基于单片机的电子时钟6位LED数码管显示
单片机课程设--电子钟设计
![单片机课程设--电子钟设计](https://img.taocdn.com/s3/m/060de3d685868762caaedd3383c4bb4cf7ecb782.png)
单片机MCS-51数钟课程设计系别:专业:班级:姓名及学号:日期:目录单片机MCS-51数钟 (1)课程设计 (1)一、课程设计的目的 (3)二、课程设计任务 (3)三、硬件结构概述 (4)(一)复位电路 (4)(二)晶振电路 (4)(三)按键电路 (4)(四)显示部分 (5)四、软件结构概述 (5)(一)代码说明 (5)(二)按键处理思路 (10)(三)秒表设计思路 (11)五、调试过程 (12)(一)系统仿真 (12)(二)仿真过程中出现的问题及解决方案 (12)六、心得体会 (13)七、参考文献 (14)一、课程设计的目的(1)巩固、加深和扩大单片机应用的知识面, 提高综合及灵活运用所学知识解决工业控制的能力;二、(2)培养针对课题需要, 选择和查阅有关手册、图表及文献资料的自学能力, 提高组成系统、编程、调试的动手能力;三、(3)过对课题设计方案的分析、选择、比较、熟悉单片机用系统开发、研制的过程, 软硬件设计的方法、内容及步骤。
四、课程设计任务(1)在ZY15MCU12BD型综合单片机实验箱的硬件结构上编写软件完成设计。
也可以在其它MCS—51单片机硬件板上完成, 或自行设计硬件并制做完成。
(2)程序的首地址应使目标机可以直接运行, 即从0000H开始。
在主程序的开始部分必须设置一个合适的栈底。
程序放置的地址须连续且靠前, 不要在中间留下大量的空闲地址, 以使目标机可以使用较少的硬件资源。
(3)6位LED数码管从左到右分别显示时、分、秒(各占用2位), 采用24小时标准计时制。
开始计时时为000000, 到235959后又变成000000。
(4)在键盘上选定3个键分别作为小时、分、秒的调校键。
每按一次键, 对应的显示值便加1。
分、秒加到59后再按键即变为00;小时加到23后再按键即变为00。
在调校时均不向上一单位进位 (例如分加到59后变为00, 但小时不发生改变)。
(5) 软件设计必须使用MCS-51片内定时器, 采用定时中断结构, 不得使用软件延时法。
单片机课程设计--智能电子钟的设计
![单片机课程设计--智能电子钟的设计](https://img.taocdn.com/s3/m/f66011dcee06eff9aff80794.png)
目录1引言 (1)1.1设计内容和要 (1)1.2 工作原理 (2)2总体设计 (2)2.1 方案设计 (2)2.2 系统框图 (2)2.3 核心芯片简介 (3)2.3.1 DS1302简介 (3)2.3.2 AT89C51简介 (3)3 智能电子钟软硬件电路的设计 (4)3.1 硬件设计 (4)3.1.1 复位电路设计 (4)3.1.2 DS1302与单片机的接口设计 (5)3.1.3 LED显示设计 (5)3.1.4 电源设计 (6)3.1.5 按键开关去抖设计 (6)3.1.6 时钟电路的设计 (7)3.1.7 电路总原理图设计 (8)3.2 软件设计 (8)3.2.1 流程图 (8)4protues仿真与调试 (11)4.1 电路的仿真 (11)4.2软件调试 (11)结论……………………………………………………………………………………………错误!未定义书签。
参考文献 (14)附录 (15)源程序 (15)1 引言电子时钟主要是利用电子技术将时钟电子化、数字化,拥有时钟精确、体积小、界面友好、可扩展性能强等特点,被广泛应用于生活和工作当中。
另外,在生活和工农业生产中,也常常需要温度,这就需要电子时钟具有多功能性。
本设计主要为实现一款可正常显示时钟/日历、带有定时闹铃的多功能电子时钟。
本文对当前电子钟开发手段进行了比较和分析,最终确定了采用单片机技术实现多功能电子时钟。
本设计应用AT89C51芯片作为核心,6位LED数码管显示,使用DS1302实时时钟日历芯片完成时钟/日历的基本功能。
这种实现方法的优点是电路简单,性能可靠,实时性好,时间精确,操作简单,编程容易。
该电子时钟可以应用于一般的生活和工作中,也可通过改装,提高性能,增加新功能,从而给人们的生活和工作带来更多的方便。
1.1设计内容和要求以AT89C51单片机为核心,制作一个LCD显示的智能电子钟:(1) 计时:秒、分、时、天、周、月、年。
基于单片机的多功能数字钟60秒LED旋转电子钟
![基于单片机的多功能数字钟60秒LED旋转电子钟](https://img.taocdn.com/s3/m/be7b8bfde009581b6bd9eb51.png)
第1节引言1.1 电子钟概述目前市场上提供的无论是机械钟还是石英钟在晚上无照明的情况下都是不可见的。
要知道当前的时间,必须先开灯,故较为不便。
现在市场上也出现了一些电子钟,它以六只LED数码管来显示时分秒,违背了人们指针式的传统习惯与理念,而且这类电子钟一般是采用大型显示器件,适用于银行、车站等公共场所,且外观设计欠美观,很少进入百姓家庭。
此外,无论是机械钟、石英钟还是电子钟,都存在着共同的问题:时间误差。
针对以上存在的问题,我们设计了一款采用LED显示器件显示的电子时钟,解决了时钟存在的误差问题,并能在夜间不必其它照明就能看到时间,且以60只发光管实现秒显示,接近于传统的秒针来显示秒的形式,用户容易接受,而且美观大方。
另加七只装饰用的LED灯,使整个时钟显的相当美观新颖,故还可作为室内装饰用。
1.2 设计任务本次设计通过对一个实现定时、双时钟显示、闹钟、温度等功能的时间系统的设计,其中结合了数据转换显示、数码管显示、动态扫描、单片机定时中断等技术。
系统由AT89C2051、LED数码管、按键、三极管、两片CD4017BE、CD4069BE、DS18B20、电阻等组成。
能实现时钟时、分、秒的显示。
也具有温度显示、时间设置、闹铃开和关设置、制式切换。
文章后附有电路图、程序清单。
1.3 系统主要功能电子钟的外观如图1所示。
周边60只发光管顺时旋转来显示秒,中间四只LED 数码管用于显示时间,中下方的七只LED灯顺时旋转,供装饰用。
其主要功能有:①整点报时;②四只LED数码管显示当前时分;③每隔一秒钟周边的60只LED发光管旋转一格;④当发生停电事件时,由后备电池供电,系统进入低功耗状态,所有显示部件停止显示,这样即延长了电池的寿命,同时又保证CPU继续计数,不至于因停电而时钟停止运行。
⑤当恢复供电后,系统自动恢复工作状态,不影响计时。
图一第2节电子钟硬件设计2.1系统的硬件构成及功能电子钟的原理框图如图2所示。
单片机电子时钟课程设计设计报告
![单片机电子时钟课程设计设计报告](https://img.taocdn.com/s3/m/7102a283482fb4daa58d4bfd.png)
单片机电子时钟设计一、作品功能介绍该作品是个性化电子钟设计,技术上主要用单片机(AT89S52)主控,6位LED数码显示,分别显示“小时:分钟:秒”。
该作品主要用于24小时计时显示,能整时报时,能作为秒表使用,能定时闹铃1分钟。
功能介绍:(1)上电以后自动进入计时状态,起始于00:00:00。
(2)设计键盘调整时间,完成时间设计,并设置闹钟。
(3)定时时间为1/100秒,可采用定时器实现。
(4)采用LED数码管显示,时、分,秒采用数字显示。
(5)采用24小时制,具有方便的时间调校功能。
(6)具有时钟和秒表的切换功能。
使用方法:开机后时钟在00:00:00起开始计时。
(1)长按进入调分状态:分单元闪烁,按加1,按减1.再长按进入时调整状态,时单元闪烁,加减调整同调分.按长按退出调整状态。
(2)(2)按进入设定闹时状态: 12:00: ,可进行分设定,按分加1,再按为时调整,按时加1,按调闹钟结束.在闹铃时可按停闹,不按闹铃1分钟。
(3)按下进入秒表状态:再按秒表又启动,按暂停,再按秒表清零,按退出秒表回到时钟状态。
二、电路原理图如原理图所示,硬件系统主要由单片机最小应用系统、LED数码管显示模块、电源模块、晶振模块、按键模块等组成。
电子时钟原理图各个模块设计1.单片机系统 AT89S52 AT89S52概述:是一款非常适合单片机初学者学习的单片机,它完全兼容传统的8051,8031的指令系统,他的运行速度要比8051快最高支持达33MHz的晶体震荡器,在此系统中使用12MHz的晶振。
AT89S52具有以下标准功能: 8k字节Flash,256字节RAM,32 位I/O 口线,看门狗定时器,2 个数据指针,三个16 位定时器/计数器,一个6向量2级中断结构,全双工串行口,片内晶振及时钟电路。
另外,AT89S52 可降至0Hz 静态逻辑操作,支持2种软件可选择节电模式。
空闲模式下,CPU停止工作,允许RAM、定时器/计数器、串口、中断继续工作。
基于单片机的简易电子时钟设计_毕业设计论文 精品
![基于单片机的简易电子时钟设计_毕业设计论文 精品](https://img.taocdn.com/s3/m/adc663e9f90f76c661371a28.png)
论文题目基于单片机的简易电子时钟设计班级:xxxxxx专业:电子信息工程学生姓名:xxxx指导教师:xxxx日期:xxxx-xx-xx摘要数字钟已成为人们日常生活中必不可少的必需品,广泛用于个人家庭以及办公室等公共场所,给人们的生活、学习、工作、娱乐带来极大的方便。
由于数字集成电路技术的发展和采用了先进的石英技术,使数字钟具有走时准确、性能稳定、携带方便等优点,它还用于计时、自动报时及自动控制等各个领域。
尽管目前市场上已有现成的数字钟集成电路芯片出售,价格便宜、使用也方便,但鉴于单片机的定时器功能也可以完成数字钟电路的设计,因此进行数字钟的设计是必要的。
在这里我们将已学过的比较零散的数字电路的知识有机的、系统的联系起来用于实际,来培养我们的综合分析和设计电路,写程序、调试电路的能力。
单片机具有体积小、功能强可靠性高、价格低廉等一系列优点,不仅已成为工业测控领域普遍采用的智能化控制工具,而且已渗入到人们工作和和生活的各个角落,有力地推动了各行业的技术改造和产品的更新换代,应用前景广阔。
关键字:单片机,数字时钟。
AbstractDigital clock has become an indispensable necessities in People's Daily life, widely used in personal family and office and other public places, to people's life, study, work, entertainment, bring great convenience. Due to the development of the digital integrated circuit technology and adopts the advanced quartz technology, walking make digital clock has advantages of accurate, stable performance, easy to carry, it is also used in timing, automatic feed and automatic control and other fields. Although already on the market at present the ready-made digital clock chip for sale, cheap, use is convenient, but in view of the single chip microcomputer timer function also can complete the design of the digital clock circuit, therefore is necessary for the design of digital clock. Here we will have learned more fragmented knowledge of digital circuit of the organic link, the system used in practice, to develop our comprehensive analysis and circuit design, programming, debugging circuit ability.SCM has small volume and powerful function, high reliability, low price and a series of advantages, not only has become widely used in the field of industrial measurement and control intelligent control instruments, and has penetrated into every corner of the people work and life, effectively promote the industry's technological transformation and upgrading of products, the wide prospect of application.Keywords: Single chip microcomputer,Digital clock.目录第一章设计方案 (1)1.1 课程设计目的 (1)1.2 设计要求 (1)1.3 实现时钟计时的基本方法 (1)1.4 电子钟的时间显示 (1)1.5 电子钟的时间调整 (2)1.6 总体方案介绍 (2)1.6.1 计时方案 (2)1.6.2 控制方案 (2)第二章系统硬件电路设计 (3)2.1 单片机模块设计 (3)2.1.1 芯片分析 (3)2.1.2 晶振电路 (4)2.1.3 复位电路 (5)2.2 数码显示模块设计 (5)2.3 按键模块 (8)第三章系统软件设计 (9)3.1 软件设计分析 (9)3.2 系统软件设计流程图 (9)3.2.1 主程序流程图 (9)3.2.2 定时器流程图 (9)3.2.3 按键检测流程图 (10)3.2.4 时间显示流程图 (10)3.3 源程序清单 (11)第四章系统仿真与实验测试 (16)4.1 系统仿真 (16)4.2 实验测试 (16)小结 (17)致谢 (18)参考文献 (19)附录 (20)第一章设计方案1.1 课程设计目的(1)巩固、加深和扩大单片机应用的知识面,提高综合及灵活运用所学知识解决工业控制的能力;(2)培养针对课题需要,选择和查阅有关手册、图表及文献资料的自学能力,提高组成系统、编程、调试的动手能力;(3)过对课题设计方案的分析、选择、比较、熟悉单片机用系统开发、研制的过程,软硬件设计的方法、内容及步骤。
(完整word版)基于51单片机多功能电子时钟报告
![(完整word版)基于51单片机多功能电子时钟报告](https://img.taocdn.com/s3/m/aaa29493a26925c52dc5bf09.png)
单片机课程设计报告多功能电子数字钟姓名:学号:班级:指导教师:目录一课程设计题目—-—-———--—--—-—--------—-——---—- 3二电路设计--------——-——---—--——---——--————-——--—- 4三程序总体设计思路概述——-------———-——--——5四各模块程序设计及流程图——--—---------——6五程序及程序说明见附录-—-——————-—-—---—-- **六课程设计心得及体会-----————-————--——--—- 11七参考资料—-—-—---—--———-———--————-—-----—----—-—12一题目及要求本次单片机课程设计在Proteus软件仿真平台下实现,完成电路设计连接,编程、调试,仿真出实验结果。
具体要如下:用8051单片机设计扩展6位数码管的静态或动态显示电路,再连接几个按键和一个蜂鸣器报警电路,设计出一个多功能电子钟,实现以下功能: (1)走时(能实现时分秒,年月日的计时)(2)显示(分屏切换显示时分秒和年月日,修改时能定位闪烁显示)(3)校时(能用按键修改和校准时钟)(4)定时报警(能定点报时)本次课程设计要求每个学生使用Proteus仿真软件独立设计制作出电路图、完成程序设计和系统仿真调试,验收时能操作演示.最后验收检查结果,评定成绩分为:(1)完成“走时+显示+秒闪”功能—-——及格(2)完成“校时修改”功能---—中等(3)完成“校时修改位闪"---—良好(4)完成“定点报警”功能,且使用资源少----优秀二电路设计(电路设计图见附件电路图)(1)采用89C51型号单片机(2)采用8位共阴数码管(3)因为单片机输出高电平时输出的电流不足以驱动数码管,所以在P0口与8位数码管之间加74LS373来驱动数码管(4)P2口与数码管选择位直接加74LS138译码器(5)蜂鸣器接P3。
7口。
基于单片机的按键控制LED数码管共阴极动态显示电路设计报告毕业论文
![基于单片机的按键控制LED数码管共阴极动态显示电路设计报告毕业论文](https://img.taocdn.com/s3/m/ab60fe08e55c3b3567ec102de2bd960590c6d900.png)
基于单片机的按键控制LED数码管共阴极动态显示电路设计报告毕业论文本篇报告将详细介绍基于单片机的按键控制LED数码管共阴极动态显示电路的设计。
一、引言LED数码管是一种常用的数字显示器件,广泛应用于各种计数器、时钟和计时器等电子设备中。
本设计旨在利用单片机实现对LED数码管的动态显示,并通过按键控制显示的数字。
二、设计方案1.系统结构本系统采用基于单片机的数字显示方案,其中包括一个单片机、数码管显示模块和按键模块。
单片机负责接收按键输入信号,并根据输入信号控制数码管显示相应的数字。
2.系统设计(1)数码管显示模块:该模块由共阴极LED数码管组成,共阴极接地,通过接通不同的端口线来控制数码管显示不同的数字。
(2)按键模块:该模块由多个按键组成,用于用户输入指定的数字。
每个按键接一个IO脚,通过按下不同的按键,触发不同的端口输入。
(3)单片机:本设计选用51单片机作为控制核心,通过IO口与数码管显示模块和按键模块连接。
单片机根据按键输入信号的变化,对数码管进行动态显示。
3.设计过程(1)针对单片机的接线设计:将单片机的IO口分别与数码管显示模块和按键模块连接。
将数码管的共阳极接电源正极,数码管的各段(即a、b、c、d、e、f、g)接单片机的IO脚。
(2)针对单片机软件设计:设计单片机程序实现按键输入的检测和数码管动态显示的控制。
首先初始化IO口,设置按键引脚为输入端口,设置数码管引脚为输出端口。
然后循环检测按键的状态。
当检测到按键被按下时,根据按键的不同选择分别显示不同的数字。
4.功能要求(1)按下不同的按键,数码管能够显示相应的数字,实现动态显示。
(2)按键输入具有去抖功能,避免误触发。
(3)程序运行稳定,能够正确响应按键输入,显示正确的数字。
三、实验结果经过实验验证,本设计实现了按键控制LED数码管共阴极动态显示的功能要求。
按下不同的按键,数码管能够正确显示相应的数字,程序运行稳定,无误触发现象。
单片机课程设计电子时钟
![单片机课程设计电子时钟](https://img.taocdn.com/s3/m/0c42a37e11661ed9ad51f01dc281e53a580251e5.png)
xxxxxx大学课程设计报告课程设计名称:单片机系统综合课程设计课程设计题目:电子时钟院(系):专业:班级:学号:姓名:指导教师:完成日期:xxxxxx大学课程设计报告目录第1章总体设计方案 (1)1.1设计原理 (1)1.2设计思路 (1)1.3实验环境 (2)第2章详细设计方案 (3)2.1硬件电路设计 (3)2.2主程序设计 (3)2.3功能模块的设计与实现 (4)第3章结果测试及分析 (11)3.1结果测试 (11)3.2结果分析 (11)参考文献 (12)附录 A (13)附录 B (21)附录 C (22)第1章总体设计方案1.1 设计原理根据课程设计任务书的内容,要求实现在MCS51单片机上对数字电子钟的基本功能设计,对当前时间正确显示,并可根据需要对时间进行更改,以完成时间的校对和闹钟的设置。
时钟时间以时、分、秒在6位数码管上显示,小时以24小时计时模式,分秒均为60进位。
用6MHz晶振产生振荡脉冲,定时器进行秒计时。
调整设置时间的过程运用可编程键盘上的按键进行控制,共设有5个按键,首先按键A进入校时模式或E进入闹钟模式,再分别按键B对小时或C分钟进行更改,每按键一次数码管计数显示加一,更改结束后按键D退出设置,时钟正常显示。
闹钟时间到时,蜂鸣器鸣响10秒后时钟正常显示。
1.2 设计思路采用C语言程序设计结合硬件电路设计方法,利用Lab6000实验箱来实现数字电子钟的设计。
1)提出方案根据设计要求,可将本次设计分为3个模块进行:1)时钟显示模块:主要用于时间的正确显示。
2)校时模块:此模块用于时钟的校对,以完成用户更改时间的需求。
3)闹钟模块:用于实现闹钟的时间设置和定点闹铃的功能。
2)方案论证时钟显示模块中,利用可编程定时器中断进行秒计时,将时间显示在6位数码管上。
校时模块主要利用键盘上5个键的控制完成各项功能,并在数码管上动态显示改变结果,完成设置后进入时钟显示模块。
闹钟模块的设置过程与校时模块相似,但设置完成进入时间显示模块后则等待闹铃时间,到规定时间后,通过数码管闪烁及蜂鸣器的鸣响来实现定点闹铃提醒功能。
电子设计自动化(EDA)_数字时钟程序模块(LED数码管显示)_实验报告
![电子设计自动化(EDA)_数字时钟程序模块(LED数码管显示)_实验报告](https://img.taocdn.com/s3/m/6e555c3826d3240c844769eae009581b6bd9bd2f.png)
电子设计自动化(EDA)—数字时钟LED数码管显示二、实验内容和实验目的1. 6个数码管动态扫描显示驱动2. 按键模式选择(时\分\秒)与闹钟(时\分)调整控制,3. 用硬件描述语言(或混合原理图)设计时、分、秒计数器模块、闹钟模块、按键控制状态机模块、动态扫描显示驱动模块、顶层模块。
要求使用实验箱左下角的6个动态数码管(DS6 A~DS1A)显示时、分、秒;要求模式按键和调整按键信号都取自经过防抖处理后的按键跳线插孔。
实验目的: 1)学会看硬件原理图, 2)掌握FPGA硬件开发的基本技能3)培养EDA综合分析、综合设计的能力三、实验步骤、实现方法(或设计思想)及实验结果主要设备: 1)PC机, 2)硬件实验箱, 3)Quartus II软件开发平台。
1.打开Quartus II , 连接实验箱上的相关硬件资源, 如下图1所示。
2.建立新文件, 选择文本类型或原理图类型。
3. 编写程序。
4.编译5. 仿真, 加载程序到芯片, 观察硬件输出结果(数码管显示)6.结果正确则完成。
若结果不正确, 则修改程序, 再编译, 直到正确。
模24计数器模块LIBRARY IEEE;USE IEEE.STD_LOGIC_1164.ALL;USE IEEE.STD_LOGIC_UNSIGNED.ALL;USE IEEE.STD_LOGIC_ARITH.ALL;ENTITY count24 ISPORT(clk,en:IN STD_LOGIC;cout:OUT STD_LOGIC;hh,hl:OUT STD_LOGIC_VECTOR(3 DOWNTO 0));END count24;ARCHITECTURE arc OF count24 ISSIGNAL a,b:STD_LOGIC_VECTOR(3 DOWNTO 0);BEGINPROCESS(clk,en)BEGINhh<=a;hl<=b;IF(clk'EVENT AND clk='1') THENIF(en='1') THENIF(a="0010" AND b="0011") THENa<="0000";b<="0000";ELSE IF(b="1001") THENa<=a+'1';b<="0000";ELSE b<=b+'1';END IF;END IF;IF(a="0010" AND b="0010") THENcout<='1';ELSE cout<='0';END IF;END IF;END IF;END PROCESS;END arc;模60计数器模块LIBRARY IEEE;USE IEEE.STD_LOGIC_1164.ALL;USE IEEE.STD_LOGIC_UNSIGNED.ALL;USE IEEE.STD_LOGIC_ARITH.ALL;ENTITY count60 ISPORT(clk,en:IN STD_LOGIC;cout:OUT STD_LOGIC;hh,hl:OUT STD_LOGIC_VECTOR(3 DOWNTO 0));END count60;ARCHITECTURE arc OF count60 ISSIGNAL a,b:STD_LOGIC_VECTOR(3 DOWNTO 0);SIGNAL sout:STD_LOGIC;BEGINPROCESS(clk)BEGINhh<=a; hl<=b;IF(clk'EVENT AND clk='1') THENIF(en='1') THENIF(a="0101" AND b="1001") THENa<="0000";b<="0000";ELSE IF(b="1001") THENa<=a+'1';b<="0000";ELSE b<=b+'1';END IF;END IF;END IF;END IF;END PROCESS;sout<='1' WHEN a="0101" AND b="1001" ELSE '0';cout<=sout AND en;END arc;4-7显示译码模块LIBRARY IEEE;USE IEEE.STD_LOGIC_1164.ALL;ENTITY segment4to7 ISPORT(s:IN STD_LOGIC_VECTOR(3 DOWNTO 0);a,b,c,d,e,f,g:OUT STD_LOGIC);END segment4to7;ARCHITECTURE arc OF segment4to7 IS SIGNAL y:STD_LOGIC_VECTOR(6 DOWNTO 0); BEGINa<= y(6);b<= y(5);c<= y(4);d<= y(3);e<= y(2); f<= y(1);g<= y(0);PROCESS(s)BEGINCASE s ISWHEN "0000"=>y<="1111110"; WHEN "0001"=>y<="0110000"; WHEN "0010"=>y<="1101101"; WHEN "0011"=>y<="1111001"; WHEN "0100"=>y<="0110011"; WHEN "0101"=>y<="1011011"; WHEN "0110"=>y<="1011111"; WHEN "0111"=>y<="1110000"; WHEN "1000"=>y<="1111111"; WHEN "1001"=>y<="1111011"; WHEN OTHERS=>y<="0000000"; END CASE;END PROCESS;END arc;带闹钟控制模块LIBRARY IEEE;USE IEEE.STD_LOGIC_1164.ALL;ENTITY mode_adjust_with_alarm ISPORT (adjust,mode,clk1hz: IN STD_LOGIC;clkh,enh,clkm,enm,clks,enha: OUT STD_LOGIC;clkh_a,clkm_a:OUT STD_LOGIC;mode_ss: OUT STD_LOGIC_VECTOR(2 DOWNTO 0));END mode_adjust_with_alarm;ARCHITECTURE arc OF mode_adjust_with_alarm ISTYPE mystate IS (s0,s1,s2,s3,s4,s5);SIGNAL c_state,next_state: mystate;BEGINPROCESS (c_state)BEGINCASE c_state ISWHEN s0=> next_state <= s1; clkh<=clk1hz; clkm<=clk1hz; clks<=clk1hz;enh<='0'; enm<='0'; enha<='0'; clkh_a<= '0'; clkm_a<= '0'; mode_ss <="000";WHEN s1=> next_state <= s2; clkh<=adjust; clkm<= '0'; clks<='0';enh<='1'; enm<='0';enha<='0'; clkh_a<= '0';clkm_a<= '0'; mode_ss <="001";WHEN s2=> next_state <= s3; clkh<= '0'; clkm<=adjust; clks <= '0';enh<='0';enm<='1';enha<='0'; clkh_a<= '0'; clkm_a<= '0'; mode_ss <="010";WHEN s3=> next_state <= s4; clkh<= '0'; clkm<= '0'; clks<=adjust;enh<='0'; enm<='0';enha<='0'; clkh_a<= '0'; clkm_a<= '0'; mode_ss <="011";WHEN s4=> next_state <= s5; clkh<= clk1hz; clkm<= clk1hz; clks<=clk1hz;enh<='0';enm<='0';enha<='1'; clkh_a<=adjust; clkm_a<= '0'; mode_ss <="100";WHEN s5=> next_state <= s0; clkh<= clk1hz; clkm<= clk1hz; clks<=clk1hz;enh<='0'; enm<='0'; enha<='0'; clkh_a<= '0'; clkm_a<=adjust; mode_ss <="101";END CASE;END PROCESS;PROCESS (mode)BEGINIF (mode'EVENT AND mode='1') THENc_state<=next_state ;END IF;END PROCESS;END arc;扫描模块LIBRARY IEEE;USE IEEE.STD_LOGIC_1164.ALL;USE IEEE.STD_LOGIC_UNSIGNED.ALL;ENTITY scan ISPORT(clk256hz:IN STD_LOGIC;ss:OUT STD_LOGIC_VECTOR(2 DOWNTO 0));END scan;ARCHITECTURE arc OF scan ISTYPE mystate IS (s0, s1,s2,s3,s4,s5);SIGNAL c_state,next_state: mystate;BEGINPROCESS ( c_state )BEGINCASE c_state ISWHEN s0=> next_state <=s1; ss<="010";WHEN s1=> next_state <=s2; ss<="011";WHEN s2=> next_state <=s3; ss<="100";WHEN s3=> next_state <=s4; ss<="101";WHEN s4=> next_state <=s5; ss<="110";WHEN s5=> next_state <=s0; ss<="111";END CASE;END PROCESS;PROCESS (clk256hz)BEGINIF (clk256hz'EVENT AND clk256hz='1') THENc_state<=next_state ;END IF;END PROCESS;END arc;复用模块LIBRARY IEEE;USE IEEE.STD_LOGIC_1164.ALL;ENTITY mux ISPORT(hh,hl,mh,ml,sh,sl,hha,hla,mha,mla:IN STD_LOGIC_VECTOR(3 DOWNTO 0);ss,mode_ss:IN STD_LOGIC_VECTOR(2 DOWNTO 0);y:OUT STD_LOGIC_VECTOR(3 DOWNTO 0);alarm:OUT STD_LOGIC);END mux;ARCHITECTURE arc OF mux ISSIGNAL a,hhtmp,hltmp,mhtmp,mltmp,shtmp,sltmp:STD_LOGIC_VECTOR(3 DOWNTO 0);BEGINPROCESS(mode_ss)BEGINCASE mode_ss ISWHEN "000"=>hhtmp<=hh; hltmp<=hl; mhtmp<=mh; mltmp<=ml; shtmp<=sh; sltmp<=sl;WHEN "001"=>hhtmp<=hh; hltmp<=hl; mhtmp<=mh; mltmp<=ml; shtmp<=sh; sltmp<=sl;WHEN "010"=>hhtmp<=hh; hltmp<=hl; mhtmp<=mh; mltmp<=ml; shtmp<=sh; sltmp<=sl;WHEN "011"=>hhtmp<=hh; hltmp<=hl; mhtmp<=mh; mltmp<=ml; shtmp<=sh; sltmp<=sl;WHEN "100"=> hhtmp<=hha; hltmp<=hla; mhtmp<=mha; mltmp<=mla; shtmp<=sh; sltmp<=sl;WHEN "101"=> hhtmp<=hha; hltmp<=hla; mhtmp<=mha; mltmp<=mla; shtmp<=sh; sltmp<=sl;WHEN OTHERS=>hhtmp<="0000";hltmp<="0000";mhtmp<="0000";mltmp<="0000";shtmp<="0000";sltmp<="0000"; END CASE;END PROCESS;PROCESS(ss)BEGINCASE ss ISWHEN "010"=> a <=hhtmp;WHEN "011"=> a <=hltmp;WHEN "100"=> a <=mhtmp;WHEN "101"=> a <=mltmp;WHEN "110"=> a <=shtmp;WHEN "111"=> a <=sltmp;WHEN OTHERS => a <="0000";END CASE;y<=a;END PROCESS;alarm<='1' WHEN ((hh=hha)AND(hl=hla)AND(mh=mha)AND(ml=mla)) ELSE '0';END arc;闪烁模块LIBRARY IEEE;USE IEEE.STD_LOGIC_1164.ALL;USE IEEE.STD_LOGIC_UNSIGNED.ALL;ENTITY blink_control ISPORT(ss,mode_ss:IN STD_LOGIC_VECTOR(2 DOWNTO 0);blink_en:OUT STD_LOGIC);END blink_control;ARCHITECTURE arc OF blink_control ISBEGINPROCESS (ss,mode_ss)BEGINIF(ss="010" AND mode_ss="001") THEN blink_en<='1';ELSIF(ss="011" AND mode_ss="001") THEN blink_en<='1';ELSIF(ss="100" AND mode_ss="010") THEN blink_en<='1';ELSIF(ss="101" AND mode_ss="010") THEN blink_en<='1';ELSIF(ss="110" AND mode_ss="011") THEN blink_en<='1';ELSIF(ss="111" AND mode_ss="011") THEN blink_en<='1';ELSIF(ss="010" AND mode_ss="100") THEN blink_en<='1';ELSIF(ss="011" AND mode_ss="100") THEN blink_en<='1';ELSIF(ss="100" AND mode_ss="101") THEN blink_en<='1';ELSIF(ss="101" AND mode_ss="101") THEN blink_en<='1';ELSE blink_en<='0';END IF;END PROCESS;END arc;Top文件LIBRARY IEEE;USE IEEE.STD_LOGIC_1164.ALL;USE IEEE.STD_LOGIC_UNSIGNED.ALL;ENTITY design3 ISPORT (mode,adjust,clk1hz,clk2hz,clk256hz,clk1khz:IN STD_LOGIC;alarm,a,b,c,d,e,f,g:OUT STD_LOGIC;ss:OUT STD_LOGIC_VECTOR(2 DOWNTO 0));END design3;ARCHITECTURE arc OF design3 ISCOMPONENT mode_adjust_with_alarm PORT (adjust,mode,clk1hz: IN STD_LOGIC;clkh,enh,clkm,enm,clks,enha: OUT STD_LOGIC;clkh_a,clkm_a:OUT STD_LOGIC;mode_ss: OUT STD_LOGIC_VECTOR(2 DOWNTO 0));END COMPONENT;COMPONENT scan PORT (clk256hz:IN STD_LOGIC;ss:OUT STD_LOGIC_VECTOR(2 DOWNTO 0));END COMPONENT;COMPONENT segment4to7 PORT (s: IN STD_LOGIC_VECTOR(3 DOWNTO 0);a,b,c,d,e,f,g: OUT STD_LOGIC);END COMPONENT;COMPONENT mux PORT(hh,hl,mh,ml,sh,sl,hha,hla,mha,mla:IN STD_LOGIC_VECTOR(3 DOWNTO 0);ss,mode_ss:IN STD_LOGIC_VECTOR(2 DOWNTO 0);y:OUT STD_LOGIC_VECTOR(3 DOWNTO 0);alarm:OUT STD_LOGIC);END COMPONENT;COMPONENT blink_control PORT(ss,mode_ss:IN STD_LOGIC_VECTOR(2 DOWNTO 0);blink_en:OUT STD_LOGIC);END COMPONENT;COMPONENT count24 PORT (clk,en:IN STD_LOGIC;cout:OUT STD_LOGIC;hh,hl:OUT STD_LOGIC_VECTOR(3 DOWNTO 0));END COMPONENT;COMPONENT count60 PORT (clk ,en:IN STD_LOGIC;cout:OUT STD_LOGIC;hh,hl:OUT STD_LOGIC_VECTOR(3 DOWNTO 0));END COMPONENT;SIGNALclkh,enh,clkm,enm,clks,clkh_a,clkm_a,coutm,couts,coutm_en,couts_en,cout,vcc,coutma_en,coutma,alarm1,bli nk_en,blink_tmp,enha: STD_LOGIC;SIGNAL mode_ss,ss1:STD_LOGIC_VECTOR(2 DOWNTO 0);SIGNAL hh,hl,mh,ml,sh,sl,hha,hla,mha,mla,y,i:STD_LOGIC_VECTOR(3 DOWNTO 0);BEGINvcc<='1';coutm_en <= enh OR coutm;couts_en <= enm OR couts;coutma_en<= enha OR coutma;blink_tmp<=blink_en and clk2hz;i(3)<=y(3) OR blink_tmp;i(2)<=y(2) OR blink_tmp;i(1)<=y(1) OR blink_tmp;i(0)<=y(0) OR blink_tmp;ss<=ss1;alarm<=alarm1 AND clk1khz;u1:mode_adjust_with_alarmPORT MAP( adjust,mode,clk1hz,clkh,enh,clkm,enm,clks,enha,clkh_a,clkm_a,mode_ss);u2:count24 PORT MAP(clkh,coutm_en,cout,hh,hl);u3:count60 PORT MAP(clkm,couts_en,coutm,mh,ml);u4:count60 PORT MAP(clks,vcc,couts,sh,sl);u5:count24 PORT MAP(clkh_a,coutma_en,cout,hha,hla);u6:count60 PORT MAP(clkm_a,vcc,coutma,mha,mla);u7:mux PORT MAP(hh,hl,mh,ml,sh,sl,hha,hla,mha,mla,ss1,mode_ss,y,alarm1);u8:scan PORT MAP(clk256hz,ss1);u9:blink_control PORT MAP(ss1,mode_ss,blink_en);u10:segment4to7 PORT MAP(i,a,b,c,d,e,f,g);END arc;实验结果:数字钟包括正常的时分秒计时, 实验箱左下角的6个动态数码管(DS6 A~DS1A)显示时、分、秒。
单片机课设LED显示电子钟
![单片机课设LED显示电子钟](https://img.taocdn.com/s3/m/3587ba87ccbff121dd3683c1.png)
辽宁工业大学单片机与接口技术课程设计(论文)题目:LED显示的电子钟院(系):电子与信息工程学院专业班级:计算机班学号:学生姓名:指导教师:教师职称:起止时间:课程设计(论文)任务及评语院(系):电子与信息工程学院教研室:计算机科学与技术目录第1章设计概述与要求 (1)1.1 设计概述 (1)1.2设计要求 (1)第2章系统设计 (3)2.1 框图设计 (3)2.2 硬件设计 (3)第3章软件设计 (9)3.1 程序流程图 (9)第4章PROTEUS仿真结果 (12)4.1 总体电路仿真结果 (12)4.2 各个功能的仿真结果 (12)第5章总结 (14)参考文献 (14)附录程序代码 (15)第1章设计概述与要求1.1 设计概述课程设计应以学生认知为主体,充分调动学生的积极性和能动性,重视学生自学能力培养。
根据课程设计具体课题安排时间,确定课题的涉及,变成和调试内容,分团队开展课程设计活动,安排完成每部分工作。
课程设计集中在实验室进行。
在课程设计过程中,坚持独立完成,实现课题规定的各项指标,并写出设计报告。
要求学生自己调研,设计系统功能,划分软硬件功能,选择器件,用Proteus软件在PC机上完成硬件原理图设计。
然后使用使用Proteus软件在PC机运行系统仿真,调试电路和修改调试程序。
对整个系统做试运行,有问题再进一步修改调试,直至达到设计的要求和取得满意的效果。
最后编写系统说明书,其内容主要包括系统功能介绍,使用范围,主要性能指标,使用方法,注意事项等。
要求学生通过理论设计和实物制作解决相应的实际问题,巩固和运用在《单片机原理与接口技术》课程中所学的理论知识和实验技能,掌握单片机应用系统的一般设计方法,提高设计能力和实践动手能力,为以后从事电子电路设计、研发电子产品打下良好的基础。
基于AT89C51单片机,制作一个LED显示的智能电子钟。
1.2设计要求1、设计题目:LED显示的电子钟2、设计任务:基于AT89C51单片机,制作一个LED显示的智能电子钟。
6位LED显示时钟计时器
![6位LED显示时钟计时器](https://img.taocdn.com/s3/m/5f36f276b9f3f90f76c61bdc.png)
时钟计时器的设计目录1. 引言, (2)1.1. 设计意义 (2)1.2. 系统功能要求 (2)1.3. 本组成员所做的工作 (2)2. 方案设计 (2)3. 硬件设计 (3)4. 软件设计 (5)5. 系统调试 (7)6. 设计总结 (8)7. 附录A;源程序 ....................... 错误!未定义书签。
8. 附录B;作品实物图片.................. 错误!未定义书签。
9. 参考文献.............................. 错误!未定义书签。
时钟计时器的设计1.引言1.1. 设计意义时钟计时器在现在应用场合非常的广泛,近年来,随着科学技术的进步和时代的发展,人们对时钟的功能和精度提出了越来越高的要求,各种时钟的设计也越来越重要。
秒表/时钟计时器是在一种计时器上实现两种基本功能的一种器件。
它广泛应用于各种场所,同时,它以其小巧,价格低廉,走时精度高,使用方便,功能多,便于集成化,而受到广大消费者的喜爱引言近年来随着计算机技术的飞速发展,计算机也正式形成了通用计算机系统和嵌入式计算机系统二个分支。
单片机作为最典型的嵌入式系统,由于其微小的体积和极低的成本,广泛应用于家用电器、仪器仪表、工业控制单元以及通信产品中,成为现代电子系统中最重要的智能化工具。
同时数模电技术、微电子技术也快速发展使得大量集成芯片出现,从而实现很多简单功能代替了原来的模拟电路。
这样利用单片机、集成芯片和电子电路就可以很方便的进行设计,其中最典型、现在应用也很多的就是电子产品的设计。
本设计就是利用单片机技术将秒表和时钟两种计时器的功能集中到一种计时装置上,从而实现计时器功能的集成化,使其使用起来更加方便。
本设计的一大特点就是在硬件设计中采用实时时钟芯片来实现计时,大大简化了硬件电路,从而使设计更加简便易行。
1.2. 系统功能要求时钟计时器要求用单片机及6位数码管显示时,分,秒,以24小时计时方式运行,能整点提醒(但蜂鸣器,次数代表整点时间),使用按键开关可实现时,分调整,秒表|时钟功能转换,省电(关闭显示)及定时设定提醒(蜂鸣器)的歌功能。
单片机定时器实现简单的数字电子钟proteus和keilc51
![单片机定时器实现简单的数字电子钟proteus和keilc51](https://img.taocdn.com/s3/m/3ea54f335727a5e9856a61f0.png)
单片机定时器实现简单的数字电子钟/***********************************************单片机定时器实现简单的数字电子钟采用单片机AT89C52+6位共阳数码管P0口送段码,P2口控制数码管显示林志谋leansmall@厦门海洋职业技术学院2014.3.6***********************************************/#include<reg52.h>unsigned char tab[]={0xc0,0xf9,0xa4,0xb0,0x99,0x92,0x82,0xf8,0x80,0x90,0x88,0x83,0xc6,0xa1,0x86,0x8e,0xff}; unsigned char second=0,minute=0;hour=0;unsigned char count=0;unsigned char shiweinum=0xff;unsigned char geweinum=0xff;unsigned char ctlarray[]={0x01,0x02,0x04,0x08,0x10,0x20};void display(unsigned char clk,unsigned char *p,unsigned char num);void delay();void init();void main(){init();while(1){//时钟显示display(hour,ctlarray,0);//分钟显示display(minute,ctlarray,2);//秒钟显示display(second,ctlarray,4);}}void timer0() interrupt 1{TH0=0X3C;TL0=0XB0;count++;if(count==20)//20*50ms=1s{count=0;second++; //秒钟加1if(second==60){second=0; //复位minute++; //分钟加1 ,1分钟=60秒if(minute==60){minute=0;//复位hour++; //时钟加1 ,1小时=60分if(hour==24){hour=0; //时钟复位,1天=24小时}}}}}void delay(){unsigned char i,j;for(i=0;i<10;i++)for(j=0;j<110;j++);}void display(unsigned char clk,unsigned char *p,unsigned char num) {unsigned char shiweinum, geweinum;shiweinum=clk/10;//获取十位数geweinum=clk%10;//获取个位数P2=*(p+1+num);P0=tab[geweinum];delay();P0=0xff;P2=*(p+num);P0=tab[shiweinum];delay();P0=0xff;}void init(){TH0=0X3C;TL0=0XB0;TMOD=0X01;ET0=1;EX0=1;EA=1;TR0=1;}。
单片机课程设计电子时钟
![单片机课程设计电子时钟](https://img.taocdn.com/s3/m/5f8b651b0740be1e650e9aa6.png)
目录第一部分设计任务及要求 (2)1.1单片机设计设计内容 (2)1.2单片机课程设计要求 (2)1.3 系统运行流程 (2)第二部分设计方案 (3)2.1 总体设计方案说明 (3)2.2 系统方框图 (3)2.3 系统流程图 (3)第三部分主要器材及基本简介 (7)3.1 主要器材 (7)3.2主要器材简介 (7)第四部分系统硬件设计 (7)4.1 数码管显示电路 (7)4.2键盘输入电路 (8)4.3 蜂鸣器 (8)第五部分课程设计总结 (9)附录 (9)1. 系统源程序注释及功能说明 (9)2. 原理图 (17)毕竟是两年前写的东西了,在这里分享一下自己的思路,程序100%能运行,只不过是在我的那块板子上,要参考的话,最好去看看自己用的板子的接口和板子的原理图啥样。
第一部分设计任务及要求1.1单片机设计设计内容利用STC89C51RC单片机和LCD7407六段数码管实现可预置参数的电子钟,可由按键切换不同的功能。
1.2单片机课程设计要求80C51系列单片机的外围接口电路设计,掌握应用软件的编写及调试。
学会用软件调试硬件和用硬件调试软件。
1.硬件设计要求:CPU选用 STC89C51RC,内有 4KB Flash ROM。
显示用6位LED,LED共阴极接法,采用动态显示法。
用芯片7407作7段LED段选驱动,用芯片7406段LED位段选驱动。
要求有单片机复位键,功能选择键,加/减键,移位键,确认键。
要求用Protel绘制电路原理图2.软件编写要求:(1)基本要求:实时时钟:显示年月日时分秒,各两位,分二页显示。
可以上电自动按预置时间走时。
(2)提高要求:时钟上电后,显示时分秒,用按键切换年月日3秒后,返回时分秒。
可以手动预置年、月、日、时、分、秒后,时间走时。
预置的位要求闪烁。
闹钟功能:定时到报警(喇叭发声),手动预置定时时间。
定时器(倒计时)功能:定时清0报警(喇叭发声),手动预置定时时间。
单片机 电子时钟 6位数码管
![单片机 电子时钟 6位数码管](https://img.taocdn.com/s3/m/8c4ab4e2998fcc22bcd10d75.png)
org 00h;显示缓冲单元在70H—75H,70H—71H显示秒,72H—73H显示分,74H—75H显示时;时间计数单元在70H—71H(秒)、76H—77H(分)、78H—79H (时),7AH单元放熄灭符(#0AH);计数单元采用BCD码计数,定时器T0设置为50MS溢出中断,为秒计数用,定时器T1为调整时闪烁用;P3.2为调整按钮,P1口为字符输出口,采用共阳显示管。
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 中断入口程序;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;ORG 0000HLJMP STARTORG 0003HRETIORG 000BHLJMP INTT0ORG 0013HRETIORG 001BHLJMP INTT1ORG 0023HRETIORG 002BHRETI; ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 主程序;; ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;START: MOV R0, #70HMOV R7, #0BHMOV 20H, #00H CLEARDISP: MOV @R0, #00H INC R0DJNZ R7,CLEARDISP MOV 7AH,#0AHMOV TMOD,#11HMOV TL0, #0B0HMOV TH0, #3CHMOV TL1, #0B0HMOV TH1, #3CHSETB EASETB ET0SETB TR0MOV R4,#14Hstart1: LCALL DISPLAY JNB P3.2,SETMM1 SJMP Start1SETMM1: LJMP SETMM ; ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;; 1秒定时程序;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;INTT0: PUSH ACCPUSH PSWCLR ET0CLR TR0MOV A,#0B7H ;中断同步修正ADD A,TL0MOV TL0,AMOV A,#3CHADD A,TH0MOV TH0,ASETB TR0DJNZ R4, OUTT0 ADDSS: MOV R4,#14H MOV R0,#71HACALL ADD1 ;加1程序MOV A,R3CLR CCJNE A,#60H,ADDMM ADDMM: JC OUTT0 ACALL CLR0MOV R0,#77H ACALL ADD1MOV A,R3CLR CCJNE A,#60H,ADDHH ADDHH: JC OUTT0 ACALL CLR0MOV R0,#79H ACALL ADD1MOV A,R3CLR CCJNE A,#24H,HOUR HOUR: JC OUTT0 ACALL CLR0OUTT0: MOV 72H,76H MOV 73H,77HMOV 74H,78HMOV 75H,79HPOP PSWPOP ACCSETB ET0RETI; ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;; 闪动调时程序;; ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;INTT1: PUSH ACC PUSH PSWMOV TL1, #0B0HMOV TH1, #3CHDJNZ R2,INTT1OUTCPL 02HJB 02H,FLASH1MOV 72H,76HMOV 73H,77HMOV 74H,78HMOV 75H,79HINTT1OUT: POP PSW POP ACCRETIFLASH1: JB 01H,FLASH2 MOV 72H,7AHMOV 73H,7AHMOV 74H,78HMOV 75H,79HAJMP INTT1OUT FLASH2: MOV 72H,76H MOV 73H,77HMOV 75H,7AHAJMP INTT1OUT;; ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;; 加1程序;; ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;ADD1: MOV A,@R0 DEC R0SWAP AORL A,@R0ADD A,#01HDA AMOV R3,AANL A,#0FHMOV @R0,AMOV A,R3INC R0SWAP AANL A,#0FHMOV @R0,ARET ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;; 清零程序;; ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;CLR0: CLR AMOV @R0,ADEC R0MOV @R0,ARET; ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;; 时钟调整程序;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;SETMM: cLR ET0CLR TR0LCALL DL1SJB P3.2,CLOSEDISMOV R2,#06HSETB ET1SETB TR1SET2: JNB P3.2,SET1 SETB 00HSET4: JB P3.2,SET3 LCALL DL05SJNB P3.2,SETHHMOV R0,#77H ;加1分程序LCALL ADD1MOV A,R3CLR CCJNE A,#60H,HHH HHH: JC SET4LCALL CLR0CLR CAJMP SET4 CLOSEDIS: SETB ET0 SETB TR0CLOSE: JB P3.2,CLOSE LCALL DISPLAYJB P3.2,CLOSE WAITH: JNB P3.2,WAITH LJMP START1 SETHH: CLR 00H SETHH1: JNB P3.2,SET5 SETB 01HSET6: JB P3.2,SET7 LCALL DL05SJNB P3.2,SETOUTMOV R0,#79HLCALL ADD1MOV A,R3CLR CCJNE A,#24H,HOUU HOUU: JC SET6LCALL CLR0AJMP SET6SETOUT: JNB P3.2,SETOUT1 LCALL DISPLAYJNB P3.2,SETOUTCLR 01HCLR 00HCLR 02HCLR TR1CLR ET1SETB TR0SETB ET0LJMP START1SET1: LCALL DISPLAY AJMP SET2SET3: LCALL DISPLAY AJMP SET4SET5: LCALL DISPLAY AJMP SETHH1SET7: LCALL DISPLAY AJMP SET6SETOUT1: LCALL DISPLAY AJMP SETOUT; ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;; 显示程序;; ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;DISPLAY: MOV R1,#70H MOV R5,#0BFHPLAY: MOV A,R5MOV P2,AMOV A,@R1MOV DPTR,#TABMOVC A,@A+DPTRMOV P0,ALCALL DL1MSINC R1MOV A,R5JNB ACC.1,ENDOUTRR AMOV R5,AAJMP PLAYENDOUT: SETB P2.1MOV P0,#0FFHRETTAB: DB 28h,7eh,0a2h,62h,74h,61h,21h,7ah,20h,60h ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;; 延时程序;; ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;DL1MS: MOV R6,#14HDL1: MOV R7,#19HDL2: DJNZ R7,DL2DJNZ R6,DL1RET;DS20MS: ACALL DISPLAY ACALL DISPLAYACALL DISPLAYRETDL1S: LCALL DL05S LCALL DL05SRETDL05S: MOV R3,#20HDL05S1: LCALL DISPLAY DJNZ R3,DL05S1RETEND。
多功能6位电子钟说明书
![多功能6位电子钟说明书](https://img.taocdn.com/s3/m/05d9c9014a7302768e99393f.png)
多功能6位电子钟说明书一、原理说明:1、显示原理:显示部分主要器件为2位共阳红色数码管,驱动采用PNP型三极管驱动,各端口配有限流电阻,驱动方式为扫描,占用P1.0~P1.6端口。
冒号部分采用4个Φ3.0的红色发光,驱动方式为独立端口驱动,占用P1.7端口。
2、键盘原理:按键S1~S3采用复用的方式与显示部分的P3.5、P3.4、P3.2口复用。
其工作方式为,在相应端口输出高电平时读取按键的状态并由单片机支除抖动并赋予相应的键值。
3、迅响电路及输入、输出电路原理:迅响电路由有源蜂鸣器和PNP型三极管组成。
其工作原理是当PNP型三极管导通后有源蜂鸣器立即发出定频声响。
驱动方式为独立端口驱动,占用P3.7端口。
输出电路是与迅响电路复合作用的,其电路结构为有源蜂鸣器,4.7K定值电阻R16,排针J3并联。
当有源蜂鸣器无迅响时J3输出低电平,当有源蜂鸣器发出声响时J3输出高电平,J3可接入数字电路等各种需要。
驱动方式为迅响复合输出,不占端口。
输入电路是与迅响电路复合作用的,其电路结构是在迅响电路的PNP型三极管的基极电路中接入排针J2。
引脚排针可改变单片机I/O口的电平状态,从而达到输入的目的。
驱动方式为复合端口驱动,占用P3.7端口。
4、单片机系统:本产品采用AT89C2051为核心器件(AT89C2051烧写程序必须借助专用编程器,我们提供的单片机已经写入程序),并配合所有的必须的电路,只具有上电复位的功能,无手动复位功能。
二、使用说明:1、功能按键说明: S1为功能选择按键,S2为功能扩展按键,S3为数值加一按键。
2、功能及操作说明:操作时,连续短时间(小于1秒)按动S1,即可在以上的6个功能中连续循环。
中途如果长按(大于2秒)S1,则立即回到时钟功能的状态。
1、时钟功能:上电后即显示10:10:00 ,寓意十全十美。
2、校时功能:短按一次S1,即当前时间和冒号为闪烁状态,按动S2则小时位加1,按动S3则分钟位加1,秒时不可调。
基于51单片机的电子时钟设计
![基于51单片机的电子时钟设计](https://img.taocdn.com/s3/m/b64219241fd9ad51f01dc281e53a580216fc50e7.png)
基于51单片机的电子时钟设计
电子时钟是一种使用电子元件和计算机技术制造的时计,它可以显示年、月、日、时、分、秒等时间信息,并且具有显示精确、功能齐全、操
作简便等特点。
本文将基于51单片机设计一个电子时钟。
一、硬件设计:
1.时钟模块:我们可以使用DS1302时钟模块作为实时时钟芯片,它
可以提供精确的时间信息,并且可以通过单片机与之进行通信。
2.显示模块:我们可以使用共阳数码管进行时间的显示,将时钟设计
成6位7段显示器。
3.按键模块:我们可以使用按键作为输入方式,通过按键调整时间信息。
二、软件设计:
1.初始化:首先,我们需要初始化时钟模块和显示模块,使它们正常
工作。
同时,设置时钟的初始时间为系统当前时间。
2.获取时间:通过与时钟模块的通信,获取当前的时间信息,包括年、月、日、时、分、秒等。
3.显示时间:将获取到的时间信息通过显示模块显示出来,分别显示
在6个数码管上。
4.时间调整:通过按键模块的输入,判断用户是否需要调整时间。
如
果需要,可以通过按键的不同组合来调整时、分、秒等时间信息。
5.刷新显示:通过不断更新显示模块的输入信号来实现时钟的流动性,保持秒针不断运动的效果。
6.时间保存:为了保证时钟断电后依然能够保持时间,我们需要将时
钟模块获取到的时间信息保存在特定的EEPROM中。
7.闹钟功能:可以通过按键设置闹钟,当到达闹钟时间时,会通过蜂
鸣器发出响声。
以上就是基于51单片机的电子时钟设计方案。
通过对硬件和软件的
综合设计,我们可以实现一个功能齐全的电子时钟。
51单片机数码管时钟电路的设计
![51单片机数码管时钟电路的设计](https://img.taocdn.com/s3/m/c573b47f915f804d2a16c10c.png)
另外,主循环还负责扫描键盘,检测相应键是否被按下,若MODE键被按下则在特定单元中登记该功能,并启动定时器1,然后返回继续执行显示功能。在定时器1中断时,被登记的功能正式执行。期间用时约10ms,用以消除机械抖动。
MOV A, cmode
INC A
CJNE A, #07H, enmode
MOV A, #00H
enmode:
MOV cmode, A
ANL A, #04H
JZ notalapage
MOV npage, #02H
ACALL preala;时钟调整页准备
notalapage:
MOV A, cmode
MOVC A, @A + DPTR
MOV m, #00H
MOV A, h ;h
INC A
DA A
MOV h, A
CJNE A, #24H, incn
MOV h, #00H
incn:
SETB bPalse
JNB bAlaOn, alarmoff
ACALL checkala ;check alarm when alarm is ON
alarmoff:
CJNE A, #60H, notset
MOV s, #00H
SJMP notset
setae:
CPL bAlaOn ;闹钟开关
SJMP notseta
setah:
MOV A, ah ;闹钟时设置
INC A
DA A
MOV ah, A
CJNE A, #24H, notseta
基于单片机的电子时钟6位LED数码管显示
![基于单片机的电子时钟6位LED数码管显示](https://img.taocdn.com/s3/m/ea97bfee0975f46527d3e100.png)
数码管显示电子时钟设计一.功能要求1.数字电子时钟最主要是LED数码管显示功能,以24小时为一个周期,显示时间时、分、秒。
2.具有校时功能,可以对时、进行单独校对,使其校正到标准时间。
二.方案论证1.数字时钟方案数字时钟是本设计的最主要的部分。
根据需要,可利用两种方案实现。
方案一:本方案采用Dallas公司的专用时钟芯片DS12887A。
该芯片内部采用石英晶体振荡器,其芯片精度不大于10ms/年,且具有完备的时钟闹钟功能,因此,可直接对其以用于显示或设置,使得软件编程相对简单。
为保证时钟在电网电压不足或突然掉电等突发情况下仍能正常工作,芯片内部包含锂电池。
当电网电压不足或突然掉电时,系统自动转换到内部锂电池供电系统。
而且即使系统不上电,程序不执行时,锂电池也能保证芯片的正常运行,以备随时提供正确的时间。
方案二:本方案完全用软件实现数字时钟。
原理为:在单片机内部存储器设三个字节分别存放时钟的时、分、秒信息。
利用定时器与软件结合实现1秒定时中断,每产生一次中断,存储器内相应的秒值加1;若秒值达到60,则将其清零,并将相应的分字节值加1;若分值达到60,则清零分字节,并将时字节值加1;若时值达到24,则将十字节清零。
该方案具有硬件电路简单的特点。
但由于每次执行程序时,定时器都要重新赋初值,所以该时钟精度不高。
而且,由于是软件实现,当单片机不上电,程序不执行时,时钟将不工作。
基于硬件电路的考虑,本设计采用方案二完成数字时钟的功能。
2.数码管显示方案方案一:静态显示。
所谓静态显示,就是当显示器显示某一字符时,相应的发光二极管恒定的导通或截止。
该方式每一位都需要一个8 位输出口控制。
静态显示时较小的电流能获得较高的亮度,且字符不闪烁。
但当所显示的位数较多时,静态显示所需的I/O口太多,造成了资源的浪费。
方案二:动态显示。
所谓动态显示就是一位一位的轮流点亮各个位,对于显示器的每一位来说,每隔一段时间点亮一次。
AT89C51单片机电子时钟设计
![AT89C51单片机电子时钟设计](https://img.taocdn.com/s3/m/f1023a8a0b4c2e3f572763dc.png)
AT89C51单片机电子时钟设计目录1 电子时钟 (4)1.1 电子时钟简介 (4)1.2 电子时钟的基本特点 (4)1.3 电子时钟的原理 (4)2 单片机识的相关知识 (4)2.1单片机简介 (4)2.2 单片机的特点 (5)2.3 AT89C51单片机介绍 (5)3 设计方案的选择 (7)3.1计时方案 (7)3.2 显示方案 (7)3.3 数码管显示工作原理 (8)3.4 键盘电路设计 (9)3.5 主控模块AT89C51 (9)4 系统软件设计 (9)附录 (12)摘要:单片机自20世纪70年代问世以来,以其极高的性能价格比,受到人们的重视和关注。
单片机体积小、重量轻、抗干扰能力强、环境要求不高、价格低廉、可靠性高、灵活性好、开发较为容易。
由于具有上述优点,单片机已广泛地应用在工业自动化控制、自动检测、智能仪器仪表、家用电器、电力电子、机电一体化设备等各个方面,而51单片机是各单片机中最为典型和最有代表性的一种。
这次设计通过对它的学习、应用,以AT89C51芯片为核心,辅以必要的电路,设计了一个简易的电子时钟,它由4.5V直流电源供电,通过数码管能够准确显示时间,调整时间,从而到达学习、设计、开发软、硬件的能力。
关键词:单片机;电子时钟;AT89C511 电子时钟1.1 电子时钟简介本设计采用AT89C51单片机,以汇编语言为程序设计的基础,设计一个用六位数码管显示时、分、秒的时钟。
现代的电子时钟是基于单片机的一种计时工具,采用延时程序产生一定的时间中断,用于一秒的定义,通过计数方式进行满六十秒分钟进一,满六十分小时进一,满二十四小时小时清零,从而达到计时的功能,是人民日常生活不可缺少的工具。
1.2 电子时钟的基本特点现在高精度的计时工具大多数都使用了石英晶体振荡器,由于电子钟、石英钟、石英表都采用了石英技术,因此走时精度高,稳定性好,使用方便,不需要经常调试,数字式电子钟用集成电路计时时,译码代替机械式传动,用LED显示器代替指针显示进而显示时间,减小了计时误差,这种表具有时、分、秒显示时间的功能,还可以进行时和分的校对,片选的灵活性好。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数码管显示电子时钟设计一.功能要求1.数字电子时钟最主要是LED数码管显示功能,以24小时为一个周期,显示时间时、分、秒。
2.具有校时功能,可以对时、进行单独校对,使其校正到标准时间。
二.方案论证1.数字时钟方案数字时钟是本设计的最主要的部分。
根据需要,可利用两种方案实现。
方案一:本方案采用Dallas公司的专用时钟芯片DS12887A。
该芯片内部采用石英晶体振荡器,其芯片精度不大于10ms/年,且具有完备的时钟闹钟功能,因此,可直接对其以用于显示或设置,使得软件编程相对简单。
为保证时钟在电网电压不足或突然掉电等突发情况下仍能正常工作,芯片内部包含锂电池。
当电网电压不足或突然掉电时,系统自动转换到内部锂电池供电系统。
而且即使系统不上电,程序不执行时,锂电池也能保证芯片的正常运行,以备随时提供正确的时间。
方案二:本方案完全用软件实现数字时钟。
原理为:在单片机内部存储器设三个字节分别存放时钟的时、分、秒信息。
利用定时器与软件结合实现1秒定时中断,每产生一次中断,存储器内相应的秒值加1;若秒值达到60,则将其清零,并将相应的分字节值加1;若分值达到60,则清零分字节,并将时字节值加1;若时值达到24,则将十字节清零。
该方案具有硬件电路简单的特点。
但由于每次执行程序时,定时器都要重新赋初值,所以该时钟精度不高。
而且,由于是软件实现,当单片机不上电,程序不执行时,时钟将不工作。
基于硬件电路的考虑,本设计采用方案二完成数字时钟的功能。
2.数码管显示方案方案一:静态显示。
所谓静态显示,就是当显示器显示某一字符时,相应的发光二极管恒定的导通或截止。
该方式每一位都需要一个8 位输出口控制。
静态显示时较小的电流能获得较高的亮度,且字符不闪烁。
但当所显示的位数较多时,静态显示所需的I/O口太多,造成了资源的浪费。
方案二:动态显示。
所谓动态显示就是一位一位的轮流点亮各个位,对于显示器的每一位来说,每隔一段时间点亮一次。
利用人的视觉暂留功能可以看到整个显示,但必须保证扫描速度足够快,字符才不闪烁。
显示器的亮度既与导通电流有关,也于点亮时间与间隔时间的比例有关。
调整参数可以实现较高稳定度的显示。
动态显示节省了I/O口,降低了能耗。
从节省I/O口和降低能耗出发,本设计采用方案二。
3 .计时方案利用AT89S51单片机内部的定时/计数器进行中断时,配合软件延时实现时、分、秒的计时。
该方案节省硬件成本,且能使读者在定时/计数器的使用、中断及程序设计方面得到锻炼与提高,对单片机的指令系统能有更深入的了解,从而对学好单片机技术这门课程起到一定的作用。
4. 控制方案AT89S51的P0口和P2口外接由八个LED数码管(LED8~LED1)构成的显示器,用P0口作LED的段码输出口,P2口作八个LED数码管的位控输出线,P1口外接四个按键A、B、C构成键盘电路。
AT89S51 是一种低功耗,高性能的CMOS 8位微型计算机。
它带有8K Flash 可编程和擦除的只读存储器(EPROM),该器件采用ATMEL的高密度非易失性存储器技术制造,与工业上标准的80C51和80C52的指令系统及引脚兼容,片内Flash 集成在一个芯片上,可用与解决复杂的问题,且成本较低。
简易电子钟的功能不复杂,采用其现有的I/O便可完成,所以本设计中采用此的设计方案。
三.系统硬件电路的设计根据以上的电子时钟的设计要求可以分为以下的几个硬件电路模块:单片机模块、数码显示模块与按键模块,模块之间的关系图如下面得方框电路图1所示图1 硬件电路方框图1.单片机模块设计1.1 芯片分析AT89C51单片机引脚图如下:图2 AT89C51引脚图MCS-51单片机是标准的40引脚双列直插式集成电路芯片,其各引脚功能如下:VCC:+5V电源。
VSS:接地。
RST:复位信号。
当输入的复位信号延续两个机器周期以上的高电平时即为有效,用完成单片机的复位初始化操作。
XTAL1和XTAL2:外接晶体引线端。
当使用芯片内部时钟时,此二引线端用于外接石英晶体和微调电容;当使用外部时钟时,用于接外部时钟脉冲信号。
P0口:P0口为一个8位漏极开路双向I/O口,当作输出口使用时,必须接上拉电阻才能有高电平输出;当作输入口使用时,必须先向电路中的锁存器写入“1”,使FET截止,以避免锁存器为“0”状态时对引脚读入的干扰。
P1口:P1口是一个内部提供上拉电阻的8位双向I/O口,它不再需要多路转接电路MUX;因此它作为输出口使用时,无需再外接上拉电阻,当作为输入口使用时,同样也需先向其锁存器写“1”,使输出驱动电路的FET截止。
P2口:P2口电路比P1口电路多了一个多路转接电路MUX,这又正好与P0口一样。
P2口可以作为通用的I/O口使用,这时多路转接电路开关倒向锁丰存器Q端。
P3口:P3口特点在于,为适应引脚信号第二功能的需要,增加了第二功能控制逻辑。
当作为I/O口使用时,第二功能信号引线应保持高电平,与非门开通,以维持从锁存器到输出端数据输出通路的畅通。
当输出第二功能信号时,该位应应置“1”,使与非门对第二功能信号的输出是畅通的,从而实现第二功能信号的输出。
MCS-51单片机共有4个双向的8位并行I/O端口(Port),分别记作P0-P3,共有32根口线,各口的每一位均由锁存器、输出驱动器和输入缓冲器所组成。
实际上P0-P3已被归入特殊功能寄存器之列。
这四个口除了按字节寻址以外,还可以按位寻址。
由于它们在结构上有一些差异,故各口的性质和功能有一些差异。
P0口是双向8位三态I/O口,此口为地址总线(低8位)及数据总线分时复用口,可驱动8个LS型TTL负载。
P1口是8位准双向I/O口,可驱动4个LS 型负载。
P2口是8位准双向I/O口,与地址总线(高8位)复用,可驱动4个LS型TTL负载。
P3口是8位准双向I/O口,是双功能复用口,可驱动4个LS型TTL负载。
P1口、P2口、P3口各I/O口线片内均有固定的上拉电阻,当这3个准双向I/O口做输入口使用时,要向该口先写“1”,另外准双向I/O口无高阻的“浮空”状态,故称为双向三态I/O 口。
时钟电路用于产生MCS-51单片机工作时所必需的时钟信号。
MCS-51单片机本身就是一个复杂的同步时序电路,为保证同步工作方式的实现,MCS-51单片机应在唯一的时钟信号控制下,严格地按时序执行进行工作,而时序所研究的是指令执行中各个信号的关系。
在执行指令时,CPU首先要到程序存储器中取出需要执行的指令操作码,然后译码,并由时序电路产生一系列控制信号去完成指令所规定的操作。
CPU发出的时序信号有两类,一类用于片内对各个功能部件的控制,这列信号很多。
另一类用于片外存储器或I/O端口的控制,这部分时序对于分析、设计硬件接口电路至关重要。
这也是单片机应用系统设计者普遍关心的问题。
1.2 数码显示模块设计系统采用动态显示方式,用P0口来控制LED数码管的段控线,而用P2口来控制其位控线。
动态显示通常都是采用动态扫描的方法进行显示,即循环点亮每一个数码管,这样虽然在任何时刻都只有一位数码管被点亮,但由于人眼存在视觉残留效应,只要每位数码管间隔时间足够短,就可以给人以同时显示的感觉。
图3 数码显示电路1.3 按键模块下图为按键模块电路原理图,A为复位键,B为时钟调控键,C为分钟调控键。
图4 按键模块电路原理图四.系统程序的设计软件设计分析显示的效果为动态显示,利用CPU控制数码管显示的选通和停止,通过定时器中断不断扫描,从而实现数据的动态显示。
在编程上,首先进行了初始化,定义程序的的入口地址以及中断的入口地址,在主程序开始定义了一组固定单元用来储存计数的时.分.秒,在显示初值之后,进入主循环。
在主程序中,对不同的按键进行扫描,实现秒表,时间调整,复位清零等功能,系统总流程图如下图5:图 5 系统总体流程图五.调试及性能分析电子时钟主要的设计要求是能够实现时钟的一般功能,以及包括时间的调整功能,这个基于单片机的电子时钟基本上实现了上述功能,能够通过时间调整电路对时间进行调整以及复位。
下述为18:30:30的仿真图:首先确保各器件的完好性,其次检测各芯片的电源线和地线是否接触良好,然后焊接器件,接好电源用万用表检测各电源端、地端的状态是否正常。
检查无误后插上AT89S51并烧写一简易的程序,观察电路是否能协同工作。
最后烧写工作程序,根据显示现象调试程序直至成功。
上电运行时,数码管开始显示00:00:00,时钟开始走时。
程序的编写和调试是一个比较复杂的过程。
由于对C语言知识的薄弱,所以在编译过程中总是有很多语法上的错误,但是在和同学一起讨论研究后,程序是编写出来了,但结合到硬件调试中又出现各种问题。
在调试过程中出现了很多问题,在第一次把程序烧到单片机里,通电运行时,虽然控制时、分、秒的按钮能够对数码管显示进行调整,但是数码管全亮,不能通过按键变化显示,更改程序中的问题,但是调时设置又没有用了。
经过检查及修改,终于完成了所做的设计,不容易啊。
六.控制源程序清单#include<reg51.h>#include<absacc.h>#define uchar unsigned char#define uint unsigned int/*七段共阴管显示定义*/uchar code dispcode[ ]={0x3F,0x06,0x5B,0x4F,0x66,0x6D,0x7D,0x07,0x7F,0x6F,0xBF,0x86,0xCB,0xCF,0xEF,0xED,0xFD,0x87,0xFF,0xDF}; /*定义并初始化变量*/uchar seconde=0;uchar minite=0;uchar hour=12;uchar mstcnt=0;sbit P1_0=P1^0; // second 调整定义sbit P1_1=P1^1; //minite调整定义sbit P1_2=P1^2; //hour调整定义/*函数声明*/void delay(uchar k ); //延时子程序void time_pro( ); //时间处理子程序void display( ); //显示子程序void keyscan( ); //键盘扫描子程序/*****************************//*延时子程序*//****************************/void delay (uchar k){uchar j;while((k--)!=0){for(j=0;j<125;j++){;}}}/**************************//*时间处理子程序*//**************************/void time_pro( void){if(seconde==60) //秒钟设为60进制{ seconde=0;minite++;if( minite==60) //分钟设为60进制{ minite=0;hour++;if(hour==24) //时钟设为24进制{hour=0; }}}}/*****************************//* 显示子程序*//*****************************/void display(void){P2=0xfe;P0=dispcode[hour/10]; //显示小时的十位delay(4);P2=0xfd;P0=(dispcode[(hour%10)])|0X80; //显示小时的个位delay(4);P2=0xfb;P0=dispcode[minite/10]; //显示分的十位delay(4);P2=0xf7;P0=(dispcode[minite%10])|0X80; //显示分的个位delay(4);P2=0xef;P0=dispcode[seconde/10]; //显示秒的十位delay(4);P2=0xdf;P0=dispcode[seconde%10]; //显示秒的个位delay(4);}/*******************************//*键盘扫描子程序*//*******************************/void keyscan (void){if(P1_0==0) //按键1秒的调整{delay(30);if(P1_0==0){seconde++;if(seconde==60){seconde=0; }}}if(P1_1==0) //按键2分的调整{delay(30);if(P1_1==0){minite++;if(minite==60){minite=0;}}}if(P1_2==0) //按键3小时的调整{delay(30);if(P1_2==0){hour++;if(hour==24){hour=0; }}}}void timer0(void) interrupt 1 using 0 //定时器0方式1,50ms中断一次{TH0=0x3c;TMOD = 0x11;mstcnt++;if(mstcnt==20){seconde++;mstcnt=0; //注意点。