中职高二数学期末试卷
高二职高期末数学试卷
考试时间:120分钟满分:100分一、选择题(每题5分,共50分)1. 下列各数中,属于无理数的是()A. √4B. √9C. √16D. √252. 若函数f(x) = 2x + 1,则f(3)的值为()A. 7B. 8C. 9D. 103. 下列图形中,属于等边三角形的是()A. 图形1B. 图形2C. 图形3D. 图形44. 已知等差数列{an}的前三项分别为1,3,5,则该数列的公差为()A. 1B. 2C. 3D. 45. 若直线y = kx + b与圆x² + y² = 1相切,则k和b的关系为()A. k² + b² = 1B. k² - b² = 1C. k² + b² = 0D. k² - b² = 06. 下列各函数中,为奇函数的是()A. y = x²B. y = x³C. y = x⁴D. y = x⁵7. 若复数z满足|z - 2i| = 3,则复数z在复平面上的轨迹是()A. 一条射线B. 一个圆C. 一条直线D. 一条抛物线8. 下列各数中,属于正数的是()A. -3B. 0C. 1D. -19. 若a,b,c是等差数列,且a + b + c = 12,a² + b² + c² = 42,则ab + bc + ca的值为()A. 18B. 24C. 30D. 3610. 若sinα = 1/2,cosα = √3/2,则tanα的值为()A. 1B. √3C. -1D. -√3二、填空题(每题5分,共50分)1. 函数f(x) = x² - 4x + 3的图像与x轴的交点坐标为__________。
2. 若等比数列{an}的首项为a₁,公比为q,则a₃ = _________。
3. 圆的标准方程为(x - 2)² + (y + 3)² = 16,圆心坐标为__________。
中职数学 2023-2024学年河南省洛阳市中等职业学校高二(下)期末数学试卷(选考)
2023-2024学年河南省洛阳市中等职业学校高二(下)期末数学试卷(选考)一、选择题(每小题5分,共30分)二、填空题(每小题5分,共30分)A .(2,-2)B .(2,2)C .(2,0)D .(2,-4)1.(5分)已知a =(0,-2),b =(1,0)则a +2b =( )→→→→A .-4B .-3C .3D .42.(5分)等差数列{a n }的通项公式是a n =-3n +2,则公差d 是( )A .186B .192C .189D .1953.(5分)等比数列{a n }中,若a 2=6,a 3=12,则S 6等于( )A .x =B .x =-C .y =D .y =-4.(5分)抛物线y =2x 2的准线方程是( )18181818A .+=1B .+=1C .+=1D .+=15.(5分)对称中心在原点,焦点坐标为(-2,0),(2,0),椭圆上一点到两个焦点的距离的和等于6的椭圆的标准方程为( )x 29y 25x 25y 29x 236y 232x 232y 236A .y =±x B .y =±x C .y =±x D .y =±x 6.(5分)双曲线-=1的渐近线方程是( )x 29y 24233249947.(5分)已知向量a =(1,2),b =(3,k ),a ∥b ,则实数k = .→→→→三、计算题(每小题10分,共30分)四.证明题(10分)8.(5分)若a 是单位向量,则|a |= .→→9.(5分)双曲线-=1的离心率为 .x 216x 2910.(5分)抛物线x 2=8y 的焦点到准线的距离为 .11.(5分)已知a =(3,-4),则|a |= .→→12.(5分)抛物线16y +x 2=0的焦点坐标是 .13.(10分)求椭圆+=1的焦点、顶点坐标.x 28y 2514.(10分)已知a =(5,m ),b =(3,-1),且a -3b 与a +b 互相垂直,求m 的值.→→→→→→15.(10分)在等比数列{a n }中,若a 3-a 1=1,a 4-a 2=2,求首项a 1和公比q .16.(10分)如图,P -ABCD 的底面ABCD 是平行四边形,E 是PA 中点.求证:PC ∥平面BDE .。
职业高中高二下学期期末数学试题卷1(含答案)
职业高中下学期期末考试高二《数学》试题一。
选择题1. 5,4,3,2,1中任取一个数,得到奇数的概率为( ) A .21B . 51C . 52D . 532. 从4,3,2,1四个数字中任取3个数字,要组成没有重复数字,且不超过300的三位数共有个( ) A . 12B . 18C . 24D . 723. 已知1sin()63πα-=,且02πα<<,则cos α等于( )4. 已知3sin 5α=,且(,)2παπ∈,则2sin 2cos αα的值等于( ) A.32 B.32- C.34 D.34- 5. 对称中心在原点,焦点坐标为(-2,0),(2,0),长轴长为6的椭圆的标准方程为( )A. 15922=+y xB. 19522=+y xC. 1323622=+y xD. 1363222=+y x6. 已知椭圆方程是204522=+y x ,则它的离心率为 ( )A. 21 B.2 C.25 D.557. 有4名男生5名女生排成一排照相,其中女生必须排在两端的排法有( )种A 、99PB 、22P 77PC 、25C 77PD 、25P 77P8. 把4本不同的书分给两人,每人至少一本,不同分法有( )种A 、6B 、12C 、14D 、169. 椭圆的短轴长为8,焦距为6,弦AB 过1F ,则2ABF ∆的周长是( )A. 10B. 15C. 20D. 2510. 已知53sin =α,⎪⎭⎫⎝⎛∈ππα,2,则αα2cos 2sin 的值等于( ) A 、23 B 、-23 C 、43 D 、-43二。
填空题11. 椭圆13422=+y x 的长轴长为 ,短轴长为 ,焦距为 。
12. 双曲线的两个焦点坐标为)5,0(),5,0(21F F -,且2a =8,则双曲线的标准方程为 。
13.从1,2,3,4,5这五个数字中任取2个,至多有一个偶数的取法 有 种。
14. 20件产品,其中3件次品,从中任取3件,恰有一件次品的取法有 种。
中职数学高二期末试卷含答案
绝密★启用前中职高二第二学期期末数学试卷一、 选择题(每小题3分,共45分) 1. sin15°cos75°+cos15°sin105°的值是( )。
A .0 B. 12 C.√32D.12.计算2cos2π8−1的结果是( )。
A .√32B.√22C.-√22D.13.tan(π4−α)=3,则tan α=( )。
A.-2 B.-12C. 12D.24.∆ABC 的边a,b,c 满足a 2=b 2+c 2+bc ,则A=( )。
A.30° B.60° C.135° D.120°5.函数y =√2sin2xcos2x 是( )。
A.周期为π2的奇函数 B. 周期为π2的偶函数C.周期为π4的奇函数 D. 周期为π4的偶函数6.在∆ABC 中,若a=2,b=√2,c=√3+1 ,则∆ABC 是( )。
A.锐角三角形 B.钝角三角形 C.直角三角形 D.无法确定7.已知∆ABC 中,a=2,b=√2,A =π4,则∠B=( )。
A.π3B. π6C. π6或5π6D. π3或2π38.如果方程x 2+ky 2=2表示焦点在y 轴上的椭圆,那么实数k 的取值范围是( )。
A. (0,+∞)B. (0,2) C .(1,+∞) D. (0,1) 9.抛物线x =−y 24的焦点坐标是( )。
A. (0,-1)B. (-1,0)C. (0,−116) D. (−116,0) 10.中心在原点,一个焦点的坐标(0,√13),一条渐近线方程式3x-2y=0的双曲线方程是( )。
A.x 22-y 23=1 B.9x 2−4y 2=36C.9y 2−4x 2=36或4y 2−9x 2=36D. 4y 2−9x 2=36 11.在(2x −1)5的展开式中,含x 3项的系数是( )。
A.4C 52B.−4C 52C. 8C 52D. −8C 5212.十个人站成一排,其中甲、乙、丙三人恰好站在一起的概率为( )。
浙江省中职卓越联盟2023-2024学年高二上学期1月期末数学试卷(含答案)
浙江省中职卓越联盟2023学年第一学期2022级期末考试数学试卷本试卷共三大题.全卷共4页.满分100分,考试时间90分钟。
注意事项:1.所有试题均须在答题纸上作答,未在规定区域内答题,每错一个区域扣卷面总分1分.在试卷和草稿纸上作答无效。
2.答题前,考生务必将自己的姓名、准考证号用黑色字迹的签字笔或钢笔填写在答题纸和试卷上。
3.选择题每小题选出答案后,用2B 铅笔把答题纸上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
非选择题用黑色字迹的签字笔或钢笔将答案写在答题纸上。
4.在答题纸上作图,可先使用2B 铅笔,确定后必须使用黑色字迹的签字笔或钢笔描黑。
一、单项选择题(本大题共18小题,每小题2分,共36分)在每小题列出的四个备选答案中,只有一个是符合题目要求的错涂、多涂或未涂均无分。
1.下列说法:(1)零向量是没有方向的向量;(2)单位向量的方向是任意的; (3)零向量与任意一个向量共线;(4)方向相同的向量叫平行向量 其中,正确说法的个数是( )A .0B .1C .2D .3 2.设x ∈R ,则“2x >22x >”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 3.已知两点(3,5),(2,1)A B −−,则与向量AB 同向的单位向量为( ) A .6161⎛⎝B .6161⎛ ⎝C .6161D .61614.某班有男生23人,女生15人,从中选一名同学为数学课代表,则不同的选法的种数为( ) A .345 B .23 C .15 D .38 5.若()2*P 56n n =∈N ,则5C n =( )A .21B .50C .56D .126 6.cos104cos16sin104sin16︒︒−︒︒的值为( ) A .12 B .12− C .3 D .37.抛物线220y x =的焦点到其准线的距离为( ) A .20 B .10 C .5 D .528.如图所示.在ABC △中、6BD DC =,则AD =( )A .1677AB AC + B .6177AB AC + C .1566AB AC + D .5166AB AC + 9.将(1)(2)(4)(5)x x x x −+−−展开,则3x 的系数等于( ) A .10− B .8− C .8 D .1010.已知中心在坐标原点,离心率为53的双曲线的焦点在x 轴上,则它的渐近线方程为( ) A .43y x =± B .45y x = C .43y x =− D .34y x =±1l .已知tan 2θ=,则cos 2θ=( )A .35− B .817 C .817− D .817−或81712.在ABC △中,已知3223a b c bc =+,则A =( ) A .30︒ B .60︒ C .120︒ D .150︒13.美丽的新疆让不少旅游爱好者神往,某人计划去新疆旅游、在火焰山、喀纳斯村、卧龙满、观鱼台、阿克库勒湖、那仁草原、天山天池、赛里木湖、那拉提、葡萄沟这10个景点中选择4个作为目的地.已知天山天池必选,则不同的选法种数为( )A .210B .120C .84D .36 14.函数π3sin 6y x ⎛⎫=+⎪⎝⎭的单调递增区间为( ) A .ππ2π,2π,22k k k ⎛⎫−+∈ ⎪⎝⎭Z B .(2π,2ππ),k k k +∈Z C .2ππ2π,2π,33k k k ⎛⎫−+∈ ⎪⎝⎭Z D .π5π2π,2π,66k k k ⎛⎫−+∈ ⎪⎝⎭Z15.若地物线24y x =上的点M 到焦,点F 的距离为10,则M 到y 轴的距离为( ) A .10 B .9 C .8 D .716.二项式621x x ⎛⎫− ⎪⎝⎭的展开式中常数项为( )A .15−B .6−C .6D .1517.双曲线2212y x −=的离心率为( ) A 6 B .32 C .62D 318、已知圆22(2)9x y −+=与抛物线22(0)x py p =>的准线相切,则p =( ) A .1 B .2 C .6 D .8二、填空题(本大题共6小题,每小题3分,共18分)19.已知向量(4,3),(,1)a b x ==,且a b ∥,则实数x 的值为__________.20.现有甲、乙、丙、丁在内的6名同学在比赛后站成一排合影留念,若甲、乙二人必须相邻,且丙、丁二人不能相邻,则符合要求的排列方法共有__________种.(用数字作答)21.设点12,F F 为椭圆22159x y +=的两个焦点,P 为椭圆上一点,则12PF F △的周长为__________. 22.若4sin 5α=−,且α是第三象限角,则2sin 2cos αα−=_________. 23.已知双曲线过点(2,3),渐近线方程为3y =±,则该双曲线的标准方程为__________.24.已知函数21()sin cos cos 2f x x x x =−+,则()f x 的最小值为__________. 三、解答题(本大题共7小题,共46分)解答时应写出必要的文字说明、证明过程或演算步骤.25.(本题6分)已知nx x ⎛ ⎝二项展开式中,二项式系数之和是64,求:(1)n 的值;(3分) (2)含3x 的项.(3分)26.(本题6分)已知α为第一象限角,且π3sin 25α⎛⎫−= ⎪⎝⎭,求: (1)sin 2cos 2αα−的值;(3分) (2)πtan 4α⎛⎫−⎪⎝⎭的值.(3分) 27(本题6分)设a 为实数,已知双曲线223:1x y C a −=与椭圆22215x y a+=有相同的焦点12,F F .(1)求a 的值;(2分)(2)若点P 在双曲线C 上,且12PF PF ⊥,求12F PF △的面积.(4分) 28(本题6分)已知函数2()2sin cos 12sin f x x x x =+−,求: (1)()f x 的最小正周期;(3分)(2)()f x 的最小值以及取得最小值时x 的集合(3分)29.(本题7分)已知抛物线2:2(0)C y px p =−>过点(1,2)A −. (1)求抛物线的方程,并求其准线方程;(3分)(2)过该抛物线的焦点,作倾斜角为135︒的直线,交抛物线于A ,B 两点,求弦AB 的长度.(4分)30.(本题7分)设椭圆2222:1(0)x y M a b a b+=>>的离心率与双曲线22:1E x y −=的离心率互为倒数,且椭圆的右顶点是抛物线2:8C y x =的焦点. (1)求椭圆M 的方程;(3分)(2)已知点(1,0)N ,若点P 为椭圆M 上任意一点,求||PN 的最值.(4分)31.(本题8分)如图所示,已知村庄B 在村庄A 的东北方向,且村庄A ,B 之间的距离是4(31)千米,村庄C 在村庄A 的西偏北15︒方向,且村庄A ,C 之间的距离是8千米.现要在村庄B 的北偏东30︒方向建立一个农贸市场D ,使得农贸市场D 到村庄C 的距离是到村庄B 3D 到村庄B ,C 的距离之和.浙江省中职卓越联盟2023学年第一学期2022级期末考试数学答案一、单项选择题(本大题共18小题,每小题2分,共36分)1.B 【解析】由零向量的定义及性质知,其方向任意,且与任意向量共线,方向相同或相反的两个非零向量称为平行向量,故(1)(2)(4)错误,(3)正确.故选B . 2.A 【解析】幂函数2y x =,当2x =±222,22,x x x =∴>⇒>∴“2x >22x >”的充分不必要条件.故选A .3.A 【解析】因为点(3,5),(2,1)A B −−,所以(5,6)AB =−,所以与AB 同向的单位向量为||6161AB AB ⎛= ⎝.故选A . 4.D 【解析】由分类加法计数原理可知,共有231538+=种选法.故选D .5.C 【解析】2P (1)56n n n =−=,即2560n n −−=,解得8n =或7n =−(舍),则558C C 56n ==.故选C .6.B 【解析】()1cos104cos16sin104sin16cos 10416cos1202︒︒−︒︒=︒+︒=︒=−.故选B . 7.B 【解析】因为220p =,所以10p =,抛物线220y x =的焦点到其准线的距离为10.故选B . 8.A 【解析】661()777AD AB BD AB AC AB AC AB =+=+−=+.故选A . 9.B 【解析】(1)(2)(4)(5)x x x x −+−−展开式中含3x 的系数为12458−+−−=−.故选B .10.A 【解析】由已知可设双曲线的标准方程为22221(0,0)x y a b a b −=>>.由已知可得53c e a ==,所以53c a =,则2222169b c a a =−=,所以43b a =,所以双曲线的渐近线方程为43b y x x a =±=±.故选A . 11.A 【解析】因为tan 2θ=,所以22222222cos sin 1tan 3cos 2cos sin cos sin 1tan 5θθθθθθθθθ−−=−===−++.故选A . 12.D 【解析】由2223a b c bc =++,变形为2223b c a bc +−=,22232b c a bc +−∴=,3cos A ∴=而A 为三角形内角,150A ∴=︒.故选D .13.C 【解析】因为天山天池必选,所以从另外9个景点中选3个的选法有39C 84=种.故选C .14.C 【解析】由πππ2π2π,262k x k k −≤+≤+∈Z ,得2ππ2π,2π,33x k k k ⎛⎫∈−+∈ ⎪⎝⎭Z ,即函数的单调递增区间为2ππ2π,2π,33k k k ⎛⎫−+∈ ⎪⎝⎭Z .故选C . 15.B 【解析】由已知得抛物线的焦点(1,0)F ,准线方程1x =−,设点()00,M x y .由题意可知,||10MF =,00||1102pMF x x ∴=+=+=,09x ∴=,即M 到y 轴的距离为9.故选B . 16.D 【解析】因为二项式621x x ⎛⎫− ⎪⎝⎭的展开式通项为66316621C (1)C rr r r r rr T x x x −−+⎛⎫=−=− ⎪⎝⎭,令630r −=,则2r =,所以二项式621x x ⎛⎫− ⎪⎝⎭的展开式中常数项为226(1)C 15−=.故选D .17.D 【解析】由双曲线方程2212y x −=得1,2a b ==21123c b e a a ⎛⎫==+=+= ⎪⎝⎭D .18.C 【解析】圆22(2)9x y −+=与抛物线22(0)x py p =>的准线相切,32p∴−=,解得6p =±.又0,6p p >∴=.故选C .二、填空题(本大题共6小题,每小题3分,共18分)19.43【解析】因为向量(4,3),(,1)a b x ==,且a b ∥,所以4130x ⨯−=,即43x =.20.144【解析】根据题意,分2步进行分析:①将甲、乙看成一个整体,与甲、乙、丙、丁之外的两人全排列,有2323P P 12=种情况; ②排好后,有4个空位,在其中任选2个,安排丙、丁,有24P 12=种情况. 则有1212144⨯=种排法.21.10【解析】根据题意,12PF F △的周长为226410a c +=+=. 22.35(或填0.6)【解析】因为4sin 5α=−,且a 是第三象限角,所以23cos 1sin 5αα=−−=−,所以2224333sin 2cos 2sin cos cos 25555ααααα⎛⎫⎛⎫⎛⎫−=−=⨯−⨯−−−= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.23.2213y x −=【解析】渐近线方程为3,y x =±∴设双曲线的方程为22(0)3y x λλ−=≠,代入点(2,3),1λ∴=,∴双曲线的标准方程为2213y x −=. 24.22−因为2111cos 212π()sin cos cos sin 22222224x f x x x x x x +⎛⎫=−+=−+=− ⎪⎝⎭,所以当πsin 214x ⎛⎫−=− ⎪⎝⎭时,函数()f x 有最小值,最小值为22−. 三、解答题(本大题共7小题,共46分)25.解:1)由二项式定理可知,在nx x ⎛⎝展开式中,264n =, 2分所以6n =. 1分(2)由二项式定理可知,在6x x ⎛− ⎝展开式中,第1r +项为3662166C C (2)rr r r r r r T x xx −−+⎛=⋅⋅=⋅−⋅ ⎝, 令3632r −=,则2r =, 1分 所以6x x ⎛ ⎝展开式中含3x 的项为22336C (2)60x x ⋅−=. 2分26.解:(1)α为第一象限角,且3cos 5α=,24sin 1cos 5αα∴=−=, 1分 ()231sin 2cos 22sin cos 12sin 25ααααα∴−=−−=. 2分 (2)sin 4tan cos 3ααα==, 1分πtan tan πtan 114tan π41tan 71tan tan 4ααααα−−⎛⎫∴−=== ⎪+⎝⎭+. 2分 27.解:(1)根据题意,显然0a >,且双曲线C 的焦点在x 轴上, 故235a a +=−,即220a a +−=,即(2)(1)0a a +−=,解得2a =−或1a =,又因为0a >,所以1a =. 2分(2)由(1)可得双曲线C 的方程为2213y x −=, 如图所示,设其左、右焦点分别为12,F F ,故可得12(2,0),(2,0)F F −.根据双曲线的对称性,不妨设点P 在双曲线C 的左支上,设1PF x =.由双曲线定义可得212PF PF −=,即22PF x =+. 1分 又因为12F PF △为直角三角形,所以2221212PF PF F F +=,即22(2)16x x ++=,即22260,26x x x x +−=+=, 2分 故12F PF △的面积()211(2)2322S x x x x =+=+=. 1分 28.解:(1)2π()2sin cos 12sin sin 2cos 2224f x x x x x x x ⎛⎫=+−=+=+ ⎪⎝⎭, 1分∴函数()f x 的最小正周期2ππ2T ==. 2分 (2)π()22,24f x x A ⎛⎫=+= ⎪⎝⎭min ()2f x ∴=−, 2分此时ππ3π22π,π428x k x k +=−∴=−, ∴()f x 取得最小值时x 的集合为3ππ8x x k k ⎧⎫=−∈⎨⎬⎩⎭Z ,. 1分 29.解:(1)22(0)y px p =−>过点(1,2)A −,24p ∴=,即2p =, 1分 ∴抛物线的方程为24y x =−, 1分准线方程为1x =. 1分(2)由(1)知,抛物线的焦点为(1,0)F −,则直线:(1)AB y x =−+,设点()()1122,,,A x y B x y , 1分 由2(1),4y x y x=−+⎧⎨=−⎩得2610x x ++=, 由韦达定理可知,12126,1x x x x +=−=, 1分212||1AB k x ∴=+−()2121224x x x x =+−2364=−242=8=. 2分30.解:(1)由题意可知,双曲线22:1E x y −=2, 抛物线2:8C y x =的焦点为(2,0), 则椭圆M 的离心率222c e a ===, 1分 由2222,22a c e a a b c =⎧⎪⎪==⎨⎪=+⎪⎩,得2,2,2a c b === 故椭圆M 的方程为22142x y +=. 2分 (2)设点P 的坐标为()00,x y ,则()2200012242x y x +=−≤≤, ()()()222220000011||1122122PN x y x x x =−+=−+−=−+ 2分 因为022x −≤≤,所以当02x =时,||PN 取得最小值,即min ||1PN =;当02x =−时,||PN 取得最大值, 即max ||3PN =. 2分31.解:由题意可得434,8,120,3AB AC BAC CD BD =−=∠=︒=. 在ABC △中,由余弦定理可得2222cos BC AB AC AB AC BAC =+−⋅∠, 则222131)]8284(31)962BC ⎛⎫=−+−⨯⨯⨯−= ⎪⎝⎭, 2分 故46BC =即村庄B ,C 之间的距离为6 1分 在ABC △中,由正弦定理可得sin sin BC ACBAC ABC=∠∠, 则38sin 22sin 246AC BAC ABC BC ⨯∠∠===,从而45ABC ∠=︒, 故村庄C 在村庄B 的正西方向. 2分 因为农贸市场D 在村庄B 的北偏东30︒的方向,所以120CBD ∠=︒.在BCD △中,由余弦定理可得2222cos D BC BD BC BD CBD =+−⋅∠,因为3CD BD =,所以2223(46)46BD BD BD =++,解得46BD =122CD = 2分 故46122BD CD +=即农贸市场D 到村庄B ,C 的距离之和为(46122)+千米. 1分。
职教中心高二数学试卷期末
考试时间:120分钟满分:100分一、选择题(本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
)1. 下列函数中,在定义域内是增函数的是:A. \( f(x) = -x^2 + 2x \)B. \( f(x) = x^3 - 3x \)C. \( f(x) = \sqrt{x} \)D. \( f(x) = e^{-x} \)2. 若 \( a^2 + b^2 = 1 \),则 \( a + b \) 的取值范围是:A. \( (-\sqrt{2}, \sqrt{2}) \)B. \( (-1, 1) \)C. \( [-\sqrt{2}, \sqrt{2}] \)D. \( [1, \sqrt{2}] \)3. 已知 \( \sin A = \frac{3}{5} \),\( \cos B = \frac{4}{5} \),且 \( A \) 和 \( B \) 均为锐角,则 \( \sin(A + B) \) 的值为:A. \( \frac{7}{25} \)B. \( \frac{24}{25} \)C. \( \frac{17}{25} \)D. \( \frac{13}{25} \)4. 下列命题中,正确的是:A. 若 \( f(x) \) 是奇函数,则 \( f(x) \) 的图像关于原点对称B. 若 \( f(x) \) 是偶函数,则 \( f(x) \) 的图像关于 \( y \) 轴对称C. 若 \( f(x) \) 是周期函数,则 \( f(x) \) 的图像是一条封闭曲线D. 若 \( f(x) \) 是单调函数,则 \( f(x) \) 的图像是一条直线5. 若 \( \frac{1}{a} + \frac{1}{b} = 1 \),则 \( ab \) 的最大值为:A. 2B. 1C. \( \frac{1}{2} \)D. \( \frac{1}{4} \)6. 下列数列中,不是等比数列的是:A. \( 2, 4, 8, 16, \ldots \)B. \( 1, 3, 9, 27, \ldots \)C. \( 1, -1, 1, -1, \ldots \)D. \( 1, 2, 4, 8, \ldots \)7. 若 \( \triangle ABC \) 中,\( a = 3 \),\( b = 4 \),\( c = 5 \),则\( \sin A \) 的值为:A. \( \frac{3}{5} \)B. \( \frac{4}{5} \)C. \( \frac{5}{3} \)D. \( \frac{3}{4} \)8. 下列方程中,解集为空集的是:A. \( x^2 - 2x + 1 = 0 \)B. \( x^2 - 4 = 0 \)C. \( x^2 + 1 = 0 \)D. \( x^2 - 3x + 2 = 0 \)9. 若 \( \log_2 x + \log_4 x = 3 \),则 \( x \) 的值为:A. 8B. 16C. 32D. 6410. 下列函数中,是双曲函数的是:A. \( y = \sinh x \)B. \( y = \cosh x \)C. \( y = \tanh x \)D. \( y = \coth x \)二、填空题(本大题共5小题,每小题5分,共25分。
中职高二数学期末试卷
中职高二数学期末试卷职中高二级下学期数学期末模拟试卷一、选择题(将唯一正确答案代号填入表格对应题号内,每题3分,共计36分)1.点A (-3,-4)到x 轴的距离是:A.3B.4C.5D.7 2.点A (0,4),B (-2,0)的中点是:A.(-2,4)B.(-1,2)C.(-2,2)D.(0,2)3.已知直线l 的斜率是3,则直线l 的倾斜角是:A.060B.045C.030D.02404.已知直线l 的倾斜角β=090,则直线l 的斜率是:A.1B.-1C.不能确定D.不存在 5.直线1=x 与y 轴:A.平行B.相交C.重合D.不能确定 6.圆16)7()2(22=-+-y x 的圆心坐标是:A.(2,7)B.(-2,-7)C.(-2,7)D.(2,-7) 7.圆25)6()3(22=-+-y x 的半径长为:A.10B.25C.5D.58.一个棱锥的底面积是402cm ,高是12cm ,则它的体积是 3cm π。
A.130B.140C.150D.1609.一个球的半径增大一倍,那么它的体积增大了几倍。
A.1B.2C.7D.810.一个圆锥的母线是10cm ,侧面展开图是半圆,则圆锥的底面半径是:A.10 cmB.8cmC.6 cmD.5cm11.直线06=+-y x 与直线0=+y x 的交点坐标为A .(-3,3)B .(3,-3)C .(4,2)D .(3,3) 12.某中职学校二年级有12名女排运动员,要从中选出3人调查学习负担情况,调查应采用的抽样方法是:A.随机抽样法B.分层抽样法C.系统抽样法D.无法确定 二、填空题(将最合适的答案填写在对应的位置,每题3分,共15分)。
1.过点A (1,-1)且与x 轴平行的直线方程为 2.一个正方体的体积是83cm ,则它的表面积为 2cm 3.抛一枚硬币,出现一枚正面在上的概率是4.已知一直线的倾斜角是 45,则该直线的斜率是 5.过直线外一点作直线的垂线有 条三、判断(正确的记“√”,错误的记“╳”,每题2分,共10分)。
中职数学练习题 2023-2024学年浙江省杭州市汽车高级技工学校高二(上)期末数学试卷(A卷)
2023-2024学年浙江省杭州市汽车高级技工学校高二(上)期末数学试卷(A卷)一、单项选择题:本题共10小题,每小题5分,共计50分。
A .1B .-1C .±1D .01.(5分)已知集合A ={0,a ,a 2},且1∈A ,则a =( )A .{1,3,5}B .{1,2,3,4,5}C .{7,9}D .{2,4}2.(5分)设U =Z ,A ={1,3,5,7,9},B ={1,2,3,4,5},则图中阴影部分表示的集合是( )A .7B .8C .15D .163.(5分)已知集合A ={x |-3≤x -1<1},B ={-3,-2,-1,0,1,2},若C ⊆(A ∩B ),则满足条件的集合C 的个数是( )A .{a |-1≤a ≤1}B .{a |-1<a <1}C .{a |-1<a <1且a ≠0}D .{a |-1≤a ≤1且a ≠0}4.(5分)已知集合P ={x |-1≤x ≤1},M ={-a ,a }.若P ∪M =P ,则实数a 的取值范围是( )A .{x |x <1}B .{x |-2<x <1}C .{x |-3<x <-1}D .{x |x >3}5.(5分)设集合A ={x |x 2-5x +6>0},B ={x |x -1<0},则A ∩B =( )A .{m |3<m <4}B .{m |-4<m <3}C .{m |m <3或m >4}D .{m |m <-4或m >-3}6.(5分)已知x >0,y >0,且32x +6y =2。
若4x +y >7m -m 2恒成立,则m 的取值范围为( )A .72B .4C .92D .57.(5分)已知a >0,b >0,a +b =2,则y =1a +4b 的最小值是( )二、填空题:本题共5小题,每小题4分,共计20分。
职业高中高二下学期期末数学试题卷3(含答案)
职业高中下学期期末考试高二《数学》试题一、选择题(每小题3分,共30分)1、已知,235sin )(παπα<<=13-,则sin()4πα-等于 ( )A.726 B. 7226 C. 7226- D. 726-2、若,则( )A.B.1C.-1D.23、函数函数的最大值是 ( )A. -2B.C.2D.14、到点与点距离之和为10的点的轨迹方程为( )A. B.C.D.5、顶点为原点,准线为的抛物线的标准方程为 ( )A. B. C. D.6、双曲线的渐近线方程为 ( ) A.B.C.D.7、将5个小球放入4个盒子里,不同的方法种数为 ( )A. B. C. D.8、1名教师与4名学生随机的站成一排,教师恰好站在中间位置的概率为( )A. B. C. D.9、事件A 在一次试验中发生的概率为,求在3次独立重复试验中,事件A 恰好发生2次的概率为 ( )A. B. C. D.10、在,A , ( )A.B.C.D.专业 班级 姓名 学籍号 考场 座号二、填空题(每题3分,共24分)11、sin19512、将函数的图像向平移个单位可以得到函数的图像。
13、在14、椭圆的焦点坐标为,长轴长为,短轴长为15、抛物线的的准线方程为16、双曲线的焦距为17、用0、1、2、3、4、这5个数字,可以组成没有重复数字的三位数的个数为18、在的展开式中,第4项的二项式系数为,第4项的系数为三、解答题(共46分)19、当x分别取何值时,函数取得最大值及最小值,最大值与最小值各是多少?(6分)20、已知在中.(8分)21、已知双曲线经过点P(3,6),且双曲线的一条渐近线方程为,求双曲线的标准方程。
(8分)22、求顶点在原点,对称抽为坐标轴,且经过点(-6,-4)的抛物线的标准方程。
(6分)23、停车场有12个车位,有8辆车停放,(6分)(1)共有多少种不同的停车方法?(2)若要求4个空车位要连在一起,那么有多少种不同的停车方法?24、从含有2件次品的5件产品中,(6分)(1)任取2件,求恰有1件次品的概率P1;(2)每次取1件,取后不放回,连续取2次,求恰好有1件次品的概率P2;(3)每次取1件,取后放回,连续取2次,求恰好有1件次品的概率P3. 25、指出正弦函数的图像经过如何变化可以得到正弦型函数的图像。
职教高二期末数学试卷答案
一、选择题(每题5分,共20分)1. 已知函数f(x) = x^2 - 4x + 4,则f(x)的图像是:A. 顶点在x轴上的抛物线B. 顶点在y轴上的抛物线C. 顶点在x=2处的抛物线D. 顶点在y=4处的抛物线答案:C2. 若等差数列{an}的前n项和为Sn,且a1=3,d=2,则S10等于:A. 120B. 130C. 140D. 150答案:A3. 下列函数中,y = log2(x - 1)的图像与y = 2^x的图像关于直线y = x对称的是:A. y = log2(2x - 1)B. y = 2^(x - 1)C. y = 2x - 1D. y = log2(1/x)答案:D4. 在直角坐标系中,点P(2, -3)关于直线y = x的对称点是:A. (2, 3)B. (-3, 2)C. (-2, -3)D. (3, -2)答案:D5. 下列方程组中,无解的是:A. x + y = 2B. 2x - y = 1C. x + 2y = 5D. x - 2y = 5答案:D二、填空题(每题5分,共20分)6. 函数f(x) = (x - 1)^2的对称轴是______。
答案:x = 17. 等差数列{an}中,a1 = 1,d = 3,则第10项an = ______。
答案:288. 若sinθ = 1/2,则cosθ的值为______。
答案:√3/29. 在△ABC中,若a = 5,b = 7,c = 8,则△ABC的面积S = ______。
答案:14√3/210. 下列函数中,y = √(x + 1)的定义域是______。
答案:x ≥ -1三、解答题(每题20分,共80分)11. 解方程:x^2 - 5x + 6 = 0。
解答:首先,我们将方程因式分解:x^2 - 5x + 6 = (x - 2)(x - 3) = 0由此得到两个解:x - 2 = 0 或 x - 3 = 0解得:x1 = 2,x2 = 312. 已知数列{an}是等比数列,且a1 = 2,a4 = 32,求该数列的通项公式及前5项和。
中专高二期末数学试卷
一、选择题(每题4分,共40分)1. 已知函数f(x) = 2x - 3,则f(-1)的值为:A. -5B. -1C. 1D. 52. 下列各数中,有理数是:A. √2B. πC. √-1D. 3.143. 下列命题中,正确的是:A. 对于任意实数a,a² ≥ 0B. 两个有理数的和一定是有理数C. 两个无理数的和一定是无理数D. 两个无理数的乘积一定是有理数4. 在△ABC中,∠A = 60°,∠B = 45°,则∠C的度数是:A. 75°B. 90°C. 105°D. 120°5. 已知数列{an}的通项公式为an = 3n - 2,则第10项a10的值为:A. 27B. 28C. 29D. 306. 下列各式中,正确的是:A. a² = |a|B. (a + b)² = a² + b²C. (a - b)² = a² - b²D. (a + b)(a - b) = a² - b²7. 已知函数f(x) = x² - 4x + 3,则f(x)的对称轴是:A. x = 1B. x = 2C. x = 3D. x = 48. 下列函数中,是反比例函数的是:A. y = x + 2B. y = 2xC. y = 2/xD. y = x²9. 已知等差数列{an}的首项a1 = 3,公差d = 2,则第5项a5的值为:A. 9B. 11C. 13D. 1510. 在直角坐标系中,点P(2, 3)关于x轴的对称点是:A. (2, -3)B. (-2, 3)C. (2, -3)D. (-2, -3)二、填空题(每题5分,共50分)11. 若a + b = 5,ab = 6,则a² + b² = _______。
高二中职期末考试数学试题
松滋市言程中学2016--2017学年度第二学期期末考试高二中职数学试卷本试卷共3大题, 23小题, 考试时长120分钟, 满分150分。
1、一、选择题(本大题共12小题, 每小题5分共60分)2、 在每小题给出的4个备选项中, 只有一项是符合题目要求的, 将其选出来, 不选错选多选均不得分。
3、数列22221111,31415161----,,,的一个通项公式为( ) A ()2111n a n =+- B 1(2)n a n n =+ C 21(2)1n a n =+- D 211n a n =- 4、等差数列753222----,,,,的第1n +项为( ) A ()172n - B ()142n - C 42n - D 72n - 在等差数列中, 若( )A 12B 28C 24D 30等比数列中, 若( )A 2B 4C 8D 165、化简AB AC BD CD -+-=( )A 2ADB 2CBC 0D 06、下列说法中不正确的是( )A 零向量和任何向量平行B 平面上任意三点,,,A BC 一定有AB BC AC +=C 若, 则7、D 若, 当时若, 则( )A 00B 090C 0120D 0180设且, 则( )A 12B 12-C 12±D 8直线过两点, 则该直线的倾斜角是( )A 060B 090C 00D 0180 直线与直线互相垂直, 则等于( )A 1B 2-C 23-D 13-8、以点()()1,3,5,1A B -为端点的线段的垂直平分线的方程为( ) A 380x y -+= B 260x y --=C 340x y ++=D 1220x y ++=半径为3, 且与轴相切于原点的圆的方程为( )A ()2239x y -+=B ()2239x y ++=C ()2239x y ++=D ()()22223939x y x y -+=++=或二、填空题(本大题共6小题, 每小题5分共30分) 将答案填在相应题号的答题卡上。
中职数学 2023-2024学年江苏省徐州市职业学校职教高考班高二(下)期末数学试卷
2023-2024学年江苏省徐州市职业学校职教高考班高二(下)期末数学试卷一、单项选择题(本大题共10小题,每小题4分,共40分)A .(1)B .(2)C .(2)(3)D .(1)(3)1.(4分)下列随机变量是离散型随机变量的是( )(1)某人的手机在一天内被拨打的次数ξ;(2)某水文站观察到一天中的水位高度ξ(单位:cm );(3)某首歌曲被点播的次数ξ.A .B .1C .0D .2.(4分)已知某人连续5次投掷飞镖的环数分别是8,9,10,10,8,则该组数据的方差为( )4512A .-2B .4C .0D .13.(4分)已知集合M ={1,3},N ={a +4,3},若M ∪N ={1,2,3},则a 的值是( )A .A +B B .A •BC .A •BD .A •B4.(4分)逻辑表达式A +B 等于( )A .最大值为10B .最小值为10C .最大值为11D .最小值为115.(4分)某项工程的流程图如图所示(单位:天),若仅有一条关键路径为:A →E→F .则整数x 取值的情况为( )A .B .2C .-1D .6.(4分)已知数组a =(2,-3,2),b =(3,1,log 2x ),若a •b =1,则x 的值为( )→→→→M 212二、填空题(本大题共5小题,每小题4分,共20分)A .(-3,1)B .[-3,1]C .(-∞,-3]∪[l ,+∞)D .(-∞,-3)∪(1,+∞)7.(4分)函数y =的定义域为( )M 3-2x -x 2A .3B .5C .7D .98.(4分)已知函数f (x )=,则f [f (-1)]=( ){-1,x >0-2x ,x ≤02xx 2A .-1B .-C .D .19.(4分)已知f (x )是定义在R 上的偶函数,对任意x ∈R ,都有f (x +3)=f (x ),当0<x ≤时,f (x )=,则f (-等于( )32√x M 2M 2A .1B .2C .4D .810.(4分)已知函数f (x )=a x +2-2(a >0且a ≠1)的图象恒过定点A ,若点A 在直线mx +ny +4=0上,其中m ,n 均大于+的最小值为( )1m 2n11.(4分)设集合A ={0,-a },B ={1,a -2,2a -2},若A ⊆B ,则a = .12.(4分)如图是一个程序框图,若输入m 的值是21,则输出的m 值是 .三、解答题(本大题共8小题,共90分)13.(4分)平移坐标轴,将坐标原点移到(m ,n ),若曲线y =x 2+1的顶点在新坐标系中的坐标为(2,-2),则m -n =14.(4分)已知随机变量X 服从正态分布N (2,σ2),且P (2<X ≤2.5)=0.36,则P (X >2.5)= .15.(4分)若直线y =x +b 与曲线,θ∈(-π,0)恰好有一个公共点,则实数b 的取值范围是 .{x =cosθy =sinθ16.(8分)已知函数f (x )=lo (-ax +)的定义域是R .(1)求实数a 的取值范围;(2)解关于x 的不等式>.g a x 2a 4a -4x -14x 21a 217.(10分)已知实数a 满足不等式|2a -3|<1.(1)求实数a 的取值范围;(2)解关于x 的不等式lo (x +4)≤lo (-2x ).g a g a x 218.(12分)已知函数f (x )=(a +2)x 2+(b -1)x +c 是定义在[a -1,b +3]上的偶函数,且f (1)=3.(1)求函数f (x )的解析式;(2)若不等式f (x )≥2x +m 恒成立,求实数m 的取值范围.19.(12分)已知函数f (x )是定义在(-∞,0)∪(0,+∞)上的奇函数,点(2,6)在函数f (x )的图象上,当x <0时(x )=x 2+bx .(1)求实数b 的值;(2)求函数f (x )的解析式;(3)若f (a )=6,求实数a 的值.20.(12分)习总书记指出:“绿水青山就是金山银山”.某市一乡镇响应号召,因地制宜地将该镇打造成“生态水果特色小调研过程中发现:某珍稀水果树的单株产量W (单位:kg )与肥料费用10x (单位:元)满足如下关系:W (x )=,其他成本投入(如培育管理等人工费)为20x (单位:元).已知这种水果的市场售价为10元/kg ,且供不应求.记该单株水果树获得的利润为f (x )(单位:元).(1)求f (x )的函数关系式;(2)当投入的肥料费用为多少元时,该单株水果树获得的利润最大?最大利润是多少元?{5(+2),0≤x ≤248-,2<x ≤5x 248x +121.(12分)某职业学校毕业生小王参加某公司招聘考试,共需回答4个问题.若小王答对每个问题的概率均为,且每个答正确与否互不影响.(1)求小王答对问题个数ξ的数学期望E (ξ)和方差D (ξ);(2)若每答对一题得10分,答错或不答得0分,求小王得分η的概率分布;(3)在(2)的条件下,若达到24分被录用,求小王被录用的概率.2322.(10分)医院用甲、乙两种原料为手术后的病人配营养餐.甲种原料每10g 含5单位蛋白质和10单位铁质,售价3元;乙料每10g 含7单位蛋白质和4单位铁质,售价2元.若病人每餐至少需要35单位蛋白质和40单位铁质.试问:应如何使用甲、乙料,才能既满足营养,又使费用最省?23.(14分)设f (x )是定义在R 上的奇函数,且对任意实数x ,恒有f (x +2)=-f (x ),当x ∈[0,2]时,f (x )=2x -x 2(1)求证:函数f (x )恒有f (x +4)=f (x )成立;(2)求当x ∈[2,4]时,f (x )的解析式;(3)计算f (0)+f (1)+f (2)+…+f (2024)的值.。
2024年浙江省中职数学高二期末测试卷(模拟卷)测试
浙江省中职数学高二期末测试卷(模拟测试)本试卷共三大题.全卷共4页.满分150分,考试时间120分钟.一、单项选择题(本大题共20小题,1—10小题,每小题2分,11—20小题,每小题3分,共50分)在每小题列出的四个备选答案中,只有一个是符合题目要求的.错涂、多涂或未涂均无分.1. 已知集合{1,0,1}A =-,{|3,N}B x x x =<∈,则A B = ( )A. {1,0,1,2}-B.{1,1,2}- C. {0,1,2} D. {0,1} 2. 设命题甲:240x -=,命题乙:20x +=,则命题甲是命题乙的( )A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件3. a b >,则下列不等式成立的是( ) A. 11a b< B. ||||a b > C. c a c b -<- D. 22ac bc >4. 不等式20m m +>的解集是( )A. (,0)-∞B. ()(),10,-∞-⋃+∞C. (,1)-∞D.(0,1)- 5. 函数1y x =-+,[2,0)x ∈-的值域是( )A. (1,3]B.[3,1] C. (3,1) D. (1,3) 6. 函数22y x x =+(22x -≤≤)的值域是( )A. (,8]-∞B.[]1,8- C. [0,8] D. (,1]-∞- 7. 如果[]22log log (2)1x =,那么12x =( )A. 2B. 4C.D. 1 8. 在等差数列{}n a 中,24a =,48a =,则该数列前10项之和等于( )A. 120B. 121C. 101D. 1109. 已知角α终边上一点(0,)M a ,0a <,则sin α=( )A. 0B. 1C. 1-D. 不确定 10. 求值:()cos 120︒-=( ) A. 12- B. 12 C. 2 D. 2 11. 若cos 1x a =-,则a 取值范围为( )A. []0,2B.[1,3] C. [1,2] D. [0,3] 12. 在x 轴上的截距为5-,倾斜角为3π4的直线方程为( ) A. 50x y --= B.50x y -+= C. 50x y +-= D.50x y ++= 13. 已知圆的方程式2225x y +=,则过点(3,4)P 的圆的切线方程为( )A. 34250x y ++=B.34250x y +-= C. 43250x y ++= D.43250x y +-= 14. 已知椭圆2218x y +=的左、右焦点分别是1F ,2F ,点P 在椭圆上,则12PF PF ⋅的最大值是( )A. 8B. C. 1015. 根据曲线方程22cos 1x y β+=,3π,π2β⎛⎫∈ ⎪⎝⎭,可确定该曲线是( ) A. 焦点在x 轴上的椭圆 B. 焦点在y 轴上的椭圆C. 焦点在x 轴上的双曲线D. 焦点在y 轴上的双曲线16. 由1,2,3,4四个数字构成没有重复数字的自然数个数为( )A 12个 B. 24个 C. 48个 D. 64个17. 在空间中,α,β表示平面,m ,n 表示直线,则下列说法正确的是( )A. 若//m n ,n α⊥,则m α⊥B. 若αβ⊥,m α⊂,则m β⊥的.C. 若m 上有无数个点不α内,则//m αD. 若//m α,则m 与α平面内的任何直线平行18. 4()a x +展开式中不含x 的项为1,则=a ( )A. 1B. 1-C.1-或1 D. 0 19. 已知函数()()22(0)10x x f x x x -<⎧=⎨+≥⎩,若()3f a =,则=a ( ) A. 32-,2- B. 32-,2C. 32-, D. 2,2- 20. 矩形ABCD 中,1AB =,2AD =,M 是CD 中点,点P 在矩形边上沿A →B →C →M 作匀速运动,APM △的面积y 与点P 经过的路程x 之间的函数关系用图象表示大致是( )A. B.C. D.二、填空题(本大题共7小题,每小题4分,共28分)21. 不等式2213x ≤-<的解集为____________.22. 已知lg(2)lg(1)x x +<-,则x 的取值范围是____________.23. 已知10cos(π)5α+=-,π,02α⎛⎫∈- ⎪⎝⎭,则tan(π)α-=____________. 24. 已知函数()3sin 3f x x x =,则π12f ⎛⎫= ⎪⎝⎭____________. 在25. 若圆柱轴截面是边长为4cm 的正方形,则圆柱的表面积是_________.26. 抛物线216y x =上一点M 到焦点的距离为10,则点M 的坐标为____________.27. 把一枚骰子连续抛两次,那么两次的点数之和大于8的概率为____________.三、解答题(本大题共8小题,共72分)解答应写出必要的文字说明及演算步骤.28. 已知集合{|13,}A x x x =-≤<∈N .(1)用列举法表示集合A ;(2)写出集合A 的所有真子集.29. 已知角α的终边在直线2y x =(0x ≥)上.求:(1)sin α,tan α的值;(2)sin 2α,cos 2α的值.30. 如图所示,在棱长为a 的正方体1111ABCD A B C D -中,点M 是棱11A B 的中点.(1)求直线MC 与侧面11BCC B 所成角的正切值.(2)连接1MC ,1CB 得到一个三棱锥11C MC B -,求此三棱锥的体积.31.已知二项式n x ⎛ ⎝的展开式中只有第七项的二项式系数最大,求展开式的常数项.32.已知2()2sin cos 2cos 1f x x x x =-++.(1)求π4f ⎛⎫ ⎪⎝⎭的值; (2)当x 为何值时,()f x 有最大值,这个最大值多少?并求其最小正周期.33. 已知双曲线22145x y -=,右焦点为F . (1)求以F 为焦点,以双曲线中心为顶点的抛物线方程;(2)若直线2y x m =+被抛物线所截得的弦长||AB =m 的值.34. 在ABC中,已知a =,2b =,60A =︒.求:(1)边c 的长.(2)ABC 的面积.是35. 某林场有荒山3250亩,从1996年开始,每年春季在荒山上植树造林,第一年植100亩,计划以后每一年比上一年多植树50亩.(1)需几年可将此荒山全部绿化;(2)已知新植树苗每亩木材量为2立方米,树木每年的自然增长率为10%,设荒山全部绿化后的年底木材总量为T ,求T 约为多少万立方米?(精确到0.1)(可能用到的数据:21.1 1.21=,31.1 1.331=,41.1 1.461=,51.1 1.611=,61.1 1.772=,71.1 1.949=,81.1 2.144=,91.1 2.358=,101.1 2.594=,111.1 2.853=)浙江省中职数学高二期末测试卷本试卷共三大题.全卷共4页.满分150分,考试时间120分钟.一、单项选择题(本大题共20小题,1—10小题,每小题2分,11—20小题,每小题3分,共50分)在每小题列出的四个备选答案中,只有一个是符合题目要求的.错涂、多涂或未涂均无分.DBCBABCDCAADBADDACBB二、填空题(本大题共7小题,每小题4分,共28分) 【答案】131,,222⎛⎤⎡⎫-- ⎪⎥⎢⎝⎦⎣⎭ 【答案】122x x ⎧⎫-<<-⎨⎬⎩⎭【答案】2【答案】224πcm【答案】(6,或(6,- 【答案】518三、解答题(本大题共8小题,共72分)解答应写出必要的文字说明及演算步骤.【28题答案】【答案】(1){0,1,2}(2)∅,{0},{1},{2},{0,1},{0,2},{1,2}【29题答案】【答案】(1)sin 5α=,tan 2α= (2)4sin 25α=,3cos25α=- 【30题答案】【答案】(1)4.(2)312a . 【31题答案】【答案】126720.【32题答案】【答案】(1)π14f ⎛⎫=+⎪⎝⎭; (2)3ππ8x k =+(Z k ∈)时,()f x,πT =. 【33题答案】【答案】(1)212y x =;(2)43m =-. 【34题答案】【答案】(1)3c =(2)2. 【35题答案】【答案】(1)10年 (2)1.0万立方米.。
中等职业学校数学高二年级第一学期期末考试复习一
中等职业学校数学高二年级第一学期期末考试复习一一、选择题1. sin 330︒等于 ( )A .32-B .12-C .12D .322、2(sin cos )1y x x =--是 ( ) A .最小正周期为2π的偶函数 B .最小正周期为2π的奇函数C .最小正周期为π的偶函数D .最小正周期为π的奇函数3.若sin 0α<且tan 0α>是,则α是 ( )A .第一象限角B . 第二象限角C . 第三象限角D . 第四象限角4.函数x x x f cos sin )(-=的最大值为 ( )A .1B . 2C .3D .25.已知A 、B 两地的距离为10km ,B 、C 两地的距离为20km ,观测得∠ABC =120°,则AC 两地的距离为 ( )A .10km B.3km C .105km D .107km 6、下列不等式成立的是 ( )A .⎪⎭⎫ ⎝⎛-<⎪⎭⎫ ⎝⎛-10sin 18sin ππB .2sin 3sin >C .⎪⎭⎫ ⎝⎛-<⎪⎭⎫ ⎝⎛-417cos 533cos ππ D .516cos 57cos ππ< 7、 15cos 75cos 15cos 75cos 22⋅++的值是 ( )A .45B .26C .23D .431+ 8、已知sin α+cos α= 13,则sin2α= ( ) A .89 B .-89 C .±89 D .3229、从6名志愿者中选出4个分别从事翻译、导游、导购、保洁四项不同的工作,其中甲乙两名志愿者不能从事翻译工作,则不同的选排方法共有 ( )A .96种B .180种C .240种D .280种10、若5522105)1(...)1()1()1(-++-+-+=+x a x a x a a x ,则0a = ( )A .32B .1C .-1D .-3211. 某城市的汽车牌照号码由2个英文字母后接4个数字组成,其中4个数字互不相同的牌照号码共有 ( )A.()2142610C A 个 B.242610A A 个 C.()2142610C 个 D.242610A 个12.某城市新修建的一条道路上有12盏路灯,为了节省用电而又不能影响正常的照明,可以熄灭其中的3盏灯,但两端的灯不能熄灭,也不能熄灭相邻的两盏灯,则熄灯的方法有 ( )A .311C 种B .38A 种C .39C 种 D .38C 种13.在△ABC 中,已知a =8,B =60°,C =75°,则b 等于 ( )A .4 2B .4 3C .4 6 D.32314.已知△ABC 中,AB =3,AC =1,∠B =30°,则△ABC 的面积为 ( ) A.32 B.34 C.32或 3 D.34或3215.在△ABC 中,a ∶b ∶c =1∶5∶6,则sin A ∶sin B ∶sin C 等于 ( )A .1∶5∶6B .6∶5∶1C .6∶1∶5D .不确定16.在△ABC 中,a 2=b 2+c 2+3bc ,则∠A 等于 ( )A .60°B .45°C .120°D .150°二、填空题1、若角α的终边经过点(12)P -,,则tan 2α的值为 .2.若3sin()25πθ+=,则cos 2θ=_________。
中职数学 2022-2023学年湖北省襄阳市中职学校高二(下)期末数学试卷
2022-2023学年湖北省襄阳市中职学校高二(下)期末数学试卷一、选择题(共10小题,每小题5分,满分50分)A .A ⊆B B .B ⊆AC .A =BD .A ⫋B 且B ⫋A1.(5分)已知集合A ={x |x 2-x ≤0},x ∈R ,集合B ={x |log 2x ≤0},则A 、B 满足( )A .π6B .π4C .π3D .2π32.(5分)已知单位向量i ,j 满足(2j −i )⊥i ,则i ,j 夹角为( )→→→→→→→A .-3B .3C .-2D .23.(5分)已知tanα=12,则cos 2α(sinα−cosα)2的值为( )A .充分必要条件B .充分但不必要条件C .必要但不充分条件D .既不充分也不必要条件4.(5分)“-2<m <1”是方程x2m +2+y21−m=1表示椭圆的( )A .-2B .3C .7D .125.(5分)已知变量x 、y 满足条件V Y YW Y Y X x −4y ≤−33x +5y ≤25x ≥1,则z =2x +y 的最小值为( )A .{x |x <3}B .{x |12<x <3}C .{x |−13<x <3}D .{x |13<x <3}6.(5分)已知函数y =f (x +1)是定义域为R 的偶函数,且f (x )在[1,+∞)上单调递增,则不等式f (2x -1)<f (x +2)的解集为( )A .π+2B .π-2C .2πD .4π7.(5分)由曲线x 2+y 2=|x |+|y |围成的图形的面积等于( )A .123B .124C .125D .1268.(5分)已知正实数a 、b 满足a +b =1,则ab 4a +9b的最大值为( )二、填空题(共5小题,每小题5分,满分25分)三、解答题(共6小题,满分75分)A .(1,2]B .[2,+∞)C .(1,2+1]D .[2+1,+∞)9.(5分)双曲线x 2a2−y 2b2=1(a >0,b >0)的右支上存在一点,它到右焦点及左准线的距离相等,则双曲线离心率的取值范围是( )√√√√A .(-2,+∞)B .[−32,12]C .[−32,13)D .(-2,12]10.(5分)若函数f (x )=(a -3)x -ax 3在区间[-1,1]上的最小值等于-3,则实数a 的取值范围是( )11.(5分)函数y =x −1x +1的反函数的解析式为 .12.(5分)数列{a n }满足:a 1=0,a n +1=a n +n (n ∈N *),则数列{a n }的通项a n =.13.(5分)经过原点O 且与函数f (x )=lnx 的图象相切的直线方程为 .14.(5分)若cos (α+π3)=13,则cos (2α−π3)=.15.(5分)直线l :3x −y −3=0与抛物线y 2=4x 相交于A 、B 两点,与x 轴相交于点F ,若OF =λOA +μOB (λ≤μ),则λμ=.√√→→→16.(13分)设△ABC 的内角A 、B 、C 的对边分别为a 、b 、c ,且A =2π3,a =2bcosC ,求:(Ⅰ)角B 的值;(Ⅱ)函数f (x )=sin 2x +cos (2x -B )在区间[0,π2]上的最大值及对应的x 值.17.(13分)已知平面上的两个定点O (0,0),A (0,3),动点M 满足|AM |=2|OM |.(Ⅰ)求动点M 的轨迹方程;(Ⅱ)若经过点(3,2)的直线l 被动点M 的轨迹E 截得的弦长为2,求直线l 的方程.√18.(13分)已知函数f (x )=e 2x -ae x +x ,x ∈R .(Ⅰ)当a =3时,求函数f (x )的极大值和极小值;(Ⅱ)若函数f (x )在(0,ln 2)上是单调递增函数,求实数a 的取值范围.19.(12分)设数列{a n}的首项a1=1,其前n项和S n满足:3tS n-(2t+3)S n-1=3t(t>0,n=2,3,…).(Ⅰ)求证:数列{a n}为等比数列;(Ⅱ)记{a n}的公比为f(t),作数列{b n},使b1=1,b n=f(1b n−1)(n=2,3,…),求和:b1b2-b2b3+b3b4-b4b5+…+b2n-1b2n-b2n b2n+1.20.(12分)已知定义域为(0,+∞)的单调函数f(x)满足:f(m)+f(n)=f(m•n)对任意m,n∈(0,+∞)均成立.(Ⅰ)求f(1)的值;若f(a)=1,求f(1a)的值;(Ⅱ)若关于x的方程2f(x+1)=f(kx)有且仅有一个根,求实数k的取值集合.21.(12分)直线xa ±yb=0称为椭圆C:x2a2+y2b2=1(a>b>0)的“特征直线”,若椭圆的离心率e=32.(Ⅰ)求椭圆的“特征直线”方程;(Ⅱ)过椭圆C上一点M(x0,y0)(x0≠0)作圆x2+y2=b2的切线,切点为P、Q,直线PQ与椭圆的“特征直线”相交于点E、F,O为坐标原点,若OE•OF取值范围恰为(−∞,−3)∪[316,+∞),求椭圆C的方程.√→→。
高二中职生期末数学试卷
考试时间:120分钟满分:100分一、选择题(每题5分,共20分)1. 若函数f(x) = 2x - 3的图象向右平移a个单位后,得到的函数图象对应的解析式为:A. f(x - a) = 2x - 3 - aB. f(x + a) = 2x - 3 + aC. f(x - a) = 2x - 3 + aD. f(x + a) = 2x - 3 - a2. 已知等差数列{an}的首项为2,公差为3,则第10项an等于:A. 29B. 31C. 33D. 353. 在直角坐标系中,点P(2, -1)关于直线y = x的对称点为:A. (1, 2)B. (2, 1)C. (-1, 2)D. (-2, 1)4. 若复数z满足|z - 1| = 2,则复数z的实部取值范围是:A. [-1, 3]B. [-3, 1]C. [-1, 1]D. [-3, 3]5. 下列函数中,在定义域内单调递减的是:A. f(x) = x^2 - 4x + 3B. f(x) = 2x + 1C. f(x) = 3x^2 - 6x + 5D. f(x) = 2x^3 - 3x^2 + 2x - 1二、填空题(每题5分,共20分)6. 已知等比数列{an}的首项为3,公比为2,则第5项a5等于______。
7. 函数f(x) = x^3 - 3x在区间[0, 3]上的极值点为______。
8. 直线y = 2x - 1与圆x^2 + y^2 = 4的交点坐标为______。
9. 复数z = 3 + 4i的模长为______。
10. 已知三角形的三边长分别为3、4、5,则该三角形的面积为______。
三、解答题(每题20分,共80分)11. (本题共20分)已知函数f(x) = x^2 - 4x + 3,求:(1)函数f(x)的图象的顶点坐标;(2)函数f(x)在区间[0, 4]上的最大值和最小值。
12. (本题共20分)已知数列{an}是等差数列,且a1 = 2,d = 3,求:(1)数列{an}的通项公式;(2)数列{an}的前10项和。
中职数学 2023-2024学年江苏省徐州市中等职业学校就业班高二(下)期末数学试卷
2023-2024学年江苏省徐州市中等职业学校就业班高二(下)期末数学试卷一、选择题(本大题共15小题,每小题4分,共60分)A .cos 27°B .sin 27°C .-sin 1°D .cos 1°1.(4分)sin 13°cos 14°+cos 13°sin 14°=( )A .B .C .sin 89°D .cos 89°2.(4分)sin 67°cos 22°-cos 67°sin 22°=( )M 22M 2A .cosαB .cosβC .cos 2αD .cos 2β3.(4分)cos (α-β)cosβ-sin (α-β)sinβ=( )A .B .C .D .4.(4分)sin 22.5°•cos 22.5°=( )M 24M 22M 23M 28A .0B .sin 2αC .cos 2αD .15.(4分)(cosα-sinα)(cosα+sinα)=( )A .28B .2C .4D .6.(4分)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,a =4,b =6,C =60°,则c =( )M 7M 5M 7A .B .πC .D .7.(4分)函数y =2sin (3x +)的最小正周期为( )π5π2π32π3A .B .C .D .8.(4分)数列,,,⋯的一个通项公式为( )-1122-2224-3328-nn 22n-n n 22nn -12nn 2nA .1,3,5,4,6B .1,,1,,1C .1,2,4,8,16D .3,3,3,3,39.(4分)以下数列中,是等差数列的是( )1212A .B .C .15D .3110.(4分)在公比为2的等比数列{a n }中,若=,则该数列的前5项和是( )a 112312632A .数据的个数为9,极值为18B .数据的个数为10,极值为18C .数据的个数为9,算术平均值为18D .数据的个数为10,算术平均值为1811.(4分)关于样本标准差的计算公式s =,下列说法正确的是( M [++⋯+]19(-18)x 12(-18)x 22(-18)x n 2A .15B .20C .30D .6012.(4分)从4名男同学和3名女同学中选出3名同学组成宣传“垃圾分类”志愿服务队,其中既有男同学又有女同学的选法种( )A .6B .7C .8D .913.(4分)已知的展开式中只有第五项的二项式系数最大,则n 的值是( )(x -)2√xn14.(4分)已知随机变量ξ∼B (6,0.3),则ξ的期望值E (ξ)=( )二、填空题(本大题共3小题,每小题4分,共12分)三、解答题(本大题共3小题,共28分.解答应写出文字说明、证明过程或演算步骤)A .1.26B .1.8C .2D .4.2A .0.3B .0.2C .0.1D .0.415.(4分)若随机变量ξ服从正态分布N (0,1),P (ξ>1)=0.2,则P (-1<ξ<0)等于( )16.(4分)数列,,,⋯的前6项和是 .11×212×313×417.(4分)已知等差数列{a n }的前13项和S 13=39,则a 7=.18.(4分)在一次射击测试中,甲乙两名运动员各射击5次,命中的环数分别为:甲:6,9,7,9,9;乙:7,8,8,9,8,则 成绩较稳定.(填“甲”或“乙”)19.(10分)已知cosα=-,α是第二象限角.(1)求sin 2α,cos 2α的值;(2)求cos (2α+)的值.35π620.(10分)在等差数列{a n }中,a 3+a 5=30,a 2=7.(1)求{a n }的通项公式;(2)求{a n }的前10项和S 10.21.(8分)一个袋子中有大小相同的8个小球,其中5个红球、3个白球,现从中一次随机抽取3个球,记ξ是取到白球的个数(ξ=1),P (ξ≥2).。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
职中高二级下学期数学期末模拟试卷
一、选择题(将唯一正确答案代号填入表格对应题号内,每题3分,共计36分)
1.点A (-3,-4)到x 轴的距离是:
A.3
B.4
C.5
D.7 2.点A (0,4),B (-2,0)的中点是:
A.(-2,4)
B.(-1,2)
C.(-2,2)
D.(0,2)
3.已知直线l 的斜率是3,则直线l 的倾斜角是:
A.060
B.045
C.030
D.0240
4.已知直线l 的倾斜角β=090,则直线l 的斜率是:
A.1
B.-1
C.不能确定
D.不存在 5.直线1=x 与y 轴:
A.平行
B.相交
C.重合
D.不能确定 6.圆16)7()2(22=-+-y x 的圆心坐标是:
A.(2,7)
B.(-2,-7)
C.(-2,7)
D.(2,-7) 7.圆25)6()3(22=-+-y x 的半径长为:
A.10
B.25
C.5
D.5 8.一个棱锥的底面积是402cm ,高是12cm ,则它的体积是 3cm π。
A.130
B.140
C.150
D.160
9.一个球的半径增大一倍,那么它的体积增大了几倍。
A.1
B.2
C.7
D.8
10.一个圆锥的母线是10cm ,侧面展开图是半圆,则圆锥的底面半径是:
A.10 cm
B.8cm
C.6 cm
D.5cm
11.直线06=+-y x 与直线0=+y x 的交点坐标为
A .(-3,3)
B .(3,-3)
C .(4,2)
D .(3,3) 12.某中职学校二年级有12名女排运动员,要从中选出3人调查学习负担情况,调查应采用的抽样方法是:
A.随机抽样法
B.分层抽样法
C.系统抽样法
D.无法确定 二、填空题(将最合适的答案填写在对应的位置,每题3分,共15分)。
1.过点A (1,-1)且与x 轴平行的直线方程为 2.一个正方体的体积是83cm ,则它的表面积为 2cm 3.抛一枚硬币,出现一枚正面在上的概率是
4.已知一直线的倾斜角是
45,则该直线的斜率是
5.过直线外一点作直线的垂线有 条
三、判断(正确的记“√”,错误的记“╳”,每题2分,共10分)。
( )1.直线2
3
y x =与直线6410x y ++=垂直.
( )2.如果直线1l 与直线2l 的斜率都存在且不等于0,那么12l l ⊥⇔121k k ⋅=-.
( )3.不在同一条直线上的三个点,可以确定一个平面. ( )4.直线 3=x 的斜率是0.
( )5.把直径是10的一个铁球融化最多可以做成直径是它5
1
的小球50个.
四、请在横线上用一种方法算出下列各牌组的24点(每题2分,共14分)。
(1)2、1、4、10 (2)2、6、8、5 (3)2、7、10、10 (4)2、8、8、8 (5)3、3、5、6 (6)3、3、3、8
(7)3、4、6、6
五、先填写数独,然后将每行填写的数字顺次写在右边对应的横线上(10分)。
(特别提醒:必须将数独填写数字写在每行横线上,且顺序正确)
第2行:
第3行:
第4行:
第5行:
第6行:
第7行:
第8行:
第9行:
六、按规律将表格填写完整。
要求:字迹工整,不能涂改(共15分,涂改或写
错一处扣0.5分,扣完15分为止)。