难题 矩形中的折叠问题
矩形的折叠问题(专题)
→ Bx
D
,故OE= 。
练习8 如图,在直角三角形ABC中, C ∠C=90º ,沿着B点的一条直线BE折 叠这个三角形,使C点与AB边上的 一点D重合。当∠A满足什么条件时, 点D恰好是AB的中点?写出一个你 B 认为适当的条件,并利用此条件证 明D为AB中点。 条件:∠A=30º
E D A
证明:由轴对称可得,△BCE≌△BDE,∴ BC=BD , 在△ABC中,∵ ∠C=90º,∠A=30º, ∴ BC= ∴ BD =
答案:矩形的长为10,宽为8。
D F E A
C
B
4、求线段与面积间的变化关系
例5 已知一三角形纸片ABC,面积为25,BC的长为 10,B和C都为锐角,M为AB上的一动点(M与A、B 不重合),过点M作MN∥BC,交AC于点N,设MN=x. (1)用x表示△AMN的面积SΔ AMN。 (2)Δ AMN沿MN折叠,设点A关于Δ AMN对称的点为A¹ , Δ A¹ MN与四边形BCMN重叠部分的面积为y.①试求出 y与x的函数关系式,并写出自变量X的取值范围; ②当x为何值时,重叠部分的面积y最大,最大为多 少?
矩形的折叠问题
(复习课)
练习1 如图,有一块直角三角形纸片,两 直角边AC=6,BC=8,现将直角边AC沿 直线AD折叠,使它落在斜边AB上,且与AE 重合,求CD
A E C B D
如图,折叠矩形的一边AD,点D 落在BC边上点F处,已知AB=8, BC=10,求EC的长 D A
E B F C
练习2 如图,在梯形ABCD中, DCAB,将梯形对折,使点D、 C分别落在AB上的D¹ 、C¹ 处, 折痕为EF。若CD=3,EF=4, 则AD¹ +BC¹ = 。
矩形折叠问题知识点总结
矩形折叠问题知识点总结1. 问题概述矩形折叠问题的基本情境是,给定一个长方形纸张,要求将其折叠成一个给定形状,通常是通过将纸张折叠后在两个边缘进行切割。
这个问题最早可以追溯到19世纪,由著名的数学家亨利·杜迪尼(Henri Dudeney)提出。
在这个问题中,关键点在于如何找到最优的折叠方法,使得得到的形状与目标形状最接近。
2. 解决方法矩形折叠问题涉及到了几何学、数学分析、最优化等多个学科知识,因此解决这个问题需要综合运用多种方法。
下面我将介绍一些常见的解决方法。
(1)分割法分割法是解决矩形折叠问题的一种常见方法。
首先将目标形状细分成若干个小矩形,然后将原始的长方形纸张按照这些小矩形进行折叠,最后再将边缘上多余的部分切掉,就可以得到最终的形状。
这种方法的关键在于如何将目标形状进行合理的分割,找到合适的折叠点和切割线。
(2)几何分析法几何分析法是另一种解决矩形折叠问题的常见方法。
通过对目标形状的几何特征进行分析,可以找到最优的折叠方法。
这种方法通常需要借助于数学工具,例如微积分、线性代数等,对目标形状进行数学建模,然后通过求解最优化问题,得到最佳的折叠方案。
(3)仿射变换法仿射变换法是一种比较高级的解决方法,它利用了几何变换的性质,将目标形状通过仿射变换映射成一个简单的形状,然后再将纸张按照这个简单的形状进行折叠,最后再通过逆变换将折叠后的纸张映射回原来的形状。
这种方法需要较强的数学功底和熟练的计算能力,但是可以得到非常优美的折叠结果。
3. 相关知识点解决矩形折叠问题需要涉及到很多相关的数学知识点,下面我将逐一介绍这些知识点。
(1)几何形状矩形折叠问题本质上是一个关于几何形状的问题,因此需要熟悉各种几何形状的性质,包括面积、周长、对称性等方面的知识。
在解决矩形折叠问题时,需要对目标形状进行合理的分割和组合,这就需要对几何形状的特征有深入的了解。
(2)数学分析数学分析是解决矩形折叠问题的重要数学工具,通过对目标形状进行数学建模,并利用微积分、线性代数等数学工具,可以求解最优的折叠方案。
中考数学折叠问题专项突破2—矩形的折叠问题(距离问题)
中考数学折叠问题专项突破2—矩形的折叠问题(距离问题)专题二矩形的折叠中的距离或线段长度问题【典例】在矩形纸片ABCD中,AB=3,AD=5. 如图例1-1所示,折叠纸片,使点A落在BC边上的A’处,折痕为PQ,当点A’在BC边上移动时,折痕的端点P、Q也随之移动. 若限定点P、Q分别在AB、AD边上移动,则点A’在BC边上可移动的最大距离为.图例1-1 图例1-2 图例1-3【解析】此题根据题目要求准确判断出点A'的最左端和最右端位置.当点Q与点D重合时,A'的位置处于最左端,当点P与点B重合时,点A'的位置处于最右端. 根据分析结果,作出图形,利用折叠性质分别求出两种情况下的BA'或CA'的长度,二者之差即为所求.①当点Q与点D重合时,A'的位置处于最左端,如图例1-2所示.确定点A'的位置方法:因为在折叠过程中,A'Q=AQ,所以以点Q为圆心,以AQ长为半径画弧,与BC的交点即为点A'. 再作出∠A'QA的角平分线,与AB的交点即为点P.由折叠性质可知,AD= A'D=5,在Rt△A'CD中,由勾股定理得,A C==='4②当点P与点B重合时,点A'的位置处于最右端,如图例1-3所示.确定点A'的位置方法:因为在折叠过程中,A'P=AP,所以以点P为圆心,以AP长为半径画弧,与BC的交点即为点A'. 再作出∠A'P A的角平分线,与AD的交点即为点Q. 由折叠性质可知,AB= A'B=3,所以四边形AB A'Q为正方形. 所以A'C=BC-A'B=5-3=2.综上所述,点A移动的最大距离为4-2=2.故答案为:2.【小结】此类问题难度较大,主要考察学生的分析能力,作图能力。
作图的依据是折叠前后线段长度不变,据此先找到点A 的落点A ',再根据对称轴(折痕)是对应点连线的垂直平分线,确定出折痕PQ 的位置. 利用勾股定理、正方形的判定定理及其性质求得相应的线段长度.1、如图,在矩形ABCD 中,AB =2,BC =4,P 为边AD 上一动点,连接BP ,把△ABP 沿BP 折叠,使A 落在A ′处,当△A ′DC 为等腰三角形时,AP 的长为( )A .2B .3C .2或3D .2 【分析】根据△A ′DC 为等腰三角形,分三种情况进行讨论:①A 'D =A 'C ,②A 'D =DC ,③CA '=CD ,分别求得AP 的长,并判断是否符合题意.【解析】①如图,当A ′D =A ′C 时,过A ′作EF ⊥AD ,交DC 于E ,交AB 于F ,则EF 垂直平分CD ,EF 垂直平分AB∴A 'A =A 'B ,由折叠得,AB =A 'B ,∠ABP =∠A 'BP ,∴△ABA '是等边三角形,∴∠ABP =30°,∴AP =2 3333==; ②如图,当A 'D =DC 时,A 'D =2由折叠得,A 'B =AB =2,∴A 'B +A 'D =2+2=4连接BD ,则R t △ABD 中,BD =2222 2425AB AD +=+= ,∴A 'B +A 'D <BD (不合题意)故这种情况不存在;③如图,当CD =CA '时,CA '=2由折叠得,A 'B =AB =2,∴A 'B +A 'C =2+2=4,∴点A '落在BC 上的中点处此时,∠ABP =12∠ABA '=45°,∴AP =AB =2.综上所述,当△A′DC为等腰三角形时,AP的长为或2.故选C.【小结】本题以折叠问题为背景,主要考查了等腰三角形的性质,解决问题的关键是画出图形进行分类讨论,分类时注意不能重复,不能遗漏.2、.矩形ABCD中,AB=3,BC=4,点E是BC边上一点,连接AE,把∠B沿AE折叠,使点B落在点B′处,当△CEB′为直角三角形时,BE的长为( )A.3 B.32C.2或3 D.3或32【分析】当△CEB′为直角三角形时,有两种情况:①当点B′落在矩形内部时,如图1所示.连结AC,先利用勾股定理计算出AC=5,根据折叠的性质得∠AB′E=∠B=90°,而当△CEB′为直角三角形时,只能得到∠EB′C=90°,所以点A、B′、C共线,即∠B沿AE折叠,使点B落在对角线AC上的点B′处,则EB=EB′,AB=AB′=3,可计算出CB′=2,设BE=x,则EB′=x,CE=4-x,然后在R t△CEB′中运用勾股定理可计算出x.②当点B′落在AD边上时,如图2所示.此时ABEB′为正方形.【解析】当△CEB′为直角三角形时,有两种情况:①当点B′落在矩形内部时,如图1所示.连结AC,在R t△ABC中,AB=3,BC=4,∴AC=5,∵∠B沿AE折叠,使点B落在点B′处,∴∠AB′E=∠B=90°,当△CEB′为直角三角形时,只能得到∠EB′C=90°,∴点A、B′、C共线,即∠B沿AE折叠,使点B落在AC上的点B′处,∴EB=EB′,AB=AB′=3,∴CB′=5-3=2,设BE=x,则EB′=x,CE=4-x,在R t△CEB′中,∵EB′2+CB′2=CE2,∴x2+22=(4-x)2,解得x=32,∴BE=32;②当点B′落在AD边上时,如图2所示.此时ABEB′为正方形,∴BE=AB=3.综上所述,BE的长为32或3.故选D.【小结】本题考查了折叠问题:折叠前后两图形全等,即对应线段相等;对应角相等.也考查了矩形的性质以及勾股定理.注意本题有两种情况,需要分类讨论,避免漏解.3、如图,在矩形ABCD中,AB=√3,BC=3,将△ABC沿对角线AC折叠,点B恰好落在点P处,CP 与AD交于点F,连接BP交AC于点G,交AD于点E,下列结论不正确的是( )A.PGCG =13B.△PBC是等边三角形C.AC=2AP D.S△B G C=3S△A G P【分析】如图,首先运用勾股定理求出AC的长度,进而求出∠ACB=30°,此为解决该题的关键性结论;运用翻折变换的性质证明△BCP为等边三角形;运用射影定理求出线段C G、A G之间的数量关系,进而证明选项A、B、C成立,选项A不成立.【解析】如图,∵四边形ABCD为矩形,AC,∴∠ABC=90°;由勾股定理得:AC2=AB2+BC2,而AB=√3,BC=3,∴AC=2√3,AB=12∴∠ACB=30°;由翻折变换的性质得:BP⊥AC,∠ACB=∠ACP=30°,BC=PC,AB=AP,B G=P G,∴G C=√3B G=√3P G,∠BCP=60°,AC=2AP,∴△BCP为等边三角形,故选项B、C成立,选项A不成立;B G,C G=3A G,∴S△BC G=3S△AB G;由射影定理得:B G2=C G•A G,∴A G=√33由题意得:S△AB G=S△A G P,∴S△B G C=3S△A G P,故选项D正确;故选:A.【小结】考查了翻折变换的性质、矩形的性质、射影定理、三角形的面积公式等几何知识点及其应用问题;解题的关键是灵活运用矩形的性质、射影定理等几何知识点来分析、判断、推理或解答;对综合的分析问题解决问题的能力提出了较高的要求.4、如图,矩形纸片ABCD ,5AB =,3BC =,点P 在BC 边上,将CDP ∆沿DP 折叠,点C 落在点E 处,PE ,DE 分别交AB 于点O ,F ,且OP OF =,则AF 的值为_____________.【分析】由矩形的性质和已知条件OP OF =,可判定OEF OBP ∆≅∆,设EF x =,根据全等三角形的性质及矩形的性质可用含x 的式子表示出DF 和AF 的长,在Rt ADF ∆根据勾股定理可求出x 的值,即可确定AF 的值. 【解析】四边形ABCD 是矩形, ∴ 5CD AB ==,3AD BC ==,90B C A ︒∠=∠=∠= DEP ∆是由CDP ∆沿DP 折叠而来的,∴5DE CD ==,EP CP = ,90E C ︒∠=∠=B E ∴∠=∠,又,FOE POB OP OF ∠=∠= ,∴OEF OBP ∆≅∆(AA S ),EF BP OE OB ∴==,BF BO OF EO OP EP CP ∴=+=+==设=EF BP x =,则5,3DF x BF CP x =-==- ,5(3)2AF AB BF x x ∴=-=--=+在Rt ADF ∆中,根据勾股定理得:222AD AF DF += ,即2223(2)(5)x x ++=- 解得67x = 620277AF ∴=+= 故答案为:207【小结】本题考查了求多边形中的线段长,主要涉及的知识点有矩形的性质,全等三角形的判定与性质,勾股定理,数学的方程思想,用同一个字母表示出直角三角形中的三边长是解题的关键.5、如图,在矩形ABCD中,AB=3,BC=2,点E为线段AB上的动点,将△CBE沿CE折叠,使点B落在矩形内点F处,则AF的最小值为__.【分析】通过观察可以发现,当∠AFE=90°时,AF最小;然后设BE=x,则:EF=x,AE=3-x,然后多次使用勾股定理即可解答;【解析】设BE=x,则:EF=x,AE=3-x在R t△ABC中,由勾股定理得:AC在R t△EBC中,由勾股定理得:EC由折叠可知CF=CB=2,所以:AF=AC-CF-2.【小结】本题考查几何图形中的最值问题,其中找到出现最值的位置和运用勾股定理解题是关键.6、如图,在矩形ABCD 中,AB =6,AD =,E 是AB 边上一点,AE =2,F 是直线CD 上一动点,将△AEF 沿直线EF 折叠,点A 的对应点为点A ′,当点E ,A ′,C 三点在一条直线上时,DF 的长为_____.【分析】利用勾股定理求出CE ,再证明CF =CE 即可解决问题.(注意有两种情形)【解析】如图,由翻折可知,∠FEA =∠FEA ′,∵CD ∥AB ,∴∠CFE =∠AEF ,∴∠CFE =∠CEF ,∴CE =CF ,在R t △BCE 中,EC,∴CF =CE=,∵AB =CD =6,∴DF=CD ﹣CF =6﹣,当点F在DC 的延长线上时,易知EF ⊥EF′,CF =CF ′=,∴DF =CD +CF ′=,故答案为6﹣或.【小结】本题考查翻折变换、矩形的性质、勾股定理等知识,本题的突破点是证明△CFE 的等腰三角形,属于中考常考题型.==7、如图,矩形OABC中,OA=4,AB=3,点D在边BC上,且CD=3DB,点E是边OA上一点,连接DE,将四边形ABDE沿DE折叠,若点A的对称点A′恰好落在边OC上,则OE的长为_________.【解析】连接A′D,AD,∵四边形OABC是矩形,∴BC=OA=4,OC=AB=3,∠C=∠B=∠O=90°,∵CD=3DB,∴CD=3,BD=1,∴CD=AB,∵将四边形ABDE沿DE折叠,若点A的对称点A′恰好落在边OC上,∴A′D=AD,A′E=AE,在R t△A′CD与R t△DBA中,,∴R t△A′CD≌R t△DBA(HL),∴A′C=BD=1,∴A′O=2,∵A′O2+OE2=A′E2,∴22+OE2=(4﹣OE)2,∴OE=,【小结】本题关键词:“对应点的连线段被折痕垂直平分”,“全等相似”,“十字架”,“勾股定理解方程”8、如图,在矩形ABCD中,AB=4,BC=6,点E为BC的中点,将△ABE沿AE折叠,使点B落在矩形内点F处,连接CF,则CF的长为.【解析】连接BF,∵BC=6,点E为BC的中点,∴BE=3,又∵AB=4,∴AE==5,∴BH=,则BF=,∵FE=BE=EC,∴∠BFC=90°,根据勾股定理得,CF===.故答案为:.9、如图,已知E为长方形纸片ABCD的边CD上一点,将纸片沿AE对折,点D的对应点D′恰好在线段BE上.若AD=3,DE=1,则AB=5.【解析】∵折叠,∴△ADE≌△AD'E,∴AD=AD'=3,DE=D'E=1,∠DEA=∠D'EA,∵四边形ABCD是矩形,∴AB∥CD,∴∠DEA=∠EAB,∴∠EAB=∠AEB,∴AB=BE,∴D'B=BE﹣D'E=AB﹣1,在R t△ABD'中,AB2=D'A2+D'B2,∴AB2=9+(AB﹣1)2,∴AB=5,故答案为:510、如图,矩形ABCD中,AB=8,BC=10,点N为边BC的中点,点M为AB边上任意一点,连接MN,把△BMN沿MN折叠,使点B落在点E处,若点E恰在矩形ABCD的对称轴上,则BM的长为5或.【解析】①当E在矩形的对称轴直线PN上时,如图1此时∠MEN=∠B=90°,∠ENB=90°,∴四边形BMEN是矩形.又∵ME=MB,∴四边形BMEN是正方形.∴BM=BN=5.②当E在矩形的对称轴直线FG上时,如图2,过N点作NH⊥FG于H点,则NH=4.根据折叠的对称性可知EN=BN=5,∴在R t△ENH中,利用勾股定理求得EH=3.∴FE=5﹣3=2.设BM=x,则EM=x,FM=4﹣x,在R t△FEM中,ME2=FE2+FM2,即x2=4+(4﹣x)2,解得x=,即BM=.故答案为5或.11、如图,矩形ABCD中,AD=4,O是BC边上的点,以OC为半径作⊙O交AB于点E,BE=AE,把四边形AECD沿着CE所在的直线对折(线段AD对应A′D′),当⊙O与A′D′相切时,线段AB的长是.【解析】设⊙O与A′D′相切于点F,连接OF,OE,则OF⊥A′D′,∵OC=OE,∴∠OCE=∠OEC,∵四边形ABCD是矩形,∴∠A=∠B=A′=90°,由折叠的性质得:∠AEC=∠A′EC,∴∠B+∠BCE=∠A′EO+∠OEC,∴∠OEA′=∠B=90°,∵OE=OF,∴四边形A′FOE是正方形,∴A′E=AE=OE=OC,∵BE=AE,设BE=3x,AE=5x,∴OE=OC=5x,∵BC=AD=4,∴OB=4﹣5x,在R t BOE中,OE2=BE2+OB2,∴(5x)2=(3x)2+(4﹣5x)2,解得:x=,x=4(舍去),∴AB=8x=.故答案为:.12、如图,矩形ABCD中,AB=2BC,E是AB上一点,O是CD上一点,以OC为半径作⊙O,将△ADE折叠至△A′DE,点A′在⊙O上,延长EA′交BC延长线于F,且恰好过点O,过点D作⊙O的切线交BC延长线于点G.若FG=1,则AD=2,⊙O半径=.【解析】作OH⊥DG于H,如图,设DA=x,则AB=2x,∵△ADE折叠至△A′DE,∴DA′=DA=x,∠DA′E=∠A=90°,∴DA′与⊙O相切,在△ODA′和△OCF中,∴△DOA′≌△FOC.∴DA′=CF=x,∵DG是⊙O的切线,OH⊥DG,∴H点为切点,∴DH=DA′=x,GH=GC=CF+GF=x+1,在R t△DCG中,∵DC2+CG2=DG2,∴(2x)2+(x+1)2=(x+x+1)2,解得x1=0(舍去),x2=2,∴AD=2,设⊙O的半径为r,则OC=OA′=r,OD=2x﹣r=4﹣r,在R t△DOA′中,∵DA′2+OA′2=DO2,∴22+r2=(4﹣r)2,解得r=,即⊙O的半径为.故答案为2,.13、在长方形纸片ABCD中,点E是边CD上的一点,将△AED沿AE所在的直线折叠,使点D落在点F处.(1)如图1,若点F落在对角线AC上,且∠BAC=54°,则∠DAE的度数为18°.(2)如图2,若点F落在边BC上,且AB=6,AD=10,求CE的长.(3)如图3,若点E是CD的中点,AF的沿长线交BC于点G,且AB=6,AD=10,求CG的长.【解析】(1)∵四边形ABCD是矩形,∴∠BAD=90°,∵∠BAC=54°,∴∠DAC=90°﹣54°=36°,由折叠的性质得:∠DAE=∠F AE,∴∠DAE=∠DAC=18°;故答案为:18;(2)∵四边形ABCD是矩形,∴∠B=∠C=90°,BC=AD=10,CD=AB=6,由折叠性质:AF=AD=10,EF=ED,∴BF===8,∴CF=BC﹣BF=10﹣8=2,设CE=x,则EF=ED=6﹣x,在R t△CEF中,由勾股定理得:22+x2=(6﹣x)2,解得:x=,即CE的长为;(3)连接EG,如图3所示:∵点E是CD的中点,∴DE=CE,由折叠的性质得:AF=AD=10,∠AFE=∠D=90°,FE=DE,∴∠EFG=90°=∠C,在R t△CEG和△FEG中,,∴R t△CEG≌△FEG(HL),∴CG=FG,设CG=FG=y,则AG=AF+FG=10+y,BG=BC﹣CG=10﹣y,在R t△ABG中,由勾股定理得:62+(10﹣y)2=(10+y)2,解得:y=,即CG的长为.。
小专题(一) 矩形中的折叠问题
小专题(一) 矩形中的折叠问题【例】(连云港中考)在矩形ABCD中,将点A翻折到对角线BD上的点M处,折痕BE交AD于点E.将点C翻折到对角线BD上的点N处,折痕DF交BC于点F.(1)求证:四边形BFDE为平行四边形;(2)若四边形BFDE为菱形,且AB=2,求BC的长.【思路点拨】(1)证△ABE≌△CDF,推出AE=CF,求出DE=BF,DE∥BF,根据平行四边形判定推出即可;(2)求出∠ABE=30°,根据直角三角形性质求出AE、BE,即可求出答案.【方法归纳】解决有关矩形的折叠问题时,通常方法是利用根据矩形的性质、折叠的对称性及勾股定理求解.1.如图,在矩形ABCD中,AB=8,BC=4,将矩形沿AC折叠,则重叠部分△AFC的面积为( ) A.12 B.10 C.8 D.62.如图,已知矩形纸片ABCD,点E是AB的中点,点G是BC上的一点,∠BEG=60°.现沿直线GE 将纸片折叠,使点B落在纸片上的点H处,连接AH,则图中与∠BEG相等的角的个数为( ) A.5个 B.4个 C.3个 D.2个3.如图,将矩形ABCD沿直线EF对折,点D恰好与BC边上的点H重合,∠GFP=62°,那么∠EHF 的度数等于________.4.把一张矩形纸片(矩形ABCD)按如图方式折叠,使顶点B和点D重合,折痕为EF.若AB=3 cm,BC=5 cm,则重叠部分△DEF的面积是________cm2.5.如图,折叠矩形一边AD,点D落在BC边的点F处,BC=10 cm,AB=8 cm,求:(1)FC的长;(2)EF的长.6.如图,四边形ABCD为平行四边形纸片.把纸片ABCD折叠,使点B恰好落在CD边上,折痕为AF,且AB=10 cm,AD=8 cm,DE=6 cm.(1)求证:平行四边形ABCD是矩形;(2)求BF的长;(3)求折痕AF长.7.将矩形OABC置于平面直角坐标系中,点A的坐标为(0,4),点C的坐标为(m,0)(m>0),点D(m,1)在BC上,将矩形OABC沿AD折叠压平,使点B落在坐标平面内,设点B的对应点为点E.(1)当m=3时,求点B的坐标和点E的坐标;(自己重新画图)(2)随着m的变化,试探索:点E能否恰好落在x轴上?若能,请求出m的值;若不能,请说明理由.8.如图,矩形ABCD中,AB=8,AD=10.(1)求矩形ABCD的周长;(2)E是CD上的点,将△ADE沿折痕AE折叠,使点D落在BC边上点F处.①求DE的长;②点P是线段CB延长线上的点,连接PA,若△PAF是等腰三角形,求PB的长.(3)M是AD上的动点,在DC上存在点N,使△MDN沿折痕MN折叠,点D落在BC边上点T处,求线段CT长度的最大值与最小值之和.参考答案【例】(1)证明:∵四边形ABCD 是矩形, ∴∠A =∠C =90°,AB =CD ,AB ∥CD. ∴∠ABD =∠CDB.由折叠的性质可得:∠ABE =∠EBD =12∠ABD ,∠CDF =12∠CDB ,∴∠ABE =∠CDF.在△ABE 和△CDF 中,⎩⎪⎨⎪⎧∠A =∠C ,AB =CD ,∠ABE =∠CDF ,∴△ABE ≌△CDF(ASA).∴AE =CF.∵四边形ABCD 是矩形,∴AD =BC ,AD ∥BC. ∴DE =BF ,DE ∥BF ,∴四边形BFDE 为平行四边形. (2)∵四边形BFDE 为菱形, ∴BE =ED ,∠EBD =∠FBD =∠ABE. ∵四边形ABCD 是矩形, ∴AD =BC ,∠ABC =90°. ∴∠ABE =30°.∵∠A =90°,AB =2,设AE =x ,BE =2x. 根据勾股定理得AB =3x. ∴x =233,即AE =233.BE =433.∴BC =AD =AE +ED =AE +BE =233+433=2 3.针对训练1.B2.A3.56°4.5.15.(1)由题意可得AF =AD =10 cm , 在Rt △ABF 中,AB =8 cm , ∴BF =6 cm.∴FC =BC -BF =10-6=4(cm).(2)由题意可得EF =DE ,可设DE 的长为x ,则在Rt △EFC 中,(8-x)2+42=x 2, 解得x =5,即EF 的长为5 cm.6.(1)证明:∵把纸片ABCD 折叠,使点B 恰好落在CD 边上,∴AE =AB =10,AE 2=102=100.又∵AD 2+DE 2=82+62=100,∴AD 2+DE 2=AE 2.∴△ADE 是直角三角形,且∠D =90°. 又∵四边形ABCD 为平行四边形, ∴平行四边形ABCD 是矩形.(2)设BF =x ,则EF =BF =x ,EC =CD -DE =10-6=4(cm),FC =BC -BF =8-x ,在Rt △EFC 中,EC 2+FC 2=EF 2,即42+(8-x)2=x 2, 解得x =5.故BF =5 cm.(3)在Rt △ABF 中,由勾股定理得AB 2+BF 2=AF 2. ∵AB =10 cm ,BF =5 cm ,∴AF =102+52=55(cm). 7.(1)如图,点B 的坐标为(3,4).∵AB =BD =3,∴△ABD 是等腰直角三角形.∴∠BAD =45°.则∠DAE =∠BAD =45°.则E 在y 轴上.AE =AB =BD =3, ∴四边形ABDE 是正方形,OE =1.则点E 的坐标为(0,1). (2)点E 能恰好落在x 轴上.理由如下:∵四边形OABC 为矩形,∴BC =OA =4,∠AOC =∠DCE =90°. 由折叠的性质可得:DE =BD =OA -CD =4-1=3,AE =AB =OC =m. 假设点E 恰好落在x 轴上,在Rt △CDE 中,由勾股定理可得EC =DE 2-CD 2=32-12=2 2. 则有OE =OC -CE =m -2 2.在Rt △AOE 中,OA 2+OE 2=AE 2.即42+(m -22)2=m 2,解得m =3 2. 8.(1)周长为2×(10+8)=36.(2)①∵四边形ABCD 是矩形,由折叠对称性得AF =AD =10,FE =DE. 在Rt △ABF 中,由勾股定理得BF =6,∴FC =4.在Rt △ECF 中,42+(8-DE)2=EF 2,解得DE =5.②分三种情形讨论:若AP =AF ,∵AB ⊥PF ,∴PB =BF =6; 若PF =AF ,则PB +6=10,解得PB =4;若AP =PF ,在Rt △APB 中,AP 2=PB 2+AB 2,解得PB =73.综合得PB =6或4或73.(3)当点N 与C 重合时,CT 取最大值是8, 当点M 与A 重合时,CT 取最小值为4,所以线段CT 长度的最大值与最小值之和为12.。
思想方法专题矩形中的折叠问题
思想方法专题矩形中的折叠问题矩形中的折叠问题是数学中的一个经典问题,涉及到几何形状的变换和计算。
这个问题可以帮助我们锻炼思维能力,培养抽象思维和空间想象能力,同时也有助于解决实际生活中的一些问题。
首先,我们来具体描述一下矩形中的折叠问题。
假设有一张长为a,宽为b的矩形纸,我们可以将其沿着一条边折叠,并将两边粘合在一起,形成一个三维的物体。
那么,这个折叠后的物体的体积是多少呢?要解决这个问题,我们首先需要明确物体的形状。
物体是由两个相同的矩形面围成的,形成一个长方体。
其中,折叠出的两个面作为上下两个底面,长度为a,宽度为b;而另外两个面作为侧面,长度为b,宽度为折叠的厚度。
接下来,我们需要确定物体的厚度。
厚度取决于折叠的方式。
如果将矩形纸沿着长边折叠,那么物体的厚度为a;如果将矩形纸沿着短边折叠,那么物体的厚度为b。
有了这些信息,我们就可以计算物体的体积了。
物体的体积可以通过长方体的体积公式来计算,即V=a*b*h,其中V表示体积,a表示底面的长度,b表示底面的宽度,h表示高度或厚度。
由于问题中给出的是矩形纸的长和宽,我们还需要确定折叠的方式。
不同的折叠方式会得到不同的厚度,从而得到不同的体积。
因此,我们需要分别计算两种折叠方式下的体积,并找出较大的那个作为最终的结果。
那么,如何确定哪种折叠方式下的体积较大呢?我们可以通过比较高度来判断。
在折叠过程中,长边折叠得到的物体的高度为a,短边折叠得到的物体的高度为b。
由于长边折叠得到的物体的高度大于短边折叠得到的物体的高度,所以长边折叠得到的体积必然大于短边折叠得到的体积。
经过上述分析,我们得出结论:在矩形中的折叠问题中,长边折叠得到的体积较大,为a*b*a;短边折叠得到的体积较小,为a*b*b。
总结起来,矩形中的折叠问题可以通过分析物体的形状和厚度,利用长方体的体积公式进行计算。
通过比较两种折叠方式下的体积,我们可以得出哪种方式的折叠会得到更大的物体。
专题36 矩形与折叠问题(解析版)
专题36 矩形与折叠问题一、单选题1.如图,矩形纸片ABCD 中,AB =6cm ,BC =8cm .现将其沿AE 对折,使得点B 落在边AD 上的点B 1处,折痕与边BC 交于点E ,则CB 1的长为( )A .cmB .C .8cmD .10cm【答案】B【分析】 根据翻折变换的性质可以证明四边形ABEB 1为正方形,得到BE =AB ,根据EC =BC ﹣BE 计算得到EC ,再根据勾股定理可求答案.【详解】解:∵∵AB 1E =∵B =90°,∵BAB 1=90°,∵四边形ABEB 1为矩形,又∵AB =AB 1,∵四边形ABEB 1为正方形,∵BE =AB =6cm ,∵EC =BC ﹣BE =2cm ,∵CB 1cm .故选B .【点睛】本题考查的是翻折变换、矩形和正方形的判定和性质,掌握翻折变换的性质及矩形、正方形的判定定理和性质定理是解题的关键.2.如图,矩形ABCD 中,3AB =,9AD =,将此矩形折叠,使点B 与点D 重合,折痕为EF ,则ABE ∆的面积为( )A.12B.10C.8D.6【答案】D【分析】根据折叠的条件可得:BE=DE,在直角∵ABE中,利用勾股定理就可以求解.【详解】将此长方形折叠,使点B与点D重合,∵BE=ED.∵AD=AE+DE=AE+BE=9.∵BE=9−AE,根据勾股定理可知AB2∵AE2∵ BE2,32∵AE2∵∵9-AE∵2∵解得AE=4.∵∵ABE的面积为3×4÷2=6.故选:D.【点睛】本题考查了利用勾股定理解直角三角形的能力,即:直角三角形两直角边的平方和等于斜边的平方.3.如图,在矩形ABCD中,E是BC边的中点,将∵ABE沿AE所在的直线折叠得到∵AFE,延长AF交CD 于点G,已知CG=2,DG=1,则BC的长是()A.B.C.D.【答案】B【分析】连接EG ,由折叠的性质可得BE =EF 又由E 是BC 边的中点,可得EF =EC ,然后证得Rt∵EGF ∵Rt∵EGC (HL ),得出FG =CG =2,继而求得线段AG 的长,再利用勾股定理求解,即可求得答案.【详解】解:连接EG ,∵E 是BC 的中点,∵BE =EC ,∵∵ABE 沿AE 折叠后得到∵AFE ,∵BE =EF ,∵EF =EC ,∵在矩形ABCD 中,∵∵C =90°,∵∵EFG =∵B =90°,∵在Rt∵EGF 和Rt∵EGC 中,EF EC EG EG=⎧⎨=⎩, ∵Rt∵EGF ∵Rt∵EGC (HL ),∵FG =CG =2,∵在矩形ABCD 中,AB =CD =CG +DG =2+1=3,∵AF =AB =3,∵AG =AF +FG =3+2=5,∵BC =AD =.故选:B .【点睛】此题考查了折叠的性质、矩形的性质、全等三角形的判定与性质以及勾股定理的应用.熟练掌握折叠的性质是关键.4.在矩形纸片ABCD 中,AB =6,AD =10.如图所示,折叠纸片,使点A 落在BC 边上的A ′处,折痕为PQ .当点A ′在BC 边上移动时,折痕的端点P 、Q 也随之移动.若限定点P 、Q 分别在AB 、AD 边上移动,则点A ′在BC 边上可移动的最大距离为( )A .8cmB .6cmC .4cmD .2cm【答案】C【分析】 根据翻折的性质,可得BA ′与AP 的关系,根据线段的和差,可得A ′C ,根据勾股定理,可得A ′C ,根据线段的和差,可得答案.【详解】解:∵当P 与B 重合时,BA ′=BA =6,CA ′=BC ﹣BA ′=10﹣6=4cm ,∵当Q 与D 重合时,由勾股定理,得CA cm ,CA ′最远是8,CA ′最近是4,点A ′在BC 边上可移动的最大距离为8﹣4=4cm ,故选:C .【点睛】本题考查了翻折变换,利用了翻折的性质,勾股定理,分类讨论是解题关键.5.如图,把矩形纸片ABCD 沿EF 折叠后得到1∠,再把纸片铺平,若150∠=︒,则AEF ∠的度数为()A .105°B .120°C .130°D .115°【答案】D【分析】 点B 折叠后的点为G ,根据折叠的性质,可得∵GFE=∵BFE ,结合∵1的度数即可求出∵EFB 的度数,利用矩形的性质AD∵BC 即可求出结果.【详解】点B 折叠后的点为G ,根据折叠的性质,可得∵GFE=∵BFE ,∵∵1=50°,∵∵BFE=(180°-50°)÷2=65°,∵ABCD 是矩形,∵AD∵BC ,∵∵DEF=∵BFE=65°,∵∵AEF=180°-65°=115°,故选:D .【点睛】本题考查了折叠的性质,矩形的性质,平行的性质,掌握折叠的性质是解题的关键.6.如图所示,在矩形ABCD 中,4AB =,8AD =,将矩形沿BD 折叠,点A 落在点E 处,DE 与BC 交于点F ,则重叠部分BDF ∆的面积是( )A .20B .16C .12D .10【答案】D【分析】 根据折叠的性质可得∵ADB=∵EDB,由平行可得∵ADB=∵CBD,推出∵CBD=∵EDB,设BF 为x ,在Rt∵DCF 中根据勾股定理列出方程求出x ,再根据面积公式求出∵BDF 的面积即可.【详解】∵AD∵BC,∵∵ADB=∵CBD,∵∵BDE 是∵BDA 折叠后的图形,∵∵ADB=∵EDB,∵∵CBD=∵EDB,设BF 为x ,则DF 为x ,CF 为8-x ,在Rt∵DCF 中,()22284x x -+=解得:x =5.∵S ∵BDF =154102⨯⨯=. 故选D .【点睛】本题考查折叠中矩形的性质,关键在于利用勾股定理列出方程求解.7.如图,把一张长方形的纸沿对角线BD 折叠,使点C 落到点C '的位置,若BC '平分ABD ∠,则DBC ∠的度数是( )A .15°B .30°C .45°D .60°【答案】B【分析】 根据折叠的性质,得到DBC DBC'∠=∠,再根据角平分线的性质得到''ABC DBC ∠=∠ ,得到∵ABC 被平均分成了3份,求出解决即可.【详解】解:∵把一张长方形纸片ABCD 沿BD 折叠∵DBC DBC'∠=∠∵BC '平分ABD ∠∵''ABC DBC ∠=∠∵DBC ∠=13∵ABC=30° 故选B.【点睛】本题考查了折叠的性质以及角平分线的性质,解决本题的关键是熟练掌握折叠与角平分线的性质,找到相等的角.8.将长方形ABCD 纸片沿AE 折叠,得到如图所示的图形,已知∵CED'=70°,则∵EAB 的大小是( )A .60°B .50°C .75°D .55°【答案】D【分析】首先根据折叠的性质得出∵DEA=∵D′EA=55°,然后由余角的性质得出∵DEA=∵EAD′=35°,进而得出∵D′AB=20°,最后即可得出∵EAB.【详解】根据折叠的性质,∵CED'=70°,得 ∵DEA=∵D′EA=18070552︒-︒=︒ ∵∵ADE=∵AD′E=90°∵∵DAE=∵EAD′=90°-55°=35°∵∵D′AB=90°-∵DAE -∵EAD′=90°-35°-35°=20°∵∵EAB=∵EAD′+∵D′AB=35°+20°=55°故答案为D.【点睛】此题主要考查折叠的性质以及余角的性质,熟练掌握,即可解题.9.如图,有一张长方形纸片ABCD ,其中15AB cm =,10AD cm =.将纸片沿EF 折叠,//EF AD ,若9AE cm =,折叠后重叠部分的面积为( )A .230cmB .260cmC .250cmD .290cm【答案】B【解析】【分析】 根据折叠的性质,可知折叠后重叠部分的面积等于长方形ABCD 的面积减去长方形AEFD 的面积,即可得解.【详解】根据题意,得折叠后重叠部分的面积等于长方形ABCD 的面积减去长方形AEFD 的面积,∵10AD cm =,9AE cm =,//EF AD∵2=151091060ABCD AEFD S S S AB AD AE AD cm -=-=⨯-⨯=阴影长方形长方形故答案为B.【点睛】此题主要考查折叠的性质和长方形的面积求解,熟练掌握,即可解题.10.如图,点O是矩形ABCD的中心,E是AB上的点,沿CE折叠后,点B恰好与点O重合,若BC=3,则折痕CE的长为()A.B C D.6【答案】A【分析】先根据图形翻折变换的性质求出AC的长,再由勾股定理及等腰三角形的判定定理即可得出结论.【详解】解:∵∵CEO是∵CEB翻折而成,∵BC=OC,BE=OE,∵B=∵COE=90°,∵EO∵AC,∵O是矩形ABCD的中心,∵OE是AC的垂直平分线,AC=2BC=2×3=6,∵AE=CE,在Rt∵ABC中,AC2=AB2+BC2,即62=AB2+32,解得AB=33,在Rt∵AOE中,设OE=x,则AE=33-x,AE2=AO2+OE2,即(33-x)2=32+x2,解得x=3,∵AE=EC=33-3=23.故选:A.【点睛】本题考查翻折变换,熟知折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等的知识是解题的关键.11.如图,在矩形ABCD 中,点E 在边CD 上,将该矩形沿AE 折叠,恰好使的D 落在边BC 上的点F 处,如果∵BAF =60°,则∵DAE 的大小为( )A .10°B .15 °C .20 °D .25°【答案】B【分析】 由题意可知90BAD ∠=︒,12FAE DAE DAF ∠=∠=∠.再由DAF BAD BAF ∠=∠-∠,即可求出DAE ∠的大小.【详解】∵四边形ABCD 为矩形,∵90BAD ∠=︒,∵FAE 是由DAE △沿AE 折叠而来,且F 点恰好落在BC 上, ∵12FAE DAE DAF ∠=∠=∠, ∵906030DAF BAD BAF ∠=∠-∠=︒-︒=︒, ∵130152DAE ∠=⨯︒=︒. 故选:B .【点睛】 本题考查矩形的折叠问题,根据折叠的性质推出12FAE DAE DAF ∠=∠=∠是解答本题的关键. 12.如图,长方形ABCD 中,点O 是AC 的中点,E 是AB 边上的点,把∵BCE 沿CE 折叠后,点B 恰好与点O 重合,则图中全等的三角形有( )对.A .1B .2C .3D .4【答案】D【分析】 由长方形的性质利用“SSS ”即可证明ADC CBA ≅,再由折叠的性质可知∵BCE ∵∵OCE ,即可得出结论90EOC EBC ∠=∠=︒,从而推出90EOA EOC ∠=∠=︒,最后由O 点为AC 中点,利用“ASA ”即可证明OCE OAE ≅,最后又可推出∵OAE ∵∵BCE ,即可选择.【详解】∵四边形ABCD 为长方形,∵在ADC 和CBA △中AD CB CD AB AC CA =⎧⎪=⎨⎪=⎩,∵()ADC CBA SSS ≅;∵∵BCE 沿CE 折叠后,点B 恰好与点O 重合,∵∵BCE ∵∵OCE ;∵O 点为AC 中点,∵AO =CO .∵∵BCE ∵∵OCE ,∵90EOC EBC ∠=∠=︒,∵在∵OCE 和∵OAE 中,90AO CO EOA EOC OE OE =⎧⎪∠=∠=︒⎨⎪=⎩,∵()OCE OAE ASA ≅;∵∵BCE ∵∵OCE ,OCE OAE ≅,∵∵OAE ∵∵BCE综上,图中全等三角形有4对.故选:D .【点睛】本题考查矩形的性质以及全等三角形的判定和性质.掌握全等三角形的判定条件是解答本题的关键. 13.如图,矩形纸片ABCD 中,6AB =,10AD =,折叠纸片,使点A 落在BC 边上的点A 处,折痕为PQ ,当点1A 在BC 边上移动时,折痕的端点P 、Q 分别在AB 、AD 边上移动,则当1A B 最小时其值为( )A .2B .3C .4D .5【答案】A【分析】 根据翻折的性质,可得当Q 与D 重合时,A 1B 最小,根据勾股定理,可得A 1C ,从而可得答案.【详解】解:由折叠可知:当Q 与D 重合时,A 1B 最小,A 1D=AD=10,由勾股定理,得:A 1,∵A 1B=10-8=2,故选A .【点睛】本题考查了翻折变换,利用了翻折的性质得到当Q 与D 重合时,A 1B 最小是解题的关键.14.如图,将长方形ABCD 沿对角线BD 折叠,使点C 落在点C ′处,BC ′交AD 于E ,AD =8,AB =4,则重叠部分(即BDE )的面积为( )A .6B .7.5C .10D .20【答案】C【分析】 由折叠结合矩形的性质先证明,BE DE =设,BE DE x == 则8,AE x =- 再利用勾股定理求解,x 从而可得BDE 的面积.【详解】 解: 长方形ABCD ,8,4,AD AB ==//,AD BC ∴,ADB CBD ∴∠=∠由对折可得:,CBD C BD '∠=∠,ADB C BD '∴∠=∠,BE DE ∴=设,BE DE x == 则8,AE x =-由222,BE AB AE =+ ()22248,x x ∴=+-1680,x ∴=5,x ∴= 5,DE BE ∴==115410.22BDE S DE AB ∴==⨯⨯= 故选:.C【点睛】本题考查的是矩形与折叠问题,勾股定理的应用,矩形的性质,掌握以上知识是解题的关键.15.如图,把一张长方形纸片沿对角线折叠,若∵EDF 是等腰三角形,则∵BDC ( )A .45ºB .60ºC .67.5ºD .75º【答案】C【分析】 由翻折可知:∵BDF∵∵BCD ,所以∵EBD=∵CBD ,∵E=∵C=90°,由于∵EDF 是等腰三角形,易证∵ABF=45°,所以∵CBD=12∵CBE=22.5°,从而可求出∵BDC=67.5°. 【详解】解:由翻折的性质得,∵DBC=∵EBD ,∵矩形的对边AD∵BC ,∵E=∵C=90°,∵∵DBC=∵ADB ,∵∵EBD=∵ADB ,∵∵EDF 是等腰三角形,∵E=90°,∵∵EDF 是等腰直角三角形,∵∵DFE=45°,∵∵EBD+∵ADB=∵DFE , ∵∵DBF=12∵DFE=22.5°, ∵∵CBD =22.5°,∵∵BDC=67.5°,故选:C .【点睛】本题考查等腰三角形,涉及矩形的性质,全等三角形的判定与性质等知识,需要学生灵活运用所学知识. 16.如图,矩形纸片ABCD 中,4AB =,3AD =,折叠纸片使AD 边与对角线BD 重合,则折痕为DG 的长为( )A B C.2D【答案】D【分析】首先设AG=x,由矩形纸片ABCD中,AB=4,AD=3,可求得BD的长,又由折叠的性质,可求得A′B 的长,然后由勾股定理可得方程:x2+22=(4-x)2,解此方程即可求得AG的长,继而求得答案.【详解】解:设AG=x,∵四边形ABCD是矩形,∵∵A=90°,∵AB=4,AD=3,∵BD5,由折叠的性质可得:A′D=AD=3,A′G=AG=x,∵DA′G=∵A=90°,∵∵BA′G=90°,BG=AB-AG=4-x,A′B=BD-A′D=5-3=2,∵在Rt∵A′BG中,A′G2+A′B2=BG2,∵x2+22=(4-x)2,解得:x=32,∵AG=32,∵在Rt∵ADG中,DG=故选:D.【点睛】此题考查了折叠的性质、矩形的性质以及勾股定理.此题难度适中,注意掌握折叠前后图形的对应关系,注意掌握数形结合思想与方程思想的应用.17.如图,在矩形纸片ABCD中,BC a=,将矩形纸片翻折,使点C恰好落在对角线交点O处,折痕为BE,点E 在边CD 上,则CE 的长为( )A .12aB .25aC .2aD .3a 【答案】D【分析】首先证明∵OBC 是等边三角形,在Rt∵EBC 中求出CE 即可解决问题;【详解】解:∵四边形ABCD 是矩形,∵OB=OC ,∵BCD=90°,由翻折不变性可知:BC=BO ,∵BC=OB=OC ,∵∵OBC 是等边三角形,∵∵OBC=60°,∵∵EBC=∵EBO=30°,∵BE=2CE根据勾股定理得:EC=3a , 故选:D .【点睛】本题考查翻折变换,等边三角形的判定和性质等知识,解题的关键是证明∵OBC 是等边三角形. 18.如图,将矩形纸片ABCD 沿EF 折叠,点C 落在边AB 上的点H 处,点D 落在点G 处,若111GEF ∠=︒,则AHG ∠的度数为( ).A .42°B .69°C .44°D .32°【答案】A【分析】 根据翻折的性质,及矩形的性质,求出AEG ∠,再利用“8”字模型求解即可.【详解】由图形翻折的性质可知,111GEF DEF ∠=∠=︒,180111AEF ∴∠=︒-︒=69︒,1116942AEG GEF AEF ∠=∠-∠=︒-︒=︒,90A G ∠=∠=︒,利用“8”字模型,42AHG AEG ∴∠=∠=︒,故选:A .【点睛】本题考查了矩形翻折问题,能够根据图形翻折的性质推理出AEG ∠是解决问题的关键,熟练运用“8”字模型是求最终结果的关键.19.如图,已知长方形ABCD ,将∵DBC 沿BD 折叠得到∵DBC′,BC′与AD 交于点E ,若长方形的周长为20cm ,则∵ABE 的周长是( )A .5cmB .10cmC .15cmD .20cm【答案】B【分析】 根据现有条件推出∵EDB=∵EBD ,得出BE=DE ,可知∵ABE 的周长=AB+AD ,是长方形的周长的一半,即可得出答案.【详解】由折叠可知:∵CBD=∵C′BD,∵四边形ABCD为平行四边形,∵AD∵BC,∵∵ADB=∵CBD,∵∵ADB=∵C′BD,∵∵EDB=∵EBD,∵BE=DE,∵∵ABE的周长=AB+AD,∵长方形的周长为20cm,∵2(AB+AD)=20cm,∵AB+AD=10cm,∵∵ABE的周长为10cm,故选:B.【点睛】本题考查了等腰三角形的性质,折叠的性质,推出BE=DE是解题关键.20.如图,将一块长方形纸片ABCD沿BD翻折后,点C与E重合,若∵ADE = 30°,EH = 2,则BC的长度为()A.8B.7C.6.5D.6【答案】D【分析】由折叠的性质可得∵E=∵C=∵A=90°,再证明∵ABH∵∵EDH,得到AB的长,再求出∵DBC=30°,在Rt∵BCD 中即可求解.【详解】∵四边形ABCD是矩形,∵AD∵BC,∵C=90°,∵将一块长方形纸片ABCD 沿BD 翻折后,∵∵E =∵C =∵A=90°,又∵AHB=∵EHD ,AB=ED∵∵ABH∵∵EDH∵∵ABH=∵ADE = 30°,AH=EH = 2∵BH=2AH=4∵CD=AB= =∵∵ABH= 30°,∵∵HBC=60°∵翻折,∵∵DBC=30°6=故选:D .【点睛】本题考查了翻折变换,矩形的性质,含30°的直角三角形的性质,求出AB 的长是本题的关键. 21.在数学拓展课《折叠矩形纸片》上,小林发现折叠矩形纸片ABCD 可以进行如下操作:∵把ABF 翻折,点B 落在C 边上的点E 处,折痕为AF ,点F 在BC 边上;∵把ADH 翻折,点D 落在AE 边上的点G 处,折痕为AH ,点H 在CD 边上,若610AD CD ==,,则EH EF=( )A .32B .53C .43D .54【答案】A【分析】利用翻折不变性可得10AE AB ==,推出8DE =,2EC =,设BF EF x ==,在Rt EFC △中,2222(6)x x =+-,可得103x =,设DH GH y ==,在Rt EGH △中,2224(8)y y +=-,可得3y =,由此即可解决问题.【详解】 解:四边形ABCD 是矩形,90C D ∴∠=∠=︒,10AB CD ==,6AD BC ==,由翻折不变性可知:10AB AE ==,6AD AG ==,BF EF =,DH HG =,4EG ∴=,在Rt ADE △中,8DE ==,1082EC ∴=-=,设BF EF x ==,在Rt EFC △中有:2222(6)x x =+-,103x ∴=, 设DH GH y ==,在Rt EGH △中,2224(8)y y +=-,3y ∴=,5EH ∴=, ∴531023EH EF ==,故选:A .【点睛】本题考查矩形的性质,翻折变换,勾股定理等知识,解题的关键是学会利用参数构建方程解决问题,属于中考常考题型.22.如图,将一张矩形纸片ABCD 沿EF 折叠后,点D ,C 分别落在D ′,C ′地位置,ED ′的延长线与BC 相交于点G ,若∵EFG =68°,则∵1的度数是( )A .112°B .136°C .144°D .158°【答案】B【分析】由AD//BC,∵EFG=68°,根据两直线平行,内错角相等,可求得∵DEF的度数,然后由折叠的性质,求得∵DEG 的度数,继而求得答案.【详解】解:∵AD//BC,∵EFG=68°,∵∵DEF=∵EFG=68°,由折叠的性质可得:∵FEG=∵DEF=68°,∵∵DEG=∵DEF+∵FEG=136°,∵AD//BC,∵∵1=∵DEG=136°.故选:B.【点睛】此题考查了平行线的性质以及折叠的性质.注意掌握折叠前后图形的对应关系是解此题的关键.23.如图,在矩形ABCD中,点E在DC上,将矩形沿AE折叠,使点D落在BC边上的点F处.若AB=3,BC=5,则DE的长为()A.12B.53C.25D.13【答案】B【分析】先根据矩形的性质得AD=BC=5,AB=CD=3,再根据折叠的性质得AF=AD=5,EF=DE,在Rt∵ABF 中,利用勾股定理计算出BF=4,则CF=BC﹣BF=1,设CE=x,则DE=EF=3﹣x,然后在Rt∵ECF中根据勾股定理得到x2+12=(3﹣x)2,解方程即可得到DE的长.【详解】解:∵四边形ABCD为矩形,∵AD=BC=5,AB=CD=3,∵矩形ABCD沿直线AE折叠,顶点D恰好落在BC边上的F处,∵AF=AD=5,EF=DE,在Rt∵ABF中,BF4,∵CF=BC﹣BF=5﹣4=1,设CE=x,则DE=EF=3﹣x,在Rt∵ECF中,CE2+FC2=EF2,∵x2+12=(3﹣x)2,解得x=43,∵DE=3﹣x=53,故选:B.【点睛】本题考查了翻折变换、矩形的性质、勾股定理等知识,属于常考题型,灵活运用这些性质进行推理与计算是解题的关键.24.如图,对折矩形纸片ABCD,使AB与DC重合得到折痕EF,将纸片展平,再一次折叠,使点D落到EF上的点G处,并使折痕经过点A,已知2BC=,则线段EG的长度为()A.1B C D.2【答案】B【分析】由折叠的性质可得AE=12AD=12BC=1,AG=AD=2,由勾股定理得出EG即可.【详解】解:如图所示:∵四边形ABCD 是矩形,对折矩形纸片ABCD ,使AB 与DC 重合得到折痕EF , ∵AE=12AD=12BC=1,EF∵AD , ∵∵AEF=90°,∵再一次折叠,使点D 落到EF 上点G 处∵AG=AD=2,=,故选:B .【点睛】此题主要考查了翻折变换的性质以及矩形的性质,熟练掌握折叠的性质是解题关键.25.如图,将长方形纸片ABCD 沿EF 折叠后,点C ,D 分别落在点C ',D 处,若68AFE ∠=︒,则'∠C EB 等于( )A .68︒B .80︒C .44︒D .55︒【答案】C【分析】 根据矩形的性质可得AD//BC ,根据平行线的性质可得∵CEF =∵AFE ,根据折叠的性质可得∵CEF =∵C′EF ,根据平角的定义即可得答案.【详解】解:∵ABCD 是长方形,∵68AFE ∠=︒,∵∵CEF =∵AFE=68°,∵将长方形纸片ABCD 沿EF 折叠后,点C ,D 分别落在点C ',D 处,∵∵CEF =∵C′EF =68°,∵'∠C EB =180°-∵CEF -∵C′EF=44°,故选:C .【点睛】本题考查了矩形的性质、平行线的性质,翻折变换的性质,熟记折叠的性质是解题的关键.26.如图,把长方形纸片ABCD 沿对角线折叠,设重叠部分为EBD △.下列说法错误的是( )A .AE CE =B .12AE BE =C .EBD EDB ∠=∠ D .∵ABE∵∵CDE【答案】B【分析】 由折叠的性质和平行线的性质可得∵ADB=∵CBD ,可得BE=DE ,可证AE=CE ,由“SAS”可证∵ABE∵∵CDE ,即可求解.【详解】解:如图,∵把矩形纸片ABC'D 沿对角线折叠,∵∵CBD=∵DBC',CD=C'D=AB ,AD=BC=BC',∵∵EDB=∵DBC',∵∵EDB=∵EBD ,故选项C 正确;∵BE=DE ,∵AD=BC ,∵AE=CE ,故选项A 正确;在∵ABE 和∵CDE 中,AB CD A C AE CE =⎧⎪∠=∠⎨⎪=⎩,∵∵ABE∵∵CDE (SAS ),故选项D 正确; 没有条件能够证明12AE BE =, 故选:B .【点睛】本题考查了翻折变换,全等三角形的判定和性质,矩形的性质,掌握折叠的性质是本题的关键. 27.如图,将长方形纸片沿对角线折叠,重叠部分为BDE ,则图中全等三角形共有( )A .0对B .1对C .2对D .3对【答案】C【分析】 因为图形对折,所以首先∵CDB∵∵ABD ,由于四边形是长方形,进而可得∵ABE∵∵CDE ,如此答案可得.【详解】解:∵∵BDC 是将长方形纸片ABCD 沿BD 折叠得到的,∵CD=AB ,AD=BC ,∵BD=BD ,∵∵CDB∵∵ABD (SSS ),∵∵CBD=∵ADB∵EB=ED∵CE=AE又AB=CD∵∵ABE∵∵CDE ,∵图中全等三角形共有2对故选:C【点睛】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS 、SAS 、SSA 、HL .注意:AAA 、SSA 不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.做题时要由易到难,循序渐进.28.如图,在矩形ABCD 中,点E 是AD 的中点,EBC ∠的平分线交CD 于点F ,将DEF 沿EF 折叠,点D 恰好落在BE 上M 点处,延长BC 、EF 交于点N .有下列四个结论:∵ DF CF =;∵BF EN ⊥;∵BEN 是等边三角形;∵3BEF DEF S S =△△.其中,将正确结论的序号全部选对的是( )A .∵∵∵B .∵∵∵C .∵∵∵D .∵∵∵∵【答案】B【分析】 由折叠的性质、矩形的性质与角平分线的性质,可证得CF =FM =DF ,即可判断∵;易求得∵BFE =∵BFN ,则可得BF∵EN ,即可判断∵;易证得∵BEN 是等腰三角形,但无法判定是等边三角形,即可判断∵;易求得BM =2EM =2DE ,即可得EB =3EM ,根据等高三角形的面积比等于对应底的比,即可判断∵.【详解】∵四边形ABCD 是矩形,∵∵D =∵BCD =90°,DF =MF ,由折叠的性质可得:∵EMF =∵D =90°,即FM∵BE ,CF∵BC ,∵BF 平分∵EBC ,∵CF =MF ,∵DF =CF ;故∵正确;∵∵BFM =90°−∵EBF ,∵BFC =90°−∵CBF ,∵∵BFM =∵BFC ,∵∵MFE =∵DFE =∵CFN ,∵∵BFE =∵BFN ,∵∵BFE +∵BFN =180°,∵∵BFE =90°,即BF∵EN ,故∵正确;∵在∵DEF 和∵CNF 中,90D FCN DF CFDFE CFN ∠∠︒⎧⎪⎨⎪∠∠⎩==== ∵∵DEF∵∵CNF (ASA ),∵EF =FN ,∵BF 垂直平分EN ,∵BE =BN ,假设∵BEN 是等边三角形,则∵EBN =60°,∵EBA =30°,则AE =12BE , 又∵AE =12AD ,则AD =BC =BE ,而明显BE =BN >BC ,∵∵BEN 不是等边三角形;故∵错误;∵∵BFM =∵BFC ,BM∵FM ,BC∵CF ,∵BM =BC =AD =2DE =2EM ,∵BE =3EM ,∵S ∵BEF =3S ∵EMF =3S ∵DEF ;故∵正确.故选:B .【点睛】此题考查了折叠的性质、矩形的性质、角平分线的性质以及全等三角形的判定与性质.此题难度适中,注意掌握数形结合思想的应用.29.如图,将长方形纸片ABCD 沿AE 折叠,使点D 恰好落在BC 边上点F 处.若6AB =,10AD =,则EC 的长为( )A .2B .83C .3D .103【答案】B【分析】 由翻折可知:AD=AF=10.DE=EF ,设EC=x ,则DE=EF=6-x .在Rt∵ECF 中,利用勾股定理构建方程即可解决问题.【详解】解:∵四边形ABCD 是矩形,∵AD=BC=10,AB=CD=6,∵∵B=∵BCD=90°,由翻折可知:AD=AF=10,DE=EF ,设EC=x ,则DE=EF=6-x .在Rt∵ABF 中,8BF ===,∵CF=BC -BF=10-8=2,在Rt∵EFC 中,EF 2=CE 2+CF 2,∵(6-x )2=x 2+22, ∵x=83, ∵EC=83. 故选:B .【点睛】本题考查了折叠的性质,矩形的性质,勾股定理,熟练掌握方程的思想方法是解题的关键.30.如图,已知长方形ABCD 中6cm AB =,10cm BC =,在边CD 上取一点E ,将ADE 折叠使点D 恰好落在BC 边上的点F ,CE 的长是( )A .3B .2.5C .83D .2【答案】C【分析】 要求CE 的长,应先设CE 的长为x ,由将∵ADE 折叠使点D 恰好落在BC 边上的点F 可得Rt∵ADE∵Rt∵AFE ,所以AF=10cm ,EF=DE=6-x ;在Rt∵ABF 中由勾股定理得:AB 2+BF 2=AF 2,已知AB 、AF 的长可求出BF 的长,又CF=BC -BF=10-BF ,在Rt∵ECF 中由勾股定理可得:EF 2=CE 2+CF 2,即:(6-x )2=x 2+(10-BF )2,将求出的BF 的值代入该方程求出x 的值,即求出了CE 的长.【详解】∵四边形ABCD 是矩形,∵AD=BC=10cm ,CD=AB=6cm ,根据题意得:Rt∵ADE∵Rt∵AFE ,∵∵AFE=90°,AF=10cm ,EF=DE ,设CE=x cm ,则DE=EF=CD -CE=(6-x )cm ,在Rt∵ABF 中由勾股定理得:AB 2+BF 2=AF 2,即62+BF 2=102,∵BF=8cm ,∵CF=BC -BF=10-8=2(cm ),在Rt∵ECF 中,由勾股定理可得:EF 2=CE 2+CF 2,即(6-x )2=x 2+22,∵36-12x +x 2=x 2+4,∵x =83,即CE=83cm . 故选:C .【点睛】本题主要考查了图形的翻折变换以及勾股定理、全等三角形、方程思想等知识,关键是熟练掌握勾股定理,找准对应边.31.如图,将长方形ABCD 沿AC 折叠,使点B 落在点B '处,B C '交AD 于点E ,若125∠=︒,则2∠等于( )A .25︒B .30C .50︒D .60︒【答案】C【分析】 根据折叠的性质得到∵ACB '=125∠=︒,由长方形的性质得到AD∵BC ,即可得到∵2=∵BCB '=2∵1=50︒.【详解】由折叠可知:∵ACB '=125∠=︒,∵四边形ABCD 是长方形,∵AD∵BC ,∵∵2=∵BCB '=2∵1=50︒,故选:C.【点睛】此题考查折叠的性质,长方形的对边平行的性质,平行线的性质:两直线平行内错角相等.32.如图,将长方形纸片ABCD 沿对角线BD 折叠,点C 的对应点为E.若CBD 35∠=︒,则ADE ∠的度数为( ).A .15︒B .20︒C .25︒D .30【答案】B【分析】 根据折叠的性质和平行线的性质,可以得到ADB ∠和EDB ∠的度数,然后即可得到ADE ∠的度数.【详解】解:由折叠的性质可得,CDB EDB ∠∠=,AD //BC ,CBD 35∠=︒,CBD ADB 35∠∠∴==︒,C 90︒∠=,CDB 55∠∴=︒,EDB 55∠∴=︒,ADE EDB ADB 553520∠∠∠∴=-=︒-︒=︒.故选:B .【点睛】本题考查平行线的性质,解答本题的关键是明确题意,利用数形结合的思想解答.33.如图,折叠长方形纸片ABCD 的一边AD ,使点D 落在BC 边上的点F 处,已知8AB cm =,10AD cm =,则折痕EF 的长为( ).A.2cm B.3cm C.4cm D.5cm【答案】D【分析】根据折叠可得,AD=AF,然后根据勾股定理求出BF,易得CF,再由勾股定理即可求得.【详解】根据折叠可得,AD=AF=10,DE=EF在Rt∵ABF中,根据勾股定理得,BF=6∵CF=4在Rt∵CEF中,EF2=CE2+CF2即EF2=(8-EF)2+42解得EF=5cm故选D【点睛】本题考查勾股定理,掌握折叠的性质是解题关键.34.如图所示,将矩形纸片ABCD折叠,使点D与点B重合,点C落在点C'处,折痕为EF,若EFC'∠=︒,那么ABE122∠的度数为()A.24︒B.32︒C.30D.26︒【答案】D【分析】由折叠的性质知:∵EBC′、∵BC′F都是直角,∵BEF=∵DEF,因此BE∵C′F,那么∵EFC′和∵BEF互补,这样可得出∵BEF 的度数,进而可求得∵AEB 的度数,则∵ABE 可在Rt∵ABE 中求得.【详解】解:由折叠的性质知,∵BEF=∵DEF ,∵EBC′、∵BC′F 都是直角,∵BE∵C′F ,∵∵EFC′+∵BEF=180°,又∵∵EFC′=122°,∵∵BEF=∵DEF=58°,∵∵AEB=180°-∵BEF -∵DEF=64°,在Rt∵ABE 中,∵ABE=90°-∵AEB=26°.故选D .【点睛】本题考查图形的翻折变换,解题过程中应注意折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,如本题中折叠前后角相等.35.如图,将矩形纸片ABCD 沿BD 折叠,得到','BC D C D ∆与AB 交于点E ,若140∠=︒,则2∠的度数为( )A .25︒B .20︒C .15︒D .10︒【答案】D【分析】 根据矩形的性质,可得∵ABD=40°,∵DBC=50°,根据折叠可得∵DBC'=∵DBC=50°,最后根据∵2=∵DBC'-∵DBA 进行计算即可.【详解】解:140,//CD AB ∠=︒,40,50ABD DBC ∴∠=︒∠=︒,由折叠可知'50DBC DBC ∠=∠=︒,2504010DBC ABD '∴∠=∠-∠=︒-︒=︒.故选:D .【点睛】本题考查了长方形性质,平行线性质,折叠性质,角的有关计算的应用,关键是求出∵DBC′和∵DBA 的度数.36.如图,在长方形ABCD 中,将∵ABC 沿AC 对折至∵AEC 位置,CE 与AD 交于点F ,如果AB =2,BC =4,则AF 的长是( ).A .2B .2.5C .2.8D .3【答案】B【分析】 根据题意,根据轴对称的性质,得AB=AE=CD=2,BC=AD=4;通过证明AEF CDF △≌△得=EF FD ,再通过直角AEF 中勾股定理,计算得AF 的长.【详解】根据题意得:AB=AE=CD=2,BC=AD=4设AF=x ,则FD=AD -AF=4-x∵90AEC D AFE DFC AE CD ⎧∠=∠=⎪∠=∠⎨⎪=⎩∵AEF CDF △≌△∵=EF FD∵4EF FD x ==-∵222AE EF AF +=∵()22224x x +-=∵ 2.5x =∵AF 的长是2.5故选:B .【点睛】本题考查了全等三角形、矩形、勾股定理、一元一次方程、轴对称的知识;解题的关键是熟练掌握全等三角形、矩形、勾股定理、轴对称的性质,从而完成求解.37.如图,矩形ABCD 沿着对角线BD 进行折叠,使点C 落在C '处,BC '交AD 于点E ,16AD =,8AB =,则DE 的长( ).A .10B .6C .8D .【答案】A【分析】 先根据翻折变换的性质得出CD=C′D ,∵C=∵C′=90°,再设DE=x ,则AE=16-x ,由全等三角形的判定定理得出Rt∵ABE∵Rt∵C′DE ,可得出BE=DE=x ,在Rt∵ABE 中利用勾股定理即可求出x 的值,进而得出DE 的长.【详解】解:∵Rt DC B '△由Rt DCB △翻折而成,∵8CD C D AB '===,90C C '∠=∠=︒,设DE x =,则16AE x =-,∵90A C '∠=∠=︒,AEB DEC '∠=∠,∵ABE C DE '∠=∠,在Rt ABE △与Rt C DE '△中,90A C '∠=∠=︒,AB C D '=,ABE C DE '∠=∠∵Rt Rt ABE C DE '≌△△,∵BE DE x ==,在Rt ABE △中,222AB AE BE +=,即()222816x x +-=,解得10x =,即10DE =,故选A .【点睛】本题考查的是翻折变换的性质及勾股定理,熟知折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等的知识是解答此题的关键.38.如图,长方形ABCD 中,AD BC 6==,10AB CD ==,点E 为射线DC 上的一个动点,ADE 与AD E '关于直线AE 对称,当'AD B 为直角三角形时,DE 的长为() A .2或8B .83或18C .83或2D .2或18【答案】D【分析】 分两种情况: 当E 点在线段DC 上时, 当E 点在线段DC 的延长线上时,利用全等三角形的判定和性质得出答案即可.【详解】解:分两种情况讨论:∵当E 点在线段DC 上时,AD E '△∵ADE ,90AD E D '∴∠=∠=︒,90AD B '∠=︒,180AD B AD E ''∴∠+∠=︒,B ∴、D 、E 三点共线,1122ABE S BE AD AB AD AD AD ''=⋅=⋅=,, BE AB 10∴==,8BD '===,1082DE D E '∴==-=;∵当E 点在线段DC 的延长线上时,如下图,90ABD CBE ABD BAD ''''''∠+∠=∠+∠=︒,CBE BAD ''∴∠=∠,在ABD ''△和BEC △中,D BCE AD BCBAD CBE '''''∠=∠⎧⎪=⎨⎪∠=∠'⎩, ABD ''∴△∵BEC ,BE AB 10∴==,8BD ''==,81018DE D E BD BE ''''∴==+=+=,综上所知,DE 2=或18,故选:D .【点睛】本题考查翻折的性质、三角形全等的判定与性质、勾股定理、掌握翻折的性质、分类探讨的思想方法是解决问题的关键.39.如图,四边形ABCD 是矩形纸片,AB =2.对折矩形纸片ABCD ,使AD 与BC 重合,折痕为EF ;展平后再过点B 折叠矩形纸片,使点A 落在EF 上的点N ,折痕BM 与EF 相交于点Q ;再次展平,连接BN ,MN,延长MN交BC于点G.有如下结论:∵∵ABN=60°;∵AM=1;∵AB∵CG;∵BMG是等边三角形;∵点P为线段BM上一动点,点H是BN的中点,则PN+PH.其中正确结论有()A.5个B.4个C.3个D.2个【答案】B【分析】∵根据折叠的性质得出AE=BE,AB=BN,∵NEB=90°,再根据含30度的直角三角形判定定理即可得出∵ENB =30°,即可得出∵ABN=60°;∵根据折叠的性质得出∵ABM=∵NBM=30°,设AM=x,根据勾股定理即可求出AM的值;∵直接根据矩形的性质即可得出;∵根据∵ABM=30°,得出∵MBG=∵BMA=60°,再根据折叠的性质和等量代换即可得出∵BGM是等边三角形;∵根据点H是BN的中点即矩形的性质得出BH=BE,结合题意得出PE=PH,再根据三点共线时值最小及勾股定理即可判断.【详解】解:由折叠可知,AE=BE,AB=BN,∵NEB=90°,在Rt∵BEN中,∵BN=AB=2BE,∵∵ENB=30°,∵∵ABN=60°,故∵正确;由折叠可知,∵ABM=∵NBM=30°,设AM=x,则BM=2x,x2+22=(2 x)2,∵x>0,解得:x,即AM =∵错误; ∵∵ABG =90°,∵AB ∵CG ,故∵正确;∵∵ABM =30°,∵∵MBG =∵BMA =60°,由折叠可知,∵BMG =∵BMA =60°,∵∵MBG =∵BMG =∵MGB =60°,∵∵BGM 是等边三角形,故∵正确,连接PE .∵点H 是BN 的中点,∵BH =BE =1,∵∵MBH =∵MBE ,∵E 、H 关于BM 对称,∵PE =PH ,∵PH +PN =PE +PN ,∵E 、P 、N 共线时,PH +PN 的值最小,EN ∵正确,故选为B .【点睛】本题考查翻折变换、等边三角形的判定和性质、直角三角形中30度角的判断、轴对称最短问题等知识,解题的关键是灵活运用所学知识解决问题,属于中考填空题中的压轴题.40.如图,矩形纸片,,ABCD AB a BC b ==,满足12b a b <<,将此矩形纸片按下面顺序折叠,则图4中MN 的长为(用含,a b 的代数式表示)( )A .2b a -B .22b a -C .32b a +D .12b a + 【答案】B【分析】 如图3中,由折叠的性质可得PQ =BC =b ,A 1F =a ﹣12b ,∵PEQ 是等腰直角三角形,进而可得∵MNE 是等腰直角三角形,然后根据等腰直角三角形的性质可得EG =12MN ,而12EG EF A F =-,进一步即可求得答案.【详解】解:如图3中,由折叠的性质可得PQ =BC =b ,A 1F =a ﹣12b ,∵EPQ =11904522APQ ∠=⨯︒=︒,∵EQP =11904522DQP ∠=⨯︒=︒, ∵∵PEQ =90°,∵∵PEQ 是等腰直角三角形,如图4,∵MN ∵PQ ,∵∵MNE 是等腰直角三角形,∵EG ∵MN ,∵EG=MG=NG =12MN , ∵12EG EF A F =-=a ﹣2(a ﹣12b )=b ﹣a , ∵MN =2EG =22b a -.故选:B∵【点睛】本题考查了矩形的性质、折叠的性质以及等腰直角三角形的判定与性质,正确理解题意、熟练掌握等腰直角三角形的判定和性质是解题的关键.41.将矩形纸片 ABCD 按如图所示的方式折叠,得到菱形 AECF .若 AB =3,则 BC 的长为( )AB .2C .1.5 D【答案】D【分析】 设BC x =,先根据矩形的性质可得90,B AD BC ∠=︒=,再根据折叠的性质可得,,90OA AD x OC BC x COE B ====∠=∠=︒,从而可得OA OC =,又根据菱形的性质可得AE CE =,然后根据三角形全等的判定定理与性质可得90AOE COE ∠=∠=︒,从而可得点,,A O C 共线,由此可得2AC x =,最后在Rt ABC 中,利用勾股定理即可得.【详解】设BC x =,四边形ABCD 是矩形,90,B AD BC x ∴∠=︒==,由折叠的性质得:,,90OA AD x OC BC x COE B ====∠=∠=︒,OA OC x ∴==,四边形AECF 是菱形,AE CE ∴=,。
矩形中的折叠问题
矩形中的折叠问题山东省枣庄市峄城区第二十八中学 潘歌 邮编:277300折叠问题(对称问题)是近几年来中考出现频率较高的一类题型,学生往往由于对折叠的实质理解不够透彻,导致对这类中档问题失分严重。
对于折叠问题(翻折变换)实质上就是轴对称变换.对称轴是对应点的连线的垂直平分线,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.本文试图通过对在初中数学中经常涉及到的几种折叠的典型问题的剖析,从中抽象出基本图形的基本规律,找到解决这类问题的常规方法。
一、求角度例1 如图 把一张矩形纸片ABCD 沿EF 折叠后,点C D ,分别落在C D '',的位置上,EC '交AD 于点G .已知58EFG ∠=°,那么BEG ∠= °.【解析】在矩形折叠问题中,折叠前后的对应角相等来解决。
解:根据矩形的性质AD ∥BC ,有∠EFG =∠FEC =58°,再由折叠可知,∠FEC =∠C ′EF =58°,由此得∠BEG =64°例2 将一张长方形纸片按如图的方式折叠,其中BC ,BD 为折痕,折叠后BG 和BH 在同一条直线上,∠CBD = 度.【解析】折叠前后的对应角相等.解:BC 、BD 是折痕,所以有∠ABC = ∠GBC ,∠EBD = ∠HBD 则∠CBD = 90°.例4 如图 四边形ABCD 为矩形纸片.把纸片ABCD 折叠,使点B 恰好落在CD 边的中点E 处,折痕为AF .若CD =6,则AF 等于 ( )(A )34 (B )33 (C )24 (D )8【解析】在矩形折叠问题中,求折痕等线段长度时,往往利用轴对称性转化相等的线段,再借助勾股定理构造方程来解决.解:由折叠可知,AE =AB =DC =6,在Rt △ADE 中AD =6,DE =3由勾股定理,得AD =33,设EF =x ,则FC =x -33,在Rt △EFC 中由勾股定理求得x =32,则EF =32,在Rt △AEF 中,由勾股定理得AF =A .A B CDEFA B E C D F G C 'D 'C三、求图形面积例5如图3-1所示,将长为20cm ,宽为2cm 的长方形白纸条,折成图3-2所示的图形并在其一面着色,则着色部分的面积为( )A .234cmB .236cmC .238cmD .240cm解析:折叠后重合部分为直角三角形. 解:重合部分其面积为22122=⨯⨯,因此着色部分的面积=长方形纸条面积 - 两个重合部分三角形的面积,即20×2-2×2=36(2cm ).故选B .∴62 + (8 - x )2 = x2解得x = 254所以,阴影部分的面积S △FBD = 12 FD ×AB = 12 ×254 ×6 = 754 cm2四、数量及位置关系例7 如图 将矩形纸片ABCD 沿对角线BD 折叠,点C 落在点E处,BE 交AD 于点F ,连结AE .证明:(1)BF DF =. (2)AE BD ∥ 【解析】(1)欲证明BF =DF ,只需证∠FBD =∠FDB ; (2)欲证明AE BD ∥,则需证AEB DBE ∠=∠。
矩形的折叠问题(专题)ppt课件
解 设EC=x,则DE=8-x,由轴对称可知:EF=DE=8-x,
A
D
AF=AD=10,又因AB=8,故BF=6,故FC=BC-BF=4。在
RtFCE中,42+x2=(8-x)2,解之得x=3
E
B
FC
4
练习2 如图,在梯形ABCD中,DCAB,将梯形
对折,使点D、C分别落在AB上的D¹、C¹处,折
A
答案:矩形的长为10,宽为8。
D C
C
B
8
4、求线段与面积间的变化关系
例5 已知一三角形纸片ABC,面积为25,BC的长为10,B和C都为锐角,M为
AB上的一动点(M与A、B不重合),过点M作MN∥BC,交AC于点N,设MN=x.
(1)用x表示△AMN的面积SΔAMN。
(2)ΔAMN沿MN折叠,设点A关
= 。∴S
=½(x-a/2)2+3/8 a2 . ∴当x=a∕2 时,Smin=(3∕8 )a2.
10
二、在“位置”方面的应用
由于图形折叠后,点、线、面等相应的位置发生变化,带来图形间的位置关系重 新组合。
1、线段与线段的位置关系
A 例6 将长方形ABCD的纸片,沿EF折成如图所
FH D
示,延长C`E交AD于H,连结GH。求证:EF与
求D点坐标。
O
↑y
A 解由题意知,OA=3,∠OAB=60º,∴OB=3tan60º=3√3 .
∵Rt△ACB≌Rt△ADB, ∴AD=AC=OB=3√3 .
O
过点D作Y轴垂线,垂足为E,
E
在直角三角形AED中,ED= ,AE= ,故OE= 。
故点D的坐标为(3/2√3 ,- 3/2)。
矩形折叠问题(解析版)-中考数学训练
矩形折叠问题模型的概述:已知矩形的长与宽,利用勾股定理、相似三角形及翻折的性质,求各线段边长。
解题方法:不找以折痕为边长的直角三角形,利用未知数表示其它直角三角形三边,通过勾股定理/相似三角形知识求解。
问题:根据已知信息,求翻折后各边长。
模型一:思路:模型二:思路:模型三:思路:尝试借助一线三垂直知识利用相似的方法求解模型四:思路:模型五:思路:模型六:点M ,点N 分别为DC ,AB 中点思路:模型七:点A '为BC 中点思路:过点F 作FH ⊥AE ,垂足为点H设AE =A 'E =x ,则BE =8-x 由勾股定理解得x =174∴BE=154由于△EBA '∽△A 'CG ∽△FD 'G ∴A 'G =3415CG =1615GD '=2615DF =D 'F =AH =134HE =1EF =17【培优过关练】1.(2022秋·山东青岛·九年级统考期末)如图,在正方形ABCD 中,AB =9,点E 、F 分别在边AB 、CD上,∠FEB =120°.若将四边形EBCF 沿EF 折叠,点C 恰好落在AD 边C 上,则C D 的长度为()A.3B.33C.32D.3【答案】B 【分析】根据翻折的性质和正方形及勾股定理的有关性质求解.【详解】解:在正方形ABCD 中,CD =AB =9,CD ∥AB ,∠D =90°,∴∠FEB +∠EFC =180°,∴∠EFC =∠C FE =60°,∴∠C FD =180°-∠EFC -∠C FE =60°,∴∠DC F =30°,∴C F =2DF ,又∵C F =CF ,CF +DF =9,∴DF =3,C F =6,∴C D =62-32=33,故选:B .【点睛】本题考查了翻折及正方形的性质,勾股定理的应用是解题的关键.2.(2022秋·江苏徐州·九年级校考阶段练习)如图,在矩形纸片ABCD 中,点E 在边AD 上,沿着BE 折叠使点A 落在边CD 上的点F 处,若tan ∠ABE =13,AD =3,则DF 的长为()A.1B.2C.43D.32【答案】A 【分析】先根据折叠的性质和正切的定义得出EF BF=13,再证明△DEF ∽△CFB ,最后利用相似三角形的性质得出结论.【详解】解:由折叠可知,∠ABE =∠FBE ,∴tan ∠ABE =tan ∠FBE =13,∴EF BF =13,∵∠EFB =∠C =∠D =90°,∴∠DFE +∠DEF =90°,∠DFE +∠BFC =90°,∴∠DEF =∠BFC ,∴△DEF ∽△CFB ,∴EF FB =DF CB=13,∵BC =AD =3,∴DF =1,故选:A .【点睛】本题考查了矩形中的折叠问题,涉及三角函数,相似三角形判定与性质等知识,解题的关键是证明△DEF ∽△CFB .3.(2022秋·福建泉州·九年级福建省惠安第一中学校联考期中)如图,在平面直角坐标系中,矩形ABCO 的边OA 在x 轴上,边OC 在y 轴上,点B 的坐标为1,3 ,将矩形沿对角线AC 折叠,使点B 落在D 点的位置,且交y 轴交于点E ,则点D 的坐标是()A.-35,83B.-35,2C.-45,145D.-45,125【答案】D【分析】过D 作DF ⊥AO 于F ,根据折叠可以证明△CDE ≌△AOE ,然后利用全等三角形的性质得到OE =DE ,OA =CD =1,设OE =m ,那么CE =3-m ,DE =m ,利用勾股定理即可求出m ,然后利用已知条件可以证明△AEO ∽△ADF ,而AD =AB =3,接着利用相似三角形的性质即可求出DF 、AF 的长度,也就求出了点D 的坐标.【详解】如图,过D 作DF ⊥AO 于F ,∵点B 的坐标为1,3 ,∴AO =1,AB =3,根据折叠可知CD =BC =OA ,而∠ADC =∠AOE =90°,∠DEC =∠AEO∴△CDE ≌△AOE ,∴OE =DE ,OA =CD =1,设OE =m ,那么CE =3-m ,DE =m ,在Rt △DCE 中,CE 2=DE 2+CD 2,∴3-m 2=m 2+12,解得m =43,∵DF ⊥AF ,∴DF ∥EO ,∴△AEO ∽△ADF而AD =AB =3,∴AE =CE =3-43=53,∴AE AD =EO DF =AO AF ,即533=43DF =1AF,∴DF =125,AF =95,∴OF =95-1=45,∴D 的坐标为-45,125,故选:D .【点睛】此题主要考查了图形的折叠问题,也考查了坐标与图形的性质,解题的关键是把握折叠的隐含条件,利用隐含条件得到全等三角形和相似三角形,然后利用它们的性质即可解决问题.4.(2023春·广东广州·九年级专题练习)如图,矩形纸片ABCD 中,AB =4,AD =3,折叠纸片使AD 落在对角线BD 上,折痕为DG ,点A 的对应点为A ,那么AG 的长为()A.1B.43C.32D.2【答案】C【分析】首先设AG=x,由矩形纸片ABCD中,AB=4,AD=3,可求得BD的长,又由折叠的性质,可求得A B的长,然后由勾股定理可得方程:x2+22=4-x2,解此方程即可解决问题.【详解】解:设AG=x,∵四边形ABCD是矩形,∴∠A=90°,∵AB=4,AD=3,∴BD=AD2+AB2=5,由折叠的性质可得:A D=AD=3,A G=AG=x,∠DA G=∠A=90°,∴∠BA G=90°,BG=AB-AG=4-x,A B=BD-A D=5-3=2,∵在Rt△A BG中,A G2+A B2=BG2,∴x2+22=4-x2,解得:x=3 2,∴AG=32.故选:C.【点睛】此题考查了折叠的性质、矩形的性质以及勾股定理.此题难度适中,注意掌握折叠前后图形的对应关系,注意掌握数形结合思想与方程思想的应用.5.(2022秋·湖南邵阳·九年级校联考期中)如图,在矩形纸片ABCD中,AB=6,BC=10,点E在CD上,将△BCE沿BE折叠,点C恰落在边AD上的点F处;点G在AF上,将△ABG沿BG折叠,点A 恰落在线段BF上的点H处,有下列结论:①∠EBG=45°;②△DEF∽△HFG;③四边形BGDE的面积等于35;④AG+DF=FG.其中正确的结论有()A.1个B.2个C.3个D.4个【答案】C【分析】利用折叠性质得∠CBE=∠FBE,∠ABG=∠FBG,BF=BC=10,BH=BA=6,AG=GH,则可得到∠EBG=12∠ABC,于是可对①进行判断;在Rt△ABF中利用勾股定理计算出AF=8,则DF=AD-AF=2,设AG=x,利用勾股定理得到x2+42=(8-x)2,得到AG=3,GF=5,于是可对④进行判断;接着证明△DEF∽△HFG,于是可对②进行判断;根据S四边形BGDE=S矩形ABCD -S△ABG-S△EBC可对③进行判断.【详解】解:∵△BCE沿BE折叠,点C恰落在边AD上的点F处;点G在AF上,将△ABG沿BG折叠,点A恰落在线段BF上的点H处,∴∠CBE=∠FBE,∠ABG=∠FBG,BF=BC=10,BH=BA=6,AG=GH,,∴∠EBG=∠EBF+∠FBG=12∠CBF+12∠ABF=12∠ABC=45°,所以①正确;在Rt△ABF中,AF=BF2-AB2=102-62=8,∴DF=AD-AF=10-8=2,设AG=x,则GH=x,GF=8-x,HF=BF-BH=10-6=4,在Rt△GFH中,∵GH2+HF2=GF2,∴x2+42=(8-x)2,解得x=3,∴GF=5,∴AG+DF=FG=5,所以④正确;在△DEF中,DF=2,设DE=a,则CE=EF=6-a∴6-a2=a2+22解得a=8 3∴EC=6-83=103∵SΔABG=12×6×3=9,S△BCE=12×10×103=503,∴S四边形BGDE =S矩形ABCD-S△ABG-S△EBC=6×10-9-503=1033≠35.所以③不正确.∵DF=2,DE=83,EF=103,GH=3,HF=4,GF=5∴DF GH =DEHF=EFFG∴△DEF∽△HFG故②正确故选:C.【点睛】本题考查了矩形的折叠问题,勾股定理,相似三角形的性质与判定,掌握以上知识是解题的关键.6.(2022秋·广东梅州·九年级校考阶段练习)如图,在矩形ABCD中,AB=8,BC=12,点E为BC的中点,将△ABE 沿AE 折叠,使点B 落在矩形内点F 处,连接CF ,则CF 的长为()A.185B.6C.325D.365【答案】D【分析】连接BF ,根据三角形的面积公式求出BH ,得到BF ,根据直角三角形的判定得到∠BFC =90°,根据勾股定理求出答案.【详解】解:连接BF ,交AE 于H ,∵BC =12,点E 为BC 的中点,∴BE =6,又∵AB =8,∴AE =AB 2+BE 2=36+64=10,由折叠知,BF ⊥AE (对应点的连线必垂直于对称轴),∴BH =AB ×BE AE=245,则BF =485,∵FE =BE =EC ,∴∠EFB =∠EBF ,∠EFC =∠ECF ,∵∠EFB +∠EBF +∠EFC +∠ECF =180°,∴∠BFC =90°,∴CF =BC 2-BF 2=122-485 2=365,故选:D .【点睛】本题考查的是翻折变换的性质和矩形的性质,掌握折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等是解题的关键.7.(2022秋·广西贵港·九年级统考期中)如图,在矩形纸片ABCD 中,AB =8,BC =11,M 是BC 上的点,且CM =3,将矩形纸片ABCD 沿过点M 的直线折叠,使点D 落在AB 上的点P 处,点C 落在点C 处,折痕为MN ,当PC 与线段BC 交于点H 时,则线段BH 的长是()A.3B.5516C.4D.7316【答案】B 【分析】连接PM ,证明△PBM ≌△PC M 即可得到CM =C M =PB =3,证明△PBH ≌△C MH ,得出BH =HC =x ,然后列出关于x 的方程,解方程即可.【详解】解:连接PM ,如图所示:∵矩形纸片ABCD 中,AB =8,BC =11,∴CD =AB =8,∠A =∠B =∠C =∠D =90°,∵CM =3,∴BM =11-3=8,根据折叠可知,CD =PC =8,∠C =∠C =90°,C M =CM =3,∴∠B =∠C ,∴BM =PC =8,∵PM =PM ,∴Rt △PBM ≌Rt △PC M HL ,∴C M =PB =3,∵∠PHB =∠C HM ,∠B =∠C ,∴△PBH ≌△C MH ,∴BH =HC ,设BH =HC =x ,则HM =8-x ,∵HM 2=HC 2+C M 2,∴8-x 2=x 2+32,解得:x =5516,∴BH =5516,故B 正确.故选:B .【点睛】本题考查矩形的折叠问题,解题的关键是看到隐藏条件BM =PC =8,证明三角形全等,学会利用翻折不变性解决问题.8.(2022秋·山东枣庄·九年级校考期中)如图,边长为2的正方形ABCD 的对角线AC 与BD 交于点O ,将正方形ABCD 沿直线DF 折叠,点C 落在对角线BD 上的点E 处,折痕DF 交AC 于点M ,则OM =()A.12B.2-2C.3-1D.2-1【答案】B【分析】根据题意先求BD =2AB =22,OD =2,再求BE =EF =CF =BD -DE =BD -CD =22-2,进而根据△ODM ∽△CDF 的线段比例关系,即可求出OM 的长.【详解】解:如图,连接EF ,∵四边形ABCD 是正方形,∴AB =AD =BC =CD =2,∠BCD =∠COD =∠BOC =90°,OD =OC ,∴BD =2AB =22,OD =2,由折叠的性质可知,∠OEF =∠DCB =90°,∠EDF =∠CDF ,DE =CD ,∴∠BEF =90°,∴∠BFE =∠FBE =45°,∴△BEF 是等腰直角三角形,∴BE =EF =CF =BD -DE =BD -CD =22-2,∵∠DCB =∠COD =90°,∠EDF =∠CDF ,∴△ODM ∽△CDF ,∴OM CF =OD CD ,即OM 22-2=22,∴OM =2-2.故选:B .【点睛】本题主要考查图形的翻折,熟练掌握图形翻折的性质,正方形的性质,等腰直角三角形的性质及相似三角形的判定和性质是解题的关键.9.(2022·辽宁营口·统考中考真题)如图,在矩形ABCD 中,点M 在AB 边上,把△BCM 沿直线CM 折叠,使点B 落在AD 边上的点E 处,连接EC ,过点B 作BF ⊥EC ,垂足为F ,若CD =1,CF =2,则线段AE 的长为()A.5-2B.3-1C.13D.12【答案】A【分析】先证明△BFC≌△CDE,可得DE=CF=2,再用勾股定理求得CE=5,从而可得AD= BC=5,最后求得AE的长.【详解】解:∵四边形ABCD是矩形,∴BC=AD,∠ABC=∠D=90°,AD∥BC,∴∠DEC=∠FCB,∵BF⊥EC,∴∠BFC=∠CDE,∵把△BCM沿直线CM折叠,使点B落在AD边上的点E处,∴BC=EC,在△BFC与△CDE中,∠DEC=∠FCB ∠BFC=∠CDE BC=EC∴△BFC≌△CDE(AAS),∴DE=CF=2,∴CE=CD2+DE2=12+22=5,∴AD=BC=CE=5,∴AE=AD-DE=5-2,故选:A.【点睛】本题考查了矩形的性质、全等三角形的判定和性质、折叠的性质,勾股定理的应用,解决本题的关键是熟练掌握矩形中的折叠问题.10.(2022·贵州毕节·统考中考真题)矩形纸片ABCD中,E为BC的中点,连接AE,将△ABE沿AE折叠得到△AFE,连接CF.若AB=4,BC=6,则CF的长是()525【答案】D【分析】连接BF交AE于点G,根据对称的性质,可得AE垂直平分BF,BE=FE,BG=FG=12BF,根据E为BC中点,可证BE=CE=EF,通过等边对等角可证明∠BFC=90°,利用勾股定理求出AE,再利用三角函数(或相似)求出BF,则根据FC=BC2-BF2计算即可.【详解】连接BF,与AE相交于点G,如图,∵将△ABE沿AE折叠得到△AFE∴△ABE与△AFE关于AE对称∴AE垂直平分BF,BE=FE,BG=FG=12BF∵点E是BC中点∴BE=CE=DF=12BC=3∴AE=AB2+BE2=42+32=5∵sin∠BAE=BEAE =BG AB∴BG=BE⋅ABAE =3×45=125∴BF=2BG=2×122=245∵BE=CE=DF∴∠EBF=∠EFB,∠EFC=∠ECF∴∠BFC=∠EFB+∠EFC=180°2=90°∴FC=BC2-BF2=62-2452=185故选D【点睛】本题考查了折叠对称的性质,熟练运用对称性质证明相关线段相等是解题的关键.11.(2022·四川宜宾·统考中考真题)如图,在矩形纸片ABCD中,AB=5,BC=3,将△BCD沿BD折叠到△BED位置,DE交AB于点F,则cos∠ADF的值为()17151715【答案】C【分析】先根据矩形的性质和折叠的性质,利用“AAS”证明ΔAFD≌ΔEFB,得出AF=EF,DF= BF,设AF=EF=x,则BF=5-x,根据勾股定理列出关于x的方程,解方程得出x的值,最后根据余弦函数的定义求出结果即可.【详解】解:∵四边形ABCD为矩形,∴CD=AB=5,AB=BC=3,∠A=∠C=90°,根据折叠可知,BE=BC=3,DE=DE=5,∠E=∠C=90°,∴在△AFD和△EFB中∠A=∠E=90°∠AFD=∠EFB AD=BE=3 ,∴ΔAFD≌ΔEFB(AAS),∴AF=EF,DF=BF,设AF=EF=x,则BF=5-x,在RtΔBEF中,BF2=EF2+BE2,即5-x2=x2+32,解得:x=85,则DF=BF=5-85=175,∴cos∠ADF=ADDF =3175=1517,故C正确.故选:C.【点睛】本题主要考查了矩形的折叠问题,三角形全等的判定和性质,勾股定理,三角函数的定义,根据题意证明ΔAFD≌ΔEFB,是解题的关键.12.(2022·浙江湖州·统考中考真题)如图,已知BD是矩形ABCD的对角线,AB=6,BC=8,点E,F分别在边AD,BC上,连结BE,DF.将△ABE沿BE翻折,将△DCF沿DF翻折,若翻折后,点A,C分别落在对角线BD上的点G,H处,连结GF.则下列结论不正确的是()A.BD=10B.HG=2C.EG∥FHD.GF⊥BC 【答案】D【分析】根据矩形的性质以及勾股定理即可判断A,根据折叠的性质即可求得HD,BG,进而判断B,根据折叠的性质可得∠EGB=∠FHD=90°,进而判断C选项,根据勾股定理求得CF的长,根据平行线线段成比例,可判断D选项【详解】∵BD是矩形ABCD的对角线,AB=6,BC=8,∴BC=AD=8,AB=CD=6∴BD=BC2+CD2=10故A选项正确,∵将△ABE沿BE翻折,将△DCF沿DF翻折,∴BG=AB=6,DH=CD=6∴DG=4,BH=BD-HD=4∴HG=10-BH-DG=10-4-4=2故B选项正确,∵EG⊥BD,HF⊥DB,∴EG∥HF,故C正确设AE=a,则EG=a,∴ED=AD-AE=8-a,∵∠EDG=∠ADB∴tan∠EDG=tan∠ADB即EGDG=ABAD=68=34∴a 4=34∴AE=3,同理可得CF=3若FG∥CD则CFBF=GDBG∵CF BF =35,GDBG=46=23,∴CF BF ≠GD BG,∴FG不平行CD,即GF不垂直BC,故D不正确.故选D【点睛】本题考查了折叠的性质,矩形的性质,勾股定理,平行线分线段成比例,掌握以上知识是解题的关键.13.(2022·江苏连云港·统考中考真题)如图,将矩形ABCD沿着GE、EC、GF翻折,使得点A、B、D恰好都落在点O处,且点G、O、C在同一条直线上,同时点E、O、F在另一条直线上.小炜同学得出以下结论:①GF∥EC;②AB=435AD;③GE=6DF;④OC=22OF;⑤△COF∽△CEG.其中正确的是()A.①②③B.①③④C.①④⑤D.②③④【答案】B【分析】由折叠的性质知∠FGE=90°,∠GEC=90°,点G为AD的中点,点E为AB的中点,设AD =BC=2a,AB=CD=2b,在Rt△CDG中,由勾股定理求得b=2a,然后利用勾股定理再求得DF=FO=a2,据此求解即可.【详解】解:根据折叠的性质知∠DGF=∠OGF,∠AGE=∠OGE,∴∠FGE=∠OGF+∠OGE=12(∠DGO+∠AGO)=90°,同理∠GEC=90°,∴∠FGE+∠GEC=180°∴GF∥EC;故①正确;根据折叠的性质知DG=GO,GA=GO,∴DG=GO=GA,即点G为AD的中点,同理可得点E为AB的中点,设AD=BC=2a,AB=CD=2b,则DG=GO=GA=a,OC=BC=2a,AE=BE=OE=b,∴GC=3a,在Rt△CDG中,CG2=DG2+CD2,即(3a)2=a2+(2b)2,∴b=2a,∴AB=22a=2AD,故②不正确;设DF=FO=x,则FC=2b-x,在Rt△COF中,CF2=OF2+OC2,即(2b-x)2=x2+(2a)2,∴x =b 2-a 2b =a 2,即DF =FO =a 2,GE =a 2+b 2=3a ,∴GE DF =3aa 2=6,∴GE =6DF ;故③正确;∴OC OF =2a a 2=22,∴OC =22OF ;故④正确;∵∠FCO 与∠GCE 不一定相等,∴△COF ∽△CEG 不成立,故⑤不正确;综上,正确的有①③④,故选:B .【点睛】本题主要考查了折叠问题,解题时,我们常常设要求的线段长为x ,然后根据折叠和轴对称的性质用含x 的代数式表示其他线段的长度,选择适当的直角三角形,运用勾股定理列出方程求出答案.14.(2021·广西来宾·统考中考真题)如图,矩形纸片ABCD ,AD :AB =2:1,点E ,F 分别在AD ,BC 上,把纸片如图沿EF 折叠,点A ,B 的对应点分别为A ,B ,连接AA 并延长交线段CD 于点G ,则EF AG的值为()A.22B.23C.12D.53【答案】A【分析】根据折叠性质则可得出EF 是AA 的垂直平分线,则由直角三角形性质及矩形性质可得∠AEO =∠AGD ,∠FHE =∠D =90°,根据相似三角形判定推出△EFH ∽△GAD ,再利用矩形判定及性质证得FH =AB ,即可求得结果.【详解】解:如图,过点F 作FH ⊥AD 于点H ,∵点A ,B 的对应点分别为A ,B ,∴EA =EA ,FB =FB ,∴EF是AA'的垂直平分线.∴∠AOE=90°.∵四边形ABCD是矩形,∴∠BAD=∠B=∠D=90°.∴∠OAE+∠AEO=∠OAE+∠AGD,∴∠AEO=∠AGD.∵FH⊥AD,∴∠FHE=∠D=90°.∴△EFH∽△GAD.∴EF AG =FH AD.∵∠AHF=∠BAD=∠B=90°,∴四边形ABFH是矩形.∴FH=AB.∴EF AG =FHAD=ABAD=12=22;故选:A.【点睛】本题考查了矩形的折叠问题,掌握折叠的性质、矩形及相似三角形的判定与性质是解题的关键.15.(2011·吉林长春·中考真题)如图,矩形纸片ABCD中,已知AD=8,折叠纸片使AB边与对角线AC重合,点B落在点F处,折痕为AE,且EF=3,则AB的长为()A.3B.4C.5D.6【答案】D【分析】先根据矩形的特点求出BC的长,再由翻折变换的性质得出△CEF是直角三角形,利用勾股定理即可求出CF的长,再在△ABC中利用勾股定理即可求出AB的长.【详解】解:∵四边形ABCD是矩形,AD=8,∴BC=8,∵△AEF是△AEB翻折而成,∴BE=EF=3,AB=AF,△CEF是直角三角形,∴CE=8-3=5,在Rt△CEF中,CF=CE2-EF2=52-32=4,设AB=x,在Rt△ABC中,AC2=AB2+BC2,即(x+4)2=x2+82,解得x=6,故选:D.【点睛】本题考查了翻折变换(折叠问题),勾股定理,解题的关键是利用勾股定理建立等式求解.16.(2020·广东深圳·统考中考真题)如图,矩形纸片ABCD中,AB=6,BC=12.将纸片折叠,使点B落在边AD的延长线上的点G处,折痕为EF,点E、F分别在边AD和边BC上.连接BG,交CD于点K,FG交CD于点H.给出以下结论:①EF⊥BG;②GE=GF;③△GDK和△GKH的面积相等;④当点F与点C重合时,∠DEF=75°.其中正确的结论共有()A.1个B.2个C.3个D.4个【答案】C【分析】由折叠的性质可得四边形EBFG是菱形从而判断①②正确;由角平分线定理即可判断DG≠GH,由此推出③错误;根据F、C重合时的性质,可得∠AEB=30°,进而算出④正确.【详解】连接BE,由折叠可知BO=GO,∵EG⎳BF,∴∠EGO=∠FBO,又∵∠EOG=∠FOB,∴△EOG≌△FOB(ASA),∴EG=BF,∴四边形EBFG是平行四边形,由折叠可知BE=EG,则四边形EBFG为菱形,故EF⊥BG,GE=GF,∴①②正确;∵四边形EBFG为菱形,∴KG平分∠DGH,∴,DG≠GH,∴S△GDK≠S△GKH,故③错误;当点F与点C重合时,BE=BF=BC=12=2AB,∴∠AEB=30°,∠DEF=12∠DEB=75°,故④正确.综合,正确的为①②④.故选C.【点睛】本题考查矩形的性质,菱形的判断,折叠的性质,关键在于结合图形对线段和角度进行转换.17.(2020·内蒙古呼和浩特·中考真题)如图,把某矩形纸片ABCD沿EF,GH折叠(点E、H在AD边上,点F,G在BC边上),使点B和点C落在AD边上同一点P处,A点的对称点为A 、D点的对称点为D ,若∠FPG=90°,△A EP的面积为8,△D PH的面积为2,则矩形ABCD的长为()A.65+10B.610+52C.35+10D.310+52【答案】D【分析】设AB=CD=x,由翻折可知:PA′=AB=x,PD′=CD=x,因为△A′EP的面积为4,△D′PH的面积为1,推出D′H=12x,由S△D′PH=12D′P·D′H=12A′P·D′H,可解得x=22,分别求出PE和PH,从而得出AD的长.【详解】解:∵四边形ABC是矩形,∴AB=CD,AD=BC,设AB=CD=x,由翻折可知:PA′=AB=x,PD′=CD=x,∵△A′EP的面积为8,△D′PH的面积为2,又∵∠FPG=90°,∠A′PF=∠D′PG=90°,∴∠A′PD′=90°,则∠A′PE+∠D′PH=90°,∴∠A′PE=∠D′HP,∴△A′EP∽△D′PH,∴A′P2:D′H2=8:2,∴A′P:D′H=2:1,∵A′P=x,∴D ′H =12x ,∵S △D ′PH =12D ′P ·D ′H =12A ′P ·D ′H ,即12⋅x ⋅12x =2,∴x =22(负根舍弃),∴AB =CD =22,D ′H =DH =2,D ′P =A ′P =CD =22,A ′E =2D ′P =42,∴PE =42 2+22 2=210,PH =22 2+2 2=10,∴AD =42+210+10+2=52+310,故选D .【点睛】本题考查翻折变换,矩形的性质,勾股定理,相似三角形的判定和性质等知识,解题的关键是学会利用参数解决问题,属于中考填空题中的压轴题.18.如图,矩形纸片ABCD ,AB =4,BC =3,点P 在BC 边上,将△CDP 沿DP 折叠,点C 落在点E 处,PE 、DE 分别交AB 于点O 、F ,且OP =OF ,则cos ∠ADF 的值为()A.1113B.1315C.1517D.1719【答案】C【分析】根据折叠的性质可得出DC =DE 、CP =EP ,由∠EOF =∠BOP 、∠B =∠E 、OP =OF 可得出△OEF ≌△OBP (AAS ),根据全等三角形的性质可得出OE =OB 、EF =BP ,设EF =x ,则BP =x 、DF =4-x 、BF =PC =3-x ,进而可得出AF =1+x ,在Rt △DAF 中,利用勾股定理可求出x 的值,再利用余弦的定义即可求出cos ∠ADF 的值.【详解】根据折叠,可知:△DCP ≌△DEP ,∴DC =DE =4,CP =EP .在△OEF 和△OBP 中,∠EOF =∠BOP∠E =∠B =90°OF =OP,∴△OEF ≌△OBP (AAS ),∴OE =OB ,EF =BP .设EF =x ,则BP =x ,DF =DE -EF =4-x ,又∵BF =OB +OF =OE +OP =PE =PC ,PC =BC -BP =3-x ,∴AF =AB -BF =1+x .在Rt △DAF 中,AF 2+AD 2=DF 2,即(1+x )2+32=(4-x )2,解得:x =35,∴DF =4-x =175,∴cos ∠ADF =AD DF =1517,故选C .【点睛】本题考查了全等三角形的判定与性质、勾股定理以及解直角三角形,利用勾股定理结合AF =1+x ,求出AF 的长度是解题的关键.19.(2022·山东泰安·统考中考真题)如图,四边形ABCD 为正方形,点E 是BC 的中点,将正方形ABCD沿AE 折叠,得到点B 的对应点为点F ,延长EF 交线段DC 于点P ,若AB =6,则DP 的长度为___________.【答案】2【分析】连接AP ,根据正方形的性质和翻折的性质证明Rt △AFP ≌Rt △ADP (HL ),可得PF =PD ,设PF =PD =x ,则CP =CD -PD =6-x ,EP =EF +FP =3+x ,然后根据勾股定理即可解决问题.【详解】解:连接AP ,如图所示,∵四边形ABCD 为正方形,∴AB =BC =AD =6,∠B =∠C =∠D =90°,∵点E 是BC 的中点,∴BE =CE =12AB =3,由翻折可知:AF =AB ,EF =BE =3,∠AFE =∠B =90°,∴AD =AF ,∠AFP =∠D =90°,在Rt △AFP 和Rt △ADP 中,AP =AP AF =AD ,∴Rt △AFP ≌Rt △ADP (HL ),∴PF =PD ,设PF =PD =x ,则CP =CD -PD =6-x ,EP =EF +FP =3+x ,在Rt △PEC 中,根据勾股定理得:EP 2=EC 2+CP 2,∴(3+x )2=32+(6-x )2,解得x =2,则DP 的长度为2,故答案为:2.【点睛】本题考查了翻折变换,正方形的性质,勾股定理,解决本题的关键是掌握翻折的性质.20.(2022·贵州黔东南·统考中考真题)如图,折叠边长为4cm 的正方形纸片ABCD ,折痕是DM ,点C 落在点E 处,分别延长ME 、DE 交AB 于点F 、G ,若点M 是BC 边的中点,则FG =______cm .【答案】53##123【分析】根据折叠的性质可得DE =DC =4,EM =CM =2,连接DF ,设FE =x ,由勾股定理得BF ,DF ,从而求出x 的值,得出FB ,再证明ΔFEG ∼ΔFBM ,利用相似三角形对应边成比例可求出FG .【详解】解:连接DF ,如图,∵四边形ABCD 是正方形,∴AB =BC =CD =DA =4,∠A =∠B =∠C =∠CDA =90°.∵点M 为BC 的中点,∴BM =CM =12BC =12×4=2由折叠得,ME =CM =2,DE =DC =4,∠DEM =∠C =90°,∴∠DEF =90°,∠FEG =90°,设FE =x ,则有DF 2=DE 2+EF 2∴DF 2=42+x 2又在Rt ΔFMB 中,FM =2+x ,BM =2,∵FM 2=FB 2+BM 2∴FB =FM 2-BM 2=(2+x )2-22∴AF =AB -FB =4-(2+x )2-22在Rt ΔDAF 中,DA 2+AF 2=DF 2,∴42+4-2+x 2-22 2=42+x 2,解得,x 1=43,x 2=-8(舍去)∴FE =43,∴FM =FE +ME =43+2=103∴FB =2+43 2-22=83∵∠DEM =90°∴∠FEG =90°∴∠FEG =∠B ,又∠GFE =∠MFB .∴△FEG ∼ΔFBM∴FG FM =FE FB ,即FG 103=4383∴FG =53,故答案为:53【点睛】本题主要考查了正方形的性质,折叠的性质,勾股定理,相似三角形的判定与性质,正确作出辅助线是解答本题的关键.21.(2022·浙江丽水·统考中考真题)如图,将矩形纸片ABCD 折叠,使点B 与点D 重合,点A 落在点P处,折痕为EF .(1)求证:△PDE ≌△CDF ;(2)若CD =4cm ,EF =5cm ,求BC 的长.【答案】(1)证明见解析(2)163cm 【分析】(1)利用ASA 证明即可;(2)过点E 作EG ⊥BC 交于点G ,求出FG 的长,设AE =xcm ,用x 表示出DE 的长,在Rt △PED 中,由勾股定理求得答案.【详解】(1)∵四边形ABCD 是矩形,∴AB =CD ,∠A =∠B =∠ADC =∠C =90°,由折叠知,AB =PD ,∠A =∠P ,∠B =∠PDF =90°,∴PD =CD ,∠P =∠C ,∠PDF =∠ADC ,∴∠PDF -∠EDF=∠ADC -∠EDF ,∴∠PDE =∠CDF ,在△PDE 和△CDF 中,∠P =∠CPD =CD ∠PDE =∠CDF,∴△PDE≌△CDF(ASA);(2)如图,过点E作EG⊥BC交于点G,∵四边形ABCD是矩形,∴AB=CD=EG=4cm,又∵EF=5cm,∴GF=EF2-EG2=3cm,设AE=xcm,∴EP=xcm,由△PDE≌△CDF知,EP=CF=xcm,∴DE=GC=GF+FC=3+x,在Rt△PED中,PE2+PD2=DE2,即x2+42=3+x2,解得,x=7 6,∴BC=BG+GC=76+3+76=163(cm).【点睛】本题考查了翻折变换,矩形的性质,勾股定理,全等三角形的判定和性质,根据翻折变换的性质将问题转化到直角三角形中利用勾股定理是解题的关键.22.(2022·河南·统考中考真题)综合与实践综合与实践课上,老师让同学们以“矩形的折叠”为主题开展数学活动.(1)操作判断操作一:对折矩形纸片ABCD,使AD与BC重合,得到折痕EF,把纸片展平;操作二:在AD上选一点P,沿BP折叠,使点A落在矩形内部点M处,把纸片展平,连接PM,BM.根据以上操作,当点M在EF上时,写出图1中一个30°的角:______.(2)迁移探究小华将矩形纸片换成正方形纸片,继续探究,过程如下:将正方形纸片ABCD按照(1)中的方式操作,并延长PM交CD于点Q,连接BQ.①如图2,当点M在EF上时,∠MBQ=______°,∠CBQ=______°;②改变点P在AD上的位置(点P不与点A,D重合),如图3,判断∠MBQ与∠CBQ的数量关系,并说明理由.(3)拓展应用在(2)的探究中,已知正方形纸片ABCD的边长为8cm,当FQ=1cm时,直接写出AP的长.【答案】(1)∠BME或∠ABP或∠PBM或∠MBC(2)①15,15;②∠MBQ=∠CBQ,理由见解析(3)AP=4011cm或2413cm【分析】(1)根据折叠的性质,得BE=12BM,结合矩形的性质得∠BME=30°,进而可得∠ABP=∠PBM=∠MBC=30°;(2)根据折叠的性质,可证RtΔBQM≅RtΔBQC HL,即可求解;(3)由(2)可得QM=QC,分两种情况:当点Q在点F的下方时,当点Q在点F的上方时,设AP= PM=x,分别表示出PD,DQ,PQ,由勾股定理即可求解.(1)解:∵AE=BE=12AB,AB=BM∴BE=12BM∵∠BEM=90°,sin∠BME=BEBM =12∴∠BME=30°∴∠MBE=60°∵∠ABP=∠PBM∴∠ABP=∠PBM=∠MBC=30°(2)∵四边形ABCD是正方形∴AB=BC,∠A=∠ABC=∠C=90°由折叠性质得:AB=BM,∠PMB=∠BMQ=∠A=90°∴BM=BC①∵BM=BC,BQ=BQ∴RtΔBQM≅RtΔBQC HL∴∠MBQ=∠CBQ∵∠MBC=30°∴∠MBQ=∠CBQ=15°②∵BM=BC,BQ=BQ∴RtΔBQM≅RtΔBQC HL∴∠MBQ =∠CBQ(3)当点Q 在点F 的下方时,如图,∵FQ =1cm ,DF =FC =4cm ,AB =8cm∴QC =CD -DF -FQ =8-4-1=3(cm ),DQ =DF +FQ =4+1=5(cm )由(2)可知,QM =QC设AP =PM =x ,PD =8-x ,∴PD 2+DQ 2=PQ 2,即8-x 2+52=x +3 2解得:x =4011∴AP =4011cm ;当点Q 在点F 的上方时,如图,∵FQ =1cm ,DF =FC =4cm ,AB =8cm∴QC =5cm ,DQ =3cm ,由(2)可知,QM =QC设AP =PM =x ,PD =8-x ,∴PD 2+DQ 2=PQ 2,即8-x 2+32=x +5 2解得:x =2413∴AP =2413cm .【点睛】本题主要考查矩形与折叠,正方形的性质、勾股定理、三角形的全等,掌握相关知识并灵活应用是解题的关键.23.(2022·吉林长春·统考中考真题)【探索发现】在一次折纸活动中,小亮同学选用了常见的A 4纸,如图①,矩形ABCD 为它的示意图.他查找了A 4纸的相关资料,根据资料显示得出图①中AD =2AB .他先将A 4纸沿过点A 的直线折叠,使点B 落在AD 上,点B 的对应点为点E ,折痕为AF ;再沿过点F 的直线折叠,使点C 落在EF 上,点C 的对应点为点H ,折痕为FG ;然后连结AG ,沿AG 所在的直线再次折叠,发现点D 与点F 重合,进而猜想△ADG ≌△AFG .【问题解决】(1)小亮对上面△ADG≌△AFG的猜想进行了证明,下面是部分证明过程:证明:四边形ABCD是矩形,∴∠BAD=∠B=∠C=∠D=90°.由折叠可知,∠BAF=12∠BAD=45°,∠BFA=∠EFA.∴∠EFA=∠BFA=45°.∴AF=2AB=AD.请你补全余下的证明过程.【结论应用】(2)∠DAG的度数为________度,FGAF的值为_________;(3)在图①的条件下,点P在线段AF上,且AP=12AB,点Q在线段AG上,连结FQ、PQ,如图②,设AB=a,则FQ+PQ的最小值为_________.(用含a的代数式表示)【答案】(1)见解析(2)22.5°,2-1.(3)52a【分析】(1)根据折叠的性质可得AD=AF,∠AFG=∠D=90°,由HL可证明结论;(2)根据折叠的性质可得∠DAG=12∠DAF=22.5°;证明ΔGCF是等腰直角三角形,可求出GF的长,从而可得结论;(3)根据题意可知点F与点D关于AG对称,连接PD,则PD为PQ+FQ的最小值,过点P作PR⊥AD,求出PR=AR=24a,求出DR,根据勾腰定理可得结论.【详解】(1)证明:四边形ABCD是矩形,∴∠BAD=∠B=∠C=∠D=90°.由折叠可知,∠BAF=12∠BAD=45°,∠BFA=∠EFA.∴∠EFA=∠BFA=45°.∴AF=2AB=AD.由折叠得,∠CFG=∠GFH=45°,∴∠AFG=∠AFE+∠GFE=45°+45°=90°∴∠AFG=∠D=90°又AD=AF,AG=AG∴△ADG≌△AFG(2)由折叠得,∠BAF=∠EAF,又∠BAF+∠EAF=90°∴∠EAF=12∠BAE=12×90°=45°,由△ADG≌△AFG得,∠DAG=∠FAG=12∠FAD=12×45°=22.5°,∠AFG=∠ADG=90°,又∠AFB=45°∴∠GFC=45°,∴∠FGC=45°,∴GC=FC.设AB=x,则BF=x,AF=2x=AD=BC,∴FC=BC-BF=2x-x=(2-1)x∴GF=2FC=(2-2)x∴GF AF =(2-2)x2x=2-1.(3)如图,连接FD,∵DG=FG∴AG是FD的垂直平分线,即点F与点D关于AG轴对称,连接PD交AG于点Q,则PQ+FQ的最小值为PD的长;过点P作PR⊥AD交AD于点R,∵∠DAF=∠BAF=45°∴∠APR=45°.∴AR=PR又AR2+PR2=AP2=a22=a24∴AR=PR=24a,∴DR=AD-AR=2a-24a=342a在RtΔDPR中,DP2=AR2+PR2∴DP =AR 2+PR 2=24a 2+324a 2=52a ∴PQ +FQ 的最小值为52a 【点睛】本题主要考查了折叠的性质,全等三角形的判定与性质,最短路径问题,矩形的性质以及勾股定理等知识,正确作出辅助线构造直角三角形是解答本题的关键.24.(2021·湖北荆州·统考中考真题)在矩形ABCD 中,AB =2,AD =4,F 是对角线AC 上不与点A ,C重合的一点,过F 作FE ⊥AD 于E ,将△AEF 沿EF 翻折得到△GEF ,点G 在射线AD 上,连接CG .(1)如图1,若点A 的对称点G 落在AD 上,∠FGC =90°,延长GF 交AB 于H ,连接CH .①求证:△CDG ∽△GAH ;②求tan ∠GHC .(2)如图2,若点A 的对称点G 落在AD 延长线上,∠GCF =90°,判断△GCF 与△AEF 是否全等,并说明理由.【答案】(1)①见解析;②23;(2)不全等,理由见解析【分析】(1)①先根据同角的余角相等得出∠DCG =∠AGH ,再根据两角对应相等,两三角形相似即可得出结论;②设EF =x ,先证得△AEF ~△ADC ,得出EF AE =CD AD=24=12,再结合折叠的性质得出AE =EG =2x ,AG =4x ,AH =2EF =2x ,再由△CDG ~△GAH ,得出比例式AG DC =AH DG =HG CG ,求出EF 的长,从而得出HGCG的值,即可得出答案;(2)先根据两角对应相等,两三角形相似得出△AEF~△ACG,得出比例式AEAC =AFAG,得出EF=5 4,AE=52,AF=545,从而判定△GCF与△AEF是否全等.【详解】(1)①在矩形ABCD中,∠BAD=∠D=90°∴∠DCG+∠DGC=90°又∵∠FGC=90°∴∠AGH+∠DGC=90°∴∠DCG=∠AGH∴△CDG~△GAH②设EF=x∵△AEF沿EF折叠得到△GEF∴AE=EG∵EF⊥AD∴∠AEF=90°=∠D∴EF⎳CD⎳AB∴△AEF~△ADC∴EF CD =AE AD∴EF AE =CDAD=24=12∴AE=EG=2x∴AG=4x∵AE=EG,EF⎳AB∴EF AH =EGAG=12∴AH=2EF=2x ∵△CDG~△GAH∴AG DC =AHDG=HGCG∴4x2=2x4-4x=HGCG∴x=34∴4x2=32=HGCG∵∠FCG=90°∴tan∠GHC=CGHG =23(2)不全等理由如下:在矩形ABCD中,AC=AB2+AD2=22+42=25由②可知:AE=2EF∴AF=AE2+EF2=5EF由折叠可知,AG=2AE=4EF,AF=GF∵∠AEF=∠GCF,∠FAE=∠GAC∴△AEF~△ACG∴AE AC =AF AG∴2EF 25=54∴EF=54∴AE=52,AF=545∴FC=AC-AF=25-545=345∴AE≠FC,EF≠FC∴不全等【点睛】本题考查了矩形的性质,翻折变换,相似三角形的判定和性质,三角函数等知识,得出AE= 2EF是解题的关键.。
沪科版2019-2020年八年级数学下册 思想方法专题:矩形中的折叠问题(含答案解析)
思想方法专题:矩形中的折叠问题——体会矩形折叠中的方程思想及数形结合思想◆类型一 矩形折叠问题中求角的度数1.如图,将矩形ABCD 沿AE 折叠,使点D 落在点D′处.若∠CED′=60°,则∠BAD′的大小是( ) A .30° B .45° C .50° D .60°第1题图 第2题图2.如图,将矩形纸片ABCD 折叠,使顶点B 落在边AD 上的点E 处,折痕FG 交AB 于点F ,交BC 于点G ,连接BE.若∠AEF =20°,则∠FGB 的度数为( )A .25°B .30°C .35°D .40° ◆类型二 矩形折叠问题中求长度 3.(2017·安顺中考)如图,在矩形纸片ABCD 中,AD =4cm ,把纸片沿AC 折叠,点B 落在点E 处,AE 交DC 于点O.若AO =5cm ,则AB 的长为( )A .6cmB .7cmC .8cmD .9cm第3题图 第4题图4.(2017·芜湖市期中)将矩形纸片ABCD 按如图折叠,得到菱形AECF.若AB =3,则BC 的长为( ) A .2 B .1 C . 3 D . 5 5.(2017·宜宾中考)如图,在矩形ABCD 中,BC =8,CD =6,将△ABE 沿BE 折叠,使点A 恰好落在对角线BD 上的点F 处,则DE 的长是【方法18①】( )A .3B .245C .5D .8916第5题图 第6题图6.(2017·芜湖繁昌县期中)将矩形纸片ABCD 按如图折叠,AE 、EF 为折痕,∠BAE =30°,BE =1.折叠后,点C 落在AD 边上的C 1处,并且点B 落在EC 1边上的B 1处.则EC 的长为( )A . 3B .2C .3D .2 3 7.★(2017·安庆潜山县期末)如图,在矩形ABCD 中,AB =4,BC =6,点E 为BC 的中点,将△ABE 沿AE 折叠,使点B 落在矩形内的点F 处,连接CF ,则CF 的长为________.第7题图第8题图◆类型三矩形折叠问题中求面积8.(2017·阜阳市期末)如图,在矩形纸片ABCD中,AB=4,BC=8,将纸片沿EF折叠,使点C与点A 重合,则△AEF的面积是()A.8 B.10 C.12 D.149.(2017·鄂州中考)如图,将矩形ABCD沿对角线AC翻折,点B落在点F处,FC交AD于点E.(1)求证:△AFE≌△CDE;(2)若AB=4,BC=8,求图中阴影部分的面积.参考答案与解析1.A 2.C 3.C4.C解析:∵四边形AECF为菱形,∴AE=CE,∠FCO=∠ECO.由折叠可得∠ECO=∠ECB.又∵∠FCO+∠ECO+∠ECB=90°,∴∠FCO=∠ECO=∠ECB=30°.∵四边形ABCD是矩形,∴∠B=90°,∴CE=2BE,∴AE=2BE.∵AB=AE+BE=3,∴BE=1,CE=AE=2,∴BC=CE2-BE2= 3.故选C.5.C解析:四边形ABCD是矩形,∴∠A=90°,AB=CD=6,AD=BC=8,∴BD=BC2+CD2=10.由折叠可得BF =AB =6,EF =AE ,∠BFE =∠A =90°,∴∠DFE =90°.设DE =x ,则EF =AE =8-x .在Rt △DEF 中,DE 2=EF 2+DF 2,即x 2=(8-x )2+(10-6)2,解得x =5.即DE =5.故选C.6.B 解析:∵四边形ABCD 是矩形,∴∠B =∠BAD =90°.∵∠BAE =30°,BE =1,∴AE =2BE =2×1=2,∠AEB =90°-∠BAE =90°-30°=60°,∠EAC 1=∠BAD -∠BAE =90°-30°=60°.由折叠可得∠AEB 1=∠AEB =60°.∴∠AC 1E =180°-∠EAC 1-∠AEB 1=60°,∴△AEC 1是等边三角形,∴EC 1=AE =2.由折叠可得EC =EC 1=2.故选B.7.185 解析:如图,连接BF 交AE 于点H .∵BC =6,点E 为BC 的中点,∴BE =CE =12BC =3.由折叠可得BF ⊥AE ,BH =12BF .∴在Rt △ABE 中,由勾股定理得AE =AB 2+BE 2=5.∵S △ABE =12AB ·BE =12AE ·BH ,∴BH=125,∴BF =2BH =245.由折叠可得FE =BE ,∴FE =BE =CE ,∴∠EBF =∠BFE ,∠ECF =∠EFC .又∵∠EBF +∠BFE +∠EFC +∠ECF =180°,∴∠BFE +∠EFC =90°,即∠BFC =90°.在Rt △BFC 中,由勾股定理得CF =BC 2-BF 2=62-⎝⎛⎭⎫2452=185.8.B 解析:∵四边形ABCD 是矩形,∴∠D =90°,AD =BC =8,CD =AB =4.由折叠可得AG =CD =4,∠G =∠D =90°,DF =GF .设AF =x ,则GF =DF =8-x .在Rt △AGF 中,AF 2-GF 2=AG 2,即x 2-(8-x )2=42,解得x =5,即AF =5.∴S △AEF =12AF ·AB =12×5×4=10.故选B.9.(1)证明:∵四边形ABCD 是矩形,∴AB =CD ,∠B =∠D =90°.由折叠可得∠F =∠B ,AF =AB ,∴AF =CD ,∠F =∠D .在△AFE 和△CDE 中,∵⎩⎪⎨⎪⎧∠F =∠D ,∠AEF =∠CED ,AF =CD ,∴△AFE ≌△CDE .(2)解:∵四边形ABCD 是矩形,∴∠D =90°,CD =AB =4,AD =BC =8.由折叠可得CF =BC =8.由(1)可知△AFE ≌△CDE ,∴EF =DE .设EF =DE =x ,则CE =8-x .在Rt △CED 中,由勾股定理得DE 2+CD 2=CE 2,即x 2+42=(8-x )2,解得x =3,∴DE =3,∴AE =AD -DE =5,∴S 阴影=12AE ·CD =12×5×4=10.。
专题一 矩形中的折叠问题
) - = ,∴FG=2FO= .
平面直角坐标系中的折叠问题
9.如图所示,OABC是一张放在平面直角坐标系中的矩形纸片,O为原点,点A在x
轴的正半轴上,点C在y轴的正半轴上,OA=5,OC=4.在OC
边上取一点D,将纸片沿AD翻折,使点O落在BC边上的点E处.(1Biblioteka 求E,D两点的坐标.第一章
特殊平行四边形
专题一
矩形中的折叠问题
求角度
1.如图所示,在矩形ABCD中,点E在边CD上,将该矩形沿AE折叠,恰好使点D
落在边BC上的点F处,若∠BAF=60°,则∠DAE的大小为( B )
A.10°
B.15°
第1题图
C.20°
D.25°
2.如图所示,将矩形ABCD沿EF折叠,使点B落在AD边上的点G处,点C落在点H
∴Rt△CEP1≌Rt△BME(HL),
∴CP1=BE=3,∴OP1=1,∴P1(0,1).
同理可得CP2=BE=3,∴OP2=7,∴P2(0,7).
当PE=PM时,此时点P在EM的垂直平分线上.设P点坐标为(0,-a)(a>
0).
∵E(2,4),M(5,2),∴EP3= +( + ) ,MP3=
∴∠DBC=∠ADB,
∴∠DBE=∠ADB,∴DF=BF,
∴△BDF是等腰三角形.
(2)如图②所示,过点D作DG∥BE,交BC于点G,连接FG交BD于点O.
①判断四边形BFDG的形状,并说明理由;
②若AB=6,AD=8,求FG的长.
解:(2)①四边形BFDG是菱形.理由:
∵四边形ABCD是矩形,∴AD∥BC,∴FD∥BG.又∵DG∥BE,
2019年中考数学专题矩形的折叠问题(答案版)
专题复习课:矩形中的折叠问题一.知识与方法1考察知识与方法图形的变换:平移、轴对称、旋转、求角度、求面积、求线段问题321矩形的折叠2【方法指导】方法一:勾股定理法步骤1、假设未知数2、折叠前后对应边、对应角相等;3、再把条件集中到一个直角三角形中,利用勾股定理列方程结论:等腰三角形平行线矩形角平分线折叠方法二:等面积法【总结归纳】折叠问题,题型多变,关键是利用轴对称的性质,抓住背景图的性质,运用方程的思想,函数的思想,转换的方法从而解题.折线是对称轴,对应点的连线段被对称抽垂直平分,折叠前后的图形全等.二【课堂例题】1、在矩形ABCD 中,点B 沿CE 折叠落在对角线AC 边上的点F 处,AB=6,BC=8,求BE 以及折痕CE (你还能求什么?)2、在矩形ABCD 中,点B 沿CE 折叠落在AD 边上的点F 处,AB=8,BC=10,求BE(你还能求什么)3、在矩形ABCD 中,点B 沿AC 折叠落在点E 处,交AD 边于点F ,AB=6,BC=8,(1)求AF (2)求AFC S (你还能发现什么结论)4、在矩形ABCD中,四边形ABFE沿EF折叠,点A落在点A处,点B落在点 D 处,AB=6,BC=8,(1)求ED(2)求S(3)求四边形'A EFD的面积(4)求折痕EFEDF(5)四边形BEDF是什么四边形?(你还可以提什么问题)三【课堂练习】如图,在矩形ABCD中,E是BC上一动点,将△ABE沿AE折叠后得到△AFE,点F在矩形ABCD内部,延长AF交CD于点G,AB=3,AD=4.图1 图2 图3(1)如图1,当∠DAG =30o时,求BE的长;(2)如图2,当点E是BC的中点时,求线段GC的长;(3)如图3,点E在运动过程中,当△CFE的周长最小时,求出BE的长.四课堂小结:1.你学习了什么知识。
2你学习了什么数学思想方法。
3.你还有什么疑问?五【课后作业】1、在矩形纸片ABCD中,AB=6,BC=8.(1)将矩形纸片沿BD折叠,使点A落在点E处如图①.设DE与BC相交于点F,求BF的长;(2)将矩形纸片折叠,使点B与D重合如图②,求折痕GH的长B'MN DA B C A'2、如左下图,矩形纸片ABCD 中,AB =3,C B =6,点M,N 分别在边BC,AD 上?将纸片ABCD 沿直线MN 对折,使点A 落在CD 边上,则线段CM 长的取值范围是:3、如右上图,矩形ABCD 中,AB =4,BC =3,把矩形ABCD 沿过点A 的直线AE 折叠,点D 落在矩形ABCD 内部的点D '处,则CD'的最小值是;;则三角形CE 'D 的周长的最小值是:4、如图,在直角坐标系中,长方形纸片ABCD 的边,点B 坐标为,若把图形按如图所示折叠,使B 、D 两点重合,折痕为EF.(1)求证:△DEF 是等腰三角形;(2)求折痕EF 的长.(3)请自己提出一个问题,并解答。
矩形的五种折叠方法
矩形的五种折叠方法折叠问题的实质是轴对称问题,折叠原理实际上是图形的全等问题,对应角相等,对应线段相等。
对应点的连线被折痕垂直平分。
矩形在日常生活中随处可见,矩形的性质又具有平行四边形的所有性质,并且具有对角线互相平分且相等的特有性质,它不仅是中心对称图形,而且还是轴对称图形.所以矩形的折叠问题是中考热点问题,并且折叠的方法不同,问题不同,给参加中考的考生带来各种各样的困境,为了让参加中考的孩子们轻松应考,先把矩形的折叠问题进行总结一下.一.沿对角线折叠例1.在平面直角坐标系中,矩形OABC的两边OA、OC分别落在x轴,y轴上,且OA=4,0C=3。
如图,将△OAB沿对角线OB翻折得到△OBN,ON与AB交于点M。
(1)判断△OBM是什么三角形,并说明理由,并求出△OBM的面积(2)求MN的长.【分析】由矩形性质可知,AB=OC=3,BC=OA=4,∠COA=∠OAB=90°OA∥BC 所以∠AOB=∠MBO根据折叠原理得∠AOB=∠MOB,所以∠MBO=∠MOB,∴MB=MO所以△OBM是等腰三角形,二.折一角,使直角顶点到对边例2.如图,OABC是一张放在平面直角坐标系中的矩形纸片,O为原点,点A 在x轴的正半轴上,点C在y轴的正半轴上,OA=5,OC =4.在OC 边上取一点D ,将纸片沿AD 翻折,使点O 落在BC 边上的点E 处.则点D 的坐标是 .【分析】折叠原理知,AE=AO=5,AB=OC=4,OD=ED 由勾股先求得BE=3,∴CE=2,然后设OD=x ,则CD=4-x在Rt △DCE 中由勾股定理即可求得OD 的长,然后就得到点D 的坐标。
练习:如图,折叠矩形的一边AD ,点D 落在BC 边上点F 处,已知AB=8,BC=10,则EC 的长是 。
(这道题目先求BF 的长,再求CF 的长,然后再勾股定理)练习2.如图,矩形纸片ABCD ,若把△ABE 沿折痕BE 上折叠,使A 点恰好落在CD 上,此时,AE:ED=5:3,BE=55,求矩形的长和宽。
中考数学解题技巧专题矩形中的折叠问题
解题技巧专题:矩形中的折叠问题——找准方法,快准解题◆类型一折叠中求角度1.如图所示,将矩形纸片ABCD折叠,使点D与点B重合,点C落在点C′处,折痕为EF.若∠EFC′=125°,那么∠ABE的度数为( )A.15° B.20° C.25° D.30°第1题图第2题图2.如图,某数学兴趣小组开展以下折纸活动:(1)对折矩形ABCD,使AD和BC重合,得到折痕EF,把纸片展平;(2)再一次折叠纸片,使点A落在EF上,并使折痕经过点B,得到折痕BM,同时得到线段BN.观察探究可以得到∠ABM的度数是( )A .25°B .30°C .36°D .45°◆类型二 折叠中求线段长【方法9】3.如图,矩形ABCD 中,对角线AC =23,E 为BC 边上一点,BC =3BE ,将矩形ABCD 沿AE 所在的直线折叠,使B 点恰好落在对角线AC 上的B ′处,则AB =________.第3题图 第4题图4.(郴州桂阳县期末)如图,一块矩形纸片的宽CD 为2cm ,点E 在AB 上,如果沿图中的EC 对折,B 点刚好落在AD 上的B ′处,此时∠BCE =15°,则BC 的长为________.5.如图,矩形纸片ABCD 中,AB =4,AD =3,折叠纸片使A 点恰好落在对角线BD 上的点A ′处,折痕为DG ,则AG 的长为( )A .1 B.43 C.32D .2第5题图 第6题图◆类型三 折叠中求面积6.如图,在矩形ABCD 中,BC =8,CD =6,将△BCD 沿对角线BD 翻折,使点C 落在点C ′处,BC ′交AD 于点E ,则△BDE 的面积为( ) A.754 B.214C .21D .24 7.如图,有一块矩形纸片ABCD ,AB =8,AD =6,将纸片折叠,使得AD 边落在AB 边上,折痕为AE ,再将△ADE 沿DE 向右翻折,AE 与BC 的交点为F ,则△CEF 的面积为( )A.12B.98C .2D .4 8.★(福州中考)如图,矩形ABCD 中,AB =4,AD =3,M 是边CD 上的一点,将△ADM 沿直线AM 对折,得到△ANM.(1)当AN平分∠MAB时,求DM的长;(2)连接BN,当DM=1时,求△ABN的面积.参考答案与解析1.B 2.B 3. 3 4.4cm 5.C 6.A 7.C8.解:(1)由折叠性质得△ANM≌△ADM,∴∠MAN=∠DAM.∵AN平分∠MAB,∴∠MAN=∠NAB,∴∠DAM =∠MAN=∠NAB.∵四边形ABCD是矩形,∴∠DAB=90°,∴∠DAM=30°,∴AM=2DM.在Rt△ADM中,∵AD =3,∴由勾股定理得AM2-DM2=AD2,即(2DM)2-DM2=32,解得DM= 3.(2)延长MN交AB的延长线于点Q,如图所示.∵四边形ABCD是矩形,∴AB∥DC,∴∠DMA=∠MAQ.由(1)知△ANM≌△ADM,∴∠ANM=∠D=90°,∠DMA=∠AMQ,AN=AD=3,MN=MD=1,∴∠MAQ=∠AMQ,∴MQ=AQ.设NQ=x,则AQ=MQ=MN+NQ=1+x.∵∠ANM=90°,∴∠ANQ=90°.在Rt△ANQ中,由勾股定理得AQ2=AN2+NQ2,即(x+1)2=32+x2,解得x=4,∴NQ=4,AQ=5.∵△NAB和△NAQ在AB边上的高相等,AB=4,AQ =5,∴S △NAB =45S △NAQ =45×12×AN ·NQ =45×12×3×4=245.解题技巧专题:圆中辅助线的作法——形成精准思维模式,快速解题◆类型一 遇弦过圆心作弦的垂线或连半径1.如图,以点O 为圆心的两个圆中,大圆的弦AB 切小圆于点C ,OA 交小圆于点D ,若OD =2,tan∠OAB =12,则AB 的长是( )A .4B .23C .8D .43第1题图 第2题图2.如图,已知⊙O的半径OD与弦AB互相垂直,垂足为点C,若AB=16cm,CD=6cm,⊙O的半径为________.◆类型二遇直径添加直径所对的圆周角3.如图,AB是⊙O的直径,C,D,E都是⊙O上的点,则∠ACE+∠BDE等于( )A.60°B.75°C.90°D.120°第3题图第4题图4.如图,⊙O是△ABC的外接圆,CD是直径,∠B=40°,则∠ACD的度数是________.5.如图,△ABC的顶点均在⊙O上,AD为⊙O的直径,AE⊥BC于E.求证:∠BAD=∠EAC.类型三遇切线连接圆心和切点6.已知⊙O的半径为1,圆心O到直线l的距离为2,过l上任一点A作⊙O的切线,切点为B,则线段AB 长度的最小值为( )A .1B . 2C . 3D .27.如图,从⊙O 外一点A 引圆的切线AB ,切点为B ,连接AO 并延长交圆于点C ,连接BC.若∠A =26°,则∠ACB 的度数为________.8.★如图,AB 为⊙O 的直径,直线CD 切⊙O 于点D ,AM ⊥CD 于点M ,BN ⊥CD 于N.(1)求证:∠ADC =∠ABD ;(2)求证:AD 2=AM ·AB ;(3)若AM =185,sin ∠ABD =35,求线段BN 的长.。
矩形的折叠问题(专题)
DA
明D为AB中点。
条件:∠A=30º
证明:由轴对称可得,△BCE≌△BDE,∴ BC=BD ,
在△ABC中,∵ ∠C=90º,∠A=30º,∴ BC= ½ AB ,
∴ BD = ½ AB ,即点D为AB的中点。
1、如图,将矩形ABCD沿AE折叠,使点D落 在BC边上的F点处。
(1)若∠BAF=60°,求∠EAF的度数; (2)若AB=6cm,
AD=10cm, 求线段CE的 长及△AEF的 面积.
2、如图,矩形纸片ABCD中,现将A、C重合,使
纸片折叠压平,设折痕为EF。 (1)连结CF,四边形AECF是 A 什么特殊的四边形?为什么?
G FD
(2)若AB=4cm,AD=8cm, B
练习7 如图,把一张边长为a的正 A E
方形的纸进行折叠,使B点落在AD 上,问B点落在AD的什么位置时,
M
折起的面积最小,并求出这最小值。
B
解: 如图,设MN为折痕,折起部
分为梯形EGNM,B、E关于MN对
AE
称,所以BE⊥MN,且BO=EO,设
AE=x,则BE= 。
MO
由Rt△MOB∽
,得:
,F
线段的长,角的度数,图形的周长与面积的变化关 系等问题。
1、求线段与线段的大小关系
例1 如图,AD是ABC的中线,
ADC=45º,把ADC沿AD对
折,点C落在点C'的位置,求
BC'与BC之间的数量关系。
B
C' A
D
C
解 由轴对称可知 ADC ≌ ADC' , ADC'=ADC=45º, C'D=CD=BD BC´D为Rt BC’=2 BD= 2 BC
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
C´ D´
如果再沿BF折叠成图c,则图c中的∠CFE的 度数是
三次折叠
取一张矩形的纸片进行折叠,具体操作过程如下: 第一步:先把矩形ABCD对折,折痕为MN,如图(1) 第二步:再把B点叠在折痕MN上,折痕为AE,点B在MN上 的对应点为B’,得Rt△AB’E,如图(2) 第三步:沿EB’线折叠得折痕EF,如图(3),利用展开图 (4)探究:⑴△AEF是什么三角形?证明你的结论。
y
B E
2 3 1
A'
C
H (x,y) G F
A
D
x
06湖州中考已知如图,矩形OABC的长为 3 ,宽OC为1, 将⊿AOC沿AC翻折得⊿ APC. (1)填空:∠PCB=____度,P点坐标为( , ); 4 (2)若P,A两点在抛物线y= x2+bx+c上,求b,c的值,并 3 说明点C在此抛物线上; (3)在(2)中的抛物线CP段(不包括C,P点)上,是否存在 一点M,使得四边形MCAP的面积最大?若存在,求出这个最大 y 值及此时M点的坐标;若不存在,请说明理由 .
(2)EF与抛物线只有一个公共点时, ,EF的表达式为 , EF与x轴、y轴的交点为M(1,0),E(0, ), ∵∠EMO=90°-∠OEM=∠EAA′, ∴RT△EMO∽RT△A′AD(1分) ∴, ∴ (1分).
⑵对于任意的矩形,按照上述方法是否都能 折出这种三角形?
B M A a C P N D A B' b N D 图9 B' F c N D A E C E A C B M 1 3 2 d F E B' C N D
(3)在折叠问题中,若直接解决较困难时,可将 图形还原,可让问题变得简单明了。有时还可采用 动手操作,通过折叠观察得出问题的答案。
谢谢大家!
挑战综合题
如图,将矩形纸片ABCD沿EF折叠,使点A落在DC 边上的点A′处,x轴垂直平分DA,直线EF的表达 式为y=kx-k (k<0) 1 2 x ①问:EF与抛物线y=− 有几个公共点? 8−
使矩形对角顶点重合折叠
B E
C
使矩形一顶点落在一边上
如图,矩形纸片ABCD中,AB=6cm,AD=10cm, 点E、F仍在矩形ABCD的边AB 、AD上,仍将△AEF沿EF 折叠,使点A′在BC边上, 当折痕EF移动时,点A′在 BC边上也随之移动。则A′C的范围为
根据点E、F分别在AB、AD上移 动,可折出两个极端位置时的图 形
• 据判别式与坐标轴交点个数性质,分别得出即可; (2)首先得出EF与x轴、y轴的交点为M(1,0),E(0, ),进而 得出RT△EMO∽RT△A′AD,即可求出. 解答:解:(1)由 ,得x2+8kx-8k=0, △=(8k)2+32k=32k(2k+1), ∵k<0. ∴ ,EF与抛物线有两个公共点, 当 时,EF与抛物线有一个公共点, 当 时,EF与抛物线没有公共点,
• 得 x2+8kx-8k=0,△=(8k)2+32k=32k(2k+1), ∵k<0. ∴k<-时,△>0,EF与抛物线有两个公共点. 当时,EF与抛物线有一个公共点. 当时,EF与抛物线没有公共点, ②EF与抛物线只有一个公共点时,, EF的表达式为, EF与x轴、y轴的交点为M(1,0),E(0,), ∵∠EMO=90°-∠OEM=∠EAA′, ∴RT△EMO∽RT△A′AD, , 即, ∴.
动手折一折
若用一张任意三角形形状的纸片,你能折 叠成面积减半的矩形吗?
☞透过折叠现象看本质:
A
E
F
折 叠 C
轴 对 称
B
D
EF是AD的中垂线 轴对称性质: 1.图形的全等性: 翻折 相等的边,相等的角 全等 2.点的对称性: 对称点连线被对称轴 (折痕)垂直平分.
沿矩形对角线折
如图,矩形纸片ABCD中,AB=6cm,AD=8cm,
(E)
E F (F)
使矩形两顶点落在一边外而折叠
折叠问题中,求角度 如图,a是长方形纸带,将纸带沿 EF折叠成 时,往往可通过动手 图b, 如果∠GEF=20 °,那么∠AEG= 折叠,或将图形还原。
A B 图a E D A FC B E
D'
A
E G 图c
D
? C F
20° F C' B G C 图b D
②当EF与抛物线只有一个公共点时,设A′(x, y),求 xy 的关系.
• 解:(1)由 ,得x2+8kx-8k=0, △=(8k)2+32k=32k(2k+1), ∵k<0. ∴ ,EF与抛物线有两个公共点, 当 时,EF与抛物线有一个公共点, 当 时,EF与抛物线没有公共点,
(2)EF与抛物线只有一个公共点时, ,EF的表达式为 , EF与x轴、y轴的交点为M(1,0),E(0, ), ∵∠EMO=90°-∠OEM=∠EAA′, ∴RT△EMO∽RT△A′AD(1分) ∴, ∴ (1分).
把矩形沿对角线BD折叠,点C落在C′处。重 叠部分△BED是什么三角形?说明你的理由.
C′ A
E
角平分线与平行线组合时 , 求重叠部分△ BED的面积
能得到等腰三角形 。
D
设未知数,找到相应的直 B 角三角形,用勾股定理建 立方程.
C
折叠矩形可得到菱 形 如图,矩形纸片ABCD中,AB=6厘米,BC=8厘米,现 将A、C重合,再将纸片折叠压平, ( 1)求折痕 ) △AEF 是何种形状的三角形? (3 EF 的长。 ( 2) 求AE的长。 (4 )四边形 AECF是哪种四边形? G A F D
(2)对于任一矩形,按照上述方法是否都能折出 这种三角形?请说明理由
我的收获
四次折叠 • 将矩形ABCD的四个角向内折起,恰好拼成 一个既无缝隙又无重叠的四边形EFGH,若 EH=3,EF=4,那么线段AD与AB的比等 于 。 A H D
M E N B 图 10 F C G
感悟与收获
(1)折叠过程实质上是一个轴对称变换,折痕就是 对称轴,变换前后两个图形全等。 (2)在矩形的折叠问题中,若有求边长问题,常设未 知数,找到相应的直角三角形,用勾股定理建立方程, 利用方程思想解决问题。
探究三Biblioteka 四边形,等量线段的和差 等。
如图,矩形纸片ABCD中, AB=6cm,AD=8cm, 点E、F是矩形ABCD的边AB 、AD上的两个点,将△AEF 沿EF折叠,使A点落在BC边上的A′点,过A′作 A′G∥AB交EF于H点,交AD于G点。
(2)请你自己提出一 (1)找出图中所有相等的 个问题,自己解决。 线段(不包括矩形的对边)