街日报》2011年4月21日发表题为《盖 洛普发现,中国民众生活艰难》
盖洛普民意调查所布的2010年全球幸福度调查结果表 明,只有12%的中国人认为自己“生活美满”。多达 71%的答问者说,他们生活”艰难”。17%的人说自己 的生活”苦不堪言” 与此相比,只有38%的美国人说自己生活艰难,有多达 59%的答问者认为自己生活美满。即便考虑到中国房价 失控和食品价格持续上涨的因素,仍无法理解为什么 将近四分之三的中国人认为自己生活艰难
5
All rights reserved
分类表
6
All rights reserved
进一步讨论
Results are based on face-to-face and telephone interviews with approximately 1,000 adults, aged 15 and older, conducted between 2005 and 2009 in 155 countries. For results based on the total samples, one can say with 95% confidence that the maximum margin of sampling error ranges from ±2.1 percentage points in China to ±5.8 percentage points in Zambia. The margin of error reflects the influence of data weighting. In addition to sampling error, question wording and practical difficulties in conducting surveys can introduce error or bias into the findings of public opinion polls.
统计学(第五版)贾俊平-课后思考题和练习题答案(最终完整版)
统计学(第五版)贾俊平课后思考题和练习题答案(最终完整版)整理by__kiss-ahuang第一部分思考题第一章思考题1.1什么是统计学统计学是关于数据的一门学科,它收集,处理,分析,解释来自各个领域的数据并从中得出结论。
1.2解释描述统计和推断统计描述统计;它研究的是数据收集,处理,汇总,图表描述,概括与分析等统计方法。
推断统计;它是研究如何利用样本数据来推断总体特征的统计方法。
1.3统计学的类型和不同类型的特点统计数据;按所采用的计量尺度不同分;(定性数据)分类数据:只能归于某一类别的非数字型数据,它是对事物进行分类的结果,数据表现为类别,用文字来表述;(定性数据)顺序数据:只能归于某一有序类别的非数字型数据。
它也是有类别的,但这些类别是有序的。
(定量数据)数值型数据:按数字尺度测量的观察值,其结果表现为具体的数值。
统计数据;按统计数据都收集方法分;观测数据:是通过调查或观测而收集到的数据,这类数据是在没有对事物人为控制的条件下得到的。
实验数据:在实验中控制实验对象而收集到的数据。
统计数据;按被描述的现象与实践的关系分;截面数据:在相同或相似的时间点收集到的数据,也叫静态数据。
时间序列数据:按时间顺序收集到的,用于描述现象随时间变化的情况,也叫动态数据。
1.4解释分类数据,顺序数据和数值型数据答案同1.31.5举例说明总体,样本,参数,统计量,变量这几个概念对一千灯泡进行寿命测试,那么这千个灯泡就是总体,从中抽取一百个进行检测,这一百个灯泡的集合就是样本,这一千个灯泡的寿命的平均值和标准差还有合格率等描述特征的数值就是参数,这一百个灯泡的寿命的平均值和标准差还有合格率等描述特征的数值就是统计量,变量就是说明现象某种特征的概念,比如说灯泡的寿命。
1.6变量的分类变量可以分为分类变量,顺序变量,数值型变量。
变量也可以分为随机变量和非随机变量。
经验变量和理论变量。
1.7举例说明离散型变量和连续性变量离散型变量,只能取有限个值,取值以整数位断开,比如“企业数”连续型变量,取之连续不断,不能一一列举,比如“温度”。
统计学(贾俊平版)重点
第一章统计:收集、处理、分析、解释数据并从数据中得出结论的科学。
数据1. 分类数据对事物进行分类的结果数据,表现为类别,用文字来表述.例如,人口按性别分为男、女两类2. 顺序数据对事物类别顺序的测度,数据表现为类别,用文字来表述例如,产品分为一等品、二等品、三等品、次品等3. 数值型数据对事物的精确测度,结果表现为具体的数值.例如:身高为175cm ,168cm,183cm总体–所研究的全部元素的集合,其中的每一个元素称为个体–分为有限总体和无限总体.有限总体的范围能够明确确定,且元素的数目是有限的.无限总体所包括的元素是无限的,不可数的样本–从总体中抽取的一部分元素的集合–构成样本的元素数目称为样本容量参数:描述总体特征。
有总体均值()、标准差(σ)总体比例(π)统计量:描述样本特征。
样本标准差(s),样本比例(p)变量:说明现象某种特征,分类,顺序,数值型:离散型,连续型。
经验,理论变量描述统计研究的是数据收集,处理,汇总,图表描述,概括与分析等统计方法。
推断统计是研究如何利用样本数据进行推断总体特征第二章间接数据(查询的)与直接数据:调查(通常是对社会现象而言的)普查信息全面完整。
再一个是实验。
概率抽样:也称随机抽样。
按一定的概率以随机原则抽取样本,抽取样本时使每个单位都有一定的机会被抽中–每个单位被抽中的概率是已知的,或是可以计算出来的–当用样本对总体目标量进行估计时,要考虑到每个样本单位被抽中的概率简单随机抽样:从总体N个单位中随机地抽取n个单位作为样本,每个单位入抽样本的概率是相等的分层抽样:优点:保证样本的结构与总体的结构比较相近将抽样单位按某种特征或某种规则划分为不同的层,然后从不同的层中独立、随机地抽取样本,从而提高估计的精度–组织实施调查方便–既可以对总体参数进行估计,也可以对各层的目标量进行估计整群抽样:将总体中若干个单位合并为组(群),抽样时直接抽取群,然后对中选群中的所有单位全部实施调查优点:抽样时只需群的抽样框,可简化工作量–调查的地点相对集中,节省调查费用,方便调查的实施–缺点是统计的精度较差系统抽样:将总体中的所有单位(抽样单位)按一定顺序排列,在规定的范围内随机地抽取一个单位作为初始单位,然后按事先规定好的规则确定其它样本单位–先从数字1到k之间随机抽取一个数字r作为初始单位,以后依次取r+k,r+2k…等单位操作简便,可提高估计的精度多阶段抽样:先抽取群,但并不是调查群内的所有单位,而是再进行一步抽样,从选中的群中抽取出若干个单位进行调查–群是初级抽样单位,第二阶段抽取的是最终抽样单位。
《统计学》(贾俊平第七版)课后题及答案-统计学 贾俊平第七版
第一章导论1.什么是统计学?统计学是搜集、处理、分析、解释数据并从中得出结论的科学。
2.解释描述统计与推断统计。
描述统计研究的是数据搜集、处理、汇总、图表描述、概括与分析等统计方法。
推断统计研究的是如何利用样本数据来推断总体特征的统计方法。
3.统计数据可分为哪几种类型?不同类型的数据各有什么特点?按照计量尺度可分为分类数据、顺序数据和数值型数据;按照数据的搜集方法,可以分为观测数据和试验数据;按照被描述的现象与实践的关系,可以分为截面数据和时间序列数据。
4.解释分类数据、顺序数据和数值型数据的含义。
分类数据是只能归于某一类别的非数字型数据;顺序数据是只能归于某一有序类别的非数字型数据;数值型数据是按照数字尺度测量的观测值,其结果表现为具体的数值。
5.举例说明总体、样本、参数、统计量、变量这几个概念。
总体是包含所研究的全部个体的集合,样本是从总体中抽取的一部分元素的集合,参数是用来描述总体特征的概括性数字度量,统计量是用来描述样本特征的概括性数字度量,变量是用来说明现象某种特征的概念。
6.变量可分为哪几类?变量可分为分类变量、顺序变量和数值型变量。
分类变量是说明书屋类别的一个名称,其取值为分类数据;顺序变量是说明十五有序类别的一个名称,其取值是顺序数据;数值型变量是说明事物数字特征的一个名称,其取值是数值型数据。
7.举例说明离散型变量和连续型变量。
离散型变量是只能去可数值的变量,它只能取有限个值,而且其取值都以整位数断开,如“产品数量”;连续性变量是可以在一个或多个区间中取任何值的变量,它的取值是连续不断的,不能一一列举,如“温度”等。
第二章数据的搜集1.什么是二手资料?使用二手资料需要注意些什么?与研究内容有关、由别人调查和试验而来、已经存在并会被我们所利用的资料为二手资料。
使用时要评估资料的原始搜集人、搜集目的、搜集途径、搜集时间且使用时要注明数据来源。
2.比较概率抽样和非概率抽样的特点。
举例说明什么情况下适合采用概率抽样,什么情况下适合采用非概率抽样。
贾俊平统计学第5版视频精讲
贾俊平统计学第5版视频精讲!贾俊平《统计学》(第5版)精讲班【教材精讲+考研真题串讲】讲师:孙玉奎/谷小冉目录说明:本课程共包括27个高清视频(共42课时)。
序号名称1 第1章导论2 第2章数据的搜集(1)3 第2章数据的搜集(2)4 第3章数据的图表展示(1)5 第3章数据的图表展示(2)6 第4章数据的概括性度量(1)7 第4章数据的概括性度量(2)8 第5章概率与概率分布(1)9 第5章概率与概率分布(2)10 第6章统计量及其抽样分布11 第7章参数估计(1)12 第7章参数估计(2)13 第8章假设检验(1)14 第8章假设检验(2)15 第8章假设检验(3)16 第9章分类数据分析17 第10章方差分析(1)18 第10章方差分析(2)19 第11章一元线性回归(1)20 第11章一元线性回归(2)21 第12章多元线性回归(1)22 第12章多元线性回归(2)23 第13章时间序列分析和预测(1)24 第13章时间序列分析和预测(2)25 第13章时间序列分析和预测(3)26 第14章指数(1)27 第14章指数(2)内容简介本课程是贾俊平《统计学》(第5版)网授精讲班,为了帮助参加研究生招生考试指定考研参考书目为贾俊平《统计学》(第5版)的考生复习专业课,我们根据教材和名校考研真题的命题规律精心讲解教材章节内容。
【辅导内容】(1)精讲教材核心考点。
按照教材篇章结构,讲解教材的重难知识点。
(2)串讲名校考研真题。
通过分析历年考研真题,梳理命题规律和特点,分析名校考研真题出题思路。
考虑到课时的需要以及相关知识点的难易程度,对于一些简单的、考试不易涉及的知识点,本课程不予以讲述或一带而过,故建议在学习本课程之前提前复习一遍教材。
注:本课程的学员可以下载电子版讲义打印学习。
【讲师简介】孙玉奎,中央财经大学统计学博士,圣才教育独家签约讲师,主要讲授《统计学》、《商务经济统计学》等,常年从事统计类考研、统计师考试的辅导工作,并参与编写统计学类考研等辅导书,具有扎实的理论基础和实践经验,能将统计学知识寓于生活学习中的生动事例,通俗易懂。
贾俊平《统计学》(第5版)课后习题-第7章 参数估计【圣才出品】
抽样标准差为:
x
n
5 0.79 40
(2)估计误差为:
E z /2
n
1.96
5 1.55 40
2.某快餐店想要估计每位顾客午餐的平均花费金额,在为期 3 周的时间里选取 49 名 顾客组成了一个简单随机样本。
(1)假定总体标准差为 15 元,求样本均值的抽样标准误差。 (2)在 95%的置信水平下,求估计误差。 (3)如果样本均值为 120 元,求总体均值 μ 的 95%的置信区间。
4 / 27
圣才电子书
十万种考研考证电子书、题库视频学习平台大样本,所以总均值 μ 的 90%的置信区间为:
x z /2
n
811.645
12 811.974 100
即(79.026,82.974)。
(2)已知: 0.05,z0.05 2 1.96 。由于 n=100 为大样本,所以总体均值 μ 的
4.20
(3)由于总体标准差已知,所以总体均值 μ 的 95%的置信区间为:
x z /2
n
120 1.96
15 49
120 4.20
即(115.8,124.2)。
3.从一个总体中随机抽取 n =100 的随机样本,得到 x 104560,假定总体标准差
σ=85414,试构建总体均值 μ 的 95%的置信区间。
(3)样本量与边际误差的平方成反比,即可以接受的估计误差的平方越大,所需的
样本量就越小。
二、练习题
1.从一个标准差为 5 的总体中采用重复抽样抽出一个样本量为 40 的样本,样本均值
为 25。
(1)样本均值的抽样标准差 x 等于多少?
(2)在 95%的置信水平下,估计误差是多少?
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3. 常用的显著性水平值有 99%, 95%, 90%
– 相应的 为0.01,0.05,0.10
区间与置信水平
均值的抽样分布
/2
x
1-
/2
x
X
(1 - ) % 区间包含了
% 的区间未包含
7.1.3 评价估计量的标准 1.无偏性 估计量抽样分布的数学期望等于被估计 E 的总体参数, 。 则称 为 的无偏估计量。
10 14 10 14 , 19.0228 2.7004 .8925, 13.3314 1
7.3 两个总体参数的区间估计
7.3.1 两个总体均值之差的区间估计
总体1
1 1
2 2
总体2
抽取简单随机样 样本容量 n1 计算 X1
计算每一对样本
(2) A- B置信度为99%的置信区间为
2500 25 = 1209.7 , 1290.3 3600 25
(4500 3250) 2.58
2)总体方差未知但相等 使用 t 分布统计量
t
x
1
x2 1 2 sp 1 n1 1 n2
t n1 n 2 2
第7章 参数估计
7.1 参数估计的基本原理
7.1.1 估计量与估计值 参数估计就是用样本统计量去估计总体参 数。 用于估计总体参数的统计量称为估计量, 根据样本计算出来的估计量的数值称为估 计值。
被估计的总体参数
总体参数 均值 一个总体 比例 方差 均值之差 两个总体 比例之差 方差比 符号表示
1
x 2 z
s1
2
2
s2
2
n1
n2
某地区教育管理部门想估计两所中学的学生 高考时的英语平均分数之差,为此在两所学 校独立抽取两个随机样本,有关数据如下:
n 1 4 6 n 2 3 3 x 1 8 6 x 2 7 8 s1 5 .8 s 2 7 .2
的X1-X2
抽取简单随机样 样本容量 n2 计算X2
所有可能样本 的X1-X2
抽样分布
1 2
1.两个总体均值之差的估计:独立样本
如果两个样本是从两个总体中独立抽取 的,即一个样本中的元素与另一个样本中的 元素相互独立,则称为独立样本
(1)大样本的估计
如果两个都是正态分布,或两个都是大样本(n≥30) ,则 有
x t s n 1
2
n
, x t 8 25
2
s n 1 n 8 25
50 2.0639 46.69,53.3
,50 2.0639
7.2.2 总体比例的区间估计 总体服从二项分布,样本量足够大,样 本比例的抽样分布可用正态分布近似时,对 总体比例的区间估计,使用统计量
建立两所学校高考英语平均分之 差95%的置信区间
x
1
x 2 z
s1
2
2
s2
2
n1
n2 5 .8 46
2
8 6 7 8 z 0 .0 2 5 8 1 .9 6 1 .5 2
7 .2 33
2
(2)小样本的估计
在两个样本都是小样本的情况下,为估 计两个总体的均值之差,需要做出以下假定 两个总体都服从正态分布 两个随机样本独立的分别抽自两个总体 则两个样本均值之差必定服从正态分布
用于估计的 样本统计量
x
ˆ p s
2
P
2
1 2
P P 1 2
x1 x2 ˆ ˆ p1 p2
s1 s2
2 2
1 2
2
2
7.1.2 点估计与区间估计 1.点估计 用样本统计量 的某个取值直接作为总 体参数 的估计值。
例如: 用样本均值 x 作为总体未知均值 的估 计值就是一个点估计
2 s2 s 1 2 n n 2 1
s2
2
n1
n2
v
2
2 s 1
n 1
2
2 s 2 n 2
n
2
2
n 1 1
1
两个总体均值之差1-2在1- 置信水平 下的置信区间为
x, p, s
2
分别是 , ,
P( X )
2
的无偏估计量
无偏 有偏
A
C
X
2.有效性
对同一总体参数的两个无偏估计量,有 更小标准差的估计量更有效。 与其他估计量相比 ,样本均值是一个更 有效的估计量
P(X )
均值的抽样分布
B A
中位数的抽样分布
X
3.一致性 随着样本量的增大,点估计量的值越来 越接近被估总体参数。
ˆ p Z ˆ ˆ p (1 p )
2
n 0.7(1 0.7) 200
0.7 1.96
0.636, 0.764
7.2.3 总体方差的区间估计
对于正态总体方差的估计,可以用
=
2
n 1 s
2
2
~
2
n 1 统计量进行估计
总体方差在 1-α 置信水平下的置信区
z
x
1
x2 1 2
1
2
2
n2
2
~ N 0 ,1
n1
当两个总体的方差已知时, 两个总体均值之差在 1-α 置信 水平下的置信区间为: x
1
x 2 z
1
2
2
2
n2
2
n1
当两个总体的方差未知时, 两个总体均值之差在 1-α 置信 水平下的置信区间为: x
1)总体方差已知 使用正态分布统计量Z
Z ( X 1 X 2 ) ( 1 2 )
1
2
2
n2
~ N (0,1)
2
n1
两个总体均值之差1-2在1- 置信水平 下的置信区间为
( x1 x 2 ) Z
1
2
2
2
n2
2
n1
【例】一个银行负责人想知道储户存入两家 银行的钱数。他从两家银行各抽取了一个由 25个储户组成的随机样本,样本均值如下: 银行A:4500元;银行B:3250元。设已知两个 总体服从方差分别为A2=2500和B2=3600的正 态分布。试求A- B的区间估计 (1)置信度为95% (2)置信度为99%
n 1 s 2 n 1 s 2 , 2 2 2 1 2 间为
【例】对某种金属的10个样品组成的一个随 机样本作抗拉强度试验。从实验数据算出 的方差为4。试求2的95%的置信区间。
解:已知n=10,s2 =4,1-=95% 2置信度为95%的置信区间为
置信上限
X = Zx
_ x
- 2.58x
-1.65 x
+1.65x
+ 2.58x
X
-1.96 x
+1.96x
90%的样本 95% 的样本
Байду номын сангаас99% 的样本
置信水平:
1. 置信区间中包含总体参数真值的次数所占 比例 2. 表示为 (1 -
– 为显著性水平,是总体参数未在区间内的 概率
解:已知 XA~N(A,2500) XB ~N(B,3600) xA=4500, xB=3250, A2 =2500 B2 =3600 nA= nB =25
(1) A- B置信度为95%的置信区间为
(4500 3250) 1.96 = 1219.78 , 1280.62 2500 25 3600 25
z x
2
n
~ N 0,1
进行估计
2
置信水平下的置信区间为 x Z
n ;
如果方差未知,或总体不服从正态分布的情况下,只要满足大样
x Z 本条件,可以用样本方差代替总体方差,即
2
s n
【例】某种零件长度服从正态分布,从该批产品中 随机抽取9件,测得其平均长度为21.4 mm。已知总 体标准差0.15mm,试建立该种零件平均长度的置信 区间,给定置信水平为0.95。 解:已知X~N(,0.152),x=2.14, n=9, 1- = 0.95, Z/2=1.96 总体均值的置信区间为
sp
2
n 1 1 s1 n 2 1 s 2
2
2
n1 n 2 2
两个总体均值之差1-2在1- 置信水平 下的置信区间为
x1 x2 t 2 n1 n2 2s p
1 n1
1 n2
【例】为比较两位银行职员为新顾客办理个 人结算账目的平均时间长度,分别给两位职 员随机安排了10位顾客,并记录下为每位顾 客办理账单所需的时间(单位:分钟),相 应的样本均值和方差分别为:x1=22.2, s12=16.63,x2=28.5,s22=18.92。假定每位职 员办理账单所需时间均服从正态分布,且方 差相等。试求两位职员办理账单的服务时间 之差的95%的区间估计。
10 10 2
4.2
1- 2置信度为95%的置信区间为
22.2 28.5 (2.1)( 4.2)
( 10.2,2.4) 1 10 1 10
3)当两个总体方差未知且不相等 使用的统计量为
t ( X 1 X 2 ) ( 1 2 ) s1