求轨迹方程题型全归纳
方法技巧专题08 轨迹方程的求法(解析版)
方法技巧专题8 轨迹方程问题 解析版一、 轨迹方程问题知识框架二、求轨迹方程的常用方法【一】定义法1.例题【例1】已知ABC ∆的顶点A ,B 的坐标分别为(-4,0),(4,0),C 为动点,且满足,sin 45sin sin C A B =+求点C 的轨迹。
【解析】由,sin 45sin sin C A B =+可知1045==+c a b ,即10||||=+BC AC ,满足椭圆的定义。
令椭圆方程为12'22'2=+b y a x ,则34,5'''=⇒==bc a ,则轨迹方程为192522=+y x ()5±≠x ,图形为椭圆(不含左,右顶点)。
【例2】一动圆与圆22650x y x +++=外切,同时与圆226910x y x +--=内切,求动圆圆心M 的轨迹方程,并说明它是什么样的曲线。
【解析】设动圆圆心为(,)M x y ,半径为R ,设已知圆的圆心分别为1O 、2O ,定义法:如果动点P 的运动规律合乎我们已知的某种曲线(如圆、椭圆、双曲线、抛物线)的定义,则可先设出轨迹方程,再根据已知条件,待定方程中的常数,即可得到轨迹方程。
将圆方程分别配方得:22(3)4x y ++=,22(3)100x y -+=, 当M 与1O 相切时,有1||2O M R =+ ① 当M 与2O 相切时,有2||10O M R =- ②将①②两式的两边分别相加,得21||||12O M O M +=,即2222(3)(3)12x y x y +++-+= ③ 移项再两边分别平方得:222(3)12x y x ++=+ ④两边再平方得:22341080x y +-=,整理得2213627x y +=, 所以,动圆圆心的轨迹方程是2213627x y +=,轨迹是椭圆。
【例3】已知A 、B 、C 是直线l 上的三点,且|AB|=|BC|=6,⊙O′切直线l 于点A ,又过B 、C 作⊙O′异于l 的两切线,设这两切线交于点P ,求点P 的轨迹方程.【解析】设过B 、C 异于l 的两切线分别切⊙O′于D 、E 两点, 两切线交于点P. 由切线的性质知:|BA|=|BD|,|PD|=|PE|,|CA|=|CE|,故|PB|+|PC|=|BD|+|PD|+|PC|=|BA|+|PE|+|PC|=|BA|+|CE|=|AB|+|CA|=6+12=18>6=|BC|, 故由椭圆定义知,点P 的轨迹是以B 、C 为两焦点的椭圆, 以l 所在的直线为x 轴,以BC 的中点为原点,建立坐标系,可求得动点P 的轨迹方程为:2218172x y +=2.巩固提升综合练习【练习1】已知圆()25422=++y x 的圆心为M 1,圆()1422=+-y x 的圆心为M 2,一动圆与这两个圆外切,求动圆圆心P 的轨迹方程。
轨迹方程的求法及典型例题含答案
轨迹方程的求法一、知识复习轨迹方程的求法常见的有1直接法;2定义法;3待定系数法4参数法5交轨法;6相关点法注意:求轨迹方程时注意去杂点,找漏点.一、知识复习例1:点P-3,0是圆x2+y2-6x-55=0内的定点,动圆M与已知圆相切,且过点P,求圆心M的轨迹方程;例2、如图所示,已知P 4,0是圆x 2+y 2=36内的一点,A 、B 是圆上两动点,且满足∠APB =90°,求矩形APBQ 的顶点Q 的轨迹方程.解:设AB 的中点为R ,坐标为x ,y ,则在Rt △ABP 中,|AR |=|PR |.又因为R 是弦AB 的中点,依垂径定理:在Rt △OAR 中,|AR |2=|AO |2-|OR |2=36-x 2+y 2 又|AR |=|PR |=22)4(y x +-所以有x -42+y 2=36-x 2+y 2,即x 2+y 2-4x -10=0因此点R 在一个圆上,而当R 在此圆上运动时,Q 点即在所求的轨迹上运动. 设Qx ,y ,Rx 1,y 1,因为R 是PQ 的中点,所以x 1=2,241+=+y y x , 代入方程x 2+y 2-4x -10=0,得244)2()24(22+⋅-++x y x -10=0 整理得:x 2+y 2=56,这就是所求的轨迹方程.例3、如图, 直线L 1和L 2相交于点M, L 1⊥L 2, 点N ∈L 1. 以A, B 为端点的曲线段C 上的任一点到L 2的距离与到点N 的距离相等. 若∆AMN 为锐角三角形, |AM|= 错误!, |AN| = 3, 且|BN|=6. 建立适当的坐标系,求曲线段C 的方程.解法一:如图建立坐标系,以l 1为x 轴,MN 的垂直平分线为y 轴,点O 为坐标原点;依题意知:曲线段C 是以点N 为焦点,以l 2为准线的抛物线的一段,其中A ,B 分别为C 的端点;设曲线段C 的方程为)0,(),0(22>≤≤>=y x x x p px y B A ,其中x A,x B 分别为A ,B 的横坐标,P=|MN|;)2(92)2()1(172)2(3||,17||)0,2(),0,2(22=+-=++==-A A A A px px px px AN AM p N p M 得由所以 由①,②两式联立解得p x A 4=;再将其代入①式并由p>0解得⎩⎨⎧⎩⎨⎧====2214A A x p x p 或 因为△AMN 是锐角三角形,所以Ax p >2,故舍去⎩⎨⎧==22A x p∴p=4,x A =1由点B 在曲线段C 上,得42||=-=pBN x B ;综上得曲线段C 的方程为)0,41(82>≤≤=y x x y解法二:如图建立坐标系,分别以l 1、l 2为作AE ⊥l 1,AD ⊥l 2,BF ⊥l 2垂足分别为E 、D 、F 设Ax A , y A 、Bx B , y B 、Nx N , 0 依题意有)0,63)(2(8}0,,)(|),{(),(6||||4||||||||||22||||||3|||||22222222>≤≤-=>≤≤=+-====++=+=∆=+======y x x y C y x x x x y x x y x P C y x P NB BE x AE AM ME EN ME x AMN DA AM DM y AN DA ME x B A N B N A A 的方程故曲线段属于集合上任一点则由题意知是曲线段设点为锐角三角形故有由于例4、已知两点)2,0(),2,2(Q P -以及一条直线ι:y =x ,设长为2的线段AB 在直线λ上移动,求直线PA 和QB 交点M 的轨迹方程.解:PA 和QB 的交点Mx ,y 随A 、B 的移动而变化,故可设)1,1(),,(++t t B t t A , 则PA :),2)(2(222-≠++-=-t x t t y QB :).1(112-≠+-=-t x t t y 消去t ,得.082222=+-+-y x y x当t =-2,或t =-1时,PA 与QB 的交点坐标也满足上式,所以点M 的轨迹方程是.0822222=+--+-y x x y x例5、设点A 和B 为抛物线 y 2=4pxp >0上原点以外的两个动点,已知OA ⊥OB ,OM ⊥AB ,求点M 的轨迹方程,并说明它表示什么曲线.解法一:设Mx ,y ,直线AB 的方程为y =kx +b 由OM ⊥AB ,得k =-yx由y 2=4px 及y =kx +b ,消去y ,得k 2x 2+2kb -4px +b 2=0 所以x 1x 2=22kb , y 1y 2=kpb 4,由OA ⊥OB ,得y 1y 2=-x 1x 2所以k pk4=-22kb , b =-4kp故y =kx +b =kx -4p , 得x 2+y 2-4px =0x ≠0故动点M 的轨迹方程为x 2+y 2-4px =0x ≠0,它表示以2p ,0为圆心,以2p 为半径的圆,去掉坐标原点.解法二:设Ax 1,y 1,Bx 2,y 2,Mx ,y依题意,有⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎨⎧--=---=--⋅-=⋅==112121212122112221211144x x y y x x y y x x y y x y x yx y px y px y①-②得y 1-y 2y 1+y 2=4px 1-x 2 若x 1≠x 2,则有2121214y y px x y y +=-- ⑥ ①×②,得y 12·y 22=16p 2x 1x 2 ③代入上式有y 1y 2=-16p 2⑦⑥代入④,得yxy y p -=+214 ⑧ ⑥代入⑤,得py x y y x x y y y y p442111121--=--=+所以211214)(44y px y y p y y p --=+ 即4px -y 12=yy 1+y 2-y 12-y 1y 2 ⑦、⑧代入上式,得x 2+y 2-4px =0x ≠0 当x 1=x 2时,AB ⊥x 轴,易得M 4p ,0仍满足方程.故点M 的轨迹方程为x 2+y 2-4px =0x ≠0它表示以2p ,0为圆心,以2p 为半径的圆,去掉坐标原点.① ②③ ④ ⑤|轨 迹 方 程练习11.08、山东文22已知曲线1C :||||1(0)x y a b a b+=>>所围成的封闭图形的面积为 45,曲线1C 的内切圆半径为253,记2C 为以曲线1C 与坐标轴的交点为顶点的椭圆.1求椭圆2C 的标准方程; 2设AB 是过椭圆2C 中心的任意弦,L 是线段AB 的 垂直平分线,M 是L 上异于椭圆中心的点.①若||MO =λ||OA O 为坐标原点,当点A 在椭圆2C 上运动时,求点M 的轨迹方程;②若M 是L 与椭圆2C 的交点,求AMB ∆的面积的最小值.解:1由题意得22245253ab ab a b⎧=⎪⎨=⎪+⎩⇒4522==b a ,⇒椭圆方程:2254x y +=1.2若AB 所在的斜率存在且不为零,设 AB 所在直线方程为y =kxk≠0,A A A y x ,.①由22154,x y y kx ⎧+=⎪⎨⎪=⎩⇒2222220204545A A k x y k k ==++, ⇒2222220(1)||45AAk OA x y k+=+=+. 设Mx,y,由|MO|=λ|OA|λ≠0⇒|MO|2=λ2|OA|2⇒2222220(1)45k x y k λ++=+.因为L 是AB 的垂直平分线,所以直线L 的方程为y =1x k -⇒k =x y-,代入上式有:22222222222220(1)20()4545x x y y x y x y x yλλ+++==++⨯,由022≠+y x ⇒2225420x y λ+=, 当k =0或不存时,上式仍然成立.,综上所述,M 的轨迹方程为22245x y λ+=,λ≠0.②当k 存在且k ≠0时,2222220204545AA k x y k k ==++,⇒|OA|2=222220(1)45A A k x y k ++=+. 由221541x y y xk ⎧+=⎪⎪⎨⎪=-⎪⎩⇒2222220205454M M k x y k k ==++,⇒22220(1)||54k OM k +=+. ⇒222222111120(1)20(1)4554k k OAOMk k +=+++++=209. 222119||||20OA OB OA OM≤+=⨯⇒||||OB OA ⨯≥940.||||21OB OA S AMB ⨯⨯⨯=∆=||||OB OA ⨯≥40,当且仅当4+5k 2=5+4k 2时,即k =±1时等号成立.当1400229AMB k S ∆==⨯=>,; 当k 不存在时,140429AMB S ∆==>.综上所述,AMB ∆的面积的最小值为409.2.07、江西理21设动点P 到点(10)A -,和(10)B ,的距离分别为1d 和2d ,2APB θ∠=,且存在常数(01)λλ<<,使得212sin d d θλ=.1证明:动点P 的轨迹C 为双曲线,并求出C 的方程;2过点B 作直线与双曲线C 的右支于M N ,两点,试确定λ的范围,使OM ·ON =0,其中点O 为坐标原点.解:1在PAB △中,2AB =,即222121222cos 2d d d d θ=+-, 2212124()4sin d d d d θ=-+,即2121244sin 212d d d d θλ-=-=-<常数,点P 的轨迹C 是以A B ,为焦点,实轴长221a λ=-的双曲线,方程为:2211x y λλ-=-. 2设11()M x y ,,22()N x y ,①当MN 垂直于x 轴时,MN 的方程为1x =,(11)M ,,(11)N -,在双曲线上.即2111511012λλλλλ-±-=⇒+-=⇒=-, 因为01λ<<,所以512λ-=. ②当MN 不垂直于x 轴时,设MN 的方程为(1)y k x =-.由2211(1)x y y k x λλ⎧-=⎪-⎨⎪=-⎩得: 2222(1)2(1)(1)()0k x k x k λλλλλ⎡⎤--+---+=⎣⎦,由题意知:2(1)0k λλ⎡⎤--≠⎣⎦ ⇒21222(1)(1)k x x k λλλ--+=--,2122(1)()(1)k x x kλλλλ--+=-- ⇒22212122(1)(1)(1)k y y k x x k λλλ=--=--. 由OM ·ON =0,且M N ,在双曲线右支上,所以2121222122212(1)0(1)5121011231001x x y y k x x k x x λλλλλλλλλλλλλλλ-⎧+=⎧-⎧=⎪>-⎪⎪⎪+-+>⇒⇒⇒<<+--⎨⎨⎨⎪⎪⎪>+->>⎩⎩⎪-⎩. 由①②知32215<≤-λ.3.09、海南已知椭圆C 的中心为直角坐标系xOy 的原点,焦点在x 轴上,它的一个顶点到两个焦点的距离分别是7和1.1求椭圆C 的方程;2若P 为椭圆C 上的动点,M 为过P 且垂直于x 轴的直线上的点,2OP e OMe 为椭圆C 的离心率,求点M 的轨迹方程,并说明轨迹是什么曲线.解:Ⅰ设椭圆长半轴长及分别为a,c .由已知得⎩⎨⎧=+=-71c a c a ⇒a =4,c =3⇒椭圆C 的方程为221167x y +=. 2设Mx,y,P 0x ,0y . 其中0x ∈-4,4,0x =x .有22001167x y +=……① 由OP e OM=得:2240022x y e x y +=+=169. 故22220016()9()x y x y +=+下面是寻找关系式0x =fx,y,0y =gx,y 的过程又⎪⎩⎪⎨⎧-==167112220220x y x x ……………………………………②②式代入①:22001167x y +=并整理得:47(44)3y x =±-≤≤,所以点M 的轨迹是两条平行于x 轴的线段.轨 迹 方 程练习24.09、重庆理已知以原点O 为中心的椭圆的一条准线方程为433y =,离心率32e =,M 是椭圆上的动点. 1若C 、D 的坐标分别是0,√3、0,-√3,求||MC ·||MD 的最大值;2如图,点A 的坐标为1,0,点B 是圆221x y +=上的点,点N 是点M 椭圆上的点在x 轴上的射影,点Q 满足条件:OQ =OM +ON ,QA ·BA =0.求线段QB 的中点P 的轨迹方程.解:1设椭圆方程为:22221x y a b +=a >b >0.准线方程3y ==c a 2,2e ==ac ⇒2=a ,32=c 1=⇒b ⇒椭圆方程为:2214y x +=.所以:C 、D 是椭圆2214y x +=的两个焦点⇒||MC +||MD =4.||MC ·||MD ≤4)2||||(2=+MD MC ,当且仅当||MC =||MD ,即点M 的坐标为(1,0)±时上式取等号⇒||MC ·||MD 的最大值为4.2设M(,),(,)m m B B x y B x y ,(,)Q Q Q x y ,N 0,m x ⇒4422=+m m y x ,122=+B B y x . 由OQ =OM +ON⇒m Q x x 2=,m Q y y =⇒4)2(2222=+=+m m Q Qy x y x ………①由QA ·BA =0 ⇒Q Q y x --,1·B B y x --,1=Q x -1B x -1+B Q y y =0 ⇒=+B Q B Q y y x x 1-+B Q x x …………②记P 点的坐标为P x ,P y ,因为P 是BQ 的中点⇒B Q P x x x +=2,B Q P y y y +=2⇒2222)2()2(BQ B Q P P y y x x y x +++=+=)22(412222B Q B Q B Q B Q y y x x y y x x +++++ =)]1(25[41-++B Q x x =)245(41-+P x ⇒P P P x y x +=+4322 ⇒动点P 的方程为:1)21(22=+-y x .5.09、安徽已知椭圆22a x +22by =1a >b >0的离心率为33.以原点为圆心,以椭圆短半轴长为半径的圆与直线y =x +2相切.1求a 与b 的值;2设该椭圆的左,右焦点分别为1F 和2F ,直线1L 过2F 且与x 轴垂直,动直线2L 与y 轴垂直,2L 交1L 于点p.求线段1PF 的垂直平分线与直线2L 的交点M 的轨迹方程,并指明曲线类型解:1e =33⇒22a b =32.又圆心0,0到直线y =x +2的距离d =半径b =22112+, ∴2b =2,2a =3.12322=+y x 21F -1,0、2F 1,0,由题意可设P 1,tt ≠0.那么线段1PF 的中点为N0,2t . 2L 的方程为:y =t,设M M M y x ,是所求轨迹上的任意点.下面求直线MN 的方程,然后与直线2L 的方程联立,求交点M 的轨迹方程直线1PF 的斜率k =2t ,∴线段1PF 的中垂线MN 的斜率=-t2. 所以:直线MN 的方程为:y -2t =-t 2x .由⎪⎩⎪⎨⎧+-==22t x t y t y ⇒⎪⎩⎪⎨⎧=-=t y t x MM 42, 消去参数t 得:M M x y 42-=,即: x y 42-=,其轨迹为抛物线除原点.又解:由于MN =-x,2t -y,1PF =-x,2t -y .∵MN ·1PF =0, ∴⎪⎩⎪⎨⎧==---ty y t x t x 0)2(·)2,(,,消参数t 得:x y 42-=x ≠0,其轨迹为抛物线除原点.6.07湖南理20已知双曲线222x y -=的左、右焦点分别为1F ,2F ,过点2F 的动直线与双曲线相交于A B ,两点.直接法求轨迹1若动点M 满足1111F M F A F B FO =++其中O 为坐标原点,求点M 的轨迹方程;2在x 轴上是否存在定点C ,使CA ·CB 为常数 若存在,求出点C 的坐标;若不存在,请说明理由.解:1由条件知1(20)F -,,2(20)F ,,设11()A x y ,,22()B x y ,.设()M x y ,,则1(2)F M x y =+,,111(2)F A x y =+,,1221(2)(20)F B x y FO =+=,,,, 由1111F M F A F B FO =++⇒121226x x x y y y +=++⎧⎨=+⎩ ⇒12124x x x y y y+=-⎧⎨+=⎩⇒AB 的中点坐标为422x y -⎛⎫ ⎪⎝⎭,. 当AB 不与x 轴垂直时,1212024822y y y y x x x x --==----, 即1212()8y y y x x x -=--. 又因为A B ,两点在双曲线上,所以22112x y -=,22222x y -=,两式相减得12121212()()()()x x x x y y y y -+=-+,即1212()(4)()x x x y y y --=-.将1212()8y y y x x x -=--代入上式,化简得22(6)4x y --=. 当AB 与x 轴垂直时,122x x ==,求得(80)M ,,也满足上述方程. 所以点M 的轨迹方程是22(6)4x y --=. 2假设在x 轴上存在定点(0)C m ,,使CA ·CB 为常数. 当AB 不与x 轴垂直时,设直线AB 的方程是(2)(1)y k x k =-≠±.代入222x y -=有2222(1)4(42)0k x k x k -+-+=. 则12x x ,是上述方程的两个实根,所以212241k x x k +=-,2122421k x x k +=-,于是CA ·CB 22221212(1)(2)()4k x x k m x x k m =+-++++22222222(1)(42)4(2)411k k k k m k m k k +++=-++-- 222222(12)2442(12)11m k m m m m k k -+-=+=-++--. 因为CA ·CB 是与k 无关的常数,所以440m -=,即1m =,此时CA ·CB =-1.当AB 与x 轴垂直时,点A B ,的坐标可分别设为(2,(2,此时CA ·CB =1,√2·1,-√2=-1.故在x 轴上存在定点(10)C ,,使CA ·CB 为常数.。
求轨迹方程的思路,方法和对应的题型
求轨迹方程的思路,方法和对应的题型全文共四篇示例,供读者参考第一篇示例:求轨迹方程是高中数学中一个重要的话题,不仅是对数学知识综合运用的考验,也是培养学生逻辑思维和解决问题能力的一个重要环节。
在学习求轨迹方程的过程中,学生需要掌握一定的方法和技巧,同时要注意对不同类型的题目进行分类和分析,以便能够正确地找到轨迹方程。
一、思路和方法求轨迹方程的基本思路是根据给定的条件,建立方程,然后通过逻辑推理和代数计算,最终得到表达轨迹的方程。
在具体进行求解的过程中,我们可以采用以下几种方法:1. 笛卡尔坐标系法在求轨迹方程的过程中,我们常常需要用到二维平面坐标系。
通过设定坐标轴,建立直角坐标系,将问题中的各个点的坐标表示成(x,y),然后根据给定条件进行分析,建立方程,最终得到轨迹方程。
2. 参数法有时候通过引入参数,可以简化问题的解决过程。
我们可以设一个参数t,用其作为辅助变量,来表达轨迹上各点的位置关系。
通过对参数的变化范围和步骤进行分析,最终得到轨迹方程。
3. 抽象化方法对于一些复杂的问题,我们可以通过抽象化的方法来求解轨迹方程。
将问题转化成一个更加简单的形式,然后进行分析和计算,最终得到轨迹方程。
二、对应的题型在求轨迹方程的过程中,我们会遇到各种各样的题目,不同的题目需要采用不同的方法和技巧进行求解。
下面列举一些常见的求轨迹方程的题型:1. 直线的轨迹方程有时候给定直线上的一个点和直线的方向向量,我们需要求直线的轨迹方程。
这时可以通过点斜式或者两点式求解。
给定圆心和半径,求圆的轨迹方程。
可以通过圆的标准方程(x-a)²+(y-b)²=r²来求解。
有时候会给定一组参数方程,我们需要求这些参数方程表示的轨迹方程。
可以通过把参数方程组合起来,得到关于自变量的函数表达式,最终得到轨迹方程。
第二篇示例:求轨迹方程是一种常见的数学问题,涉及到解析几何和函数方程的知识。
在数学学习中,经常会遇到求轨迹方程的题目,需要运用相关的方法和思路来解决。
求轨迹方程题型全归纳
求轨迹方程的六种常用方法1. 直接法根据已知条件及一些基本公式如两点间距离公式,点到直线的距离公式,直线的斜率公式等,直接列出动点满足的等量关系式,从而求得轨迹方程。
例1.已知线段AB =6,直线AM,BM相交于M,且它们的斜率之积是,求点M 的轨迹方程。
解:以AB所在直线为x轴,AB垂直平分线为y轴建立坐标系,则A(-3,0),B(3,0), 设点M的坐标为(x,y),则直线AM的斜率 ,直线B M 的斜由已知有化简,整理得点M的轨迹方程为练习:1. 平面内动点P到点F(10,0)的距离与到直线x=4的距离之比为2,则点P的轨迹方程是2. 设动直线I垂直于x轴,且与椭圆x²+2y²=4交于A、B两点,P是I上满足PA ·PB=1的点,求点P的轨迹方程。
3. 到两互相垂直的异面直线的距离相等的点,在过其中一条直线且平行于另一条直线的平面内的轨迹是( )A. 直线B. 椭圆C. 抛物线D. 双曲线2. 定义法通过图形的几何性质判断动点的轨迹是何种图形,再求其轨迹方程,这种方法叫做定义法,运用定义法,求其轨迹,一要熟练掌握常用轨迹的定义,如线段的垂直平分线,圆、椭圆、双曲线、抛物线等,二是熟练掌握平面几何的一些性质定理。
例2.若B(-8,0),C(8,0)为△ABC的两顶点, AC和AB两边上的中线长之和是 30,则△ABC的重心轨迹方程是。
解:设△ABC的重心为G(x,y),则由AC和AB两边上的中线长之和是 30可得,而点B(-8,0),C(8,0)为定点,所以点G的轨迹为以B,C 为焦点的椭圆。
所以由2a=20,c=8可得a=10,b=√ a² - c²=6故△ABC的重心轨迹方程是练习:4.方程2√(×-1)²+(y-1)²=1x+y+2)表示的曲线是()A. 椭圆B. 双曲线C. 线段D. 抛物线3. 点差法圆锥曲线中与弦的中点有关的问题可用点差法,其基本方法是把弦的两端点A(x,y1),B(×,y2)的坐标代入圆锥曲线方程,然而相减,利用平方差公式可得xi+×2,yi+y2,X1 - X2,yi - y2等关系式,由于弦AB 的中点P(x,y) 的坐标满足2x=x₁+×2, 2y=yi+y2且直线AB的斜率为,由此可求得弦AB中点的轨迹方程。
高中数学「求轨迹方程」知识点梳理+例题精练,建议收藏~
专题51曲线与方程-求轨迹方程【热点聚焦与扩展】纵观近几年的高考试题,高考对曲线与方程的考查,主要有以下两个方面:一是确定的轨迹的形式或特点;二是求动点的轨迹方程,同时考查到求轨迹方程的基本步骤和常用方法.一般地,命题作为解答题一问,小题则常常利用待定系数法求方程或利用方程判断曲线类别.本专题在分析研究近几年高考题及各地模拟题的基础上,重点说明求点的轨迹方程问题的常见解法.1、求点轨迹方程的步骤:(1)建立直角坐标系(2)设点:将所求点坐标设为(),x y ,同时将其他相关点坐标化(未知的暂用参数表示)(3)列式:从已知条件中发掘,x y 的关系,列出方程(4)化简:将方程进行变形化简,并求出,x y 的范围2、求点轨迹方程的方法(1)直接法:从条件中直接寻找到,x y 的关系,列出方程后化简即可(2)代入法:所求点(),P x y 与某已知曲线()00,0F x y =上一点()00,Q x y 存在某种关系,则可根据条件用,x y 表示出00,x y ,然后代入到Q 所在曲线方程中,即可得到关于,x y 的方程(3)定义法:从条件中能够判断出点的轨迹为学过的图形,则可先判定轨迹形状,再通过确定相关曲线的要素,求出曲线方程.常见的曲线特征及要素有:①圆:平面上到定点的距离等于定长的点的轨迹直角→圆:若AB AC ⊥,则A 点在以BC 为直径的圆上确定方程的要素:圆心坐标(),a b ,半径r②椭圆:平面上到两个定点的距离之和为常数(常数大于定点距离)的点的轨迹确定方程的要素:距离和2a ,定点距离2c③双曲线:平面上到两个定点的距离之差的绝对值为常数(小于定点距离)的点的轨迹注:若只是到两定点的距离差为常数(小于定点距离),则为双曲线的一支确定方程的要素:距离差的绝对值2a ,定点距离2c④抛物线:平面上到一定点的距离与到一定直线的距离(定点在定直线外)相等的点的轨迹确定方程的要素:焦准距:p .若曲线位置位于标准位置(即标准方程的曲线),则通过准线方程或焦点坐标也可确定方程(4)参数法:从条件中无法直接找到,x y 的联系,但可通过一辅助变量k ,分别找到,x y 与k 的联系,从而得到,x y 和k 的方程:()()x f k y g k =⎧⎪⎨=⎪⎩,即曲线的参数方程,消去参数k 后即可得到轨迹方程.【经典例题】例1.(2020·四川内江·高三三模)已知点()2,0A -、()3,0B ,动点(),P x y 满足2PA PB x ⋅=,则点P 的轨迹是()A.圆B.椭圆C.双曲线D.抛物线例2.(2020·广东深圳三模·)当点P 在圆221x y +=上变动时,它与定点()3,0Q -的连线PQ 的中点的轨迹方程是()A.()2234x y ++=B.()2231x y -+=C.()222341x y -+=D.()222341x y ++=例3.(2020·江西新余四中高三三模)如图:在正方体1111ABCD A B C D -中,点P 是1B C 的中点,动点M 在其表面上运动,且与平面11A DC 的距离保持不变,运行轨迹为S ,当M 从P 点出发,绕其轨迹运行一周的过程中,运动的路程x 与11l MA MC MD =++之间满足函数关系()l f x =,则此函数图像大致是()A.B.C.D.例4.(2020·上海市嘉定区第一中学高三三模)如图所示,在正方体1111ABCD A B C D -中,点P 是平面11ADD A 上一点,且满足ADP △为正三角形.点M 为平面ABCD 内的一个动点,且满足MP MC =.则点M 在正方形ABCD 内的轨迹为()A.B.C.D.例5.(2020·辽宁高三三模)已知半径为r 的圆M 与x 轴交于,E F 两点,圆心M 到y 轴的距离为d .若d EF =,并规定当圆M 与x 轴相切时0EF =,则圆心M 的轨迹为()A.直线B.圆C.椭圆D.抛物线例6.(2020·安徽庐阳·合肥一中高三三模)已知点A ,B 关于坐标原点O 对称,1AB =,以M 为圆心的圆过A ,B 两点,且与直线210y -=相切,若存在定点P ,使得当A 运动时,MA MP -为定值,则点P 的坐标为()A.104⎛⎫ ⎪⎝⎭,B.102⎛⎫ ⎪⎝⎭,C.14⎛⎫- ⎪⎝⎭0,D.102,⎛⎫- ⎪⎝⎭例7.(2020·东湖·江西师大附中高三三模)设过点(),P x y 的直线分别与x 轴的正半轴和y 轴的正半轴交于,A B 两点,点Q 与点P 关于y 轴对称,O 为坐标原点,若2BP PA = ,且1OQ AB ⋅= ,则点P的轨迹方程是()A.()223310,02x y x y +=>>B.()223310,02x y x y -=>>C.()223310,02x y x y -=>>D.()223310,02x y x y +=>>例8.(2016·山西运城·高三三模)已知为平面内两定点,过该平面内动点作直线的垂线,垂足为.若,其中为常数,则动点的轨迹不可能是()A.圆B.椭圆C.抛物线D.双曲线【精选精练】1.(2020·广东普宁·高三三模)与圆及圆都外切的圆的圆心在()A.一个椭圆上B.双曲线的一支上C.一条抛物线D.一个圆上2.(2020·上海高三三模)在平面直角坐标系内,到点()1,2A 和直线l :30x y +-=距离相等的点的轨迹是()A.直线B.抛物线C.椭圆D.双曲线3.(2020·全国高考真题)在平面内,A ,B 是两个定点,C 是动点,若=1AC BC ⋅,则点C 的轨迹为()A.圆B.椭圆C.抛物线D.直线4.(2020·辽宁沈阳·高三三模)已知椭圆22184x y +=,点A ,B 分别是它的左,右顶点.一条垂直于x 轴的动直线l 与椭圆相交于P ,Q 两点,又当直线l 与椭圆相切于点A 或点B 时,看作P ,Q 两点重合于点A 或点B ,则直线AP 与直线BQ 的交点M 的轨迹方程是()A.22184y x -=B.22184x y -=C.22148y x -=D.22148x y -=5.如图,在平面直角坐标系中,()1,0A 、()1,1B 、()0,1C ,映射将平面上的点(),P x y 对应到另一个平面直角坐标系上的点()222,P xy x y '-,则当点沿着折线运动时,在映射的作用下,动点P '的轨迹是()A.B.C.D.6.(2020·四川成都七中高三三模)正方形1111ABCD A B C D -中,若12CM MC =,P 在底面ABCD 内运动,且满足1DP CPD P MP=,则点P 的轨迹为()A.圆弧B.线段C.椭圆的一部分D.抛物线的一部分7.(2020·天水市第一中学高三三模)动点A 在圆221x y +=上移动时,它与定点()3,0B 连线的中点的轨迹方程是()A.22320x y x +++=B.22320x y x +-+=C.22320x y y +++=D.22320x y y +-+=8.(2020·北京市陈经纶中学高三三模)古希腊数学家阿波罗尼奥斯的著作《圆锥曲线论》中给出了圆的另一种定义:平面内,到两个定点A 、B 距离之比是常数λ(0,1)λλ>≠的点M 的轨迹是圆.若两定点A 、B 的距离为3,动点M 满足||2||MA MB =,则M 点的轨迹围成区域的面积为().A.πB.2πC.3πD.4π9.(2020·内蒙古包头·高三三模)已知定点,A B 都在平面α内,定点,,P PB C αα∉⊥是α内异于,A B 的动点,且PC AC ⊥,那么动点C 在平面α内的轨迹是()A.圆,但要去掉两个点B.椭圆,但要去掉两个点C.双曲线,但要去掉两个点D.抛物线,但要去掉两个点10.如图所示,已知12,F F 是椭圆()2222:10x y a b a b Γ+=>>的左,右焦点,P 是椭圆Γ上任意一点,过2F 作12F PF ∠的外角的角平分线的垂线,垂足为Q ,则点Q 的轨迹为()A.直线B.圆C.椭圆D.双曲线11.(2020·北京房山·高三三模)如图,在正方体1111ABCD A B C D -中,M 为棱AB 的中点,动点P 在平面11BCC B 及其边界上运动,总有1AP D M ⊥,则动点P 的轨迹为()A.两个点B.线段C.圆的一部分D.抛物线的一部分12.(2020·四川内江·高三三模)已知平面内的一个动点P 到直线l :x =433的距离与到定点F0)的距离之比为3,点11,2A ⎛⎫ ⎪⎝⎭,设动点P 的轨迹为曲线C ,过原点O 且斜率为k (k <0)的直线l 与曲线C 交于M 、N 两点,则△MAN 面积的最大值为()C.22D.1。
高三数学轨迹方程50题及答案
高(Gao)三数学轨迹方程50题及答案求曲线的轨迹方程常采用的方法有直接法、定义法、代入法、参数(Shu)法、交轨法,待定(Ding)系数法。
(1)直(Zhi)接法(Fa)直接法是将动点满足的几何条件或者等量关系,直接坐标化,列出等式化简即得动点轨迹方程.(2)定义法若动点轨迹的条件符合某一基本轨迹的定义(如椭圆、双曲线、抛物线、圆等),可用定义直接探求.(3)相关点法 根据相关点所满足的方程,通过转换而求动点的轨迹方程. (4)参数法若动点的坐标(x ,y )中的x ,y 分别随另一变量的变化而变化,我们可以以这个变量为参数,建立轨迹的参数方程.(5)交轨法若动点是受某一参量影响的两动曲线的交点,我们可以以消去这个参量得到动点轨迹方程.(6)待定系数法求轨迹方程,一定要注意轨迹的纯粹性和完备性.要注意区别“轨迹”与“轨迹方程”是两个不同的概念.一、选择题:1、方程y=表示的曲线是: ( ) A 、双曲线 B 、半圆 C 、两条射线 D 、抛物线2、方程[(x -1)2+(y+2)2](x 2-y 2)=0表示的图形是: ( ) A 、两条相交直线 B 、两条直线与点(1,-2) C 、两条平行线 D 、四条直线3、动点p 与定点A(-1,0), B(1,0)的连线的斜率之积为-1,则p 点的轨迹方程是: ( ) A 、x 2+y 2=1 B 、x 2+y 2=1(x ≠±1) C 、x 2+y 2=1(x ≠1) D 、y=4、一动点到两坐标轴的距离之和的2倍,等于该点到原点距离的平方,则动点的轨迹方程是: ( )A 、x 2+y 2=2(x+y)B 、x 2+y 2=2|x+y|C 、x 2+y 2=2(|x|+|y|)D 、x 2+y 2=2(x -y)5、动点P 到直线x=1的距离与它到点A (4,0)的距离之比为2,则P 点的轨迹是:( )A 、中心在原点的椭圆 B 、中心在(5,0)的椭圆 C 、中点在原点的双曲线 D 、中心在(5,0)的双曲线6、已知圆x 2+y 2=4,过A (4,0)作圆的割线ABC ,则弦BC 中点的轨迹方程是 ( ) A 、(x -2)2+y 2=4 B 、(x -2)2+y 2=4(0≤x <1) C 、(x -1)2+y 2=4 D 、(x -1)2+y 2=4(0≤x <1)7、已知M (-2,0),N (2,0),|PM|-|PN|=4,则动点P 的轨迹是: ( ) A 、双曲线 B 、双曲线左支 C 、一条射线 D 、双曲线右支8、若一动圆与两圆x 2+y 2=1, x 2+y 2-8x+12=0都外切,则动圆圆心的轨迹为: ( ) A 、抛物线 B 、圆 C 、双曲线的一支 D 、椭圆9、点M 到F (3,0)的距离比它到直线x+4=0 的距离小1,则点M 的轨迹方程是:( ) A 、y 2=12x B 、y 2=12x(x>0) C 、y 2=6x D 、y 2=6x(x>0)10、已知圆x 2+y 2=1,点A (1,0),△ABC 内接于圆,且∠BAC=60°,当B 、C 在圆上运动时,BC 中点的轨迹方程是 ( )A 、x 2+y 2=B 、x 2+y 2=C 、x 2+y 2=21(x<21)D 、x 2+y 2=41(x<41)11、抛物线过点M (2,-4),且以x 轴为准线,此抛物线顶点的轨迹方程是 ( )A、(x-2)2+(y+4)2=16B、(x-2)2+4(y+2)2=16 (0)yC、(x-2)2-(y+4)2=16D、(x-2)2+4(y+4)2=1612、椭(Tuo)圆(Yuan)C与椭(Tuo)圆关于(Yu)直线x+y=0对(Dui)称,椭圆C的方程是()A、 B、C、 D、13、设A1、A2是椭圆=1的长轴两个端点,P1、P2是垂直于A1A2的弦的端点,则直线A1P1与A2P2交点的轨迹方程为 ( )A. B.C. D.14、中心在原点,焦点在坐标为(0,±5)的椭圆被直线3x-y-2=0截得的弦的中点的横坐标为,则椭圆方程为 ( )15、已知⊙O:x2+y2=a2, A(-a, 0), B(a, 0), P1, P2为⊙O上关于x轴对称的两点,则直线AP1与直线BP2的交点P的轨迹方程为()A、x2+y2=2a2B、x2+y2=4a2C、x2-y2=4a2D、x2-y2=a2二、填空题:16、动圆与x轴相切,且被直线y=x所截得的弦长为2,则动圆圆心的轨迹方程为。
轨迹方程的 几种求法整理(例题+答案)
轨迹方程的六种求法整顿求轨迹方程是高考中罕有的一类问题.本文对曲线方程轨迹的求法做一归纳,供同窗们参考.求轨迹方程的一般办法:1.直译法:假如动点P的活动纪律是否合乎我们熟知的某些曲线的界说难以断定,但点P知足的等量关系易于树立,则可以先暗示出点P所知足的几何上的等量关系,再用点P的坐标(x,y)暗示该等量关系式,即可得到轨迹方程.2.界说法:假如动点P的活动纪律合乎我们已知的某种曲线(如圆.椭圆.双曲线.抛物线)的界说,则可先设出轨迹方程,再依据已知前提,待定方程中的常数,即可得到轨迹方程3. 参数法:假如采取直译法求轨迹方程难以奏效,则可追求引动员点P活动的某个几何量t,以此量作为参变数,分离树立P 点坐标x,y与该参数t的函数关系x=f(t), y=g(t),进而经由过程消参化为轨迹的通俗方程F(x,y)=0.4. 代入法(相干点法):假如动点P的活动是由别的某一点P'的活动激发的,而该点的活动纪律已知,(该点坐标知足某已知曲线方程),则可以设出P(x,y),用(x,y)暗示出相干点P'的坐标,然后把P'的坐标代入已知曲线方程,即可得到动点P的轨迹方程.5.交轨法:在求动点轨迹时,有时会消失请求两动曲线交点的轨迹问题,这种问题平日经由过程解方程组得出交点(含参数)的坐标,再消去参数求得所求的轨迹方程(若能直接消去两方程的参数,也可直接消去参数得到轨迹方程),该法经常与参数法并用. 6. 待定系数法:已知曲线是圆,椭圆,抛物线,双曲线等一.直接法把标题中的等量关系直接转化为关于x,y,的方程根本步调是:建系.设点.列式.化简.解释等,圆锥曲线尺度方程的推导. 1. 已知点(20)(30)A B -,,,,动点()P x y ,知足2PA PB x =·,求点P 的轨迹.26y x =+,2. 2.已知点B (-1,0),C (1,0),P 是平面上一动点,且知足.||||CB PB BC PC ⋅=⋅(1)求点P 的轨迹C 对应的方程;(2)已知点A (m,2)在曲线C 上,过点A 作曲线C 的两条弦AD 和AE,且AD⊥AE,断定:直线DE 是否过定点?试证实你的结论.(3)已知点A (m,2)在曲线C 上,过点A 作曲线C 的两条弦AD,AE,且AD,AE 的斜率k1.k2知足k1·k2=2.求证:直线DE 过定点,并求出这个定点.解:(1)设.4,1)1(||||),(222x y x y x CB PB BC PC y x P =+=+-⋅=⋅化简得得代入二.界说法应用所学过的圆的界说.椭圆的界说.双曲线的界说.抛物线的界说直接写出所求的动点的轨迹方程,这种办法叫做界说法.这种办法请求题设中有定点与定直线及两定点距离之和或差为定值的前提,或应用平面几何常识剖析得出这些前提.1. 若动圆与圆4)2(22=++y x 外切且与直线x=2相切,则动圆圆心的轨迹方程是解:如图,设动圆圆心为M,由题意,动点M 到定圆圆心(-2,0)的距离等于它到定直线x=4的距离,故所求轨迹是以(-2,0)为核心,直线x=4为准线的抛物线,并且p=6,极点是(1,0),启齿向左,所以方程是)1(122--=x y .选(B ).2.一动圆与两圆122=+y x 和012822=+-+x y x 都外切,则动圆圆心轨迹为解:如图,设动圆圆心为M,半径为r,则有.1,2,1=-+=+=MO MC r MC r MO 动点M 到两定点的距离之差为1,由双曲线界说知,其轨迹是以O.C 为核心的双曲线的左支3.在ABC △中,24BC AC AB =,,上的两条中线长度之和为39,求ABC △的重心的轨迹方程.解:以线段BC 地点直线为x 轴,线段BC 的中垂线为y 轴树立直角坐标系,如图1,M 为重心,则有239263BM CM +=⨯=. M ∴点的轨迹是认为B C ,核心的椭圆,个中1213c a ==,.225b a c =-=∴.∴所求ABC △的重心的轨迹方程为221(0)16925x y y +=≠. 留意:求轨迹方程时要留意轨迹的纯粹性与完整性.4.设Q 是圆x2+y2=4上动点另点A (3.0).线段AQ 的垂直等分线l 交半径OQ 于点P(见图2-45),当Q 点在圆周上活动时,求点P 的轨迹方程.解:衔接PA ∵l⊥PQ,∴|PA|=|PQ|.又P在半径OQ 上.∴|PO|+|PQ|=2.由椭圆界说可知:P 点轨迹是以O.A 为核心的椭圆.5.已知ΔABC中,A,B,C 所对应的边为a,b,c,且a>c>b,a,c,b 成等差数列,|AB|=2,求极点C 的轨迹方程 解:|BC|+|CA|=4>2,由椭圆的界说可知,点C 的轨迹是以A.B 为核心的椭圆,其长轴为4,焦距为2, 短轴长为23,∴椭圆方程为13422=+y x , 又a>b, ∴点C 在y 轴左侧,必有x<0,而C 点在x 轴上时不克不及组成三角形,故x≠─2,是以点C 的轨迹方程是:13422=+y x (─2<x<0) 点评:本题在求出了方程今后评论辩论x 的取值规模,现实上就是斟酌前提的须要性6.一动圆与圆22650x y x +++=外切,同时与圆226910x y x +--=内切,求动圆圆心M 的轨迹方程,并解释它是什么样的曲线.解析:(法一)设动圆圆心为(,)M x y ,半径为R ,设已知圆的圆心分离为1O .2O ,将圆方程分离配方得:22(3)4x y ++=,22(3)100x y -+=,当M 与1O 相切时,有1||2O M R =+①当M 与2O 相切时,有2||10O M R =-②将①②两式的双方分离相加,得21||||12O M O M +=, 即2222(3)(3)12x y x y +++-+=③移项再双方分离平方得:222(3)12x y x ++=+④双方再平方得:22341080x y +-=,整顿得2213627x y +=, 所以,动圆圆心的轨迹方程是2213627x y +=,轨迹是椭圆. (法二)由解法一可得方程2222(3)(3)12x y x y +++-+=, 由以上方程知,动圆圆心(,)M x y 到点1(3,0)O -和2(3,0)O 的距离和是常数12,所以点M 的轨迹是核心为1(3,0)O -.2(3,0)O ,长轴长等于12的椭圆,并且椭圆的中间在坐标原点,核心在x 轴上,∴26c =,212a =,∴3c =,6a =,∴236927b =-=,∴圆心轨迹方程为2213627x y +=. 三.相干点法此办法实用于动点随已知曲线上点的变更而变更的轨迹问题. 若动点P(x,y)随已知曲线上的点Q(x0,y0)的变动而变动,且x0.y0可用x.y 暗示,则将Q 点坐标表达式代入已知曲线方程,即得点P 的轨迹方程.这种办法称为相干点法(或代换法).x y 1O 2O P1.已知抛物线y2=x+1,定点A(3,1).B 为抛物线上随意率性一点,点P 在线段AB 上,且有BP∶PA=1∶2,当B 点在抛物线上变动时,求点P 的轨迹方程.剖析解:设点P(x,y),且设点B(x0,y0)∵BP∶PA=1∶2,且P 为线段AB 的内分点.2.双曲线2219x y -=有动点P ,12,F F 曲直线的两个核心,求12PF F ∆的重心M 的轨迹方程.解:设,P M 点坐标各为11(,),(,)P x y M x y ,∴在已知双曲线方程中3,1a b ==,∴9110c =+=∴已知双曲线两核心为12(10,0),(10,0)F F -,∵12PF F ∆消失,∴10y ≠ 由三角形重心坐标公式有11(10)10003x x y y ⎧+-+=⎪⎪⎨++⎪=⎪⎩,即1133x x y y =⎧⎨=⎩ . ∵10y ≠,∴0y ≠.3.已知点P 在双曲线上,将上面成果代入已知曲线方程,有22(3)(3)1(0)9x y y -=≠ 即所求重心M 的轨迹方程为:2291(0)x y y -=≠.4.(上海,3)设P 为双曲线-42x y2=1上一动点,O 为坐标原点,M 为线段OP 的中点,则点M 的轨迹方程是.解析:设P (x0,y0) ∴M(x,y ) ∴2,200y y x x ==∴2x=x0,2y =y0∴442x -4y2=1⇒x2-4y2=15.已知△ABC 的极点(30)(10)B C -,,,,极点A 在抛物线2y x =上活动,求ABC △的重心G 的轨迹方程.解:设()G x y ,,00()A x y ,,由重心公式,得003133x x y y -++⎧=⎪⎪⎨⎪=⎪⎩,,00323x x y y =+⎧⎨=⎩, ①∴. ② 又00()A x y ,∵在抛物线2y x =上,200y x =∴. ③将①,②代入③,得23(32)(0)y x y =+≠,即所求曲线方程是2434(0)3y x x y =++≠. 四.参数法假如不轻易直接找出动点的坐标之间的关系,可斟酌借助中央变量(参数),把x,y 接洽起来.若动点P (x,y )的坐标x 与y 之间的关系不轻易直接找到,而动点变更受到另一变量的制约,则可求出x.y 关于另一变量的参数方程,再化为通俗方程.1.已知线段2AA a '=,直线l 垂直等分AA '于O ,在l 上取两点P P ',,使有向线段OP OP ',知足4OP OP '=·,求直线AP 与A P ''的交点M 的轨迹方程. 解:如图2,以线段AA '地点直线为x 轴,以线段AA '的中垂线为y 轴树立直角坐标系.设点(0)(0)P t t ≠,, 则由题意,得40P t ⎛⎫' ⎪⎝⎭,. 由点斜式得直线AP A P '',的方程分离为4()()t y x a y x a a ta =+=--,. 两式相乘,消去t ,得222244(0)x a y a y +=≠.这就是所求点M 的轨迹方程.评析:参数法求轨迹方程,症结有两点:一是选参,轻易暗示出动点;二是消参,消参的门路灵巧多变.2.设椭圆中间为原点O,一个核心为F (0,1),长轴和短轴的长度之比为t .(1)求椭圆的方程;(2)设经由原点且斜率为t 的直线与椭圆在y 轴右边部分的交点为Q,点P 在该直线上,且12-=t t OQ OP,当t 变更时,求点P 的轨迹方程,并解释轨迹是什么图形.解:(1)设所求椭圆方程为).0(12222>>b a b x a y =+由题意得⎪⎩⎪⎨⎧==-,,122t b a b a 解得 ⎪⎪⎩⎪⎪⎨⎧-=-=.11.122222t b t t a 所以椭圆方程为222222)1()1(t y t x t t =-+-.(2)设点),,(),,(11y x Q y x P 解方程组⎩⎨⎧==-+-,,)1()1(1122122122tx y t y t x t t 得 ⎪⎪⎩⎪⎪⎨⎧-=-=.)1(2,)1(212121t t y t x 由12-=t t OQ OP 和1x x OQ OP =得⎪⎪⎩⎪⎪⎨⎧-=-=⎪⎪⎩⎪⎪⎨⎧==,2,2,2222t y t x t y t x 或 个中t >1.消去t,得点P 轨迹方程为)22(222>=x y x 和)22(222-<-=x y x .其轨迹为抛物线y x 222=在直线22=x 右侧的部分和抛物线y x 222-=在直线22-=x 在侧的部分.3.已知双曲线2222n y m x -=1(m >0,n >0)的极点为A1.A2,与y 轴平行的直线l 交双曲线于点P.Q 求直线A1P 与A2Q 交点M 的轨迹方程; 解设P 点的坐标为(x1,y1),则Q 点坐标为(x1,-y1),又有A1(-m,0),A2(m,0),则A1P 的方程为y=)(11m x mx y ++① A2Q 的方程为y=-)(11m x mx y --② ①×②得y2=-)(2222121m x m x y --③又因点P 在双曲线上,故).(,12212221221221m x m n y n y m x -==-即 代入③并整顿得2222n y m x +=1此即为M 的轨迹方程4.设点A 和B 为抛物线 y2=4px(p >0)上原点以外的两个动点,已知OA⊥OB,OM⊥AB,求点M 的轨迹方程,并解释它暗示什么曲线 解法一设A(x1,y1),B(x2,y2),M(x,y) (x≠0)直线AB 的方程为x=my+a由OM⊥AB,得m=-y x 由y2=4px 及x=my+a,消去x,得y2-4pmy -4pa=0所以y1y2=-4pa, x1x2=22122()(4)y y a p = 所以,由OA⊥OB,得x1x2 =-y1y2所以244a pa a p =⇒=故x=my+4p,用m=-y x代入,得x2+y2-4px=0(x≠0)故动点M 的轨迹方程为x2+y2-4px=0(x≠0),它暗示以(2p,0)为圆心,以2p 为半径的圆,去失落坐标原点 解法二设OA 的方程为y kx =,代入y2=4px 得222(,)p p A k k则OB 的方程为1y x k =-,代入y2=4px 得2(2,2)B pk pk -∴AB 的方程为2(2)1k y x p k=--,过定点(2,0)N p , 由OM⊥AB,得M 在以ON 为直径的圆上(O 点除外)故动点M 的轨迹方程为x2+y2-4px=0(x≠0),它暗示以(2p,0)为圆心,以2p 为半径的圆,去失落坐标原点 解法三设M(x,y) (x≠0),OA 的方程为y kx =,代入y2=4px 得222(,)p p A k k 则OB 的方程为1y x k =-,代入y2=4px 得2(2,2)B pk pk -由OM⊥AB,得M 既在以OA 为直径的圆222220p p x y x y k k+--=……①上, 又在以OB 为直径的圆222220x y pk x pky +-+=……②上(O 点除外),①2k ⨯+②得 x2+y2-4px=0(x≠0)故动点M 的轨迹方程为x2+y2-4px=0(x≠0),它暗示以(2p,0)为圆心,以2p 为半径的圆,去失落坐标原点5.过点A (-1,0),斜率为k 的直线l 与抛物线C :y2=4x 交于P,Q 两点.若曲线C 的核心F 与P,Q,R 三点按如图次序组成平行四边形PFQR,求点R 的轨迹方程;解:请求点R 的轨迹方程,留意到点R 的活动是由直线l 的活动所引起的,是以可以寻找点R 的横.纵坐标与直线l 的斜率k 的关系.然而,点R 与直线l 并没有直接接洽.与l 有直接接洽的是点P.Q,经由过程平行四边形将P.Q.R 这三点接洽起来就成为解题的症结.由已知:(1)l y k x =+,代入抛物线C :y2=4x 的方程,消x 得:204k y y k -+=∵C l P 直线交抛物线于两点.Q∴20410k k ⎧≠⎪⎨⎪∆=->⎩解得1001k k -<<<<或设1122(,),(,),(,)P x y Q x y R x y ,M 是PQ 的中点,则由韦达定理可知:122,2M y y y k+==将其代入直线l的方程,得2212M M x k y k ⎧=-⎪⎪⎨⎪=⎪⎩∵四边形PFQR 是平行四边形, ∴RF 中点也是PQ 中点M .∴242342M F Mx x x k y y k ⎧=-=-⎪⎪⎨⎪==⎪⎩又(1,0)(0,1)k ∈-⋃∴(1,)M x ∈+∞.∴点R 的轨迹方程为.1),3(42>+=x x y6.垂直于y 轴的直线与y 轴及抛物线y2=2(x –1)分离交于点A 和点P,点B 在y 轴上且点A 分OB 的比为1:2,求线段PB 中点的轨迹方程解:点参数法 设A(0,t),B(0,3t),则P(t2/2 +1, t),设Q(x,y),则有⎪⎪⎩⎪⎪⎨⎧=+=+=+=t tt y t t x 223)2(4121222,消去t 得:y2=16(x –21) 点评:本题采取点参数,即点的坐标作为参数在求轨迹方程时应剖析动点活动的原因,找出影响动点的身分,据此恰当地选择参数7.过双曲线C :x2─y2/3=1的左核心F 作直线l 与双曲线交于点P.Q,以OP.OQ 为邻边作平行四边形OPMQ,求M 的轨迹方程解:k 参数法 当直线l 的斜率k 消失时,取k 为参数,树立点M 轨迹的参数方程设M(x,y),P(x1,y1), Q(x2,y2),PQ 的中点N(x0,y0), l:y=k(x+2), 代入双曲线方程化简得:(3─k2)x2─4k2x─4k2─3=0,依题意k≠3,∴3─k2≠0,x1+x2=4k2/(3─k2), ∴x=2x0=x1+x2=4k2/(3─k2),y=2y0=2k(x0+2)=12k/(3─k2),∴⎪⎪⎩⎪⎪⎨⎧-=-=22231234k k y k k x , 消去k 并整顿,得点M 的轨迹方程为:1124)2(22=-+y x 当k 不消失时,点M(─4,0)在上述方程的曲线上,故点M 的轨迹方程为:点评:本题用斜率作为参数,即k 参数法,k 是经常应用的参数设点P.Q 的坐标,但没有求出P.Q 的坐标,而是用韦达定理求x1+x2,y1+y2,从整体上行止理,是处懂得析几何分解题的罕有技能8.(06辽宁,20)已知点11(,)A x y ,22(,)B x y 12(0)x x ≠是抛物线22(0)y px p =>上的两个动点,O 是坐标原点,向量OA ,OB 知足OA OB OA OB +=-.设圆C 的方程为(I) 证实线段AB 是圆C 的直径;(II)当圆C 的圆心到直线X2Y=0的距离的最小值为5时,求p 的值.解析:(I)证实1:22,()()OA OB OA OB OA OB OA OB +=-∴+=- 整顿得:0OA OB ⋅=12120x x y y ∴⋅+⋅=设M(x,y)是以线段AB 为直径的圆上的随意率性一点,则0MA MB ⋅= 即1212()()()()0x x x x y y y y --+--=整顿得:221212()()0x y x x x y y y +-+-+= 故线段AB 是圆C 的直径(II)解法1:设圆C 的圆心为C(x,y),则又因12120x x y y ⋅+⋅=1212x x y y ∴⋅=-⋅22121224y y y y p∴-⋅= 所以圆心的轨迹方程为222y px p =- 设圆心C 到直线x2y=0的距离为d,则当y=p 时,d=2p ∴=.五.交轨法一般用于求二动曲线交点的轨迹方程.其进程是选出一个恰当的参数,求出二动曲线的方程或动点坐标合适的含参数的等式,再消去参数,即得所求动点轨迹的方程.1. 已知两点)2,0(),2,2(Q P -以及一条直线ι:y=x,设长为2的线段AB 在直线λ上移动,求直线PA 和QB 交点M 的轨迹方程.解:PA 和QB 的交点M (x,y )随 A.B 的移动而变更,故可设)1,1(),,(++t t B t t A ,则PA :),2)(2(222-≠++-=-t x t t y QB :).1(112-≠+-=-t x t t y 消去t,得.082222=+-+-y x y x 当t=-2,或t=-1时,PA 与QB 的交点坐标也知足上式,所以点M 的轨迹方程是.0822222=+--+-y x x y x以上是求动点轨迹方程的重要办法,也是经常应用办法,假如动点的活动和角度有显著的关系,还可斟酌用复数法或极坐标法求轨迹方程.但无论用何办法,都要留意所求轨迹方程中变量的取值规模.2.自抛物线y2=2x 上随意率性一点P 向其准线l 引垂线,垂足为Q,贯穿连接极点O 与P 的直线和贯穿连接核心F 与Q 的直线交于R 点,求R 点的轨迹方程.解:设P (x1,y1).R (x,y ),则Q (-21,y1).F (21,0),∴OP 的方程为y=11x y x,①FQ 的方程为y=-y1(x -21).②由①②得x1=xx 212-,y1=xy 212-,代入y2=2x,可得y2=-2x2+x.六.待定系数法当曲线(圆.椭圆.双曲线以及抛物线)的外形已知时,一般可用待定系数法解决.1.已知A,B,D三点不在一条直线上,且(20)A -,,(20)B ,,2AD =,1()2AE AB AD =+.(1)求E 点轨迹方程;(2)过A 作直线交认为A B ,核心的椭圆于M N ,两点,线段MN 的中点到y 轴的距离为45,且直线MN 与E 点的轨迹相切,求椭圆方程.解:(1)设()E x y ,,由1()2AE AB AD =+知E 为BD 中点,易知(222)D x y -,.又2AD =,则22(222)(2)4x y -++=.即E 点轨迹方程为221(0)x y y +=≠; (2)设1122()()M x y N x y ,,,,中点00()x y ,.由题意设椭圆方程为222214x y a a +=-,直线MN 方程为(2)y k x =+.∵直线MN 与E 点的轨迹相切, 2211k k =+∴,解得33k =±. 将33y =±(2)x +代入椭圆方程并整顿,得222244(3)41630a x a x a a -++-=,2120222(3)x x a x a +==--∴,又由题意知045x =-,即2242(3)5a a =-,解得28a =.故所求的椭圆方程为22184x y +=.2.已知圆C1的方程为(x -2)2+(y -1)2=320,椭圆C2的方程为2222by ax +=1(a >b >0),C2的离心率为22,假如C1与C2订交于A.B 两点,且线段AB 恰为圆C1的直径,求直线AB 的方程和椭圆C2的方程..解:由e=22,可设椭圆方程为22222b y b x +=1,又设A(x1,y1).B(x2,y2),则x1+x2=4,y1+y2=2, 又2222222212212,12by bx by bx +=+=1,两式相减,得22221222212by y bx x -+-=0,2121x x y y --=-1,故直线AB 的方程为y=-x+3,代入椭圆方程得3x2-12x+18-2b2=0. 有Δ=24b2-72>0,又|AB|=3204)(221221=-+x x x x ,得3209722422=-⋅b ,解得b2=8.故所求椭圆方程为81622y x +=1.3.已知直线1+-=x y 与椭圆)0(12222>>=+b a by a x 订交于A.B 两点,且线段AB 的中点在直线02:=-y x l 上.(1)求此椭圆的离心率;(2 )若椭圆的右核心关于直线l 的对称点的在圆422=+y x 上,求此椭圆的方程. 讲授:(1)设A.B 两点的坐标分离为⎪⎩⎪⎨⎧=++-=11).,(),,(22222211b y ax x y y x B y x A ,则由得02)(2222222=-+-+b a a x a x b a , 依据韦达定理,得∴线段AB的中点坐标为(222222,ba b b a a ++).由已知得2222222222222)(22,02c a c a b a ba b b a a =∴-==∴=+-+ 故椭圆的离心率为22=e .(2)由(1)知,c b =从而椭圆的右核心坐标为),0,(b F 设)0,(b F 关于直线2:=-y x l 的对称点为,02221210),,(000000=⨯-+-=⋅--yb x b x y y x 且则解得b y b x 545300==且由已知得 4,4)54()53(,42222020=∴=+∴=+b b b y x故所求的椭圆方程为14822=+y x .。
高考动点轨迹方程的常用求法(含练习题及答案)资料
高考动点轨迹方程的用求法〔含练习题及答案〕轨迹方程的经典求法一、定义法:运用有关曲线的定义求轨迹方程.例2:在4ABC 中,BC 24, AC, AB 上的两条中线长度之和为 39,求4ABC 的重心的轨迹方 程.:P 点轨迹为抛物线.应选D.、代入法:此方法适用于动点随曲线上点的变化而变化的轨迹问题 例3:△ ABC 的顶点B( 3,0) C(1,0),顶点A 在抛物线y轨迹方程.3 1 X O,一 、一 一 x一; 一,x 3x 2,①解:设G(x, y) , A(x 0, y o ),由重心公式,得3:,y 弛,V .3y.②3又「 A(x .,y .)在抛物线y x 2上,「. y .x 2 .③将①,②代入③,得3y (3x 2)2(y .),即所求曲线方程是y 3x 2 4x -(y 0).3解:以线段BC 所在直线为x 轴,线段BC 的中垂线为 y 轴建立直角坐标系,如图1, M 为重2 心,那么有 BM CM — 3926 . 3「.M 点的轨迹是以B, C 为焦点的椭圆, 其中 c 12, a 13 . b ,a 2 c 2 5.2:所求^ABC 的重心的轨迹方程为 — 169 2y—i(y 0) . 25、直接法:直接根据等量关系式建立方程.例 1 :点 A( 2,0) B(3,0),动点 P(x,y)满足P A PBx 2 ,那么点P 的轨迹是(A.圆B.椭圆C,双曲线D.抛物线解析:由题知PA ( 2 x y) , PB(3x, y),由 PA PB x 2 ,得(2 x)(3x) y 2x 2,即x 2上运动,求 4ABC 的重心G 的6四、待定系数法:当曲线的形状时,一般可用待定系数法解决(1)求E 点轨迹方程;(2)过A 作直线交以A, B 为焦点的椭圆于M, N 两点,线段MN 的中点到y 轴的距离为公,5且直线MN 与E 点的轨迹相切,求椭圆方程.解:(1)设 E(x, y),由 AE -(AB AD)知 E 为 BD 中点,易知 D(2x 2,2y). 2又 AD 2 ,那么(2x 2 2)2 (2 y)2 4.即 E 点轨迹方程为 x 2 y 2 1(y 0); (2)设 M(x, y i ), N(x 2, v2 ,中点(x 0, y (o ). 22由题意设椭圆方程为xr1 ,直线MN 方程为y k(x 2).a a 4••・直线MN 与E 点的轨迹相切,,/k L 1,解得k 眄.k 1 3将yX3(x 2)代入椭圆方程并整理,得4(a 2 3)x 2 4a 2x 16a 2 3a 4 0, 3 2x 〔 x 2a一 x o ------------------- -2——,2 2(a 3)222又由题意知x o4,即 T-解得a 2 8.故所求的椭圆方程为 上 £ 1.5 2(a 3) 58 4五、参数法:如果不易直接找出动点坐标之间的关系,可考虑借助中间变量(参数),把例4:线段AA 2a ,直线l 垂直平分AA 于O ,在l 上取两点P, P ,使其满足解:如图2,以线段AA 所在直线为x 轴,以线段AA 的中垂线为y 轴建 立直角坐标系. 设点 P(0, t)(t 0), 那么由题意,得P 0彳.由点斜式得直线AP, A P 的方程分别为y -(x a), y —(x a).ata例5:A, B, D 三点不在一条直线上,且A( 2,0) , B(2,0) , A D 2, A E ^(A B A D).4,求直线AP 与AP 的交点M 的轨迹方程.两式相乘,消去t,得4x 2 a 2y 2 4a 2(y 0).这就是所求点M 的轨迹方程.评析:参数法求轨迹方程,关键有两点:一是选参,容易表示出动点;二是消参,消参的途 径灵活多变.配套练习、选择题1.椭圆的焦点是 F i 、F 2, P 是椭圆上的一个动点,如果延长 F i P 到Q,使得|PQ|二|PF 2|,那么动点 Q的轨迹是()二、填空题迹方程为4.高为5 m 和3 m 的两根旗杆竖在水平地面上,且相距 10 m ,如果把两旗杆底部的坐标分别确定为 A(- 5,0)、B(5, 0),那么地面观测两旗杆顶端仰角相等的点的轨迹方程是三、解做题5.A 、B 、C 是直线l 上的三点,且|AB|=|BC|=6,.0'切直线l 于点A,又过B 、C 作.O'异于l 的 两切线,设这两切线交于点P,求点P 的轨迹方程.A.圆B.椭圆C.双曲线的一支D.抛物线2一 .一 X 2.设A 1、A 2是椭圆一 92匕=1 的长轴两个端点,P i 、P 2是垂直于 A 1A 2的弦的端点,那么直线A i P i 与A 2P 2交点的轨迹方程为22A.L 工9 42 B.—92 C.—92D.—93. △ ABC 中,A 为动点,B 、B(-2a 1,0),C (2,0),且满足条件 sinC —sinB=^sinA,那么动点 A 的轨的交点为Q,求Q点的轨迹方程.. ..x2=1的实轴为A1A2,点P是双曲线上的一个动点,弓I A i QXA l P, A2QLA2P, A1Q与A2Q6.双曲线—ab22 2.「一 x y8.椭圆 - q=1(a>b>0),点P为其上一点,F i、F2为椭圆的焦点,/ F1PF2的外角平分线为1,点a bF2关于1的对称点为Q, F2Q交1于点R(1)当P点在椭圆上运动时,求R形成的轨迹方程;(2)设点R形成的曲线为C,直线1: y=k(x+J2a)与曲线C相交于A、B两点,当^ AOB的面积取得最大值时,求k的值.参考答案配套练习一、1.解析:|PF i|+|PF2|=2a,|PQ|=|PF2|,,|PF i|+|PF2|=|PF i|+|PQ|=2a,即|F i Q|=2a,.••动点Q到定点F i的距离等于定长2a,故动点Q的轨迹是圆答案:A2.解析:设交点P(x,y) ,A i(—3,0),A2(3,0),P i(X0,y o),P2(X0, —y o)A i、P i、P 共线,-一应—y—A2、P2、P 共线,x x0 x 3y Vo yx x0x 3解得x o=9,y o 型,代入得冬- 久-i,即止亡 i x x 9 49 4仅供学习与交流,如有侵权请联系网站删除谢谢6答案:C二、3.解析:由 sinC —sinB=』sinA,得 c — b=- a, 2 2・•・应为双曲线一支,且实轴长为 a ,故方程为285x+100=0.答案:4x 2+4y 2—85x+1..=.三、5.解:设过 B 、C 异于l 的两切线分别切..’于D 、E |BA|=|BD|, |PD|=|PE|, |CA|=|CE|,故 |PB|+|PC|=|BD |+|PD|+FC|=|BA|+|PE|+FC| 二|BA|+|CE|=|AB|+|CA|=6+I2=I8>6=|BC|,故由椭圆定义知,点P 的轨迹是以 B 、C 为两焦点的椭圆,以 l所在的直线为x 轴,以BC 的中点为原点,建立坐标系,可求得动点P 的轨迹方程为 6.解:设 P(x o ,y o) (xw ± a),Q(x,y).「A i (—a,0),A 2(a,0).22 b 2x .2—aVJa 为2,即 b 2(-x 2)-a 2(---)2=a 2b 2yQ 点坐标为(x i , —y i ),又有 A i ( — m,0),A 2(m,0),22 2 答案:竽崇i(xJ)4.解析:设 P(x,y),依题意有 5 ,(x 5)2 y 2(x 5)2=,化简彳导P 点轨迹方程为4x 2+4y 2 -yy一八 x a由条件yx a y . x . ax . y . x . ay .x(x . a)22x a那么A i P 的方程为:y= -y I (xx i mm)A 2Q 的方程为:y=-必/-------- (x x i mm)m 2)i6x 2 * 2~ a i6y ar i(x ).3a 2 4两点,两切线交于点 P.由切线的性质知:2 2x y一 一 二i(yw0)8i 72而点P(x o ,y o )在双曲线上,化简得Q 点的轨迹方程为:a 2x 2—b 2y 2=a 4(xw ± a).7.解:⑴设P 点的坐标为(x i ,y i ),那么2n 八,2 〜2、 2 (x 1 m ). m21=1.此即为M 的轨迹方程. n(2)当mwn 时,M 的轨迹方程是椭圆.2 m 一 一 2 2e =lm__.e= ----------- , m8.解:(1)二.点F 2关于l 的对称点为Q,连接PQ,,/F 2PR=/QPR, |F 2R|=|QR|, |PQ|=|PF 2|又由于l 为/ F 1PF 2外角的平分线,故点 F i 、P 、Q 在同一直线上,设存在R(X 0,y o) ,Q(x i ,y i ),F i(— c,0),F 2(c,0).|F 1Q|=|F 2P|+|PQ|=|F 1P|+|PF 2|=2a,那么(x 1+c)2+y 12=(2a)2x 〔 c 2y 1 2得 x 1二2x .一 c,y 1=2y o .(2x o )2+(2y o )2=(2a)2, •1- x o 2+y o 2=a 2 故R 的轨迹方程为:x 2+y 2=a 2(yw 0)(2)如右图,••• S AAOB =1|QA| |OB| - sinAOB= a- sinAOB , 一 , .... 1c 当/AOB=90 时,S AAOB 最大值为-a 2. 此时弦心距|OC|二 I"2ak|1 k2 ,在 RtAAOC 中,/ AOC=45° ,|OC | | . 2ak |2 1 .3cos45 ——,k ——.22,离心率m n(ii)当mvn 时,焦点坐标为(0, 土 Jm ―n 7,准线方程为y= ±2n 2,n —2 ,离心率 m 2 2n m e= ------------- n又因点P 在双曲线上,2代入③并整理得 Jm(i )当m>n 时,焦点坐标为(土 J m ―n 2 ,0),准线方程为x=±xo又V .|OA| a1 k2 2 32 2x y7.双曲线—今=1(m>0,n>0)的顶点为A i、A2,与y轴平行的直线l交双曲线于点P、Q. m n(1)求直线A1P与A2Q交点M的轨迹方程;(2)当mwn时,求所得圆锥曲线的焦点坐标、准线方程和离心率① X ②得:y2=_ 2yi2(x2x i m。
轨迹方程的求法及典型例题含答案
轨迹方程的求法及典型例题(含答案) 轨迹方程是描述一条曲线在平面上的运动轨迹的方程。
在二维平面上,轨迹方程通常由一元二次方程、三角函数方程等形式表示。
在三维空间中,轨迹方程可能会更加复杂,可以由参数方程或参数化表示。
一、轨迹方程的求解方法:1. 根据题目给出的条件,确定轨迹上的点的特点或特殊性质。
2. 将轨迹上的点的坐标表示为一般形式。
3. 将坐标表示代入到方程中,消去多余的变量,得到轨迹方程。
二、典型例题及其解答:【例题1】已知点P(x,y)到坐标原点O的距离为定值d,求点P的轨迹方程。
解答:1. 设点P(x,y)的坐标表示为一般形式。
2. 根据题目给出的条件,根据勾股定理,可以得到点P到原点O的距离公式:d = √(x^2 + y^2)3. 将坐标表示代入到距离公式中,得到轨迹方程:d^2 = x^2 + y^2【例题2】已知点P(x,y)到直线Ax+By+C=0的距离为定值d,求点P的轨迹方程。
解答:1. 设点P(x,y)的坐标表示为一般形式。
2. 根据题目给出的条件,点P到直线Ax+By+C=0的距离公式为:d = |Ax+By+C| / √(A^2 + B^2)3. 将点P的坐标表示代入到距离公式中,得到轨迹方程:(Ax+By+C)^2 = d^2(A^2 + B^2)【例题3】已知点P(x,y)满足|x|+|y|=a,求点P的轨迹方程。
解答:1. 设点P(x,y)的坐标表示为一般形式。
2. 根据题目给出的条件,可以得到两种情况下的轨迹方程:当x≥0,y≥0时,有x+y=a,即y=a-x;当x≥0,y<0时,有x-y=a,即y=x-a;当x<0,y≥0时,有-x+y=a,即y=a+x;当x<0,y<0时,有-x-y=a,即y=-a-x。
3. 将上述四种情况合并,得到轨迹方程:|x|+|y|=a【例题4】已知点P(x,y)满足y = a(x^2 + b),求点P的轨迹方程。
轨迹方程求法及经典例题汇总
轨迹方程求法及经典例题汇总一、轨迹为圆的例题:1、 必修2课本P 124B 组2:长为2a 的线段的两个端点在x 轴和y 轴上移动,求线段AB 的中点M 的轨迹方程:必修2课本P 124B 组:已知M 与两个定点(0,0),A (3,0)的距离之比为21,求点M 的轨迹方程;(一般地:必修2课本P 144B 组2:已知点M(x ,y )与两个定点21,M M 的距离之比为一个常数m ;讨论点M(x ,y )的轨迹方程(分m =1,与m ≠1进行讨论)2、 必修2课本P 122例5:线段AB 的端点B 的坐标是(4,3),端点A 在圆1)1(22=++y x 上运动,求AB 的中点M 的轨迹。
(2013新课标2卷文20)在平面直角坐标系xOy 中,已知圆P 在x 轴上截得线段长为22,在y 轴上截得线段长为32。
(1)求圆心的P 的轨迹方程;(2)若P 点到直线x y =的距离为22,求圆P 的方程。
如图所示,已知P (4,0)是圆x 2+y 2=36内的一点,A 、B 是圆上两动点,且满足∠APB =90°,求矩形APBQ 的顶点Q 的轨迹方程.解:设AB 的中点为R ,坐标为(x ,y ),则在Rt △ABP 中,|AR |=|PR |.又因为R 是弦AB 的中点,依垂径定理:在Rt △OAR 中,|AR |2=|AO |2-|OR |2=36-(x 2+y 2)又|AR |=|PR |=22)4(y x +-所以有(x-4)2+y 2=36-(x 2+y 2),即x 2+y 2-4x -10=0因此点R 在一个圆上,而当R 在此圆上运动时,Q 点即在所求的轨迹上运动.设Q (x ,y ),R (x 1,y 1),因为R 是PQ 的中点,所以x 1=2,241+=+y y x ,代入方程x 2+y 2-4x -10=0,得244)2()24(22+⋅-++x y x -10=0整理得:x 2+y 2=56,这就是所求的轨迹方程.在平面直角坐标系xOy 中,点)3,0(A ,直线42:-=x y l .设圆C 的半径为1,圆心在l 上. (1)若圆心C 也在直线1-=x y 上,过点A 作圆C 的切线,求切线的方程;(2)若圆C 上存在点M ,使MO MA 2=,求圆心C 的横坐标a 的取值范围. (2013陕西卷理20)已知动圆过定点)0,4(A ,且在y 轴上截得弦MN 的长为8. (1) 求动圆圆心的轨迹C 的方程;(2) 已知点)0,1(-B ,设不垂直于x 轴的直线l 与轨迹C 交于不同的两点Q P ,,若x 轴是PBQ ∠的角平分线,证明直线l 过定点。
解析几何题型方法归纳(配例题)
解析几何解题方法归纳一.求轨迹方程(常出现在小题或大题第一问): 1.【待定系数法】(1)已知焦点在x 轴上的椭圆两个顶点的坐标为(4,0±),离心率为12,其方程为 .2211612x y += 提示:2a c =,且24,2,12a c b =∴==.(2)已知椭圆中心在原点,焦距为2倍,则该椭圆的标准方程是 .提示:已知2222242,16b a b c a a b c⎧⎧===⎪⎪⇒⇒⇒⎨⎨=-=⎪⎪⎩⎩221164x y +=与221416x y +=为所求. (3)已知双曲线12222=-b y a x 的离心率332=e ,过),0(),0,(b B a A -的直线到原点的距离是.23求双曲线的方程; 解:∵(1),332=a c 原点到直线AB :1=-by a x 的距离.3,1.2322==∴==+=a b c ab b a ab d .故所求双曲线方程为 .1322=-y x2. 【定义法】由动点P 向圆221x y +=引两条切线PA 、PB ,切点分别为A 、B ,60APB ∠=︒,则动点P 的轨迹方程为 .解:设(,)P x y ,连结OP ,则90,30PAO APO ∠=︒∠=︒, 所以22OP OA ==. 3.【几何性质代数化】与圆2240x y x +-=外切,且与y 轴相切的动圆圆心的轨迹方程是____________.y 2=8x (x >0)或y =0(x <0) 提示:若动圆在y 轴右侧,则动圆圆心到定点(2,0)与到定直线x =-2的距离相等,其轨迹是抛物线;若动圆在y 轴左侧,则动圆圆心轨迹是x 负半轴.4.【相关点法】P 是抛物线2210x y -+=上的动点,点A 的坐标为(0,1-),点M 在直线PA 上,且2PM MA =,则点M 的轨迹方程为解:设点(,)M x y ,由2PM MA =,()3,32P x y ∴+,代入2210x y -+=得22(3)3210x y --+=即218310x y --=5.【参数法】一元二次函数22()(21)1()f x x m x m m R =+++-∈的图象的顶点的轨迹方程是提示:设22(21)1()y x m x m m R =+++-∈顶点坐标为(,)x y ,则22211224(1)(21)544m x m m m y m +⎧=-=--⎪⎪⎨--+⎪==--⎪⎩,消去m ,得顶点的轨迹方程34x y -= 二.常见几何关系转化与常见问题类型 (1)中点问题:韦达定理、点差法变式:A 、B 、C 、D 共线且AB =CD 问题,可以转化为共中点问题,或者弦长相等; 例1:已知双曲线中心在原点且一个焦点为F,0),直线1y x =-与其相交于M 、N 两点,MN 中点的横坐标为23-,则此双曲线的方程为 。
高考数学题型归纳:轨迹方程的求解
高考数学题型归纳:轨迹方程的求解高考数学题型归纳:轨迹方程的求解符合一定条件的动点所形成的图形,或者说,符合一定条件的点的全体所组成的集合,叫做满足该条件的点的轨迹.轨迹,包含两个方面的问题:凡在轨迹上的点都符合给定的条件,这叫做轨迹的纯粹性(也叫做必要性);凡不在轨迹上的点都不符合给定的条件,也就是符合给定条件的点必在轨迹上,这叫做轨迹的完备性(也叫做充分性).【轨迹方程】就是与几何轨迹对应的代数描述。
一、求动点的轨迹方程的基本步骤⒈建立适当的坐标系,设出动点M的坐标;⒉写出点M的集合;⒊列出方程=0;⒋化简方程为最简形式;⒌检验。
二、求动点的轨迹方程的常用方法:求轨迹方程的方法有多种,常用的有直译法、定义法、相关点法、参数法和交轨法等。
⒈直译法:直接将条件翻译成等式,整理化简后即得动点的轨迹方程,这种求轨迹方程的方法通常叫做直译法。
⒉定义法:如果能够确定动点的轨迹满足某种已知曲线的定义,则可利用曲线的定义写出方程,这种求轨迹方程的方法叫做定义法。
⒊相关点法:用动点Q的坐标x,y表示相关点P的坐标x0、y0,然后代入点P的坐标(x0,y0)所满足的曲线方程,整理化简便得到动点Q轨迹方程,这种求轨迹方程的方法叫做相关点法。
⒋参数法:当动点坐标x、y之间的直接关系难以找到时,往往先寻找x、y与某一变数t的关系,得再消去参变数t,得到方程,即为动点的轨迹方程,这种求轨迹方程的方法叫做参数法。
⒌交轨法:将两动曲线方程中的参数消去,得到不含参数的方程,即为两动曲线交点的轨迹方程,这种求轨迹方程的方法叫做交轨法。
*直译法:求动点轨迹方程的一般步骤①建系建立适当的坐标系;“教书先生”恐怕是市井百姓最为熟悉的一种称呼,从最初的门馆、私塾到晚清的学堂,“教书先生”那一行当怎么说也算是让国人景仰甚或敬畏的一种社会职业。
只是更早的“先生”概念并非源于教书,最初出现的“先生”一词也并非有传授知识那般的含义。
《孟子》中的“先生何为出此言也?”;《论语》中的“有酒食,先生馔”;《国策》中的“先生坐,何至于此?”等等,均指“先生”为父兄或有学问、有德行的长辈。
求轨迹方程的题目型全归纳
求轨迹方程的六种常用方法1.直接法根据已知条件及一些基本公式如两点间距离公式,点到直线的距离公式,直线的斜率公式等,直接列出动点满足的等量关系式,从而求得轨迹方程。
4 例1.已知线段AB 6,直线AM,BM 相交于M ,且它们的斜率之积是,求点M9 的轨迹方程。
解:以AB 所在直线为x轴,AB 垂直平分线为y轴建立坐标系,则A( 3,0), B(3,0) ,设点M 的坐标为(x, y),则直线AM 的斜率k AM y (x 3) ,直线BM 的斜x3率k AM y (x 3)x3由已知有y y 4(x 3)x 3 x 3 922化简,整理得点M 的轨迹方程为x y 1(x 3)94练习:1.平面内动点P到点F (10,0) 的距离与到直线x 4的距离之比为2,则点P 的轨迹方程是。
设动直线l 垂直于x轴,且与椭圆x2 2y2 4交于A、B两点,PA 2.P是l 上满足PB 1的点,求点P 的轨迹方程。
3. 到两互相垂直的异面直线的距离相等的点, 在过其中一条直线且平行于另一条直线的平面内的轨迹是 ( ) A .直线B.椭圆 C .抛物线D.双曲线2.定义法通过图形的几何性质判断动点的轨迹是何种图形,再求其轨迹方程,这种方法叫做定义法,运用定义法,求其轨迹,一要熟练掌握常用轨迹的定义,如线段的垂直平分线,圆、椭圆、双曲线、抛物线等,二是熟练掌握平面几何的一些性质定理。
例2.若B( 8,0), C(8,0) 为ABC 的两顶点,AC 和AB 两边上的中线长之和是30 ,则ABC 的重心轨迹方程是__________________ 。
解:设ABC的重心为G(x,y),则由AC 和AB两边上的中线长之和是30可得2BG CG 30 20,而点B( 8,0), C(8,0)为定点,所以点G的轨迹为以B,C3为焦点的椭圆。
所以由2a 20, c 8可得a 10,b a2 c2 622故ABC 的重心轨迹方程是x y 1(y 0)100 36练习:4.方程2 (x 1)2(y 1)2| x y 2| 表示的曲线是 ( )A .椭圆B.双曲线C.线段D.抛物线3.点差法圆锥曲线中与弦的中点有关的问题可用点差法,其基本方法是把弦的两端点A(x1,y1),B(x2,y2) 的坐标代入圆锥曲线方程,然而相减,利用平方差公式可得x1 x2,y1 y2 ,x1 x2 ,y1 y2 等关系式,由于弦AB 的中点P (x, y) 的坐标满足2x x1 x2 ,2y y1 y2且直线AB的斜率为y2 y1,由此可求得弦AB中点的轨迹方程。
高三数学轨迹方程50题及答案
求轨迹方程求曲线的轨迹方程常采用的方法有直接法、定义法、代入法、参数法、交轨法,待定系数法。
(1)直接法直接法是将动点满足的几何条件或者等量关系,直接坐标化,列出等式化简即得动点轨迹方程.(2)定义法若动点轨迹的条件符合某一基本轨迹的定义(如椭圆、双曲线、抛物线、圆等),可用定义直接探求.(3)相关点法 根据相关点所满足的方程,通过转换而求动点的轨迹方程. (4)参数法若动点的坐标(x ,y )中的x ,y 分别随另一变量的变化而变化,我们可以以这个变量为参数,建立轨迹的参数方程.(5)交轨法 若动点是受某一参量影响的两动曲线的交点,我们可以以消去这个参量得到动点轨迹方程. (6)待定系数法求轨迹方程,一定要注意轨迹的纯粹性和完备性.要注意区别“轨迹”与“轨迹方程”是两个不同的概念.一、选择题:1、方程y=122+--x x 表示的曲线是: ( ) A 、双曲线 B 、半圆 C 、两条射线 D 、抛物线2、方程[(x -1)2+(y+2)2](x 2-y 2)=0表示的图形是: ( ) A 、两条相交直线 B 、两条直线与点(1,-2) C 、两条平行线 D 、四条直线3、动点p 与定点A(-1,0), B(1,0)的连线的斜率之积为-1,则p 点的轨迹方程是: ( )A 、x 2+y 2=1B 、x 2+y 2=1(x ≠±1)C 、x 2+y 2=1(x ≠1)D 、y=21x -4、一动点到两坐标轴的距离之和的2倍,等于该点到原点距离的平方,则动点的轨迹方程是: ( )A 、x 2+y 2=2(x+y)B 、x 2+y 2=2|x+y|C 、x 2+y 2=2(|x|+|y|)D 、x 2+y 2=2(x -y) 5、动点P 到直线x=1的距离与它到点A (4,0)的距离之比为2,则P 点的轨迹是:( )A 、中心在原点的椭圆 B 、中心在(5,0)的椭圆C 、中点在原点的双曲线D 、中心在(5,0)的双曲线6、已知圆x 2+y 2=4,过A (4,0)作圆的割线ABC ,则弦BC 中点的轨迹方程是 ( ) A 、(x -2)2+y 2=4 B 、(x -2)2+y 2=4(0≤x <1) C 、(x -1)2+y 2=4 D 、(x -1)2+y 2=4(0≤x <1)7、已知M (-2,0),N (2,0),|PM|-|PN|=4,则动点P 的轨迹是: ( ) A 、双曲线 B 、双曲线左支 C 、一条射线 D 、双曲线右支8、若一动圆与两圆x 2+y 2=1, x 2+y 2-8x+12=0都外切,则动圆圆心的轨迹为: ( ) A 、抛物线 B 、圆 C 、双曲线的一支 D 、椭圆9、点M 到F (3,0)的距离比它到直线x+4=0 的距离小1,则点M 的轨迹方程是:( ) A 、y 2=12x B 、y 2=12x(x>0) C 、y 2=6x D 、y 2=6x(x>0) 10、已知圆x 2+y 2=1,点A (1,0),△ABC 内接于圆,且∠BAC=60°,当B 、C 在圆上运动时,BC 中点的轨迹方程是 ( ) A 、x 2+y 2=21 B 、x 2+y 2=41 C 、x 2+y 2=21(x<21) D 、x 2+y 2=41(x<41) 11、抛物线过点M (2,-4),且以x 轴为准线,此抛物线顶点的轨迹方程是 ( )A 、(x -2)2+(y+4)2=16 (0)y ¹B 、(x -2)2+4(y+2)2=16 (0)y ¹C 、(x -2)2-(y+4)2=16D 、(x -2)2+4(y+4)2=1612、椭圆C 与椭圆14)2(9)3(22=-+-y x 关于直线x+y=0对称,椭圆C 的方程是( ) A 、22(2)(3)149x y +++= B 、22(2)(3)194x y --+= C 、22(2)(3)194x y +++= D 、22(2)(3)149x y --+= 13、设A 1、A 2是椭圆4922y x +=1的长轴两个端点,P 1、P 2是垂直于A 1A 2的弦的端点,则直线A 1P 1与A 2P 2交点的轨迹方程为 ( )A.14922=+y xB.14922=+x y222214、中心在原点,焦点在坐标为(0,±52)的椭圆被直线3x -y -2=0截得的弦的中点的横坐标为21,则椭圆方程为 ( ) 12575 D. 17525C.1252752 B. 1752252A.22222222=+=+=+=+y x y x y x y x15、已知⊙O :x 2+y 2=a 2, A(-a, 0), B(a, 0), P 1, P 2为⊙O 上关于x 轴对称的两点,则直线AP 1与直线BP 2的交点P 的轨迹方程为 ( ) A 、x 2+y 2=2a 2 B 、x 2+y 2=4a 2 C 、x 2-y 2=4a 2 D 、x 2-y 2=a 2 二、填空题:16、动圆与x 轴相切,且被直线y=x 所截得的弦长为2,则动圆圆心的轨迹方程为 。
专题37 求曲线的轨迹方程(学生版)高中数学53个题型归纳与方法技巧总结篇
专题37求曲线的轨迹方程【考点预测】曲线的方程和方程的曲线在直角坐标系中,如果是某曲线C (看作适合某种条件的点的集合或轨迹)上的点与一个二元方程(),0f x y =的实数解建立了如下的关系:(1)曲线上的点的坐标都是这个方程的解(完备性)(2)以这个方程的解为坐标的点都是曲线上的点(纯粹性)那么,这个方程叫做曲线的方程,这条曲线叫方程的曲线.事实上,曲线可以看作一个点集C ,以一个二元方程的解作为坐标的点也组成一个点集F ,上述定义中(1)(2)C FC F F C⇔⊆⎧⇔=⎨⇔⊆⎩条件条件【方法技巧与总结】一.直接法求动点的轨迹方程利用直接法求动点的轨迹方程的步骤如下:(1)建系:建立适当的坐标系(2)设点:设轨迹上的任一点(),P x y (3)列式:列出有限制关系的几何等式(4)代换:将轨迹所满足的条件用含,x y 的代数式表示,如选用距离和斜率公式等将其转化为,x y 的方程式化简(5)证明(一般省略):证明所求方程即为符合条件的动点轨迹方程(对某些特殊值应另外补充检验).简记为:建设现代化,补充说明.注:若求动点的轨迹,则不但要求出动点的轨迹方程,还要说明轨迹是什么曲线.二.定义法求动点的轨迹方程回顾之前所讲的第一定义的求解轨迹问题,我们常常需要把动点P 和满足焦点标志的定点连起来判断.熟记焦点的特征:(1)关于坐标轴对称的点;(2)标记为F 的点;(3)圆心;(4)题目提到的定点等等.当看到以上的标志的时候要想到曲线的定义,把曲线和满足焦点特征的点连起来结合曲线定义求解轨迹方程.三.相关点法求动点的轨迹方程如果动点P 的运动是由另外某一点P '的运动引发的,而该点的运动规律已知,(该点坐标满足某已知曲线方程),则可以设出(,)P x y ,用(,)x y 表示出相关点P '的坐标,然后把P '的坐标代入已知曲线方程,即可得到动点P 的轨迹方程.四.交轨法求动点的轨迹方程在求动点的轨迹方程时,存在一种求解两动曲线交点的轨迹问题,这类问题常常可以先高中数学53个题型归纳与方法技巧总结篇解方程组得出交点(含参数)的坐标,再消去参数得出所求轨迹的方程,该方法经常与参数法并用,和参数法一样,通常选变角、变斜率等为参数.五.参数方程法求动点的轨迹方程动点(,)M x y 的运动主要是由于某个参数ϕ的变化引起的,可以选参、设参,然后用这个参数表示动点的坐标,即()()x f y g ϕϕ=⎧⎨=⎩,再消参.六.点差法求动点的轨迹方程圆锥曲线中涉及与弦的中点有关的轨迹问题可用点差法,其基本方法是把弦的两端点1122(,),(,)A x y B x y 的坐标代入圆锥曲线方程,两式相减可得12x x +,12y y +,12x x -,12y y -等关系式,由于弦AB 的中点(,)P x y 的坐标满足122x x x =+,122y y y =+且直线AB 的斜率为2121y y x x --,由此可求得弦AB 中点的轨迹方程.【题型归纳目录】题型一:直接法题型二:定义法题型三:相关点法题型四:交轨法题型五:参数法题型六:点差法题型七:立体几何与圆锥曲线的轨迹题型八:复数与圆锥曲线的轨迹题型九:向量与圆锥曲线的轨迹题型十:利用韦达定理求轨迹方程【典例例题】题型一:直接法例1.(2022·全国·高三专题练习)已知点P 是椭圆22164x y +=上任意一点,过点P 作x 轴的垂线,垂足为M ,则线段PM 的中点(),N x y 的轨迹方程为______.【方法技巧与总结】如果动点满足的几何条件本身就是一些几何量的等量关系且这些几何简单明了且易于表达,那么只需把这些关系“翻译”成含,x y 的等式,就可得到曲线的轨迹方程,由于这种求轨迹方程的过程不需要其他步骤,也不需要特殊的技巧,所以被称为直接法.例2.(2022·河南河南·模拟预测(理))已知平面上的动点P 到点(0,0)O 和(2,0)A 的距离之P 到x 轴的距离最大值为_____.例3.(2022·全国·高三课时练习)已知点(),P x y 到定点10,2M ⎛⎫⎪⎝⎭的距离比它到x 轴的距离大12.(1)求点P 的轨迹C 的方程;例4.(2022·湖南·模拟预测)已知平面直角坐标系中有两点()()122,0,2,0F F -,且曲线1C 上的任意一点P 都满足125PF PF ⋅=.求曲线1C 的轨迹方程并画出草图;例5.(2022·湖南湘潭·高三开学考试)已知,A B 两点的坐标分别为(2,0),(2,0)-,直线,AP BP的交点为P ,且它们的斜率之积14-.求点P 的轨迹E 的方程;题型二:定义法例6.(2022·全国·高三专题练习)已知定点A (1,1)和直线L :x +y -2=0,那么到定点A 和到定直线L 距离相等的点的轨迹为()A .椭圆B .双曲线C .抛物线D .直线【方法技巧与总结】若动点的轨迹符合某一已知曲线(圆,椭圆,双曲线,抛物线)的定义,则可根据定义直接求出方程中的待定系数,故称待定系数法.例7.(2022·全国·高三专题练习)已知圆F :()2221x y -+=,动圆P 与圆F 外切,且与定直线3x =-相切,设动点P 的轨迹为E .求E 的方程;例8.(2022·江西南昌·三模(理))已知两条直线1l :2320x y -+=,2l :3230x y -+=,有一动圆(圆心和半径都在变动)与1l ,2l 都相交,并且1l ,2l 被截在圆内的两条线段的长度分别是定值26,24,则动圆圆心的轨迹是()A .圆B .椭圆C .双曲线D .直线例9.(2022·上海市大同中学高三开学考试)已知定点()4,0P -和定圆22:8Q x y x +=,动圆M 和圆Q 外切,且经过点P ,求圆心M 的轨迹方程_______例10.(2022·全国·高三专题练习)设动圆M 与y 轴相切且与圆C :2220x y x +-=相外切,则动圆圆心M 的轨迹方程为______.例11.(2022·黑龙江·哈尔滨市第六中学校高三期末)已知圆1C :()2239x y ++=和圆2C :()2231x y +-=,动圆M 同时与圆1C 及圆2C 外切,则动圆的圆心M 的轨迹方程为______.例12.(2022·全国·高三专题练习(理))设圆222150x y x ++-=的圆心为A ,直线l 过点()10B ,且与x 轴不重合,l 交圆A 于,C D 两点,过B 作AC 的平行线交AD 于点E .证明EA EB +为定值,并写出点E 的轨迹方程;例13.(2022·全国·高三专题练习)已知P 是圆22:(1)16A x y -+=上的动点,M 是线段AP 上一点,()1,0B -,且PM MB =,求点M 的轨迹C 的方程例14.(2022·河南郑州·高三阶段练习(理))如图,已知圆1F 的方程为2249(1)8x y ++=,圆2F 的方程为221(1)8x y -+=,若动圆M 与圆1F 内切与圆2F 外切.求动圆圆心M 的轨迹C 的方程;例15.(2022·山东潍坊·模拟预测)已知圆M 与圆1F :()2221x y ++=外切,同时与圆2F :()22249x y -+=内切.说明动点M 的轨迹是何种曲线,并求其轨迹方程;例16.设圆222150x y x ++-=的圆心为A ,直线l 过点(1,0)B 且与x 轴不重合,l 交圆A 于C ,D 两点,过B 作AC 的平行线交AD 于点E ,求点E 的轨迹方程.题型三:相关点法例17.(2022·全国·高三课时练习)设,A B 分别是直线2y x =和2y x =-上的动点,且满足AB 4=,则AB 的中点M 的轨迹方程为()A .22116y x +=B .22116x y +=C .22116y x -=D .22116x y -=【方法技巧与总结】有些问题中,所求轨迹上点(),M x y 的几何条件是与另一个已知方程的曲线上点(),M x y '''相关联的,这时要通过建立这两点之间关系,并用,x y 表示,y x '',再,y x ''将代入已知曲线方程,即得,x y 关系式.例18.(2022·全国·高三课时练习)已知ABC 的顶点()3,0B -,()1,0C ,顶点A 在抛物线2y x 上运动,则ABC 的重心G 的轨迹方程为______.例19.(2022·全国·高三课时练习)当点P 在圆221x y +=上变动时,它与定点()3,0Q 的连线PQ 的中点的轨迹方程是()A .22650x y x +++=B .22680x y x +-+=C .22320x y x +-+=D .22320x y x +++=例20.(2022·全国·高三课时练习)已知A 、B 分别是直线y =和y =上的两个动点,线段AB 的长为P 是AB 的中点.求动点P 的轨迹C 的方程.题型四:交轨法例21.(2022·四川凉山·高三期末(理))设椭圆22148x y +=的上、下顶点分别为A 、B ,直线y m =与椭圆交于两点M 、N ,则直线AM 与直线BN 的交点F 一定在下列哪种曲线上()A .抛物线B .双曲线C .椭圆D .圆【方法技巧与总结】在求动点的轨迹方程时,存在一种求解两动曲线交点的轨迹问题,这类问题常常可以先解方程组得出交点(含参数)的坐标,再消去参数得出所求轨迹的方程,该方法经常与参数法并用,和参数法一样,通常选变角、变斜率等为参数.例22.(多选题)(2022·江苏·南京市第一中学高三开学考试)已知椭圆C :2212x y a +=(2a >)P (1,1)的直线与椭圆C 交于A ,B 两点,且满足AP PB λ= .动点Q 满足AQ QB λ=-,则下列结论正确的是()A .3a =B .动点Q 的轨迹方程为2360x y +-=C .线段OQ (OD .线段OQ (O 例23.(2022·北京市朝阳区人大附中朝阳分校高三阶段练习)在矩形ABB A ''中,8,6A A AB ='=,把边AB 分成n 等份,在B B '的延长线上,以B B '的n 分之一为单位长度连续取点.过边AB 上各分点和点A '作直线,过B B '延长线上的对应分点和点A 作直线,这两条直线的交点为P ,如图建立平面直角坐标系,则点P 满足的方程是___________.例24.(河北省邢台市名校联盟2022届高三上学期开学考试数学试题)已知1A 、2A 为椭圆C :2213y x +=的左右顶点,直线0x x =与C 交于AB 、两点,直线1A A 和直线2A B 交于点P .求点P 的轨迹方程.例25.(2022·河南·新蔡县第一高级中学高三阶段练习(理))已知反比例函数1y x=的图像C 是以x 轴与y 轴为渐近线的等轴双曲线.(1)求双曲线C 的顶点坐标与焦点坐标;(2)设1A 、2A 为双曲线C 的两个顶点,点()00,M x y 、()00,N y x 是双曲线C 上不同的两个动点.求直线1A M 与2A N 交点的轨迹E 的方程;例26.(2022·全国·高三专题练习)如图,在平面直角坐标系中,O 为原点,()1,0F ,过直线l :4x =左侧且不在x 轴上的动点P ,作PH l ⊥于点H ,HPF ∠的角平分线交x 轴于点M ,且2PH MF =,记动点P 的轨迹为曲线C .(1)求曲线C 的方程;(2)已知曲线C 与x 轴正半轴交于点1A ,过点()4,0S -的直线1l 交C 于A ,B 两点,AS BS λ=,点T 满足AT TB λ=,其中1λ<,证明:12ATB TSO ∠=∠.例27.(2022·全国·模拟预测(文))设抛物线C :28x y =,过点()0,1的直线l 与C 交于A ,B 两点,分别过点A ,B 作抛物线的切线,两切线相交于点P ,求点P 的轨迹方程;例28.(2022·湖南·长郡中学模拟预测)已知双曲线C :()222210,0x y a b a b -=>>的离心率为2,1F ,2F 为双曲线C 的左、右焦点,()2,3A 是双曲线C 上的一个点.(1)求双曲线C 的方程;(2)若过点()4,0B 且不与渐近线平行的直线l (斜率不为0)与双曲线C 的两个交点分别为M ,N ,记双曲线C 在点M ,N 处的切线分别为1l ,2l ,点P 为直线1l 与直线2l 的交点,试求点P的轨迹方程(注:若双曲线的方程为22221x y a b -=,则该双曲线在点()00,x y 处的切线方程为00221x x y ya b-=)例29.(2022·全国·高三专题练习)已知抛物线C 的顶点为原点,其焦点()0,F c (0)c >到直线:20l x y --=(1)求抛物线C 的方程;(2)设点0(P x ,0)y 为直线l 上一动点,过点P 作抛物线C 的两条切线PA ,PB ,其中A ,B 为切点,求直线AB 的方程,并证明直线AB 过定点Q ;(3)过(2)中的点Q 的直线m 交抛物线C 于A ,B 两点,过点A ,B 分别作抛物线C 的切线1l ,2l ,求1l ,2l 交点M 满足的轨迹方程.例30.(2022·上海·高三专题练习)双曲线22221x y a b -=的实轴为12A A ,点P 是双曲线上的一个动点,引11A Q A P ⊥,22A Q A P ⊥,1A Q 与2A Q 的交点为Q ,求点Q 的轨迹方程.例31.(2022·全国·高三课时练习)已知点()2,2P -、()0,2Q 以及直线:l y x =,的线段AB 在直线l 上移动(如图所示),求直线PA 和QB 的交点M 的轨迹方程.题型五:参数法例32.(2022·新疆·皮山县高级中学高三期末(文))已知()2cos ,4sin A θθ,()2sin ,4cos B θθ-,当R θ∈时,线段AB 的中点轨迹方程为()A .22128x y -=B .22128x y +=C .22182y x -=D .22182x y +=【方法技巧与总结】有时不容易得出动点应满足的几何条件,也无明显的相关点,但却较容易发现(或经分析可发现)该动点常常受到另一个变量(角度,斜率,比值,解距或时间等)的制约,即动点坐标(),x y 中的,x y 分别随另一变量的变化而变化,我们称这个变量为参数,由此建立轨迹的参数方程,这种方法叫参数法.例33.(2022·全国·高三专题练习(理))已知曲线:C y =和直线l :y =kx (k ≠0),若C 与l 有两个交点A 和B ,求线段AB 中点的轨迹方程.例34.(2022·江西景德镇·高三期末(理))已知两条动直线14:xl y λ=与2:l y λ=(0λ≠,λ为参数)的交点为P .求点P 的轨迹C 的方程;例35.(2022·北京市第五十七中学高三期中)P 是圆224x y +=上的动点,P 点在x 轴上的射影是D ,点M 满足2DP DM =.(1)求动点M 的轨迹C 的方程;(2)过11,2⎛⎫⎪⎝⎭Q 作弦且弦被Q 平分,求此弦所在的直线方程及弦长;(3)过点(30)N ,的直线l 与动点M 的轨迹C 交于不同的两点A ,B ,求以OA ,OB 为邻边的平行四边形OAEB 的顶点E 的轨迹方程.例36.(2022·全国·高三专题练习)已知直线l 1:y =k 1x 和l 2:y =k 2x 与抛物线y 2=2px (p >0)分别相交于A ,B 两点(异于原点O )与直线l :y =2x +p 分别相交于P ,Q 两点,且122k k ⋅=-.求线段AB 的中点M 的轨迹方程;例37.(2022·江苏·周市高级中学高三阶段练习)已知直线:1,0,sin cos 2x y l πθθθ⎛⎫+=∈ ⎪⎝⎭与坐标轴的交点分别为A ,B ,则线段AB 的中点C 的轨迹与坐标轴围成的图形面积为()A .2πB .4πC .8πD .16π例38.(2022·全国·高三课时练习)已知曲线()1:10x y C a b ab+=>>所围成的封闭图形的面积为曲线1C 记2C 是以曲线1C 与坐标轴的交点为顶点的椭圆.(1)求椭圆2C 的标准方程;(2)设AB 是过椭圆2C 中心的任意弦,l 是线段AB 的垂直平分线,M 是l 上异于椭圆中心的点,MO OA λ=(O 为坐标原点,0λ≠),当点A 在椭圆2C 上运动时,求点M 的轨迹方程.题型六:点差法例39.(2022·全国·高三专题练习)椭圆2214x y +=,则该椭圆所有斜率为12的弦的中点的轨迹方程为_________________.【方法技巧与总结】圆锥曲线中涉及与弦的中点有关的轨迹问题可用点差法.例40.(2022·全国·高三课时练习)斜率为2的平行直线截双曲线221x y -=所得弦的中点的轨迹方程是______.例41.(2022·全国·高三专题练习)已知椭圆22143x y +=的弦AB 所在直线过点()1,1E ,求弦AB 中点F 的轨迹方程.例42.(2022·上海市行知中学高三开学考试)已知曲线Γ上一动点P 到两定点()10,2F -,()20,2F 的距离之和为,过点()1,0Q -的直线L 与曲线Γ相交于点()11,A x y ,()22,B x y .(1)求曲线Γ的方程;(2)动弦AB 满足:AM MB =,求点M 的轨迹方程;例43.(2022·全国·高三期中)(1)若双曲线的一条渐近线方程为230x y +=,且两顶点间的距离为6,求该双曲线方程.(2)一组平行直线2y x b =+与椭圆221129x y +=相交,求弦的中点的轨迹方程.例44.(2022·上海·高三专题练习)已知椭圆22142x y +=,()11,M x y ,()22,N x y 是椭圆上的两个不同的点.(1)若点()1,1A 满足MA AN =,求直线MN 的方程;(2)若()11,M x y ,()22,N x y 的坐标满足121220x x y y +=,动点P 满足2OP OM ON =+(其中O 为坐标原点),求动点P 的轨迹方程,并说明轨迹的形状;题型七:立体几何与圆锥曲线的轨迹例45.(2022·全国·高三专题练习)在正方体1111ABCD A B C D -中,E 为11A D 的中点,F 为底面ABCD 上一动点,且EF 与底面ABCD 所成的角为60︒.若该正方体外接球的表面积为12π,则动点F 的轨迹长度为().A B C D 【方法技巧与总结】利用坐标法解决.例46.(2022·全国·高三专题练习)如图,点A 是平面α外一定点,过A 作平面α的斜线l ,斜线l 与平面α所成角为50︒.若点P 在平面α内运动,并使直线AP 与l 所成角为35︒,则动点P 的轨迹是()A .圆B .椭圆C .抛物线D .双曲线的一支例47.(2022·北京市第十三中学高一阶段练习)如图,正方体1l l l ABCD A B C D -中,P 为底面ABCD 上的动点,且1PE A C ⊥于E ,且PA PE =,则点P 的轨迹是()A .线段B .圆弧C .抛物线的一部分D .以上答案都不对例48.(多选题)(2022·广东·大埔县虎山中学模拟预测)如图所示,在棱长为2的正六面体1111ABCD A B C D -中,O 为线段1A C 的中点(图中未标出),以下说法正确的有().A .线段CD 中点为E ,则直线OE 与平面11A BCD 所成角的正弦值为12.B .在线段AB 上取靠近B 点的三等分点F ,则直线OF 与直线11CD 不共面.C .在平面ABCD 上存在一动点P ,满足2AP BP +=,则P 点轨迹为一椭圆.D .在平面11C D AB 上存在一动点Q ,点Q 到点O 的距离和点Q 到直线AB 的距离相等,则点Q .题型八:复数与圆锥曲线的轨迹例49.(2022·河南开封·高三阶段练习(文))已知i 为虚数单位,且013i12iz -=+,复数z 满足01z z -=,则复数z 对应点的轨迹方程为()A .()()22114x y -++=B .()()22114x y -++=C .()()22111x y +++=D .()()22111x y -+-=【方法技巧与总结】(1)利用坐标法解决.(2)利用复数几何意义例50.(多选题)(2022·重庆一中高一期末)若复数z 在复平面对应的点为Z ,则下来说法正确的有()A .若||3z =,则Z 在复平面内的轨迹为圆B .若|4||4|8z z ++-=,则Z 在复平面内的轨迹为椭圆C .不可能存在复数z 同时满足||3z =和|4||4|10z z ++-=D .若||3z =,则|4||4|z z ++-的取值范围为[8,10]例51.(2022·上海市徐汇中学高三期末)如果复数z 满足6|13i 2i |z z +++--=,则复数z 对应的点的轨迹是()A .直线B .椭圆C .线段D .圆例52.(2022·全国·高一课时练习)已知复数z 满足2||2||30z z --=,则复数z 对应的点的轨迹是___________.例53.(2022·江西赣州·高三期末(文))设复数()1cos i sin z θθ=++⋅(i 为虚数单位),则复数z 在复平面内对应的点(),x y 的轨迹方程为___________.题型九:向量与圆锥曲线的轨迹例54.(2022·全国·高三课时练习)已知()2,1A ,()2,1B -,O 为坐标原点,动点(),P x y 满足OP mOA nOB =+ ,其中,R m n ∈,且2212m n +=,则动点P 的轨迹方程是()A .2214y x +=B .2214x y +=C .2214y x -=D .2214x y -=【方法技巧与总结】(1)利用坐标法解决.(2)利用向量几何意义例55.(2022·安徽·合肥一六八中学模拟预测(理))已知向量a ,b是单位向量,若0a b ⋅= ,且345c a c b -+-= ,则c a +的取值范围是___________.例56.(2022·全国·高三课时练习)设过点(),P x y 的直线分别与x 轴的正半轴和y 轴的正半轴交于A 、B 两点,点Q 与点P 关于y 轴对称,O 为坐标原点.若2BP PA =,且1OQ AB ⋅= ,则点P 的轨迹方程是______.例57.(2022·陕西师大附中高一期中)已知向量a ,b ,c ,满足4a = ,a 与b 的夹角为3,()3c c a ⋅-=-,则b c - 的最小值为()A .2B 32C 1D 1-例58.(2022·全国·高三专题练习)已知椭圆的标准方程为22142x y +=.(1)设动点P 满足:OP OM ON =+,其中M ,N 是椭圆上的点,直线OM 与ON 的斜率之积为12-,问:是否存在两个定点12,F F ,使得12PF PF +为定值?若存在,求12,F F 的坐标;若不存在,说明理由.(2)设动点P 满足:2OP OM ON =+,其中M ,N 是椭圆上的点,直线OM 与ON 的斜率之积为12-,问:是否存在点F ,使得点P 到F 的距离与到直线x =的距离之比为定值?若存在,求F 的坐标;若不存在,说明理由.例59.(2022·重庆八中高三阶段练习)抛物线2:2(0)C y px p =>的焦点为F ,P 在抛物线C 上,O 是坐标原点,当PF 与x 轴垂直时,OFP △的面积为1.(1)求抛物线C 的方程;(2)若A ,B 都在抛物线C 上,且4OA OB ⋅=-,过坐标原点O 作直线AB 的垂线,垂足是G ,求动点G 的轨迹方程.例60.(2022·全国·高三专题练习)已知平面上一定点(20)C ,和直线l :x =8,P 为该平面上一动点,作PQ ⊥l ,垂足为Q ,且1()2PC PQ + ·1()2PC PQ -=0.求动点P 的轨迹方程;题型十:利用韦达定理求轨迹方程例61.(2022·全国·高三课时练习)设椭圆E 的方程为2212x y +=,斜率为1的动直线l 交椭圆E 于A ,B 两点,以线段AB 的中点C 为圆心,AB 为直径作圆,圆心C 的轨迹方程为______.【方法技巧与总结】联立直线与曲线方程得出两根之和与之积关系,再进行转化.例62.(2022·全国·高三专题练习)设不同的两点A ,B 在椭圆22:23C x y +=上运动,以线段AB 为直径的圆过坐标原点O ,过O 作OM AB ⊥,M 为垂足.求点M 的轨迹方程.例63.(2022·浙江·杭州市富阳区场口中学高三期末)已知椭圆C ,其焦点是双曲线2213y x -=的顶点.(1)写出椭圆C 的方程;(2)直线l :y kx m =+与椭圆C 有唯一的公共点M ,过点M 作直线l 的垂线分别交x 轴、y 轴于(),0A x ,()0,B y 两点,当点M 运动时,求点(),P x y 的轨迹方程,并说明轨迹是什么曲线.例64.(2022·广东·高三阶段练习)已知椭圆()2222:10x y E a b a b +=>>其左、右顶点分别是A 、B ,且AB 4=.(1)求椭圆E 的标准方程;(2)已知点M 、N 是椭圆E 上异于A 、B 的不同两点,设点P 是以AM 为直径的圆1O 和以AN 为直径的圆2O 的另一个交点,记线段AP 的中点为Q ,若1AM AN k k =-⋅,求动点Q 的轨迹方程.例65.(2022·全国·高三专题练习)已知三角形ABC 的三个顶点均在椭圆224580x y +=上,且点A 是椭圆短轴的一个端点(点A 在y 轴正半轴上).(1)若三角形ABC 的重心是椭圆的右焦点,试求直线BC 的方程;(2)若角A 为090,AD 垂直BC 于D ,试求点D 的轨迹方程.【过关测试】一、单选题1.(2022·江苏省木渎高级中学模拟预测)复平面中有动点Z ,Z 所对应的复数z 满足|3||i |-=-z z ,则动点Z 的轨迹为()A .直线B .线段C .两条射线D .圆2.(2022·全国·高三专题练习)正三角形OAB 的边长为1,动点C 满足OC OA OB λμ=+,且221λλμμ++=,则点C 的轨迹是()A .线段B .直线C .射线D .圆3.(2022·全国·高三专题练习)四边形ABCD 为梯形,且2AB DC = ,||||2DC DA == ,3DAB π∠=,点P 是四边形ABCD 内及其边界上的点.若()()4AP DP PB BA -⋅+=-,则点P 的轨迹的长度是()A B .C .4πD .16π4.(2022·全国·高三专题练习)已知复数z 满足i i 2z z ++-=,则z 的轨迹为()A .线段B .直线C .椭圆D .椭圆的一部分5.(2022·河南安阳·高三开学考试(文))平面上到两条相交直线的距离之和为常数的点的轨迹为平行四边形,其中这两条相交直线是该平行四边形对角线所在的直线.若平面上到两条直线0x y -=,0y =的距离之和为2的点P 的轨迹为曲线Γ,则曲线Γ围成的图形面积为()A .B .C .D .6.(2022·河南·郑州四中高三阶段练习(理))下列四个命题中不正确的是()A .若动点P 与定点()4,0A -、()4,0B 连线PA 、PB 的斜率之积为定值49,则动点P 的轨迹为双曲线的一部分.B .设m ,R n ∈,常数0a >,定义运算“*”:()()22*m n m n m n =+--,若0x ≥,则动点(P x 的轨迹是抛物线的一部分.C .已知两圆()22:11A x y ++=、圆()22:125B x y -+=,动圆M 与圆A 外切、与圆B 内切,则动圆的圆心M 的轨迹是椭圆.D .已知()7,0A ,()7,0B -,()2,12C -,椭圆过A ,B 两点且以C 为其一个焦点,则椭圆的另一个焦点的轨迹为双曲线.7.(2022·全国·高三专题练习)已知正方体1111ABCD A B C D -的棱长为2,E F 、分别是棱1AA 、11A D 的中点,点P 为底面四边形ABCD 内(包括边界)的一动点,若直线1D P 与平面BEF 无公共点,则点P 的轨迹长度为()A .2BCD .8.(2022·安徽·合肥一中模拟预测(文))首钢滑雪大跳台是冬奥史上第一座与工业旧址结合再利用的竞赛场馆,它的设计创造性地融入了敦煌壁画中飞天的元素,建筑外形优美流畅,飘逸灵动,被形象地称为雪飞天.中国选手谷爱凌和苏翊鸣分别在此摘得女子自由式滑雪大跳台和男子单板滑雪大跳台比赛的金牌.雪飞天的助滑道可以看成一个线段PQ 和一段圆弧QM 组成,如图所示.假设圆弧QM所在圆的方程为22:(25)(2)162C x y ++-=,若某运动员在起跳点M 以倾斜角为45 且与圆C 相切的直线方向起跳,起跳后的飞行轨迹是一个对称轴在y 轴上的抛物线的一部分,如下图所示,则该抛物线的轨迹方程为()A .232(1)y x =--B .21364y x =--C .232(1)x y =--D .2364x y =-+二、多选题9.(2022·福建省福州第一中学三模)已知曲线C 是平面内到定点(0,1)F 和定直线:1l y =-的距离之和等于4的点的轨迹,若()00,P x y 在曲线C 上,则下列结论正确的是()A .曲线C 关于x 轴对称B .曲线C 关于y 轴对称C .022x - D .1||4PF 10.(2022·全国·高三专题练习)已知抛物线C :22y px =(p >0)的焦点F 与圆22:20E x y x +-=的圆心重合,直线l 与C 交于1122(,)(,)A x y B x y 、两点,且满足:0OA OB ⋅=(其中O 为坐标原点且A 、B 均不与O 重合),则()A .121216,16x x y y ==-B .直线l 恒过定点()4,0C .A 、B 中点轨迹方程:224y x =-D .AOB 面积的最小值为1611.(2022·福建·模拟预测)已知双曲线22:14y C x -=的左、右焦点分别为12,F F ,点P 在双曲线C 的右支上,若12F PF θ∠=,12PF F △的面积为S ,则下列选项正确的是()A .若60θ︒=,则S =B .若4S =,则2PF =C .若12PF F △为锐角三角形,则(4,S ∈D .若12PF F △的重心为G ,随着点P 的运动,点G 的轨迹方程为22919143y x x ⎛⎫-=> ⎪⎝⎭12.(2022·全国·高三专题练习)已知A 、B 两点的坐标分别是(1,0)-,(1,0),直线AP 、BP 相交于点P ,且两直线的斜率之积为m ,则下列结论正确的是()A .当1m =-时,点P 的轨迹圆(除去与x 轴的交点)B .当10m -<<时,点P 的轨迹为焦点在x 轴上的椭圆(除去与x 轴的交点)C .当01m <<时,点P 的轨迹为焦点在x 轴上的抛物线D .当1m 时,点P 的轨迹为焦点在x 轴上的双曲线(除去与x 轴的交点)三、填空题13.(2022·浙江·高三开学考试)已知双曲线221x y -=与直线():1l y kx m k =+≠±有唯一的公共点A ,过点A 且与l 垂直的直线分别交x 轴、y 轴于()()00,0,0,B x C y 两点,当点A 运动时,点()00,D x y 的轨迹方程是___________.14.(2022·江西·上饶市第一中学模拟预测(文))①已知点)A ,直线:l x =点P 满足到点A 的距离与到直线l②已知圆C 的方程为224x y +=,直线l 为圆C 的切线,记点)A ,()B 到直线l 的距离分别为1d ,2d ,动点P 满足1PA d =,2PB d =;③点S ,T 分别在x 轴,y 轴上运动,且3ST =,动点P 满足2133OP OS OT =+;在①,②,③这三个条件中,动点P 的轨迹W 为椭圆的是______.15.(2022·黑龙江·大庆实验中学模拟预测)已知在直角坐标平面内,两定点()0,1F ,()1,1M -,动点Q 满足以FQ 为直径的圆与x 轴相切.直线FQ 与动点Q 的轨迹E 交于另一点P ,当90PMQ ∠=︒时,直线PQ 的斜率为______.16.(2022·全国·高三专题练习)已知椭圆22149x y +=,一组平行直线的斜率是32,当它们与椭圆相交时,这些直线被椭圆截得的线段的中点轨迹方程是__.四、解答题17.(2022·四川内江·模拟预测(理))在ABC 中,(2,0)A -,(2,0)B ,AC 与BC 斜率的积是14-.(1)求点C 的轨迹方程;(2)(4,0)P ,求PC 的中点M 的轨迹方程.18.(2022·全国·高三专题练习)设椭圆22154x y +=的两条互相垂直的切线的交点轨迹为C ,曲线C 的两条切线PA 、PB 交于点P ,且与C 分别切于A 、B 两点,求PA PB ⋅的最小值.第21页共21页19.(2022·全国·高三专题练习)已知椭圆22:14x C y +=的右焦点F 与抛物线21:2C y px =的焦点重合.(1)求椭圆C 的离心率与抛物线1C 的方程;(2)过焦点F 的动直线与抛物线1C 交于A ,B 两点,从原点O 作直线AB 的垂线,垂足为M ,求动点M 的轨迹方程;(3)点R ⎭为椭圆C 上的点,设直线l 与OR 平行,且直线l 与椭圆C 交于P ,Q 两点,若PQR 的面积为1,求直线l 的方程.20.(2022·山东·肥城市教学研究中心模拟预测)在平面直角坐标系xOy 中,已知12,A A 两点的坐标分别是(,直线,A B A B 12相交于点B ,且它们的斜率之积为13.(1)求点B 的轨迹方程;(2)记点B 的轨迹为曲线C ,,,,M N P Q 是曲线C 上的点,若直线MN ,PQ 均过曲线C 的右焦点F 且互相垂直,线段MN 的中点为R ,线段PQ 的中点为T .是否存在点G ,使直线RT 恒过点G ,若存在,求出点G 的坐标,若不存在,说明理由.21.(2022·湖南·长郡中学模拟预测)已知双曲线C :()222210,0x y a b a b-=>>的离心率为2,1F ,2F 为双曲线C 的左、右焦点,()2,3A 是双曲线C 上的一个点.(1)求双曲线C 的方程;(2)若过点()4,0B 且不与渐近线平行的直线l (斜率不为0)与双曲线C 的两个交点分别为M ,N ,记双曲线C 在点M ,N 处的切线分别为1l ,2l ,点P 为直线1l 与直线2l 的交点,试求点P 的轨迹方程(注:若双曲线的方程为22221x y a b-=,则该双曲线在点()00,x y 处的切线方程为00221x x y y a b-=)。
解析几何——轨迹方程的高考题总结
解析几何中求轨迹方程的常见方法一、直接法当所求动点的要满足的条件简单明确时,直接按“建系设点、列出条件、代入坐标、整理化简、限制说明”五个基本步骤求轨迹方程, 称之直接法. 例1 已知直角坐标平面上点Q (2,0)和圆C :,动点M 到圆C 的切线长与的比等于常数(如图),求动点M 的轨迹方程,说明它表示什么曲线.1解:设M (x ,y ),直线MN 切圆C 于N ,则有,即,.整理得,这就是动点M 的轨迹方程.若,方程化为,它表示过点和x 轴垂直的一条直线; 若λ≠1,方程化为, 它表示以为圆心,为半径的圆.二、定义法定义法是指先分析、说明动点的轨迹满足某种特殊曲线(如圆、椭圆、双曲线、抛物线等)的定义或特征,再求出该曲线的相关参量,从而得到轨迹方程. 例2 已知ABC ∆中,A ∠、B ∠、C ∠的对边分别为a 、b 、c ,若b c a ,,依次构成等差数列,且b c a >>,2=AB ,求顶点C 的轨迹方程.122=+y x MQ ()0>λλλ=MQMN λ=-MQONMO 22λ=+--+2222)2(1y x y x 0)41(4)1()1(222222=++--+-λλλλx y x 1=λ45=x )0,45(2222222)1(3112-+=+-λλλλy x )-()0,12(22-λλ13122-+λλCB yxOA2解:如右图,以直线AB 为x 轴,线段AB 的中点为原点建立直角坐标系. 由题意,b c a ,,构成等差数列,∴b a c +=2(两定点的距离等于定长—椭圆),即4||2||||==+AB CB CA ,又CA CB >,∴C 的轨迹为椭圆的左半部分.在此椭圆中,1,2='='c a ,3='b ,故C 的轨迹方程为)2,0(13422-≠<=+x x y x .三、点差法将直线与圆锥曲线的交点代入圆锥曲线的方程并对所得两式作差,得到一个与弦的中点和斜率有关的式子,可以大大减少运算量.我们称这种代点作差的方法为"点差法"。
【高中数学】高考数学题型归纳:轨迹方程的求解
【高中数学】高考数学题型归纳:轨迹方程的求解高考数学问题的归纳:轨迹方程的解符合一定条件的动点所形成的图形,或者说,符合一定条件的点的全体所组成的集合,叫做满足该条件的点的轨迹.轨迹包括两个问题:轨迹上的所有点都满足给定的条件,这称为轨迹的纯度(也称为必要性);所有不在轨迹上的点都不满足给定条件,即满足给定条件的点必须在轨迹上,这称为轨迹的完整性(也称为充分性)【轨迹方程】就是与几何轨迹对应的代数描述。
一、求运动点轨迹方程的基本步骤⒈建立适当的坐标系,设出动点m的坐标;2.写出点m的集合;⒊列出方程=0;4.简化方程是最简单的形式;⒌检验。
二、求解运动点轨迹方程的常用方法:求解轨迹方程的方法有很多,包括直译法、定义法、相关点法、参数法、轨道交叉法等。
⒈直译法:直接将条件翻译成等式,整理化简后即得动点的轨迹方程,这种求轨迹方程的方法通常叫做直译法。
2.定义方法:如果可以确定运动点的轨迹符合已知曲线的定义,则可以使用曲线的定义来编写方程。
这种计算弹道方程的方法称为定义法。
⒊相关点法:用动点q的坐标x,y表示相关点p的坐标x0、y0,然后代入点p的坐标(x0,y0)所满足的曲线方程,整理化简便得到动点q轨迹方程,这种求轨迹方程的方法叫做相关点法。
4.参数法:当很难找到运动点坐标x和y之间的直接关系时,我们通常先找到x和y与某个变量t之间的关系,然后消除参数变量t,得到方程,即运动点的轨迹方程。
这种计算弹道方程的方法称为参数法。
⒌交轨法:将两动曲线方程中的参数消去,得到不含参数的方程,即为两动曲线交点的轨迹方程,这种求轨迹方程的方法叫做交轨法。
*求解运动点轨迹方程的一般步骤①建系建立适当的坐标系;② 设定点设定轨道上的任意点P(x,y);③列式列出动点p所满足的关系式;④ 根据替代条件的特点,选择距离公式和斜率公式,将其转化为关于X和Y的方程,并对其进行简化;⑤证明证明所求方程即为符合条件的动点轨迹方程。
求轨迹方程的常用方法(例题及变式)
求轨迹方程的常用方法:题型一 直接法此法是求轨迹方程最基本的方法,根据所满足的几何条件,将几何条件)}(|{M P M 直接翻译成y x ,的形式0),(=y x f ,然后进行等价变换,化简0),(=y x f ,要注意轨迹方程的纯粹性和完备性,即曲线上没有坐标不满足方程的点,也就是说曲线上所有的点适合这个条件而毫无例外(纯粹性);反之,适合条件的所有点都在曲线上而毫无遗漏(完备性)。
例1 过点)3,2(A 任作互相垂直的两直线AM 和AN ,分别交y x ,轴于点N M ,,求线段MN 中点P 的轨迹方程。
解:设P 点坐标为),(y x P ,由中点坐标公式及N M ,在轴上得)2,0(y M ,)0,2(x N ),(R y x ∈AN AM ⊥∴1-=⋅AN AM k k ∴120322230-=--⋅--y x )1(≠x ,化简得01364=-+y x )1(≠x 当1=x 时,)3,0(M ,)0,2(N ,此时MN 的中点)23,1(P 它也满足方程01364=-+y x ,所以中点P 的轨迹方程为01364=-+y x 。
变式1已知动点(,)M x y 到直线:4l x =的距离是它到点(1,0)N 的距离的2倍。
(1) 求动点M 的轨迹C 的方程;(2) 过点(0,3)P 的直线m 与轨迹C 交于,A B 两点。
若A 是PB 的中点,求直线m 的斜率。
题型二 定义法圆锥曲线定义所包含的几何意义十分重要,应特别重视利用圆锥曲线的定义解题,包括用定义法求轨迹方程。
例2 动圆M 过定点)0,4(-P ,且与圆08:22=-+x y x C 相切,求动圆圆心M 的轨迹方程。
解:根据题意4||||||=-MP MC ,说明点M 到定点P C 、的距离之差的绝对值为定值,故点M 的轨迹是双曲线。
42=a∴2=a ,4=c ∴1222=-=a c b 故动圆圆心M 的轨迹方程为112422=-y x 变式2在ABC △中,24BC AC AB =,,上的两条中线长度之和为39,求ABC △的重心的轨迹方程. 解:以线段BC 所在直线为x 轴,线段BC 的中垂线为y 轴建立直角坐标系,如图1,M 为重心,则有239263BM CM +=⨯=. M ∴点的轨迹是以B C ,为焦点的椭圆,其中1213c a ==,.225b a c =-=∴.∴所求ABC △的重心的轨迹方程为221(0)16925x y y +=≠ 题型三 相关点法此法的特点是动点),(y x M 的坐标取决于已知曲线C 上的点)','(y x 的坐标,可先用y x ,来表示','y x ,再代入曲线C 的方程0),(=y x f ,即得点M 的轨迹方程。
轨迹方程的求法及典型例题(含答案)
轨迹方程的求法一.常识温习轨迹方程的求法罕有的有(1)直接法;(2)界说法;(3)待定系数法(4)参数法(5)交轨法;(6)相干点法 留意:求轨迹方程时留意去杂点,找漏点. 一.常识温习例1:点P (-3,0)是圆x2+y2-6x -55=0内的定点,动圆M 与已知圆相切,且过点P,求圆心M 的轨迹方程.例 2.如图所示,已知P(4,0)是圆x2+y2=36内的一点,A.B 是圆上两动点,且知足∠APB=90°,求矩形APBQ 的极点Q 的轨迹方程.解:设AB 的中点为R,坐标为(x,y),则在Rt△ABP 中,|AR|=|PR|.又因为R 是弦AB 的中点,依垂径定理:在Rt△OAR 中,|AR|2=|AO|2-|OR|2=36-(x2+y2) 又|AR|=|PR|=22)4(y x +-所以有(x -4)2+y2=36-(x2+y2),即x2+y2-4x -10=0是以点R 在一个圆上,而当R 在此圆上活动时,Q 点即在所求的轨迹上活动. 设Q(x,y),R(x1,y1),因为R 是PQ 的中点,所以x1=2,241+=+y y x , 代入方程x2+y2-4x -10=0,得244)2()24(22+⋅-++x y x -10=0整顿得:x2+y2=56,这就是所求的轨迹方程.例3.如图, 直线L1和L2订交于点M, L1L2, 点N L1. 以A, B 为端点的曲线段C 上的任一点到L2的距离与到点N 的距离相等. 若AMN 为锐角三角形, |AM|= 17 , |AN| = 3, 且|BN|=6. 树立恰当的坐标系,求曲线段C 的方程.解法一:如图树立坐标系,以l1为x 轴,MN 的垂直等分线为y 轴,点O 为坐标原点. 依题意知:曲线段C 是以点N 为核心,以l2为准线的抛物线的一段,个中A,B 分离为C 的端点.设曲线段C 的方程为)0,(),0(22>≤≤>=y x x x p px y B A ,个中xA,xB 分离为A,B 的横坐标,P=|MN|. 由①,②两式联立解得px A 4=.再将其代入①式并由p>0解得⎩⎨⎧⎩⎨⎧====2214A Ax p x p 或 因为△AMN是锐角三角形,所以Ax p >2,故舍去⎩⎨⎧==22A x p∴p=4,xA=1由点B 在曲线段C 上,得42||=-=p BN x B .综上得曲线段C 的方程为)0,41(82>≤≤=y x x y解法二:如图树立坐标系,分离以l1.l2为 轴,M 为坐标原点.作AE⊥l1,AD⊥l2,BF⊥l2垂足分离为E.D.F 设A(xA, yA).B(xB, yB).N(xN, 0) 依题意有例4.已知两点)2,0(),2,2(Q P -以及一条直线ι:y=x,设长为2的线段AB 在直线λ上移动,求直线PA 和QB 交点M 的轨迹方程.解:PA 和QB 的交点M (x,y )随A.B 的移动而变更,故可设)1,1(),,(++t t B t t A , 则PA :),2)(2(222-≠++-=-t x t t y QB :).1(112-≠+-=-t x t t y 消去t,得.082222=+-+-y x y x当t=-2,或t=-1时,PA 与QB 的交点坐标也知足上式,所以点M 的轨迹方程是 例5.设点A 和B 为抛物线 y2=4px(p >0)上原点以外的两个动点,已知OA⊥OB,OM⊥AB,求点M 的轨迹方程,并解释它暗示什么曲线. 解法一:设M(x,y),直线AB 的方程为y=kx+b 由OM⊥AB,得k=-yx由y2=4px 及y=kx+b,消去y,得k2x2+(2kb -4p)x+b2=0 所以x1x2=22kb , y1y2=kpb 4,由OA⊥OB,得y1y2=-x1x2 所以kpk4=-22kb , b=-4kp故y=kx+b=k(x -4p), 得x2+y2-4px=0(x≠0)故动点M 的轨迹方程为x2+y2-4px=0(x≠0),它暗示以(2p,0)为圆心,以2p 为半径的圆,去失落坐标原点.解法二:设A(x1,y1),B(x2,y2),M(x,y)依题意,有⎧①-②得(y1-y2)(y1+y2)=4p(x1-x2) 若x1≠x2,则有2121214y y px x y y +=--⑥①×②,得y12·y22=16p2x1x2 ③代入上式有y1y2=-16p2⑦⑥代入④,得yxy y p -=+214⑧⑥代入⑤,得py x y y x x y y y y p442111121--=--=+所以211214)(44y px y y p y y p --=+即4px -y12=y(y1+y2)-y12-y1y2 ⑦.⑧代入上式,得x2+y2-4px=0(x≠0) 当x1=x2时,AB⊥x 轴,易得M(4p,0)仍知足方程.故点M 的轨迹方程为x2+y2-4px=0(x≠0)它暗示以(2p,0)为圆心,以2p 为半径的圆,去失落坐标原点.轨 迹 方 程(演习1)1.(08.山东文22)已知曲线1C :||||1(0)x y a b a b+=>>所围成的关闭图形的面积为 45,曲线1C 的内切圆半径为253,记2C 为以曲线1C 与坐标轴的交点为极点的椭圆.(1)求椭圆2C 的尺度方程; (2)设AB 是过椭圆2C 中间的随意率性弦,L 是线段AB 的垂直等分线,M 是L 上异于椭圆中间的点.①若||MO =λ||OA (O 为坐标原点),当点A 在椭圆2C 上活动时,求点M 的轨迹方程; ②若M 是L 与椭圆2C 的交点,求AMB ∆的面积的最小值.解:(1)由题意得22245253ab ab a b⎧=⎪⎨=⎪+⎩⇒4522==b a ,⇒椭圆方程:2254x y +=1.(2)若AB 地点的斜率消失且不为零,设 AB 地点直线方程为y =kx(k≠0),A(A A y x ,).①由22154,x y y kx ⎧+=⎪⎨⎪=⎩⇒2222220204545A A k x y k k ==++, ⇒2222220(1)||45AAk OA x y k+=+=+. 设M(x,y),由|MO|=λ|OA|(λ≠0)⇒|MO|2=λ2|OA|2⇒2222220(1)45k x y k λ++=+.因为L 是AB 的垂直等分线,所以直线L 的方程为y =1x k -⇒k =x y-,代入上式有:22222222222220(1)20()4545x x y y x y x y x yλλ+++==++⨯,由022≠+y x ⇒2225420x y λ+=, 当k =0或不存时,上式仍然成立.,综上所述,M 的轨迹方程为22245x y λ+=,(λ≠0).②当k 消失且k ≠0时,2222220204545AA k x y k k ==++,⇒|OA|2=222220(1)45A A k x y k ++=+. 由221541x y y xk ⎧+=⎪⎪⎨⎪=-⎪⎩⇒2222220205454M M k x y k k ==++,⇒22220(1)||54k OM k +=+. ⇒222222111120(1)20(1)4554k k OAOMk k +=+++++=209.222119||||20OA OB OA OM ≤+=⨯⇒||||OB OA ⨯≥940. ||||221OB OA S AMB ⨯⨯⨯=∆=||||OB OA ⨯≥940, 当且仅当4+5k2=5+4k2时,即k =±1时等号成立. 当14002522529AMB k S ∆==⨯⨯=>,; 当k 不消失时,140542529AMB S ∆=⨯⨯=>. 综上所述,AMB ∆的面积的最小值为409.2.(07.江西理21)设动点P 到点(10)A -,和(10)B ,的距离分离为1d 和2d ,2APB θ∠=,且消失常数(01)λλ<<,使得212sin d d θλ=.(1)证实:动点P 的轨迹C 为双曲线,并求出C 的方程;(2)过点B 作直线与双曲线C 的右支于M N ,两点,试肯定λ的规模,使OM ·ON =0,个中点O 为坐标原点.解:(1)在PAB △中,2AB =,即222121222cos2d d d d θ=+-,2212124()4sin d d d d θ=-+,即2121244sin 212d d d d θλ-=-=-<(常数),点P 的轨迹C 是认为A B ,核心,实轴长221a λ=-的双曲线,方程为:2211x y λλ-=-. (2)设11()M x y ,,22()N x y ,①当MN 垂直于x 轴时,MN 的方程为1x =,(11)M ,,(11)N -,在双曲线上. 即2111511012λλλλλ-±-=⇒+-=⇒=-, 因为01λ<<,所以512λ-=. ②当MN 不垂直于x 轴时,设MN 的方程为(1)y k x =-.由2211(1)x y y k x λλ⎧-=⎪-⎨⎪=-⎩得: 2222(1)2(1)(1)()0k x k x k λλλλλ⎡⎤--+---+=⎣⎦,由题意知:2(1)0k λλ⎡⎤--≠⎣⎦ ⇒21222(1)(1)k x x k λλλ--+=--,2122(1)()(1)k x x k λλλλ--+=-- ⇒22212122(1)(1)(1)k y y k x x kλλλ=--=--. 由OM ·ON =0,且M N ,在双曲线右支上,所以2121222122212(1)0(1)5121011231001x x y y k x x k x x λλλλλλλλλλλλλλλ-⎧+=⎧-⎧=⎪>-⎪⎪⎪+-+>⇒⇒⇒<<+--⎨⎨⎨⎪⎪⎪>+->>⎩⎩⎪-⎩. 由①②知32215<≤-λ. 3.(09.海南)已知椭圆C 的中间为直角坐标系xOy 的原点,核心在x 轴上,它的一个极点到两个核心的距离分离是7和1.(1)求椭圆C 的方程;(2)若P 为椭圆C 上的动点,M 为过P 且垂直于x 轴的直线上的点,2OP e OM=(e 为椭圆C 的离心率),求点M 的轨迹方程,并解释轨迹是什么曲线.解:(Ⅰ)设椭圆长半轴长及分离为a,c .由已知得⎩⎨⎧=+=-71c a c a ⇒a =4,c =3⇒椭圆C 的方程为221167x y +=.(2)设M (x,y ),P (0x ,0y ).个中0x ∈[-4,4],0x =x .有22001167x y +=……①由OPe OM=得:2240022x y e x y +=+=169. 故22220016()9()x y x y +=+【下面是查找关系式0x =f (x,y ),0y =g (x,y )的进程】又⎪⎩⎪⎨⎧-==167112220220x y x x ……………………………………②②式代入①:22001167x y +=并整顿得:47(44)3y x =±-≤≤,所以点M 的轨迹是两条平行于x轴的线段.轨 迹 方 程(演习2)4.(09.重庆理)已知以原点O 为中间的椭圆的一条准线方程为433y =,离心率32e =,M 是椭圆上的动点.(1)若C.D 的坐标分离是(0,√3).(0,-√3),求||MC ·||MD 的最大值;(2)如图,点A 的坐标为(1,0),点B 是圆221x y +=上的点,点N 是点M(椭圆上的点)在x 轴上的射影,点Q 知足前提:OQ =OM +ON ,QA ·BA =0.求线段QB 的中点P 的轨迹方程.解:(1)设椭圆方程为:22221x y a b +=(a >b >0).准线方程433y ==ca 2,32e ==a c ⇒2=a ,32=c 1=⇒b ⇒椭圆方程为:2214y x +=.所以:C.D 是椭圆2214y x +=的两个核心⇒||MC +||MD =4.||MC ·||MD ≤4)2||||(2=+MD MC ,当且仅当||MC =||MD ,即点M的坐标为(1,0)±时上式取等号⇒||MC ·||MD 的最大值为4. (2)设M(,),(,)m m B B x y B x y ,(,)Q Q Q x y ,N(0,m x )⇒4422=+m my x ,122=+B B y x . 由OQ =OM +ON⇒m Q x x 2=,m Q y y =⇒4)2(2222=+=+m m Q Qy x y x ………① 由QA ·BA =0⇒(Q Q y x --,1)·(B B y x --,1)=(Q x -1)(B x -1)+B Q y y =0 ⇒=+B Q B Q y y x x 1-+B Q x x …………②记P 点的坐标为(P x ,P y ),因为P 是BQ 的中点⇒B Q P x x x +=2,B Q P y y y +=2 ⇒2222)2()2(BQ BQ PPy y x x y x +++=+=)22(412222B Q B Q B Q B Qy y x x y y x x +++++ =)]1(25[41-++B Q x x =)245(41-+P x ⇒P P Px y x +=+4322 ⇒动点P 的方程为:1)21(22=+-y x .5.(09.安徽)已知椭圆22ax +22by =1(a >b >0)的离心率为33.以原点为圆心,以椭圆短半轴长为半径的圆与直线y =x +2相切. (1)求a 与b 的值;(2)设该椭圆的左,右核心分离为1F 和2F ,直线1L 过2F 且与x 轴垂直,动直线2L 与y 轴垂直,2L 交1L 1PF 的垂直等分线与直线2L 的交点M 的轨迹方程,并指明曲线类型 解:(1)e =33⇒22ab =32.又圆心(0,0)到直线y =x +2的距离d =半径b =22112+,∴2b =2,2a =3.12322=+y x(2)1F (-1,0).2F (1,0),由题意可设P (1,t )(t≠0).那么线段1PF 的中点为N (0,2t).2L 的方程为:y =t,设M(M M y x ,)是所求轨迹上的随意率性点.【下面求直线MN 的方程,然后与直线2L 的方程联立,求交点M 的轨迹方程】 直线1PF 的斜率k =2t,∴线段1PF 的中垂线MN 的斜率=-t2.所以:直线MN 的方程为:y -2t =-t 2x .由⎪⎩⎪⎨⎧+-==22t x t y t y ⇒⎪⎩⎪⎨⎧=-=t y t x MM 42, 消去参数t 得:M M x y 42-=,即:x y 42-=,其轨迹为抛物线(除原点).又解:因为MN =(-x,2t-y ),1PF =(-x,2t -y ).∵MN ·1PF =0,∴⎪⎩⎪⎨⎧==---ty y t x t x 0)2(·)2,(,,消参数t 得:x y 42-=(x≠0),其轨迹为抛物线(除原点).6.(07湖南理20)已知双曲线222x y -=的左.右核心分离为1F ,2F ,过点2F 的动直线与双曲线订交于A B ,两点.【直接法求轨迹】(1)若动点M 知足1111FM F A F B FO =++(个中O 为坐标原点),求点M 的轨迹方程; (2)在x 轴上是否消失定点C ,使CA ·CB 为常数?若消失,求出点C 的坐标;若不消失,请解释来由.解:(1)由前提知1(20)F -,,2(20)F ,,设11()A x y ,,22()B x y ,.设()M x y ,,则1(2)FM x y =+,,111(2)F A x y =+,,1221(2)(20)F B x y FO =+=,,,, 由1111FM F A F B FO =++⇒121226x x x y y y +=++⎧⎨=+⎩⇒12124x x x y y y+=-⎧⎨+=⎩⇒AB 的中点坐标为422x y -⎛⎫⎪⎝⎭,. 当AB 不与x 轴垂直时,1212024822y y y y x x x x --==----, 即1212()8yy y x x x -=--. 又因为A B ,两点在双曲线上,所以22112x y -=,22222x y -=,两式相减得 12121212()()()()x x x x y y y y -+=-+,即1212()(4)()x x x y y y --=-.将1212()8yy y x x x -=--代入上式,化简得22(6)4x y --=. 当AB 与x 轴垂直时,122x x ==,求得(80)M ,,也知足上述方程. 所以点M 的轨迹方程是22(6)4x y --=.(2)假设在x 轴上消失定点(0)C m ,,使CA ·CB 为常数. 当AB 不与x 轴垂直时,设直线AB 的方程是(2)(1)y k x k =-≠±. 代入222x y -=有2222(1)4(42)0k x k x k -+-+=.则12x x ,是上述方程的两个实根,所以212241k x x k +=-,2122421k x x k +=-,于是CA ·CB 22221212(1)(2)()4k x x k m x x k m =+-++++222222(12)2442(12)11m k m m m m k k -+-=+=-++--. 因为CA ·CB 是与k 无关的常数,所以440m -=,即1m =,此时CA ·CB =-1.当AB 与x 轴垂直时,点A B ,的坐标可分离设为(2,(2,此时CA ·CB =(1,√2)·(1,-√2)=-1.故在x 轴上消失定点(10)C ,,使CA ·CB 为常数.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
求轨迹方程题型全归纳2求轨迹方程的六种常用方法1.直接法根据已知条件及一些基本公式如两点间距离公式,点到直线的距离公式,直线的斜率公式等,直接列出动点满足的等量关系式,从而求得轨迹方程。
例1.已知线段6=AB ,直线BM AM ,相交于M ,且它们的斜率之积是49,求点M 的轨迹方程。
解:以AB 所在直线为x 轴,AB 垂直平分线为y轴建立坐标系,则(3,0),(3,0)A B -,设点M 的坐标为(,)x y ,则直线AM的斜率(3)3AM yk x x =≠-+,直线BM 的斜率(3)3AMykx x =≠-由已知有4(3)339y y x x x •=≠±+- 化简,整理得点M的轨迹方程为221(3)94x y x -=≠±练习:1.平面内动点P 到点(10,0)F 的距离与到直线4x=的距离之比为2,则点P的轨迹方程是。
2.设动直线l垂直于x轴,且与椭圆2224x y+=交u u u r u u u r的点,求于A、B两点,P是l上满足1⋅=PA PB点P的轨迹方程。
3. 到两互相垂直的异面直线的距离相等的点,在过其中一条直线且平行于另一条直线的平面内的轨迹是()A.直线B.椭圆C.抛物线D.双曲线342.定义法通过图形的几何性质判断动点的轨迹是何种图形,再求其轨迹方程,这种方法叫做定义法,运用定义法,求其轨迹,一要熟练掌握常用轨迹的定义,如线段的垂直平分线,圆、椭圆、双曲线、抛物线等,二是熟练掌握平面几何的一些性质定理。
例2.若(8,0),(8,0)B C -为ABC ∆的两顶点,AC 和AB 两边上的中线长之和是30,则ABC ∆的重心轨迹方程是_______________。
解:设ABC ∆的重心为(,)G x y ,则由AC 和AB 两边上的中线长之和是30可得230203BG CG +=⨯=,而点(8,0),(8,0)B C -为定点,所以点G 的轨迹为以,B C 为焦点的椭圆。
所以由220,8a c ==可得2210,6a b a c ==-= 故ABC ∆的重心轨迹方程是221(0)10036x y y +=≠练习:4.方程222(1)(1)|2|x y x y -+-=++表示的曲线是 ( )A .椭圆B .双曲线C .线段D .抛物线53.点差法圆锥曲线中与弦的中点有关的问题可用点差法,其基本方法是把弦的两端点1122(,),(,)A x y B x y 的坐标代入圆锥曲线方程,然而相减,利用平方差公式可得12x x +,12y y +,12x x -,12y y -等关系式,由于弦AB 的中点(,)P x y 的坐标满足122x x x =+,122y y y =+且直线AB 的斜率为2121y yx x--,由此可求得弦AB中点的轨迹方程。
例3.椭圆22142x y +=中,过(1,1)P 的弦恰被P 点平分,则该弦所在直线方程为_________________。
解:设过点(1,1)P 的直线交椭圆于11(,)A x y 、22(,)B x y ,则有2211142x y += ①2222142x y += ②①-②可得12121212()()()()042x x x x y y y y -+-++= 而(1,1)P 为线段AB的中点,故有12122,2x x y y +=+=所以12121212()2()210422x x y y y y x x -⨯-⨯-+=⇒=--,即12AB k =-6所以所求直线方程为11(1)2y x -=--化简可得230x y +-=练习:5.已知以(2,2)P 为圆心的圆与椭圆222x y m +=交于A 、B 两点,求弦AB 的中点M 的轨迹方程。
6.已知双曲线2212y x -=,过点(1,1)P 能否作一条直线l 与双曲线交于,A B 两点,使P 为线段AB的中点?4.转移法转移法求曲线方程时一般有两个动点,一个是主动的,另一个是次动的。
当题目中的条件同时具有以下特征时,一般可以用转移法求其轨迹方程:①某个动点P 在已知方程的曲线上移动; ②另一个动点M 随P 的变化而变化;③在变化过程中P 和M 满足一定的规律。
例4. 已知P 是以12,F F 为焦点的双曲线221169x y -=7上的动点,求12F F P ∆的重心G 的轨迹方程。
解:设 重心(,)G x y ,点 0(,)P x y ,因为12(4,0),(4,0)F F -则有⎪⎪⎩⎪⎪⎨⎧++=++-=30003044y y x x , 故⎩⎨⎧==yy xx 3030代入19201620=-y x得所求轨迹方程 2291(0)16x y y -=≠例5.抛物线24xy=的焦点为F ,过点(0,1)-作直线l 交抛物线A 、B 两点,再以AF 、BF 为邻边作平行四边形AFBR ,试求动点R 的轨迹方程。
解法一:(转移法)设(,)R x y ,∵(0,1)F ,∴平行四边形AFBR的中心为1(,)22x y P +,将1y kx =-,代入抛物线方程,得2440xkx -+=,设1122(,),(,)A x y B x y ,则821212121216160||14444k k x x kx x k x x x x ⎧∆=->>⎧⎪⎪⎪⎪+=⇒+=⎨⎨⎪⎪==⎪⎪⎩⎩ ①∴222212121212()24244x x x x x x y y k ++-+===-,∵P 为AB 的中点.∴⎪⎪⎩⎪⎪⎨⎧-=+=+=+=1222122222121k y y y k x x x ⇒⎩⎨⎧-==3442k y k x ,消去k 得24(3)x y =+,由①得,||4x >,故动点R 的轨迹方程为24(3)(||4)xy x =+>。
解法二:(点差法)设(,)R x y ,∵(0,1)F ,∴平行四边形AFBR 的中心为1(,)22x y P +, 设1122(,),(,)A x y B x y ,则有2114x y = ① 2224x y = ②由①-②得12121212()()4()4lx x x x y y x x k -+=-⇒+= ③ 而P 为AB 的中点且直线l 过点(0,1)-,所以1211322,22l y x y x x x k x x ++++=⨯===代入③可得34y x x+=⨯,化简可得22124124x x y y -=+⇒=④由点1(,)22x y P +在抛物线口内,可得9221()48(1)22x y x y +<⨯⇒<+⑤将④式代入⑤可得222128(1)16||44x x x x -<+⇒>⇒>故动点R 的轨迹方程为24(3)(||4)x y x =+>。
练习:7.已知(1,0),(1,4)A B -,在平面上动点Q 满足4QA QB ⋅=u u u r u u u r,点P 是点Q 关于直线2(4)y x =-的对称点,求动点P 的轨迹方程。
5.参数法求曲线的轨迹方程是解析几何的两个基本问题之一,求符合某种条件的动点的轨迹方程,其实质就是利用题设中的几何条件,通过“坐标互化”将其转化为寻求变量间的关系。
在确定了轨迹方程之后,有时题目会就方程中的参数进行讨论;参数取值的变化使方程表示不同的曲线;参数取值的不同使其与其他曲线的位置关系不同;参数取值的变化引起另外某些变量的取值范围的变化等等。
例6.过点(2,0)M -作直线l 交双曲线221xy -=于A 、10B两点,已知OP OA OB=+u u u r u u u r u u u r 。
(1)求点P 的轨迹方程,并说明轨迹是什么曲线;(2)是否存在这样的直线l ,使OAPB 矩形?若存在,求出l 的方程;若不存在,说明理由。
解:当直线l 的斜率存在时,设l 的方程为(2)(0)y k x k =+≠,代入方程221x y -=,得 2222(1)4410k x k x k ----=因为直线l 与双曲线有两个交点,所以210k -≠,设1122(,),(,)A x y B x y ,则22121222441,11k k x x x x k k ++==--①21212122244(2)(2)()4411k k ky y k x k x k x x k k k k ⋅+=+++=++=+=-- 设(,)P x y ,由OP OA OB=+u u u r u u u r u u u r得212122244(,)(,)(,)11k k x y x x y y k k=++=-- ∴2224141k x k k y k ⎧=⎪-⎪⎨⎪=⎪-⎩所以x k y =,代入241ky k=-可得241()xy y x y=-,化简得2240x y x -+=即22(2)4x y +-= ②当直线l 的斜率不存在时,易求得(4,0)P -满足方程②,故所求轨迹方程为22(2)4(0)x y y +-=≠,其轨迹为双曲线。
(也可考虑用点差法求解曲线方程) (2)平行四边OPAB 为矩形的充要条件是0OA OB ⋅=u u u r u u u r即12120x x y y += ③当k 不存在时,A 、B 坐标分别为(3)-、(2,3)-,不满足③式 当k存在时,222121212121212(2)(2)(1)2()4x x y y x x k x k x k x x k x x k +=+++=++++2222222(1)(14)244011k k k k k k k ++⋅=-+=--化简得22101k k +=-,此方程无实数解,故不存在直线l 使OPAB 为矩形。
练习: 8.设椭圆方程为1422=+y x ,过点(0,1)M 的直线l 交椭圆于点A 、B ,O 是坐标原点,点P 满足)(21+=,点N 的坐标为)21,21(,当l 绕点M旋转时,求:(1)动点P 的轨迹方程; (2)||的最小值与最大值。
9.设点A 和B 为抛物线24(0)y px p =>上原点O 以外的两个动点,且OA OB ⊥,过O 作OM AB ⊥于M ,求点M 的轨迹方程。
6.交轨法若动点是两曲线的交点,可以通过这两曲线的方程直接求出交点的方程,也可以解方程组先求出交点的参数方程,再化为普通方程。
例7.已知MN 是椭圆12222=+by a x 中垂直于长轴的动弦,A 、B 是椭圆长轴的两个端点,求直线MA 和NB 的交点P 的轨迹方程。
解1:(利用点的坐标作参数)令11(,)M x y ,则11(,)N x y -而(,0),(,0)A a B a -.设AM 与NB 的交点为(,)P x y因为,,A M P 共线,所以ax y a x y+=+11 因为,,N B P 共线,所以ax y a x y--=-11 两式相乘得22121222a x y a x y --=-①, 而1221221=+by a x 即2)212(221a x a b y -=代入① 得22222a b a x x =-, 即交点P的轨迹方程为12222=-by a x解2: (利用角作参数) 设(cos ,sin )M a b θθ,则(cos ,sin )N a b θθ-所以 a a b a x y +=+θθcos sin , aa b a x y --=-θθcos sin 两式相乘消去θ即可得所求的P 点的轨迹方程为 12222=-by a x 。