重庆市中考数学试题及答案

合集下载

2023年重庆市中考数学试卷(A卷)解析版

2023年重庆市中考数学试卷(A卷)解析版

重庆市2023年初中学业水平暨高中招生考试数学试题(A 卷)(全卷共三个大题,满分150分,考试时间120分钟)注意事项:1.试题的答案书写在答题卡上,不得在试题卷上直接作答2.作答前认真阅读答题卡上的注意事项;3.作图(包括作辅助线)请一律用黑色2B 铅笔完成;4.考试结束,由监考人员将试题卷和答题卡一并收回参考公式:抛物线()20y ax bx c a =++≠)的顶点坐标为2424,b ac b a a ⎛⎫ ⎪⎝-⎭-,对称轴为2b x a =-一、选择题:(本大题10个小题,每小题4分,共40分)在每个小题的下面,都给出了代号为A 、B 、C 、D 的四个答案,其中只有一个是正确的,请将答题卡上题号右侧正确答案所对应的方框涂黑.1.8的相反数是()A.8- B.8 C.18 D.18-【答案】A【解析】【分析】根据只有符号不同的两个数互为相反数进行解答即可得.【详解】解:8的相反数是8-,故选A .【点睛】本题考查了相反数的定义,掌握相反数的定义是解题的关键.2.四个大小相同的正方体搭成的几何体如图所示,从正面得到的视图是()A.B.C.D.【答案】D【解析】【分析】根据从正面看得到的图形是主视图,可得答案.【详解】从正面看第一层是2个小正方形,第二层右边1个小正方形,故选:D .【点睛】考查了简单组合体的三视图,从正面看得到的图形是主视图.3.反比例函数4y x=-的图象一定经过的点是()A.()14, B.()14--, C.()22-, D.()22,【答案】C【解析】【分析】根据题意将各项的坐标代入反比例函数4y x =-即可解答.【详解】解:A 、将1x =代入反比例函数4y x=-得到14y =-≠,故A 项不符合题意;B 、项将1x =-代入反比例函数4y x=-得到44y =≠-,故B 项不符合题意;C 、项将=−2代入反比例函数4y x=-得到22y ==,故C 项符合题意;D 、项将2x =代入反比例函数4y x=-得到22y =-≠,故D 项不符合题意;故选C .【点睛】本题考查了反比例函数图象上点的坐标特征,只要点在函数图象上则其坐标一定满足函数解析式,掌握反比例函数图象上点的坐标特征是解题的关键.4.若两个相似三角形周长的比为1:4,则这两个三角形对应边的比是()A.1:2B.1:4C.1:8D.1:16【答案】B【解析】【分析】根据相似三角形的周长比等于相似三角形的对应边比即可解答.【详解】解:∵两个相似三角形周长的比为1:4,∴相似三角形的对应边比为1:4,故选B .【点睛】本题考查了相似三角形的周长比等于相似三角形的对应边比,掌握相似三角形的性质是解题的关键.5.如图,,⊥∥AB CD AD AC ,若155∠=︒,则2∠的度数为()A.35︒B.45︒C.50︒D.55︒【答案】A【解析】【分析】根据两直线平行,同旁内角互补可得CAB ∠的度数,根据垂直的定义可得90CAD ∠=︒,然后根据2CAB CAD Ð=Ð-Ð即可得出答案.【详解】解:∵AB CD ∥,155∠=︒,∴18055125CAB Ð=°-°=°,∵AD AC ⊥,∴90CAD ∠=︒,∴21259035CAB CAD Ð=Ð-Ð=°-°=°,故选:A .【点睛】本题考查了平行线的性质以及垂线的定义,熟知两直线平行同旁内角互补是解本题的关键.6.估计+的值应在()A.7和8之间B.8和9之间C.9和10之间D.10和11之间【答案】B【解析】【分析】先计算二次根式的混合运算,再估算结果的大小即可判断.=4=+∵2 2.5<<,∴45<<,∴849<+<,故选:B .【点睛】此题考查了二次根式的混合运算,无理数的估算,正确掌握二次根式的混合运算法则是解题的关键.7.用长度相同的木棍按如图所示的规律拼图案,其中第①个图案用了9根木棍,第②个图案用了14根木棍,第③个图案用了19根木棍,第④个图案用了24根木棍,……,按此规律排列下去,则第⑧个图案用的木棍根数是()A.39B.44C.49D.54【答案】B【解析】【分析】根据各图形中木棍的根数发现计算的规律,由此即可得到答案.【详解】解:第①个图案用了459+=根木棍,第②个图案用了45214+⨯=根木棍,第③个图案用了45319+⨯=根木棍,第④个图案用了45424+⨯=根木棍,……,第⑧个图案用的木棍根数是45844+⨯=根,故选:B .【点睛】此题考查了图形类规律的探究,正确理解图形中木棍根数的变化规律由此得到计算的规律是解题的关键.8.如图,AC 是O 的切线,B 为切点,连接OA OC ,.若30A ∠=︒,AB =3BC =,则OC 的长度是()A.3B.C.D.6【答案】C【解析】【分析】根据切线的性质及正切的定义得到2OB =,再根据勾股定理得到OC =【详解】解:连接OB ,∵AC 是O 的切线,B 为切点,∴OB AC ⊥,∵30A ∠=︒,AB =,∴在Rt OAB 中,tan 23OB AB A =⋅∠==,∵3BC =,∴在Rt OBC 中,OC ==,故选C .【点睛】本题考查了切线的性质,锐角三角函数,勾股定理,掌握切线的性质是解题的关键.9.如图,在正方形ABCD 中,点E ,F 分别在BC ,CD 上,连接AE ,AF ,EF ,45EAF ∠=︒.若BAE α∠=,则FEC ∠一定等于()。

2023年重庆市中考数学试题(A卷,附答案)

2023年重庆市中考数学试题(A卷,附答案)

2023年重庆市中考数学试题(A卷,附答案)第一部分选择题1. 已知直线l等于数a和数b的和,若a = 3,b = 5,则l的数值为:A. 2B. 3C. 5D. 82. 一辆汽车从A地出发,按时速60km/h行驶,2小时后到达B地,再按时速40km/h行驶,行驶4小时后到达C地。

则从A地到C地共需多长时间?A. 4小时B. 5小时C. 6小时D. 7小时3. 如果已知2x - 5 = 7,那么x的值为:A. 1B. 3C. 6D. 84. 设正方形边长为x,则它的周长为:A. x²B. 2xC. 4xD. 4x²5. 一辆汽车以每小时100km的速度行驶,行驶8小时后,已经行驶了多少公里?A. 400kmB. 600kmC. 800kmD. 1000km第二部分解答题6. 旅行团一行30人,乘坐大巴车出游。

大巴车每小时消耗30升的柴油,行驶一公里消耗1.5升柴油。

已知旅行团行程共200公里,大巴车的油箱容量为360升。

请问,旅行团在这次旅行中,油箱最少需要加多少次油?答案:4次7. 若正整数b + 7 = 3的解为b = -4,则b²的值为多少?答案:168. 一条狗在一口深井的底部向上看,白天看到日间高度的3倍,晚上看到日间高度的一半。

已知白天看到井口离地面的距离是36米,那么晚上看到井口离地面的距离是多少米?答案:9米9. 家住A地的小明参加一次马拉松比赛,比赛在A地的起点开始,一共持续了3个小时。

小明在比赛的前2小时内已经跑了2/3的比赛路程。

求小明需要用多长时间能够完成整个比赛?答案:1小时10. 若一个正三角形的周长为15cm,它的边长是多少厘米?答案:5厘米。

重庆数学中考试题及答案

重庆数学中考试题及答案

重庆数学中考试题及答案一、选择题(每题3分,共30分)1. 下列哪个数是最小的正整数?A. 0B. 1C. 2D. 3答案:B2. 如果一个直角三角形的两个直角边分别为3和4,那么斜边的长度是?A. 5B. 6C. 7D. 8答案:A3. 以下哪个表达式的结果不是整数?A. 3 * 4B. 5 / 2C. 7 - 2D. 8 ÷ 2答案:B4. 下列哪个是二次方程?A. x + 2 = 0B. x^2 + x + 1 = 0C. x^3 - 2x^2 + x = 0D. x^2 - 4 = 0答案:B5. 圆的周长公式是?A. C = πdB. C = 2πrC. A = πr^2D. A = πd^2答案:B6. 一个数的平方根是它自己,这个数是?A. 1B. -1C. 0D. 2答案:C7. 以下哪个是立方体的体积公式?A. V = a^2B. V = a^3C. V = 2aD. V = πa^3答案:B8. 一个数的倒数是1/5,这个数是?A. 5B. 4C. 3D. 2答案:A9. 以下哪个是正弦函数的图像?A. 直线B. 抛物线C. 正弦曲线D. 双曲线答案:C10. 如果一个角的正弦值是0.5,那么这个角的度数是?A. 30°B. 45°C. 60°D. 90°答案:B二、填空题(每题2分,共20分)11. 已知一个数的平方是25,这个数是________。

答案:±512. 一个圆的半径是7,那么它的直径是________。

答案:1413. 一个长方体的长、宽、高分别是2、3、4,它的体积是________。

答案:2414. 一个等腰三角形的两个底角相等,如果顶角是60°,那么底角是________。

答案:60°15. 一个数的立方是-27,这个数是________。

答案:-316. 一个直角三角形的两个直角边分别是6和8,那么斜边的长度是________。

2024重庆中考数学试题及答案b

2024重庆中考数学试题及答案b

2024重庆中考数学试题及答案b2024年重庆中考数学试题一、选择题(每题3分,共30分)1. 下列哪个数是无理数?A. 0.5B. √2C. 0.33333...D. 1/32. 一个三角形的两边长分别为3和5,第三边长x满足的条件是:A. 2 < x < 8B. 1 < x < 8C. 2 < x < 7D. 3 < x < 83. 函数y=2x+3的图象经过点(1,5),则该函数的斜率k为:A. 2B. 3C. 5D. 74. 计算下列表达式的结果:A. (-2)^3 = -8B. (-2)^3 = 8C. (-2)^3 = 2D. (-2)^3 = -25. 一个圆的半径为5,那么它的面积是:A. 25πB. 50πC. 100πD. 125π6. 已知a=2,b=-3,求代数式3a-2b的值:A. 12B. 6C. 0D. -67. 一个等腰三角形的底角为45°,那么它的顶角为:A. 45°B. 60°C. 90°D. 135°8. 计算下列二次根式的结果:A. √(9) = 3B. √(16) = 4C. √(25) = 5D. √(36) = 69. 一个数列的前三项为1,2,3,从第四项开始,每一项是前三项的和,那么第10项的值是:A. 55B. 89C. 144D. 23310. 一个长方体的长宽高分别为a,b,c,那么它的体积是:A. abcB. ab + bc + acC. a + b + cD. a^2 + b^2 + c^2二、填空题(每题3分,共15分)11. 一个数的相反数是-5,那么这个数是______。

12. 一个数的绝对值是8,那么这个数可以是______或______。

13. 一个直角三角形的两直角边长分别为6和8,那么它的斜边长为______。

14. 一个二次函数y=ax^2+bx+c的顶点坐标为(2,-3),那么a的值为______。

2024重庆中考数学试卷

2024重庆中考数学试卷

2024重庆中考数学试卷一、下列实数中,是无理数的是:A. 3.14B. √2 (答案)C. 0D. -1/3二、若a//b,b//c,则a与c的关系是:A. a//c (答案)B. a⊥cC. a与c相交但不垂直D. a与c无法确定关系三、在△ABC中,∠A = 50°,∠B = 70°,则∠C的度数是:A. 50°B. 60° (答案)C. 70°D. 80°四、下列运算正确的是:A. 3a + 2b = 5abB. (a2)3 = a5C. a6 ÷ a3 = a3 (答案)D. a2 · a4 = a6 (此选项也正确,但题目要求单选,故不作为答案)五、若一元二次方程ax2 + bx + c = 0 (a ≠ 0)有两个相等的实数根,则判别式Δ = b2 - 4ac的值是:A. Δ > 0B. Δ < 0C. Δ = 0 (答案)D. Δ无法确定六、在平面直角坐标系中,点P(-3,4)到x轴的距离是:A. -3B. 3C. 4 (答案)D. 5七、下列函数中,是一次函数的是:A. y = x2 + 1B. y = 1/xC. y = 2x - 1 (答案)D. y = √x八、若圆的半径为r,则圆的面积S与r之间的函数关系是:A. S = πrB. S = 2πrC. S = πr2 (答案)D. S = 2πr2九、在比例尺为1:50000的地图上,两城市间的图上距离为2cm,则这两城市间的实际距离为:A. 1kmB. 100mC. 1000m (答案)D. 10km十、已知数据x₁,x₁,…,x₁的平均数为5,若每个数据都加3,则新数据的平均数为:A. 2B. 5C. 8 (答案)D. 10。

中考重庆数学试题卷及答案

中考重庆数学试题卷及答案

中考重庆数学试题卷及答案重庆市中考数学试题卷一、选择题(每题3分,共36分)1. 下列哪个数是最小的正整数?A. 0B. 1C. -1D. 22. 已知一个长方体的长、宽、高分别为10cm、8cm和6cm,其体积是多少立方厘米?A. 240B. 480C. 360D. 6003. 下列哪个表达式的结果为偶数?A. 21 + 17B. 23 + 19C. 22 + 18D. 24 + 164. 如果一个数除以3的余数是2,那么这个数除以5的结果是什么?A. 无余数B. 余数1C. 余数2D. 余数35. 下列哪个选项的因数个数最多?A. 12B. 9C. 15D. 206. 一个数的60%加上它的40%等于这个数的多少?A. 100%B. 90%C. 80%D. 110%7. 一个班级有40名学生,其中2/5是男生,那么这个班级有多少名女生?A. 16B. 24C. 32D. 368. 一个数的1/4加上它的3/4等于这个数的多少?A. 1/2B. 1C. 3/4D. 4/49. 下列哪个选项的数值是最小的?A. πB. √2C. 2.71828D. 110. 如果一个数的1/3与它的2/3相等,那么这个数是多少?A. 0B. 1C. 2D. 311. 一个正方形的面积是64平方厘米,它的周长是多少厘米?A. 16B. 32C. 48D. 6412. 下列哪个选项的数值最接近于1000?A. 999B. 1000C. 1001D. 1002二、填空题(每题4分,共24分)13. 一个数的1.5倍是45,那么这个数是_________。

14. 一本书的价格是35元,打8折后的价格是_________元。

15. 一个长方体的体积是120立方厘米,长是10厘米,宽是6厘米,那么它的高是_________厘米。

16. 一个数的75%是30,那么这个数的50%是_________。

17. 一个班级有50名学生,其中3/4是优秀学生,那么这个班级有多少名非优秀学生?_________名。

2023年重庆市中考数学试卷(B卷)含答案解析

2023年重庆市中考数学试卷(B卷)含答案解析

绝密★启用前2023年重庆市中考数学试卷(B卷)学校:___________姓名:___________班级:___________考号:___________注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号。

回答非选择题时,将答案写在答题卡上,写在试卷上无效。

3.考试结束后,本试卷和答题卡一并交回。

一、选择题(本大题共10小题,共40.0分。

在每小题列出的选项中,选出符合题目的一项)1. 4的相反数是( )A. 14B. −14C. −4D. 42.四个大小相同的正方体搭成的几何体如图所示,从正面看到的视图是( )A.B.C.D.3.如图,直线a,b被直线c所截,若a//b,∠1=63°,则∠2的度数为( )A. 27°B. 53°C. 63°D. 117°4.如图,已知△ABC∽△EDC,AC:EC=2:3,若AB的长度为6,则DE 的长度为( )A. 4B. 9C. 12D. 13.55. 反比例函数y=6的图象一定经过的点是( )xA. (−3,2)B. (2,−3)C. (−2,−4)D. (2,3)6. 用圆圈按如图所示的规律拼图案,其中第①个图案中有2个圆圈,第②个图案中有5个圆圈,第③个图案中有8个圆圈,第④个图案中有11个圆圈,…,按此规律排列下去,则第⑦个图案中圆圈的个数为( )A. 14B. 20C. 23D. 267. 估计√ 5×(√ 6)的值应在( )√ 5A. 4和5之间B. 5和6之间C. 6和7之间D. 7和8之间8. 如图,AB为⊙O的直径,直线CD与⊙O相切于点C,连接AC,若∠ACD=50°,则∠BAC的度数为( )A. 30°B. 40°C. 50°D. 60°9.如图,在正方形ABCD中,O为对角线AC的中点,E为正方形内一点,连接BE,BE=BA,连接CE并延长,与∠ABE的平分线交于点F,连接OF,若AB=2,则OF的长度为( )A. 2B. √ 3C. 1D. √ 210. 在多项式x−y−z−m−n(其中x>y>z>m>n)中,对相邻的两个字母间任意添加绝对值符号,添加绝对值符号后仍只有减法运算,然后进行去绝对值运算,称此为“绝对操作”.例如:x−y−|z−m|−n=x−y−z+m−n,|x−y|−z−|m−n|=x−y−z−m+n,….下列说法:①存在“绝对操作”,使其运算结果与原多项式相等;②不存在“绝对操作”,使其运算结果与原多项式之和为0;③所有的“绝对操作”共有7种不同运算结果.其中正确的个数是( )A. 0B. 1C. 2D. 3二、填空题(本大题共8小题,共32.0分)11. 计算:|−5|+(2−√ 3)0=______ .12. 有四张完全一样正面分别写有汉字“清”“风”“朗”“月”的卡片,将其背面朝上并洗匀,从中随机抽取一张,记下卡片正面上的汉字后放回,洗匀后再从中随机抽取一张,则抽取的两张卡片上的汉字相同的概率是______ .13. 若七边形的内角中有一个角为100°,则其余六个内角之和为______ .14. 如图,在△ABC中,AB=AC,AD是BC边的中线,若AB=5,BC=6,则AD的长度为______ .15. 为了加快数字化城市建设,某市计划新建一批智能充电桩,第一个月新建了301个充电桩,第三个月新建了500个充电桩,设该市新建智能充电桩个数的月平均增长率为x,根据题意,请列出方程______ .16.如图,在矩形ABCD中,AB=2,BC=4,E为BC的中点,连接AE.DE.以E为圆心,EB长为半径画弧,分别与AE,DE交于点M,N.则图中阴影部分的面积为______ (结果保留π).17. 若关于x的不等式组{x+23>x2+14x+a<x−1的解集为x<−2,且关于y的分式方程a+2y−1+y+21−y=2的解为正数,则所有满足条件的整数a的值之和为______ .18. 对于一个四位自然数M,若它的千位数字比个位数字多6,百位数字比十位数字多2,则称M为“天真数”.如:四位数7311,∵7−1=6,3−1=2,∴7311是“天真数”;四位数8421,∵8−1≠6,∴8421不是“天真数”,则最小的“天真数”为______ ;一个“天真数”M的千位数字为a,百位数字为b,十位数字为c,个位数字为d,记P(M)=3(a+b)+c+d,Q(M)=a−5,若P(M)Q(M)能被10整除,则满足条件的M的最大值为______ .三、解答题(本大题共8小题,共78.0分。

2023年重庆市中考数学试卷(A卷)及答案解析

2023年重庆市中考数学试卷(A卷)及答案解析

2023年重庆市中考数学试卷(A卷)一、选择题:(本大题10个小题,每小题4分,共40分)在每个小题的下面,都给出了代号为A、B、C、D的四个答案,其中只有一个是正确的,请将答题卡上题号右侧正确答案所对应的方框涂黑.1.(4分)8的相反数是()A.﹣8B.8C.D.2.(4分)四个大小相同的正方体搭成的几何体如图所示,从正面得到的视图是()A.B.C.D.3.(4分)反比例函数y=﹣的图象一定经过的点是()A.(1,4)B.(﹣1,﹣4)C.(﹣2,2)D.(2,2)4.(4分)若两个相似三角形周长的比为1:4,则这两个三角形对应边的比是()A.1:2B.1:4C.1:8D.1:165.(4分)如图,AB∥CD,AD⊥AC,若∠1=55°,则∠2的度数为()A.35°B.45°C.50°D.55°6.(4分)估计(+)的值应在()A.7和8之间B.8和9之间C.9和10之间D.10和11之间7.(4分)用长度相同的木棍按如图所示的规律拼图案,其中第①个图案用了9根木棍,第②个图案用了14根木棍,第③个图案用了19根木棍,第④个图案用了24根木棍,…,按此规律排列下去,则第⑧个图案用的木棍根数是()A.39B.44C.49D.548.(4分)如图,AC是⊙O的切线,B为切点,连接OA,OC.若∠A=30°,AB=2,BC=3,则OC的长度是()A.3B.C.D.69.(4分)如图,在正方形ABCD中,点E,F分别在BC,CD上,连接AE,AF,EF,∠EAF=45°.若∠BAE=α,则∠FEC一定等于()A.2αB.90°﹣2αC.45°﹣αD.90°﹣α10.(4分)在多项式x﹣y﹣z﹣m﹣n(其中x>y>z>m>n)中,对相邻的两个字母间任意添加绝对值符号,添加绝对值符号后仍只有减法运算,然后进行去绝对值运算,称此为“绝对操作”.例如:x﹣y﹣|z﹣m|﹣n=x﹣y﹣z+m﹣n,|x﹣y|﹣z﹣|m﹣n|=x﹣y﹣z﹣m+n,….下列说法:①存在“绝对操作”,使其运算结果与原多项式相等;②不存在“绝对操作”,使其运算结果与原多项式之和为0;③所有的“绝对操作”共有7种不同运算结果.其中正确的个数是()A.0B.1C.2D.3二、填空题:(本大题8个小题,每小题4分,共32分)请将每小题的答案直接填在答题卡中对应的横线上.11.(4分)计算:2﹣1+30=.12.(4分)如图,正五边形ABCDE中,连接AC,那么∠BAC的度数为.13.(4分)一个口袋中有1个红色球,有1个白色球,有1个蓝色球,这些球除颜色外都相同,从中随机摸出一个球,记下颜色后放回,摇匀后再从中随机摸出一个球,则两次都摸到红球的概率是.14.(4分)某新建工业园区今年六月份提供就业岗位1501个,并按计划逐月增长,预计八月份将提供岗位1815个,设七、八两个月提供就业岗位数量的月平均增长率为x,根据题意,可列方程为.15.(4分)如图,在Rt△ABC中,∠BAC=90°,AB=AC,点D为BC上一点,连接AD.过点B作BE⊥AD于点E,过点C作CF⊥AD交AD的延长线于点F.若BE=4,CF=1,则EF的长度为.16.(4分)如图,⊙O是矩形ABCD的外接圆,若AB=4,AD=3,则图中阴影部分的面积为.(结果保留π)17.(4分)若关于x的一元一次不等式组至少有2个整数解,且关于y的分式方程+=2有非负整数解,则所有满足条件的整数a的值之和是.18.(4分)如果一个四位自然数的各数位上的数字互不相等且均不为0,满足﹣=,那么称这个四位数为“递减数”.例如:四位数4129,∵41﹣12=29,∴4129是“递减数”;又如:四位数5324,∵53﹣32=21≠24,∴5324不是“递减数”.若一个“递减数”为,则这个数为;若一个“递减数”的前三个数字组成的三位数与后三个数字组成的三位数的和能被9整除,则满足条件的数的最大值是.三、解答题:(本大题8个小题,第19题8分,其余每题各10分,共78分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形(包括辅助线),请将解答过程书写在答题卡中对应的位置上.19.(8分)计算:(1)a(2﹣a)+(a+1)(a﹣1);(2)÷(x﹣).20.(10分)学习了平行四边形后,小虹进行了拓展性研究.她发现,如果作平行四边形一条对角线的垂直平分线,那么这个平行四边形的一组对边截垂直平分线所得的线段被垂足平分.她的解决思路是通过证明对应线段所在的两个三角形全等得出结论.请根据她的思路完成以下作图与填空:用直尺和圆规,作AC的垂直平分线交DC于点E,交AB于点F,垂足为点O.(只保留作图痕迹)已知:如图,四边形ABCD是平行四边形,AC是对角线,EF垂直平分AC,垂足为点O.求证:OE=OF.证明:∵四边形ABCD是平行四边形,∴DC∥AB.∴∠ECO=.∵EF垂直平分AC,∴.又∠EOC=,∴△COE≌△AOF(ASA).∴OE=OF.小虹再进一步研究发现,过平行四边形对角线AC中点的直线与平行四边形一组对边相交形成的线段均有此特征.请你依照题意完成下面命题:过平行四边形对角线中点的直线.21.(10分)为了解A、B两款品质相近的智能玩具飞机在一次充满电后运行的最长时间,有关人员分别随机调查了A、B两款智能玩具飞机各10架,记录下它们运行的最长时间(分钟),并对数据进行整理、描述和分析(运行最长时间用x表示,共分为三组:合格60≤x<70,中等70≤x<80,优等x≥80),下面给出了部分信息:A款智能玩具飞机10架一次充满电后运行最长时间是:60,64,67,69,71,71,72,72,72,82.B款智能玩具飞机10架一次充满电后运行最长时间属于中等的数据是:70,71,72,72,73.两款智能玩具飞机运行最长时间统计表类别A B平均数7070中位数71b众数a67方差30.426.6根据以上信息,解答下列问题:(1)上述图表中a=,b=,m=;(2)根据以上数据,你认为哪款智能玩具飞机运行性能更好?请说明理由(写出一条理由即可);(3)若某玩具仓库有A款智能玩具飞机200架、B款智能玩具飞机120架,估计两款智能玩具飞机运行性能在中等及以上的共有多少架?22.(10分)某公司不定期为员工购买某预制食品厂生产的杂酱面、牛肉面两种食品.(1)该公司花费3000元一次性购买了杂酱面、牛肉面共170份,此时杂酱面、牛肉面的价格分别为15元、20元,求购买两种食品各多少份?(2)由于公司员工人数和食品价格有所调整,现该公司分别花费1260元、1200元一次性购买杂酱面、牛肉面两种食品,已知购买杂酱面的份数比牛肉面的份数多50%,每份杂酱面比每份牛肉面的价格少6元,求购买牛肉面多少份?23.(10分)如图,△ABC是边长为4的等边三角形,动点E,F分别以每秒1个单位长度的速度同时从点A出发,点E沿折线A→B→C方向运动,点F沿折线A→C→B方向运动,当两者相遇时停止运动.设运动时间为t秒,点E,F的距离为y.(1)请直接写出y关于t的函数表达式并注明自变量t的取值范围;(2)在给定的平面直角坐标系中画出这个函数的图象,并写出该函数的一条性质;(3)结合函数图象,写出点E,F相距3个单位长度时t的值.24.(10分)为了满足市民的需求,我市在一条小河AB两侧开辟了两条长跑锻炼线路,如图:①A﹣D﹣C﹣B;②A﹣E﹣B.经勘测,点B在点A的正东方,点C在点B的正北方10千米处,点D在点C的正西方14千米处,点D在点A的北偏东45°方向,点E 在点A的正南方,点E在点B的南偏西60°方向.(参考数据:≈1.41,≈1.73)(1)求AD的长度.(结果精确到1千米)(2)由于时间原因,小明决定选择一条较短线路进行锻炼,请计算说明他应该选择线路①还是线路②?25.(10分)如图,在平面直角坐标系中,抛物线y=ax2+bx+2过点(1,3),且交x轴于点A(﹣1,0),B两点,交y轴于点C.(1)求抛物线的表达式;(2)点P是直线BC上方抛物线上的一动点,过点P作PD⊥BC于点D,过点P作y 轴的平行线交直线BC于点E,求△PDE周长的最大值及此时点P的坐标;(3)在(2)中△PDE周长取得最大值的条件下,将该抛物线沿射线CB方向平移个单位长度,点M为平移后的抛物线的对称轴上一点.在平面内确定一点N,使得以点A,P,M,N为顶点的四边形是菱形,写出所有符合条件的点N的坐标,并写出求解点N的坐标的其中一种情况的过程.26.(10分)在Rt△ABC中,∠ACB=90°,∠B=60°,点D为线段AB上一动点,连接CD.(1)如图1,若AC=9,BD=,求线段AD的长;(2)如图2,以CD为边在CD上方作等边△CDE,点F是DE的中点,连接BF并延长,交CD的延长线于点G.若∠G=∠BCE,求证:GF=BF+BE;(3)在CD取得最小值的条件下,以CD为边在CD右侧作等边△CDE.点M为CD所在直线上一点,将△BEM沿BM所在直线翻折至△ABC所在平面内得到△BNM.连接AN,点P为AN的中点,连接CP,当CP取最大值时,连接BP,将△BCP沿BC所在直线翻折至△ABC所在平面内得到△BCQ,请直接写出此时的值.2023年重庆市中考数学试卷(A卷)参考答案与试题解析一、选择题:(本大题10个小题,每小题4分,共40分)在每个小题的下面,都给出了代号为A、B、C、D的四个答案,其中只有一个是正确的,请将答题卡上题号右侧正确答案所对应的方框涂黑.1.【分析】只有符号不同的两个数叫做互为相反数,由此即可得到答案.【解答】解:8的相反数是﹣8.故选:A.【点评】本题考查相反数,关键是掌握相反数的定义.2.【分析】根据从正面看得到的图形是主视图,可得答案.【解答】解:从正面看,底层是两个小正方形,上层的右边是一个小正方形,故选:D.【点评】本题考查了简单组合体的三视图.解题的关键是理解简单组合体的三视图的定义,明确从正面看得到的图形是主视图.3.【分析】根据k=xy对各选项进行逐一判断即可.【解答】解:∵反比例函数y=﹣,∴k=﹣4,A、∵1×4=4≠﹣4,∴此点不在函数图象上,故本选项不合题意;B、∵﹣1×(﹣4)=4≠﹣4,∴此点不在函数图象上,故本选项不合题意;C、∵﹣2×2=﹣4,∴此点在函数图象上,故本选项符合题意;D、∵2×2=4≠﹣4,∴此点不在函数图象上,故本选项不合题意.故选:C.【点评】本题考查的是反比例函数图象上点的坐标特点,熟知反比例函数中k=xy为定值是解答此题的关键.4.【分析】根据相似三角形的性质:相似三角形周长的比等于相似比,求解即可.【解答】解:∵两个相似三角形周长的比为1:4,∴这两个三角形对应边的比为1:4,故选:B.【点评】本题考查了相似三角形的性质,熟练掌握相似三角形的性质是解题的关键.5.【分析】根据平行线的性质,可以求得∠BAC+∠1=180°,然后根据∠1的度数和AD⊥AC,即可得到∠2的度数.【解答】解:∵AB∥CD,∴∠BAC+∠1=180°,∵∠1=55°,∴∠BAC=125°,∵AD⊥AC,∴∠CAD=90°,∴∠2=∠BAC﹣∠CAD=35°,故选:A.【点评】本题考查平行线的性质、垂线,解答本题的关键是明确题意,利用数形结合的思想解答.6.【分析】化简题干中的式子得到4+2,计算出2<<2.5.利用不等式的性质,得出式子的值所在的范围.【解答】解:原式=4+2.∵2.52=6.25,∴2<<2.5,∴4<2<5,∴8<4+2<9.故选:B.【点评】本题以计算选择为背景考查了无理数的估算,考核了学生对无理数范围确定及不等式的性质的掌握,解题关键是化简式子并确定无理数的范围利用不等式的性质解决问题.解题时应注意合理缩小无理数的范围得到最准确的答案.7.【分析】根据图形可以写出前几个图案需要的小木棒的数量,即可发现小木棒数量的变化规律,从而可以解答本题.【解答】解:由图可得,图案①有:4+5=9根小木棒,图案②有:4+5×2=14根小木棒,图案③有:4+5×3=19根小木棒,…,∴第n个图案有:(4+5n)根小木棒,∴第⑧个图案有:4+5×8=44根小木棒,故选:B.【点评】本题考查图形的变化类、列代数式,解答本题的关键是明确题意,利用数形结合的思想解答.8.【分析】根据切线的性质得到OB⊥AC,求得∠ABO=∠CBO=90°,得到OB=AB =2,根据勾股定理即可得到结论.【解答】解:连接OB,∵AC是⊙O的切线,∴OB⊥AC,∴∠ABO=∠CBO=90°,∵∠A=30°,AB=2,∴OB=AB=2,∵BC=3,∴OC===,故选:C.【点评】本题考查了切线的性质,解直角三角形,正确的作出辅助线是解题的关键.9.【分析】根据正方形的性质可得AD=AB,∠BAD=∠ABC=∠ADC=90°,将△ADF绕点A顺时针旋转90°,得△ABG,易证△GAE≌△FAE(SAS),根据全等三角形的性质可得∠AEF=∠AEG,进一步根据∠FEC=180°﹣∠AEF﹣∠AEB求解即可.【解答】解:在正方形ABCD中,AD=AB,∠BAD=∠ABC=∠ADC=90°,将△ADF绕点A顺时针旋转90°,得△ABG,如图所示:则AF=AG,∠DAF=∠BAG,∵∠EAF=45°,∴∠BAE+∠DAF=45°,∴∠GAE=∠FAE=45°,在△GAE和△FAE中,,∴△GAE≌△FAE(SAS),∴∠AEF=∠AEG,∵∠BAE=α,∴∠AEB=90°﹣α,∴∠AEF=∠AEB=90°﹣α,∴∠FEC=180°﹣∠AEF﹣∠AEB=180°﹣2×(90°﹣α)=2α,故选:A.【点评】本题考查了正方形的性质,全等三角形的判定和性质,涉及旋转的性质,添加合适的辅助线是解题的关键.10.【分析】根据给定的定义,举出符合条件的说法①和②.说法③需要对绝对操作分析添加一个和两个绝对值的情况,并将结果进行比较排除相等的结果,汇总得出答案.【解答】解:|x﹣y|﹣z﹣m﹣n=x﹣y﹣z﹣m﹣n,故说法①正确.若使其运算结果与原多项式之和为0,需出现﹣x,显然无论怎么添加绝对值,都无法使x的符号为负号,故说法②正确.当添加一个绝对值时,共有4种情况,分别是|x﹣y|﹣z﹣m﹣n=x﹣y﹣z﹣m﹣n;x﹣|y ﹣z|﹣m﹣n=x﹣y+z﹣m﹣n;x﹣y﹣|z﹣m|﹣n=x﹣y﹣z+m﹣n;x﹣y﹣z﹣|m﹣n|=x﹣y ﹣z﹣m+n.当添加两个绝对值时,共有3种情况,分别是|x﹣y|﹣|z﹣m|﹣n=x﹣y﹣z+m ﹣n;|x﹣y|﹣z﹣|m﹣n|=x﹣y﹣z﹣m+n;x﹣|y﹣z|﹣|m﹣n|=x﹣y+z﹣m+n.共有7种情况;有两对运算结果相同,故共有5种不同运算结果,故说法③不符合题意.故选:C.【点评】本题考查新定义题型,根据多给的定义,举出符合条件的代数式进行情况讨论;需要注意去绝对值时的符号,和所有结果可能的比较.主要考查绝对值计算和分类讨论思想的应用.二、填空题:(本大题8个小题,每小题4分,共32分)请将每小题的答案直接填在答题卡中对应的横线上.11.【分析】根据负整数指数幂和零指数幂计算即可.【解答】解:2﹣1+30=+1=,故答案为:.【点评】本题考查了负整数指数幂,零指数幂,熟练掌握这些知识是解题的关键.12.【分析】利用多边形内角和公式及正多边形性质易得∠B的度数,AB=BC,再根据等边对等角,利用三角形内角和定理即可求得答案.【解答】解:∵五边形ABCDE是正五边形,∴AB=BC,∠B=(5﹣2)×180°÷5=108°,∴∠BAC=∠BCA===36°,故答案为:36°.【点评】本题主要考查多边形内角和及正多边形性质,利用其求得∠B的度数是解题的关键.13.【分析】画树状图,共有9种等可能的结果,其中两次都摸到红球的结果有1种,再由概率公式求解即可.【解答】解:画树状图如下:共有9种等可能的结果,其中两次都摸到红球的结果有1种,∴两次都摸到红球的概率是,故答案为:.【点评】此题考查的是树状图法以及概率公式.树状图法可以不重复不遗漏的列出所有可能的结果,适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.14.【分析】根据今年六月份提供就业岗位1501个,并按计划逐月增长,预计八月份将提供岗位1815个,列一元二次方程即可.【解答】解:根据题意,得1501(1+x)2=1815,故答案为:1501(1+x)2=1815.【点评】本题考查了一元二次方程的应用,理解题意并根据题意建立等量关系是解题的关键.15.【分析】先证明△ABE≌△CAF(AAS),根据全等三角形的性质可得AF=BE=4,AE=CF=1,进一步可得EF的长.【解答】解:∵BE⊥AD,CF⊥AD,∴∠BEA=∠AFC=90°,∴∠BAE+∠ABE=90°,∵∠BAC=90°,∴∠BAE+∠FAC=90°,∴∠FAC=∠ABE,在△ABE和△CAF中,,∴△ABE≌△CAF(AAS),∴AF=BE,AE=CF,∵BE=4,CF=1,∴AF=BE=4,AE=CF=1,∴EF=AF﹣AE=4﹣1=3,故答案为:3.【点评】本题考查了全等三角形的判定和性质,等腰直角三角形的性质,熟练掌握全等三角形的判定方法是解题的关键.16.【分析】连接BD,根据圆周角定理证得BD是⊙O的直径,利用勾股定理求得直径,然后利用圆的面积减去矩形的面积即可求得阴影部分的面积.【解答】解:连接BD,∵∠BAD=90°,∴BD是⊙O的直径,∵AB=4,AD=3,∴BD===5,=S⊙O﹣S矩形ABCD=﹣3×4=π﹣12.∴S阴影故答案为:π﹣12.【点评】本题考查了圆的面积和矩形的面积,解题的关键是明确阴影部分的面积是圆的面积减去矩形的面积,属于中考常考题型.17.【分析】先解不等式组,根据至少有2个整数解求出a的取值范围,再解分式方程,根据解是非负整数,可求出满足条件的a的值,进一步求解即可.【解答】解:解不等式组,得,∵至少有2个整数解,∴≤4,∴a≤6,解分式方程+=2,得y=,∵y的值是非负整数,a≤6,∴当a=5时,y=2,当a=3时,y=1,当a=1时,y=0,∵y=2是分式方程的增根,∴a=5(舍去),∴满足条件的a的值有3和1,∵3+1=4,∴所有满足条件的整数a的值之和是4.故答案为:4.【点评】本题考查了分式方程与一元一次不等式组的综合,熟练掌握解一元一次不等式组和分式方程的解法是解题的关键.18.【分析】根据递减数的概念列方程求a的值,根据递减数的概念先求得10a﹣9b﹣11c=d,然后根据题意列出两个三位数字之和,结合能被9整除的数的特征分析满足条件的最大值.【解答】解:由题意可得10a+3﹣31=12,解得a=4,∴这个数为4312,由题意可得,10a+b﹣(10b+c)=10c+d,整理,可得10a﹣9b﹣11c=d,一个“递减数”的前三个数字组成的三位数与后三个数字组成的三位数的和为:100a+10b+c+100b+10c+d=100a+10b+c+100b+10c+10a﹣9b﹣11c=110a+101b=99(a+b)+11a+2b,又∵一个“递减数”的前三个数字组成的三位数与后三个数字组成的三位数的和能被9整除,∴是整数,且a≠b≠c≠d,1≤a≤9,1≤b≤9,1≤c≤9,0≤d≤9,a=9时,原四位数可得最大值,此时b只能取0,不符合题意,舍去,当a=8时,b=1,此时71﹣11c=d,c取9或8或7时,均不符合题意,当c取6时,d=5,∴满足条件的数的最大值是8165,故答案为:4312;8165.【点评】本题考查新定义运算,理解新定义概念,正确推理计算是解题关键.三、解答题:(本大题8个小题,第19题8分,其余每题各10分,共78分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形(包括辅助线),请将解答过程书写在答题卡中对应的位置上.19.【分析】(1)先由单项式乘以多项式,平方差公式进行化简,然后合并同类项即可;(2)先将括号内的进行合并,除法变成乘法,再约分化简即可.【解答】解:(1)a(2﹣a)+(a+1)(a﹣1)=2a﹣a2+a2﹣1=2a﹣1.(2)÷(x﹣)===.【点评】此题主要是考查了分式的混合运算,整式的混合运算,能够熟练运用平方差公式,完全平方公式是解答此题的关键.20.【分析】根据平行四边形的性质和全等三角形的判定和性质解答即可.【解答】证明:∵四边形ABCD是平行四边形,∴DC∥AB.∴∠ECO=∠FAO.∵EF垂直平分AC,∴OA=OC.又∠EOC=∠FOA,∴△COE≌△AOF(ASA).∴OE=OF;过平行四边形对角线中点的直线被一组对边截得的线段被对角线的中点平分,故答案为:∠FAO;OA=OC;∠FOA;被一组对边截得的线段被对角线的中点平分.【点评】此题考查命题与定理,关键是根据平行四边形的性质和全等三角形的判定和性质解答.21.【分析】(1)根据众数的定义可得a的值,根据中位数的定义可得b的值,用“1”减去其他两组所占百分百可得m的值;(2)可比较中位数,众数与方差得出结论;(3)利用样本估计总体可求解.【解答】解:(1)A款智能玩具飞机10架一次充满电后运行最长时间中,72出现的次数最多,故众数a=72,把B款智能玩具飞机10架一次充满电后运行最长时间从小到大排列,排在中间的两个数是70和71,故中位数b==70.5,m%=1﹣50%﹣40%=10%,即m=10.故答案为:72,70.5,10;(2)A款智能玩具飞机运行性能更好,理由如下:虽然两款智能玩具飞机运行最长时间的平均数相同,但A款智能玩具飞机运行最长时间的中位数和众数均高于B款智能玩具飞机,所以A款智能玩具飞机运行性能更好;(答案不唯一);(3)200×+120×(1﹣40%)=120+72=192(架),答:估计两款智能玩具飞机运行性能在中等及以上的大约共有192架.【点评】本题考查扇形统计图,频数分布表,中位数,众数,方差以及用样本估计总体,解题关键是从统计图表中获取有用信息是解题的关键.22.【分析】(1)设购买炸酱面x份,牛肉面y份,利用总价=单价×数量,结合该公司花费3000元一次性购买了杂酱面、牛肉面共170份,可得出关于x,y的二元一次方程组,解之即可得出结论;(2)设购买牛肉面m份,则购买炸酱面(1+50%)m份,利用单价=总价÷数量,结合每份杂酱面比每份牛肉面的价格少6元,可得出关于m的分式方程,解之经检验后,即可得出结论.【解答】解:(1)设购买炸酱面x份,牛肉面y份,根据题意得:,解得:.答:购买炸酱面80份,牛肉面90份;(2)设购买牛肉面m份,则购买炸酱面(1+50%)m份,根据题意得:﹣=6,解得:m=60,经检验,m=60是所列方程的解,且符合题意.答:购买牛肉面60份.【点评】本题考查了二元一次方程组的应用以及分式方程的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)找准等量关系,正确列出分式方程.23.【分析】(1)根据动点E、F运动的路线和速度分段进行分析,写出不同时间的函数表达式并注明自变量t的取值范围即可;(2)根据画函数图象的方法分别画出两段函数图象,再根据图象写出函数的一个性质即可;(3)根据两个函数关系式分别求出当y=3时的t值即可解决问题.【解答】解:(1)当点E、F分别在AB、AC上运动时,△AEF为边长等于t的等边三角形,∴点E,F的距离等于AE、AF的长,∴当0≤t≤4时,y关于t的函数表达式为y=t,当点E、F都在BC上运动时,点E,F的距离等于4﹣2(t﹣4),∴当4<t≤6时,y关于t的函数表达式为y=4﹣2(t﹣4)=12﹣2t,∴y关于t的函数表达式为;(2)由(1)中得到的函数表达式可知:当t=0时,y=0;当t=4时,y=4;当t=6时,y=0,分别描出三个点(0,0),(4,4),(6,0),然后顺次连线,如图:该函数的其中一个性质:当0≤t≤4时,y随t的增大而增大.(答案不唯一,正确即可)(3)把y=3分别代入y=t和y=12﹣2t中,得:3=t,3=12﹣2t,解得:t=3或t=4.5,∴点E,F相距3个单位长度时t的值为3或4.5.【点评】本题是三角形综合题,主要考查等边三角形的性质、一次函数的图象和性质,以及一次函数的应用,深入理解题意是解决问题的关键.24.【分析】(1)过D作DF⊥AE,垂足为F,根据题意可得:四边形ABCF是矩形,从而可得AF=BC=10千米,然后在Rt△AFD中,利用锐角三角函数的定义进行计算,即可解答;(2)先在Rt△ADF中,根据等腰三角形的判定求出AF的长,再在Rt△ABE中,利用锐角三角函数的定义求出AB,AE的长,最后利用线段的和差关系进行计算,比较即可解答.【解答】解:(1)过D作DF⊥AE,垂足为F,由题意得:四边形ABCF是矩形,∴AF=BC=10千米,在Rt△ADF中,∠DAF=45°,∴AD===10≈10×1.41≈14(千米).∴AD的长度约为14千米;(2)小明应该选择线路①,理由:在Rt△ADF中,∠DAF=45°,AF=10千米,∴∠ADF=45°=∠DAF,∴DF=AF=10千米,在Rt△ABE中,∠ABE=90°﹣60°=30°,AB=DF+CD=24千米,∴AE=AB•tan30°=24×=8(千米),EB=2AE=16千米,按路线①A﹣D﹣C﹣B走的路程为AD+DC+CB=14+14+10=38(千米)按路线②A﹣E﹣B走的路程为AE+EB=8+16≈24×1.73=41.52(千米)∵38千米<41.52千米,∴小明应该选择线路①.【点评】本题考查了解直角三角形的应用﹣方向角问题,根据题目的已知条件并结合图形添加适当的辅助线是解题的关键.25.【分析】(1)由待定系数法即可求解;(2)由△PDE周长的最大值=PE(1+sin∠PED+cos∠PED),即可求解;(3)当AP是对角线时,由中点坐标公式和AM=AN,列出方程组即可求解;当AM或AN是对角线时,同理可解.【解答】解:(1)由题意得:,解得:,则抛物线的表达式为:y=﹣x2+x+2;(2)令y=﹣x2+x+2=0,解得:x=4或﹣1,即点B(4,0),∵PE∥y轴,则∠PED=∠OCB,则tan∠PED=tan∠OCB=2,则sin∠PED=,cos∠PED=,由点B、C的坐标得,直线BC的表达式为:y=﹣x+2,则PE=﹣x2+x+2+x﹣2=﹣(x﹣2)2+2≤2,即PE的最大值为2,此时,点P(2,3),则△PDE周长的最大值=PE(1+sin∠PED+cos∠PED)=(1++)PE=,即△PDE周长的最大值为,点P(2,3);(3)抛物线沿射线CB方向平移个单位长度,相当于向右平移2个单位向下平移1个单位,则平移后抛物线的对称轴为x=,设点M(,m),点N(s,t),由点A、P的坐标得,AP2=18,当AP是对角线时,由中点坐标公式和AM=AN得:,解得:,即点N的坐标为:(﹣,);当AM或AN是对角线时,由中点坐标公式和AN=AP或AM=AP得:或,解得:(不合题意的值已舍去),即点N的坐标为:(,);综上,点N的坐标为:(,﹣)或(,)或(﹣,).【点评】本题是二次函数综合题,主要考查了一次函数的性质、菱形的性质、平行四边形的性质、解直角三角形等,其中(3),要注意分类求解,避免遗漏.26.【分析】(1)在Rt△ABC中,由∠B=60°,AC=9,可得BC==3,AB=2BC =6,即得AD=AB﹣BD=5;(2)取AB的中点O,连接OC,证明△BOC为等边三角形,得CO=CB,∠OCB=∠BOC=60°,可得△OCD≌△BCE(SAS),有∠EBC=∠DOC=120°,故OC∥BE,在GF上截取HF=BF,连接DH,可证△BEF≌△HDF(SAS),得BE=HD,∠BEF=∠HDF,有DH∥BE,DH∥OC,可得∠HDG=∠OCD,知∠G=∠HDG,HG=HD,从而HG=BE,GF=HG+FH=BE+BF;(3)取AB的中点S,连接PS,在CD取得最小值时,CD⊥AB,设AB=4a,则BC=2a,AC=2a,用面积法得CD==a,BD=BC=a,证明△BCD≌△BCE (SAS),知BD=BE=a,根据将△BEM沿BM所在直线翻折至△ABC所在平面内得到△BNM,有BE=BN=a,故N的运动轨迹是以B为圆心,a为半径的圆,又PS=BN =a,故P的运动轨迹是以S为圆心,a为半径的圆,当CP最大时,C,P,S三点共线,过P作PT⊥AC于T,过N作NR⊥AC于R,可得△BSC是等边三角形,∠PCB=60°,BC=CS=2a,而CP=CS+PS=2a+a=a,可求得PT=CP=a,CT=PT =a,AT=AC﹣CT=a,连接PQ交NR于W,根据将△BCP沿BC所在直线翻折至△ABC所在平面内得到△BCQ,知PQ⊥BC,故即PW∥AR,PW是△ANR的中位线,同理可得PT是△ANR的中位线,即可得PT=NW=RW=a,PW=AR=AT=a,根据将△BCP沿BC所在直线翻折至△ABC所在平面内得到△BCQ,得CP=CQ,∠QCP=120°,有PQ=CP=a,即得WQ=PQ﹣PW=a,从而NQ==a,=.【解答】(1)解:在Rt△ABC中,∠ACB=90°,∵∠B=60°,AC=9,∴BC==3,AB=2BC=6∵BD=,∴AD=AB﹣BD=5;(2)证明:取AB的中点O,连接OC,如图:在Rt△ABC中,点O为斜边AB的中点,∴OC=OB,∵∠ABC=60°,∴△BOC为等边三角形,∴CO=CB,∠OCB=∠BOC=60°,∴∠DOC=120°,∵△CDE为等边三角形,∴CD=CE,∠DCE=60°,∴∠DCE=∠OCB=60°,即∠OCD+∠OCE=∠OCE+∠BCE,∴∠OCD=∠BCE,在△OCD和△BCE中,,∴△OCD≌△BCE(SAS),∴∠EBC=∠DOC=120°,∴∠OCB+∠EBC=180°,∴OC∥BE,在GF上截取HF=BF,连接DH,∵点F是DE的中点,∴FE=FD.在△BEF和△HDF中,,∴△BEF≌△HDF(SAS),∴BE=HD,∠BEF=∠HDF,∴DH∥BE,∴DH∥OC,∴∠HDG=∠OCD,又∠G=∠BCE,∴∠G=∠HDG,∴HG=HD,∴HG=BE,∴GF=HG+FH=BE+BF;(3)解:取AB的中点S,连接PS,如图:在CD取得最小值时,CD⊥AB,设AB=4a,则BC=2a,AC=2a,=AC•BC=AB•CD,∵2S△ABC∴CD==a,BD=BC=a,∵△CDE是等边三角形,∴∠DCE=60°,CD=CE,∴∠BCE=∠DCE﹣∠DCB=60°﹣30°=30°=∠DCB,∵BC=BC,∴△BCD≌△BCE(SAS),。

重庆数学中考试题及答案

重庆数学中考试题及答案

重庆数学中考试题及答案一、选择题(每题3分,共30分)1. 下列哪个选项是方程x^2 - 5x + 6 = 0的解?A. x = 2B. x = 3C. x = 1D. x = 4答案:B2. 一个三角形的两边长分别为3和4,第三边长x满足三角形的三边关系,那么x的取值范围是?A. 1 < x < 7B. 2 < x < 5C. 3 < x < 7D. 1 < x < 5答案:C3. 一个数的平方根是4,那么这个数是?A. 16B. 8C. 6D. 4答案:A4. 一个圆的半径是5,那么它的面积是?A. 25πB. 50πC. 100πD. 200π答案:C5. 函数y = 2x + 3的图象与x轴的交点坐标是?A. (-3/2, 0)B. (3/2, 0)C. (-1, 0)D. (1, 0)答案:B6. 一个数的相反数是-5,那么这个数是?A. 5B. -5C. 0D. 10答案:A7. 一个等腰三角形的底角是45度,那么它的顶角是?A. 90度B. 45度C. 60度D. 30度答案:A8. 一个数的绝对值是5,那么这个数可以是?A. 5B. -5C. 5或-5D. 0答案:C9. 一个等差数列的首项是2,公差是3,那么第5项是?A. 17B. 14C. 11D. 8答案:A10. 一个二次函数的顶点坐标是(2, -1),那么这个函数的对称轴是?A. x = 2B. x = -2C. x = 1D. x = 3答案:A二、填空题(每题3分,共30分)1. 一个数的立方根是2,那么这个数是______。

答案:82. 一个数的倒数是1/3,那么这个数是______。

答案:33. 一个数的平方是25,那么这个数是______。

答案:±54. 一个数除以3余1,除以5余2,那么这个数最小是______。

答案:115. 一个三角形的内角和是______。

2024年重庆市中考数学真题卷(A卷)和答案

2024年重庆市中考数学真题卷(A卷)和答案

重庆市2024年初中学业水平暨高中招生考试数学试题(A 卷)(全卷共三个大题,满分150分,考试时间120分钟)注意事项:1.试题的答案书写在答题卡上,不得在试题卷上直接作答;2.作答前认真阅读答题卡上的注意事项;3.作图(包括作辅助线)请一律用黑色2B 铅笔完成;4.考试结束,由监考人员将试题卷和答题卡一并收回.参考公式:抛物线()20y ax bx c a =++≠的顶点坐标为24,24b ac b aa ⎛⎫-- ⎪⎝⎭,对称轴为2bx a =-.一、选择题:(本大题10个小题,每小题4分,共40分)在每个小题的下面,都给出代号为A 、B 、C 、D 的四个答案,其中只有一个是正确的,请将答题卡上题号右侧确答案所对应的方框涂黑。

1.下列四个数中,最小的数是( )A .-2B .0C .3D .12-2.下列四种化学仪器的示意图中,是轴对称图形的是()A .B .C .D .3.已知点()3,2-在反比例函数()0ky k x=≠的图象上,则k 的值为( )A .-3B .3C .-6D .64.如图,,165AB CD ∠=∥,则2∠的度数是()A .105B .115C .125D .1355.若两个相似三角形的相似比是1∶3,则这两个相似三角形的面积比是( )A .13:B .14:C .16:D .19:6.烷烃是一类由碳、氢元素组成的有机化合物质,下图是这类物质前四种化合物的分子结构模型图,其中灰球代表碳原子,白球代表氢原子。

第1种如图①有4个氢原子,第2种如图②有6个氢原子,第3种如图③有8个氢原子,……按照这一规律,第10种化合物的分子结构模型中氢原子的个数是()A .20B .22C .24D .267.已知m =,则实数m 的范围是( )A .23m <<B .34m <<C .45m <<D .56m <<8.如图,在矩形ABCD 中,分别以点A 和C 为圆心,AD 长为半径画弧,两弧有且仅有一个公共点。

重庆数学中考试题及答案

重庆数学中考试题及答案

重庆数学中考试题及答案****一、选择题(每题3分,共30分)1. 下列哪个数是正数?A. -2B. 0C. 3D. -0.5**答案:C**2. 以下哪个选项是二次方程的解?A. x^2 - 4x + 4 = 0B. x^2 + 4x + 4 = 0C. x^2 - 4x - 4 = 0D. x^2 + 4x - 4 = 0**答案:A**3. 以下哪个函数是一次函数?A. y = 2x + 3B. y = x^2 + 2C. y = 3x^3 - 2D. y = 1/x**答案:A**4. 以下哪个图形是轴对称图形?A. 圆B. 椭圆C. 抛物线D. 双曲线**答案:A**5. 以下哪个选项是等腰三角形?A. 三边长分别为3, 4, 5B. 三边长分别为2, 2, 3C. 三边长分别为1, 1, 2D. 三边长分别为4, 5, 6**答案:B**6. 下列哪个选项是锐角三角形?A. 三角形内角分别为30°, 60°, 90°B. 三角形内角分别为45°, 45°, 90°C. 三角形内角分别为60°, 60°, 60°D. 三角形内角分别为50°, 70°, 60° **答案:D**7. 以下哪个选项是不等式?A. 2x + 3 = 5B. 3x - 2 > 4C. 5y - 7 = 0D. 4z + 6 ≤ 10**答案:B**8. 以下哪个选项是反比例函数?A. y = 2xB. y = 1/xC. y = x^2D. y = 3x + 2**答案:B**9. 以下哪个选项是相似三角形?A. 三角形ABC和三角形DEF,AB/DE = AC/DF = BC/EFB. 三角形ABC和三角形DEF,AB/DE ≠ AC/DF = BC/EFC. 三角形ABC和三角形DEF,AB/DE = AC/DF ≠ BC/EFD. 三角形ABC和三角形DEF,AB/DE ≠ AC/DF ≠ BC/EF **答案:A**10. 以下哪个选项是圆的标准方程?A. (x - 2)^2 + (y - 3)^2 = 1B. x^2 + y^2 = 4C. (x - 1)^2 + (y + 1)^2 = 9D. x^2 + y^2 - 2x + 4y - 4 = 0**答案:B**二、填空题(每题3分,共30分)11. 一个数的相反数是-5,这个数是 _______。

2023年重庆市中考数学真题(A卷)(答案解析)

2023年重庆市中考数学真题(A卷)(答案解析)

重庆市2023年初中学业水平暨高中招生考试数学试题(A 卷)一、选择题:(本大题10个小题,每小题4分,共40分)1.【答案】A【解析】解:8的相反数是8-,故选A .2.【答案】D【解析】从正面看第一层是2个小正方形,第二层右边1个小正方形,故选:D .3.【答案】C【解析】解:A 选项,将1x =代入反比例函数4y x =-得到14y =-≠,故A 项不符合题意;B 选项,项将1x =-代入反比例函数4y x =-得到44y =≠-,故B 项不符合题意;C 选项,项将=−2代入反比例函数4y x =-得到22y ==,故C 项符合题意;D 选项,项将2x =代入反比例函数4y x=-得到22y =-≠,故D 项不符合题意;故选C .4.【答案】B【解析】解:∵两个相似三角形周长的比为1:4,∴相似三角形的对应边比为1:4,故选B .5.【答案】A【解析】解:∵AB CD ∥,155∠=︒,∴18055125CAB Ð=°-°=°,∵AD AC ⊥,∴90CAD ∠=︒,∴21259035CAB CAD Ð=Ð-Ð=°-°=°,故选:A .6.【答案】B+=4=+∵2 2.5<<,∴45<<,∴849<+,故选:B .7.【答案】B【解析】解:第①个图案用了459+=根木棍,第②个图案用了45214+⨯=根木棍,第③个图案用了45319+⨯=根木棍,第④个图案用了45424+⨯=根木棍,……,第⑧个图案用的木棍根数是45844+⨯=根,故选:B .8.【答案】C【解析】解:连接OB ,∵AC 是O 的切线,B 为切点,∴OB AC ⊥,∵30A ∠=︒,AB =∴在Rt OAB 中,3tan 23OB AB A =⋅∠==,∵3BC =,∴在Rt OBC 中,OC ==,故选C .9.【答案】A【解析】将ADF 绕点A 逆时针旋转90︒至ABH,∵四边形ABCD 是正方形,∴AB AD =,90B D BAD C ∠=∠=∠=∠=︒,由旋转性质可知:DAF BAH ∠=∠,90D ABH ∠=∠=︒,AF AH =,∴180AHB ABC ∠+∠=︒,∴点H B C ,,三点共线,∵BAE α∠=,45EAF ∠=︒,90BAD HAF ∠=∠=︒,∴45DAF BAH α∠=∠=︒-,45EAF EAH ∠=∠=︒,∵90AHB BAH ∠+∠=︒,∴45AHB α∠=︒+,在AEF 和AEH 中AF AH FAE HAE AE AE =⎧⎪∠=∠⎨⎪=⎩,∴()AFE AHE SAS ≌,∴45AHE AFE α∠=∠=︒+,∴45AHE AFD AFE α∠=∠=∠=︒+,∴902DFE AFD AFE α∠=∠+∠=︒+,∵90DFE FEC C FEC ∠=∠+∠=∠+︒,∴2FEC α∠=,故选:A .10.【答案】C【解析】解:x y z m n x y z m n ----=----,故说法①正确.若使其运算结果与原多项式之和为0,必须出现x -,显然无论怎么添加绝对值,都无法使x 的符号为负,故说法②正确.当添加一个绝对值时,共有4种情况,分别是x y z m n x y z m n ----=----;x y z m n x y z m n ----=-+--;||x y z m n x y z m n ----=--+-;x y z m n x y z m n ----=---+.当添加两个绝对值时,共有3种情况,分别是x y z m n x y z m n ----=--+-;x y z m n x y z m n ----=---+;x y z m n x y z m n ----=-+-+.共有7种情况;有两对运算结果相同,故共有5种不同运算结果,故说法③不符合题意.故选:C .二、填空题:(本大题8个小题,每小题4分,共32分)11.【答案】1.5【解析】1023-+=11=1.52+.故答案为1.5.12.【答案】36°【解析】正五边形内角和:(5﹣2)×180°=3×180°=540°∴5401085B ︒︒∠==,∴180B 1801083622BAC ︒︒︒︒-∠-∠===.故答案为36°.13.【答案】19【解析】解:根据题意列表如下:红球白球蓝球红球(红球,红球)(白球,红球)(蓝球,红球)白球(红球,白球)(白球,白球)(蓝球,白球)蓝球(红球,蓝球)(白球,蓝球)(蓝球,蓝球)由表知,共有9种等可能结果,其中两次都摸到红球的有1种结果,所以两次摸到球的颜色相同的概率为19,故答案为:19.14.【答案】()2150111815x +=【解析】解:设七、八两个月提供就业岗位数量的月平均增长率为x ,根据题意得,()2150111815x +=,故答案为:()2150111815x +=.15.【答案】3【解析】解:∵90BAC ∠=︒,∴90EAB EAC ∠+∠=︒,∵BE AD ⊥,CF AD ⊥,∴90AEB AFC ∠=∠=︒,∴90ACF EAC ∠+∠=︒,∴ACF BAE ∠=∠,在AFC △和BEA △中:AEB CFA ACF BAE AB AC ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴()AAS AFC BEA ≌△△,∴4,1AF BE AE CF ====,∴413EF AF AE =-=-=,故答案为:3.16.【答案】25124π-【解析】解:连接BD ,∵四边形ABCD 是矩形,∴BD 是O 的直径,∵4,3AB AD ==,∴5BD ==,∴O 的半径为52,∴O 的面积为254π,矩形的面积为3412⨯=,∴阴影部分的面积为25124π-;故答案为25124π-;17.【答案】4【解析】解:+34222x x a ⎧≤⎪⎨⎪-≥⎩①②解不等式①得:5x ≤,解不等式②得:1+2a x ≥,∴不等式的解集为1+52a x ≤≤,∵不等式组至少有2个整数解,∴1+42a ≤,解得:6a ≤;∵关于y 的分式方程14222a y y-+=--有非负整数解,∴()1422a y ---=解得:12a y -=,即102a -≥且122a -≠,解得:1a ≥且5a ≠∴a 的取值范围是16a ≤≤,且5a ≠∴a 可以取:1,3,∴134+=,故答案为:4.18.【答案】①.4312②.8165【解析】解:∵a312是递减数,∴1033112a +-=,∴4a =,∴这个数为4312;故答案为:4312∵一个“递减数”的前三个数字组成的三位数abc 与后三个数字组成的三位数bcd 的和能被9整除,∴101010a b b c c d +--=+,∵1001010010abc bcd a b c b c d +=+++++,∴110010110100110001abc bcd a b c b b a b a b c +=++++++--=,∵()11010199112a b a b a b +=+++,能被9整除,∴112a b +能被9整除,∵各数位上的数字互不相等且均不为0,∴12345678,,,,,,,87654321a a a a a a a ab b b b b b b b ========⎧⎧⎧⎧⎧⎧⎧⎧⎨⎨⎨⎨⎨⎨⎨⎨========⎩⎩⎩⎩⎩⎩⎩⎩,∵最大的递减数,∴8,1a b ==,∴1089110c c d ⨯-⨯-=+,即:1171c d +=,∴c 最大取6,此时5d =,∴这个最大的递减数为8165.故答案为:8165.三、解答题:(本大题8个小题,第19题8分,其余每题各10分,共78分)19.【答案】(1)21a -(2)11x +【解析】(1)解:原式2221a a a =-+-21a =-;(2)原式()222.11x x x x x x ⎛⎫+-=÷ ⎪++⎝⎭()22211x x x x =÷++()22211x x x x +=⋅+11x =+.20.【答案】作图:见解析;FAO ∠;AO CO =;FOA ∠;被平行四边形一组对边所截,截得的线段被对角线中点平分【解析】解:如图,即为所求;证明:∵四边形ABCD 是平行四边形,∴DC AB ∥.∴ECO ∠=FAO ∠.∵EF 垂直平分AC ,∴AO CO =.又EOC ∠=FOA ∠.∴()COE AOF ASA ≅ .∴OE OF =.故答案为:FAO ∠;AO CO =;FOA ∠;由此得到命题:过平行四边形对角线中点的直线被平行四边形一组对边所截,截得的线段被对角线中点平分,故答案为:被平行四边形一组对边所截,截得的线段被对角线中点平分.21.【答案】(1)72,70.5,10;(2)B 款智能玩具飞机运行性能更好;因为B 款智能玩具飞机运行时间的方差比A 款智能玩具飞机运行时间的方差小,运行时间比较稳定;(3)两款智能玩具飞机运行性能在中等及以上的大约共有192架.【解析】(1)解:由题意可知10架A 款智能玩具飞机充满电后运行最长时间中,只有72出现了三次,且次数最多,则该组数据的众数为72,即72a =;由B 款智能玩具飞机运行时间的扇形图可知,合格的百分比为40%,则B 款智能玩具飞机运行时间合格的架次为:1040%4⨯=(架)则B 款智能玩具飞机运行时间优等的架次为:10451--=(架)则B 款智能玩具飞机的运行时间第五、第六个数据分别为:70,71,故B 款智能玩具飞机运行时间的中位数为:707170.52+=B 款智能玩具飞机运行时间优等的百分比为:1100%10%10⨯=即10m =故答案为:72,70.5,10;(2)B 款智能玩具飞机运行性能更好;因为B 款智能玩具飞机运行时间的方差比A 款智能玩具飞机运行时间的方差小,运行时间比较稳定;(3)200架A 款智能玩具飞机运行性能在中等及以上的架次为:620012010⨯=(架)200架A 款智能玩具飞机运行性能在中等及以上的架次为:61207210⨯=(架)则两款智能玩具飞机运行性能在中等及以上的共有:12072192+=架,答:两款智能玩具飞机运行性能在中等及以上的大约共有192架.22.【答案】(1)购买杂酱面80份,购买牛肉面90份(2)购买牛肉面60份【解析】(1)解:设购买杂酱面x 份,则购买牛肉面()170x -份,由题意知,()152********x x +⨯-=,解得,80x =,∴17090x -=,∴购买杂酱面80份,购买牛肉面90份;(2)解:设购买牛肉面a 份,则购买杂酱面1.5a 份,由题意知,1260120061.5a a+=,解得60a =,经检验,60a =是分式方程的解,∴购买牛肉面60份.23.【答案】(1)当04t <≤时,y t =;当46t <≤时,122y t =-;(2)图象见解析,当04t <≤时,y 随x 的增大而增大(3)t 的值为3或4.5【解析】(1)解:当04t <≤时,连接EF ,由题意得AE AF =,60A ∠=︒,∴AEF △是等边三角形,∴y t =;当46t <≤时,122y t =-;(2)函数图象如图:当04t <≤时,y 随t 的增大而增大;(3)当04t <≤时,3y =即3t =;当46t <≤时,3y =即1223t -=,解得 4.5t =,故t 的值为3或4.5.24.【答案】(1)AD 的长度约为14千米(2)小明应该选择路线①,理由见解析【解析】(1)解:过点D 作DF AB ⊥于点F ,由题意可得:四边形BCDF 是矩形,∴10DF BC ==千米,∵点D 在点A 的北偏东45︒方向,∴45DAF DAN Ð=Ð=°,∴14sin 45DF AD ==°千米,答:AD 的长度约为14千米;(2)由题意可得:10BC =,14CD =,∴路线①的路程为:14102438AD DC BC ++=+=+(千米),∵10DF BC ==,45DAF DAN Ð=Ð=°,90DFA ∠=︒,∴DAF △为等腰直角三角形,∴10AF DF ==,∴101424AB AF BF AF DC =+=+=+=,由题意可得60EBS Ð=°,∴60E ∠=︒,∴tan 60AB AE ==°,sin 60AB BE ==°,所以路线②的路程为:42AE BE +=千米,∴路线①的路程<路线②的路程,故小明应该选择路线①.25.【答案】(1)213222y x x =-++(2)PDE △周长的最大值65105+,此时点()2,3P (3)以点A ,P ,M ,N 为顶点的四边形是菱形时59,22N ⎛⎫- ⎪⎝⎭或137,22⎛ ⎝⎭或137,22⎛⎫- ⎪ ⎪⎝⎭【解析】(1)把()1,3、()1,0A -代入22y ax bx =++得,3202a b a b =++⎧⎨=-+⎩,解得1232a b ⎧=-⎪⎪⎨⎪=⎪⎩,∴抛物线的表达式为213222y x x =-++;(2)延长PE 交x 轴于F,∵过点P 作PD BC ⊥于点D ,过点P 作y 轴的平行线交直线BC 于点E ,∴DEP BCO ∠=∠,90PDE COB ∠=∠=︒,∴DPE OBC ,∴DPE PEOBC BC =周长周长 ,∴PEDPE OBC BC =⋅周长周长 ,∴当PE 最大时PDE △周长的最大∵抛物线的表达式为213222y x x =-++,∴()4,0B ,∴直线BC 解析式为122y x =-+,BC ==设213,222P m m m ⎛⎫-++ ⎪⎝⎭,则1,22E m m ⎛⎫-+ ⎪⎝⎭∴()222131112222222222PE m m m m m m ⎛⎫=-++--+=-+=--+ ⎪⎝⎭,∴当2m =时2PE =最大,此时()2,3P ∵BOC周长为6OC OB BC ++=+,∴PDE △(651065++=,此时()2,3P ,即PDE △周长的最大值65105+,此时点()2,3P ;(3)∵将该抛物线沿射线CB方向平移个单位长度,可以看成是向右平移2个单位长度再向下平移一个单位长度,∴平移后的解析式为()()221317222142222y x x x =--+-+-=-+-,此抛物线对称轴为直线72x =,∴设7,2M n ⎛⎫ ⎪⎝⎭,(),N s t ∵()2,3P ,()1,0A -∴218PA =,()()22227923324PM n n ⎛⎫=-+-=+- ⎪⎝⎭,()22227811024AM n n ⎛⎫=++-=+ ⎪⎝⎭,当PA 为对角线时,此时以点A ,P ,M ,N 为顶点的四边形是菱形∴PA 与MN 互相平分,且PM AM=∴()22981344n n +-=+,解得32n =-∵PA 中点坐标为2130,22-+⎛⎫ ⎪⎝⎭,MN 中点坐标为72,22s n t ⎛⎫+ ⎪+ ⎪ ⎪⎝⎭,∴7123s n t ⎧+=⎪⎨⎪+=⎩,解得5292s t ⎧=-⎪⎪⎨⎪=⎪⎩,此时59,22N ⎛⎫- ⎪⎝⎭;当PA 为边长且AM 和PN 是对角线时,此时以点A ,P ,M ,N 为顶点的四边形是菱形∴AM 与PN 互相平分,且PMPA =∴()293184n +-=,解得3732n =±∵PN 中点坐标为23,22s t ++⎛⎫ ⎪⎝⎭,AM 中点坐标为7102,22n ⎛⎫- ⎪+ ⎪ ⎪⎝⎭,∴721230s t n ⎧+=-⎪⎨⎪+=+⎩,解得122s t ⎧=⎪⎪⎨⎪=±⎪⎩,此时137,22N ⎛⎫ ⎪ ⎪⎝⎭或137,22N ⎛- ⎝⎭;同理,当PA 为边长且AN 和PM 是对角线时,此时以点A ,P ,M ,N 为顶点的四边形是菱形∴AN 和PM 互相平分,且AM PA =281184n +=,此方程无解;综上所述,以点A ,P ,M ,N 为顶点的四边形是菱形时59,22N ⎛⎫- ⎪⎝⎭或137,22⎛⎫ ⎪ ⎪⎝⎭或137,22⎛- ⎝⎭;26.【答案】(1)(2)见解析(3)435【解析】(1)解:在Rt ABC 中,90ACB ∠=︒,=60B ∠︒,∴sin 32AC AB B ===,∵BD =,∴AD AB BD =-=(2)证明:如图所示,延长FB 使得FH FG =,连接EH ,∵F 是DE 的中点则DF FE =,FH FG =,GFD HFE ∠=∠,∴()SAS GFD HFE ≌,∴H G ∠=∠,∴EH GC ∥,∴60HEC ECD ∠=∠=︒∵DEC 是等边三角形,∴60DEC EDC ∠=∠=︒,∵60DEC DBC ==︒∠∠,∴,,,B C D E 四点共圆,∴EDB BCE ∠=∠,BEC BDC ∠=∠,∴6060BEH BEC BDC EDB ∠=︒-∠=︒-∠=∠,∵G BCE BDE H ∠=∠=∠=∠,∴H BEH ∠=∠,∴EB BH =,∴FH FG BF BH BF EB ==+=+;(3)解:如图所示,在CD 取得最小值的条件下,即CD AB ⊥,设4AB a =,则2BC a =,AC =,∴24AC BC a CD AB a⨯⨯===,12BD BC a ==,∵将BEM 沿BM 所在直线翻折至ABC 所在平面内得到BNM .∴BE BN=∴点N 在以B 为圆心,a 为半径的圆上运动,取AB 的中点S ,连接SP ,则SP 是ABN 的中位线,∴P 在半径为12a 的S 上运动,当CP 取最大值时,即,,P S C 三点共线时,此时如图,过点P 作PTAC ⊥于点T ,过点N 作NR AC ⊥于点R ,∵S 是AB 的中点,60ABC ∠=︒∴SC SB BC ==,∴BCS △是等边三角形,则60PCB ∠=︒,∴30PCA ACB BCP ∠=∠-∠=︒,∵2BC a =,4AB a =,∴2CS BC a ==,12PS a =∴52PC a =,15sin 24PT PC PCT PC a =⨯∠==,TC ==∵AC =,∴AT =,如图所示,连接PQ ,交NR 于点U ,则四边形PURT是矩形,∴PU AR ∥,P 是AN 的中点,∴1NU NP UR PA==即PD 是ANR 的中位线,同理可得PT 是ANR 的中位线,∴54NU UR PT a ===,12PU AR AT ===∵BCS △是等边三角形,将BCP 沿BC 所在直线翻折至ABC 所在平面内得到BCQ ,∴2120QCP BCP ∠=∠=︒∴PQ ===则UQ PQ PU =-=-=在Rt NUQ中,432NQ a =∴43432552a NQ CP a ==.。

2023年重庆市中考数学试卷(B卷)及其答案

2023年重庆市中考数学试卷(B卷)及其答案

2023年重庆市中考数学试卷(B卷)一、选择题:(本大题10个小题,每小题4分,共40分)在每个小题的下面,都给出了代号为A,B,C,D的四个答案,其中只有一个是正确的,请将答题卡上题号右侧正确答案所对应的方框涂黑. 1.(4分)4的相反数是()A.B.C.﹣4D.42.(4分)四个大小相同的正方体搭成的几何体如图所示,从正面看到的视图是()A.B.C.D.3.(4分)如图,直线a,b被直线c所截,若a∥b,∠1=63°,则∠2的度数为()A.27°B.53°C.63°D.117°4.(4分)如图,已知△ABC∽△EDC,AC:EC=2:3,若AB的长度为6,则DE的长度为()A.4B.9C.12D.13.55.(4分)反比例函数y=的图象一定经过的点是()A.(﹣3,2)B.(2,﹣3)C.(﹣2,﹣4)D.(2,3)6.(4分)用圆圈按如图所示的规律拼图案,其中第①个图案中有2个圆圈,第②个图案中有5个圆圈,第③个图案中有8个圆圈,第④个图案中有11个圆圈,…,按此规律排列下去,则第⑦个图案中圆圈的个数为()A.14B.20C.23D.267.(4分)估计×(﹣)的值应在()A.4和5之间B.5和6之间C.6和7之间D.7和8之间8.(4分)如图,AB为⊙O的直径,直线CD与⊙O相切于点C,连接AC,若∠ACD=50°,则∠BAC 的度数为()A.30°B.40°C.50°D.60°9.(4分)如图,在正方形ABCD中,O为对角线AC的中点,E为正方形内一点,连接BE,BE=BA,连接CE并延长,与∠ABE的平分线交于点F,连接OF,若AB=2,则OF的长度为()A.2B.C.1D.10.(4分)在多项式x﹣y﹣z﹣m﹣n(其中x>y>z>m>n)中,对相邻的两个字母间任意添加绝对值符号,添加绝对值符号后仍只有减法运算,然后进行去绝对值运算,称此为“绝对操作”.例如:x﹣y﹣|z﹣m|﹣n=x﹣y﹣z+m﹣n,|x﹣y|﹣z﹣|m﹣n|=x﹣y﹣z﹣m+n,….下列说法:①存在“绝对操作”,使其运算结果与原多项式相等;②不存在“绝对操作”,使其运算结果与原多项式之和为0;③所有的“绝对操作”共有7种不同运算结果.其中正确的个数是()A.0B.1C.2D.3二、填空题:(本大题8个小题,每小题4分,共32分)请将每小题的答案直接填在答题卡中对应的横线上.11.(4分)计算:|﹣5|+(2﹣)0=.12.(4分)有四张完全一样正面分别写有汉字“清”“风”“朗”“月”的卡片,将其背面朝上并洗匀,从中随机抽取一张,记下卡片正面上的汉字后放回,洗匀后再从中随机抽取一张,则抽取的两张卡片上的汉字相同的概率是.13.(4分)若七边形的内角中有一个角为100°,则其余六个内角之和为.14.(4分)如图,在△ABC中,AB=AC,AD是BC边的中线,若AB=5,BC=6,则AD的长度为.15.(4分)为了加快数字化城市建设,某市计划新建一批智能充电桩,第一个月新建了301个充电桩,第三个月新建了500个充电桩,设该市新建智能充电桩个数的月平均增长率为x,根据题意,请列出方程.16.(4分)如图,在矩形ABCD中,AB=2,BC=4,E为BC的中点,连接AE.DE.以E为圆心,EB长为半径画弧,分别与AE,DE交于点M,N.则图中阴影部分的面积为(结果保留π).17.(4分)若关于x的不等式组的解集为x<﹣2,且关于y的分式方程+=2的解为正数,则所有满足条件的整数a的值之和为.18.(4分)对于一个四位自然数M,若它的千位数字比个位数字多6,百位数字比十位数字多2,则称M为“天真数”.如:四位数7311,∵7﹣1=6,3﹣1=2,∴7311是“天真数”;四位数8421,∵8﹣1≠6,∴8421不是“天真数”,则最小的“天真数”为;一个“天真数”M的千位数字为a,百位数字为b,十位数字为c,个位数字为d,记P(M)=3(a+b)+c+d,Q(M)=a﹣5,若能被10整除,则满足条件的M的最大值为.三、解答题:(本大题8个小题,第19题8分,其余每题各10分,共78分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形(包括辅助线),请将解答过程书写在答题卡中对应的位置上.19.(8分)计算:(1)x(x+6)+(x﹣3)2;(2)(3+)÷.20.(10分)在学习了平行四边形的相关知识后,小虹进行了拓展性研究,她发现,如果作平行四边形一条对角线的垂直平分线,那么这条垂直平分线在该四边形内部的线段被这条对角线平分.其解决问题的思路为通过证明对应线段所在两个三角形全等即可得出结论.请根据她的思路完成以下作图和填空:用直尺和圆规作平行四边形ABCD对角线AC的垂直平分线,交DC于点E,交AB于点F,垂足为O.(只保留作图痕迹)如图,四边形ABCD是平行四边形,AC是对角线,EF垂直平分AC,垂足为O.求证:EO=FO.证明:∵四边形ABCD是平行四边形∴DC∥AB.∴∠ECO=.∵EF垂直平分AC,∴.又∠EOC=,∴△COE≌△AOF(ASA).∴EO=FO.再进一步研究发现,过平行四边形对角线中点的所有与该四边形一组对边相交所得的线段均具备此特征,请你依照题目中的相关表述完成下面命题的填空:过平行四边形对角线中点的直线.21.(10分)某洗车公司安装了A,B两款自动洗车设备,工作人员从消费者对A、B两款设备的满意度评分中各随机抽取20份,并对数据进行整理、描述和分析(评分分数用x表示,分为四个等级:不满意x<70,比较满意70≤x<80,满意80≤x<90,非常满意x≥90),下面给出了部分信息:抽取的对A款设备的评分数据中“满意”包含的所有数据:83,85,85,87,87,89;抽取的对B款设备的评分数据:68,69,76,78,81,84,85,86,87,87,87,89,95,97,98,98,98,98,99,100.抽取的对A,B款设备的评分统计表设备平均数中位数众数“非常满意”所占百分比A88m9645%B8887n40%根据以上信息,解答下列问题:(1)填空:a=,m=,n=;(2)5月份,有600名消费者对A款自动洗车设备进行评分,估计其中对A款自动洗车设备“比较满意”的人数;(3)根据以上数据,你认为哪一款自动洗车设备更受消费者欢迎?请说明理由(写出一条理由即可).22.(10分)如图,△ABC是边长为4的等边三角形,动点E,F均以每秒1个单位长度的速度同时从点A出发,E沿折线A→B→C方向运动,F沿折线A→C→B方向运动,当两点相遇时停止运动.设运动的时间为t秒,点E,F的距离为y.(1)请直接写出y关于t的函数关系式并注明自变量t的取值范围;(2)在给定的平面直角坐标系中,画出这个函数图象,并写出该函数的一条性质;(3)结合函数图象,直接写出点E,F相距3个单位长度时t的值.23.(10分)某粮食生产基地为了落实在适宜地区开展双季稻中间季节再种一季油菜的号召,积极扩大粮食生产规模,计划用基地的甲、乙两区农田进行油菜试种,甲区的农田比乙区的农田多10000亩,甲区农田的80%和乙区全部农田均适宜试种,且两区适宜试种农田的面积刚好相同.(1)求甲、乙两区各有农田多少亩?(2)在甲、乙两区适宜试种的农田全部种上油菜后,为加强油菜的虫害治理,基地派出一批性能相同的无人机,对试种农田喷洒除虫药,由于两区地势差别,派往乙区的无人机架次是甲区的1.2倍(每架次无人机喷洒时间相同),喷洒任务完成后,发现派往甲区的每架次无人机比乙区的平均多喷洒亩,求派往甲区每架次无人机平均喷洒多少亩?24.(10分)人工海产养殖合作社安排甲、乙两组人员分别前往海面A,B养殖场捕捞海产品.经测量,A在灯塔C的南偏西60°方向,B在灯塔C的南偏东45°方向,且在A的正东方向,AC=3600米.(1)求B养殖场与灯塔C的距离(结果精确到个位);(2)甲组完成捕捞后,乙组还未完成捕捞,甲组决定前往B处协助捕捞,若甲组航行的平均速度为600米每分钟,请计算说明甲组能否在9分钟内到达B处?(参考数据:≈1.414,≈1.732)25.(10分)如图,在平面直角坐标系中,抛物线y=x2+bx+c与x轴交于点A,B,与y轴交于点C,其中B(3,0),C(0,﹣3).(1)求该抛物线的表达式;(2)点P是直线AC下方抛物线上一动点,过点P作PD⊥AC于点D,求PD的最大值及此时点P的坐标;(3)在(2)的条件下,将该抛物线向右平移5个单位,点E为点P的对应点,平移后的抛物线与y轴交于点F,Q为平移后的抛物线的对称轴上任意一点.写出所有使得以QF为腰的△QEF是等腰三角形的点Q的坐标,并把求其中一个点Q的坐标的过程写出来.26.(10分)如图,在等边△ABC中,AD⊥BC于点D,E为线段AD上一动点(不与A,D重合),连接BE,CE,将CE绕点C顺时针旋转60°得到线段CF,连接AF.(1)如图1,求证:∠CBE=∠CAF;(2)如图2,连接BF交AC于点G,连接DG,EF,EF与DG所在直线交于点H,求证:EH=FH;(3)如图3,连接BF交AC于点G,连接DG,EG,将△AEG沿AG所在直线翻折至△ABC所在平面内,得到△APG,将△DEG沿DG所在直线翻折至△ABC所在平面内,得到△DQG,连接PQ,QF.若AB=4,直接写出PQ+QF的最小值.2023年重庆市中考数学试卷(B卷)参考答案与试题解析一、选择题:(本大题10个小题,每小题4分,共40分)在每个小题的下面,都给出了代号为A,B,C,D的四个答案,其中只有一个是正确的,请将答题卡上题号右侧正确答案所对应的方框涂黑. 1.(4分)4的相反数是()A.B.C.﹣4D.4【解答】解:4的相反数是﹣4.故选:C.2.(4分)四个大小相同的正方体搭成的几何体如图所示,从正面看到的视图是()A.B.C.D.【解答】解:从正面看,可得选项A的图形.故选:A.3.(4分)如图,直线a,b被直线c所截,若a∥b,∠1=63°,则∠2的度数为()A.27°B.53°C.63°D.117°【解答】解:∵a∥b,∴∠1=∠2,∵∠1=63°,∴∠2=63°,故选:C.4.(4分)如图,已知△ABC∽△EDC,AC:EC=2:3,若AB的长度为6,则DE的长度为()A.4B.9C.12D.13.5【解答】解:∵△ABC∽△EDC,AC:EC=2:3.∴,∴当AB=6时,DE=9.故选:B.5.(4分)反比例函数y=的图象一定经过的点是()A.(﹣3,2)B.(2,﹣3)C.(﹣2,﹣4)D.(2,3)【解答】解:反比例函数y=中k=6,A、∵(﹣3)×2=﹣6≠6,∴此点不在函数图象上,故本选项不合题意;B、∵2×(﹣3)=﹣6≠6,∴此点不在函数图象上,故本选项不合题意;C、∵﹣2×(﹣4)=8≠6,∴此点不在函数图象上,故本选项不合题意;D、∵2×3=6,∴此点在函数图象上,故本选项符合题意.故选:D.6.(4分)用圆圈按如图所示的规律拼图案,其中第①个图案中有2个圆圈,第②个图案中有5个圆圈,第③个图案中有8个圆圈,第④个图案中有11个圆圈,…,按此规律排列下去,则第⑦个图案中圆圈的个数为()A.14B.20C.23D.26【解答】解:第①个图案中有2个圆圈,第②个图案中有2+3×1=5个圆圈,第③个图案中有2+3×2=8个圆圈,第④个图案中有2+3×3=11个圆圈,...,则第⑦个图案中圆圈的个数为:2+3×6=20,故选:B.7.(4分)估计×(﹣)的值应在()A.4和5之间B.5和6之间C.6和7之间D.7和8之间【解答】解:原式=﹣1.∵5<<6.∴4<﹣1<5.故选:A.8.(4分)如图,AB为⊙O的直径,直线CD与⊙O相切于点C,连接AC,若∠ACD=50°,则∠BAC 的度数为()A.30°B.40°C.50°D.60°【解答】解:连接OC,∵直线CD与⊙O相切于点C,∴∠OCD=90°,∵∠ACD=50°,∴∠ACO=90°﹣50°=40°,∵OC=OA,∴∠BAC=∠ACO=40°,故选:B.9.(4分)如图,在正方形ABCD中,O为对角线AC的中点,E为正方形内一点,连接BE,BE=BA,连接CE并延长,与∠ABE的平分线交于点F,连接OF,若AB=2,则OF的长度为()A.2B.C.1D.【解答】解:如图,连接AF,∵四边形ABCD是正方形,∴AB=BE=BC,∠ABC=90°,AC=AB=2,∴∠BEC=∠BCE,∴∠EBC=180°﹣2∠BEC,∴∠ABE=∠ABC﹣∠EBC=2∠BEC﹣90°,∵BF平分∠ABE,∴∠ABF=∠EBF=∠ABE=∠BEC﹣45°,∴∠BFE=∠BEC﹣∠EBF=45°,在△BAF与△BEF中,,∴△BAF≌△BEF(SAS),∴∠BFE=∠BFA=45°,∴∠AFC=∠BAF+∠BFE=90°,∵O为对角线AC的中点,∴OF=AC=,故选:D.10.(4分)在多项式x﹣y﹣z﹣m﹣n(其中x>y>z>m>n)中,对相邻的两个字母间任意添加绝对值符号,添加绝对值符号后仍只有减法运算,然后进行去绝对值运算,称此为“绝对操作”.例如:x﹣y﹣|z﹣m|﹣n=x﹣y﹣z+m﹣n,|x﹣y|﹣z﹣|m﹣n|=x﹣y﹣z﹣m+n,….下列说法:①存在“绝对操作”,使其运算结果与原多项式相等;②不存在“绝对操作”,使其运算结果与原多项式之和为0;③所有的“绝对操作”共有7种不同运算结果.其中正确的个数是()A.0B.1C.2D.3【解答】解:|x﹣y|﹣z﹣m﹣n=x﹣y﹣z﹣m﹣n,故说法①正确.若使其运算结果与原多项式之和为0,需出现﹣x,显然无论怎么添加绝对值,都无法使x的符号为负号,故说法②正确.当添加一个绝对值时,共有4种情况,分别是|x﹣y|﹣z﹣m﹣n=x﹣y﹣z﹣m﹣n;x﹣|y﹣z|﹣m ﹣n=x﹣y+z﹣m﹣n;x﹣y﹣|z﹣m|﹣n=x﹣y﹣z+m﹣n;x﹣y﹣z﹣|m﹣n|=x﹣y﹣z﹣m+n.当添加两个绝对值时,共有3种情况,分别是|x﹣y|﹣|z﹣m|﹣n=x﹣y﹣z+m﹣n;|x﹣y|﹣z﹣|m﹣n|=x﹣y﹣z﹣m+n;x﹣|y﹣z|﹣|m﹣n|=x﹣y+z﹣m+n.共有7种情况;有两对运算结果相同,故共有5种不同运算结果,故说法③不符合题意.故选:C.二、填空题:(本大题8个小题,每小题4分,共32分)请将每小题的答案直接填在答题卡中对应的横线上.11.(4分)计算:|﹣5|+(2﹣)0=6.【解答】解:|﹣5|+(2﹣)0=5+1=6.故答案为:6.12.(4分)有四张完全一样正面分别写有汉字“清”“风”“朗”“月”的卡片,将其背面朝上并洗匀,从中随机抽取一张,记下卡片正面上的汉字后放回,洗匀后再从中随机抽取一张,则抽取的两张卡片上的汉字相同的概率是.【解答】解:树状图如图所示,由上可得,一共有16种等可能性,其中抽取的两张卡片上的汉字相同的有4种可能性,∴抽取的两张卡片上的汉字相同的概率为=,故答案为:.13.(4分)若七边形的内角中有一个角为100°,则其余六个内角之和为800°.【解答】解:由题意可得七边形的内角和为:(7﹣2)×180°=900°,∵该七边形的一个内角为100°,∴其余六个内角之和为900°﹣100°=800°,故答案为:800°.14.(4分)如图,在△ABC中,AB=AC,AD是BC边的中线,若AB=5,BC=6,则AD的长度为4.【解答】解:∵AB=AC,AD是BC边的中线,∴AD⊥BC,∴∠ADB=90°,∵AB=5,BC=6,∴BD=CD=3,在Rt△ABD中,根据勾股定理,得AD===4,故答案为:4.15.(4分)为了加快数字化城市建设,某市计划新建一批智能充电桩,第一个月新建了301个充电桩,第三个月新建了500个充电桩,设该市新建智能充电桩个数的月平均增长率为x,根据题意,请列出方程301(1+x)2=500.【解答】解:设该市新建智能充电桩个数的月平均增长率为x,依题意得:301(1+x)2=500.故答案为:301(1+x)2=500.16.(4分)如图,在矩形ABCD中,AB=2,BC=4,E为BC的中点,连接AE.DE.以E为圆心,EB 长为半径画弧,分别与AE,DE交于点M,N.则图中阴影部分的面积为4﹣π(结果保留π).【解答】解:∵AD=2AB=4,E为BC的中点,∴BE=CE=2,∴∠BAE=∠AEB=∠CDE=∠DEC=45°,∴阴影部分的面积为﹣2×=4﹣π.故答案为:4﹣π.17.(4分)若关于x的不等式组的解集为x<﹣2,且关于y的分式方程+=2的解为正数,则所有满足条件的整数a的值之和为13.【解答】解:解不等式组,得:,∵原不等式组的解集为:x<﹣2,∴﹣≥﹣2,∴a≤5,解分式方程+=2,得y=,∵y>0且y≠1,∴>0且≠1,∴a>﹣2且a≠1,∴﹣2<a≤5,且a≠1,∴符合条件的整数a有:﹣1,0,2,3,4,5,∴﹣1+0+2+3+4+5=13.故答案为:13.18.(4分)对于一个四位自然数M,若它的千位数字比个位数字多6,百位数字比十位数字多2,则称M为“天真数”.如:四位数7311,∵7﹣1=6,3﹣1=2,∴7311是“天真数”;四位数8421,∵8﹣1≠6,∴8421不是“天真数”,则最小的“天真数”为6200;一个“天真数”M的千位数字为a,百位数字为b,十位数字为c,个位数字为d,记P(M)=3(a+b)+c+d,Q(M)=a ﹣5,若能被10整除,则满足条件的M的最大值为9313.【解答】解:求最小的“天真数”,首先知道最小的自然数的0.先看它的千位数字比个位数字多6,个位数为最小的自然数0时,千位数为6;百位数字比十位数字多2,十位数为最小的的自然数0时,百位数是2;则最小的“天真数”为6200.故答案为:6200.一个“天真数”M的千位数字为a,百位数字为b,十位数字为c,个位数字为d.由“天真数”的定义得a=d+6,所以6≤a≤9,b=c+2,所以0≤c≤7,又P(M)=3(a+b)+c+d=3(a+c+2)+c+a﹣6=4a+4c;Q(M)=a﹣5.=论能被10整除当a取最大值9时,即当a=9时,满足能被10整除,则c=1,“天真数”M为9313.故答案为:9313.三、解答题:(本大题8个小题,第19题8分,其余每题各10分,共78分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形(包括辅助线),请将解答过程书写在答题卡中对应的位置上.19.(8分)计算:(1)x(x+6)+(x﹣3)2;(2)(3+)÷.【解答】解:(1)x(x+6)+(x﹣3)2=x2+6x+x2﹣6x+9=2x2+9;(2)===.20.(10分)在学习了平行四边形的相关知识后,小虹进行了拓展性研究,她发现,如果作平行四边形一条对角线的垂直平分线,那么这条垂直平分线在该四边形内部的线段被这条对角线平分.其解决问题的思路为通过证明对应线段所在两个三角形全等即可得出结论.请根据她的思路完成以下作图和填空:用直尺和圆规作平行四边形ABCD对角线AC的垂直平分线,交DC于点E,交AB于点F,垂足为O.(只保留作图痕迹)如图,四边形ABCD是平行四边形,AC是对角线,EF垂直平分AC,垂足为O.求证:EO=FO.证明:∵四边形ABCD是平行四边形∴DC∥AB.∴∠ECO=∠FAO.∵EF垂直平分AC,∴OA=OC.又∠EOC=∠FOA,∴△COE≌△AOF(ASA).∴EO=FO.再进一步研究发现,过平行四边形对角线中点的所有与该四边形一组对边相交所得的线段均具备此特征,请你依照题目中的相关表述完成下面命题的填空:过平行四边形对角线中点的直线被平行四边形一组对边所截,截得的线段被对角线中点平分.【解答】解:图形如图所示:理由:∵四边形ABCD是平行四边形,∴DC∥AB.∴∠ECO=∠FAO,∵EF垂直平分AC,∴AO=OC.又∠EOC=∠FOA,∴△COE≌△AOF(ASA).∴EO=FO.再进一步研究发现,过平行四边形对角线中点的所有与该四边形一组对边相交所得的线段均具备此特征,所以过平行四边形对角线中点的直线被平行四边形一组对边所截,截得的线段被对角线中点平分,故答案为:∠FAO,OA=OC,∠FOA,过平行四边形对角线中点的直线被平行四边形一组对边所截,截得的线段被对角线中点平分.21.(10分)某洗车公司安装了A,B两款自动洗车设备,工作人员从消费者对A、B两款设备的满意度评分中各随机抽取20份,并对数据进行整理、描述和分析(评分分数用x表示,分为四个等级:不满意x<70,比较满意70≤x<80,满意80≤x<90,非常满意x≥90),下面给出了部分信息:抽取的对A款设备的评分数据中“满意”包含的所有数据:83,85,85,87,87,89;抽取的对B款设备的评分数据:68,69,76,78,81,84,85,86,87,87,87,89,95,97,98,98,98,98,99,100.抽取的对A,B款设备的评分统计表设备平均数中位数众数“非常满意”所占百分比A88m9645%B8887n40%根据以上信息,解答下列问题:(1)填空:a=15,m=88,n=98;(2)5月份,有600名消费者对A款自动洗车设备进行评分,估计其中对A款自动洗车设备“比较满意”的人数;(3)根据以上数据,你认为哪一款自动洗车设备更受消费者欢迎?请说明理由(写出一条理由即可).【解答】解:(1)由题意得,a%=1﹣10%﹣45%﹣=15%,即a=15;把A款设备的评分数据从小到大排列,排在中间的两个数是87,89,故中位数m==88;在B款设备的评分数据中,98出现的次数最多,故众数n=98.故答案为:15;88;98;(2)600×15%=90(名),答:估计其中对A款自动洗车设备“比较满意”的人数大约为90名;(3)A款自动洗车设备更受消费者欢迎,理由如下:因为两款自动洗车设备的评分数据的平均数相同,但A款自动洗车设备的评分数据的中位数比B 款高,所以A款自动洗车设备更受消费者欢迎(答案不唯一).22.(10分)如图,△ABC是边长为4的等边三角形,动点E,F均以每秒1个单位长度的速度同时从点A出发,E沿折线A→B→C方向运动,F沿折线A→C→B方向运动,当两点相遇时停止运动.设运动的时间为t秒,点E,F的距离为y.(1)请直接写出y关于t的函数关系式并注明自变量t的取值范围;(2)在给定的平面直角坐标系中,画出这个函数图象,并写出该函数的一条性质;(3)结合函数图象,直接写出点E,F相距3个单位长度时t的值.【解答】解:(1)当点E、F分别在AB、AC上运动时,△AEF为边长等于t的等边三角形,∴点E,F的距离等于AE、AF的长,∴当0<t≤4时,y关于t的函数表达式为y=t,当点E、F都在BC上运动时,点E,F的距离等于4﹣2(t﹣4),∴当4<t≤6时,y关于t的函数表达式为y=4﹣2(t﹣4)=12﹣2t,∴y关于t的函数表达式为;(2)由(1)中得到的函数表达式可知:当t=0时,y=0;当t=4时,y=4;当t=6时,y=0,分别描出三个点(0,0),(4,4)(6,0),然后顺次连线,如图:根据函数图象可知这个函数的其中一条性质:当0<t≤4时,y随t的增大而增大.(答案不唯一,正确即可)(3)把y=3分别代入y=t和y=12﹣2t中,得:3=t,3=12﹣2t,解得:t=3或t=4.5,∴点E,F相距3个单位长度时t的值为3或4.5.23.(10分)某粮食生产基地为了落实在适宜地区开展双季稻中间季节再种一季油菜的号召,积极扩大粮食生产规模,计划用基地的甲、乙两区农田进行油菜试种,甲区的农田比乙区的农田多10000亩,甲区农田的80%和乙区全部农田均适宜试种,且两区适宜试种农田的面积刚好相同.(1)求甲、乙两区各有农田多少亩?(2)在甲、乙两区适宜试种的农田全部种上油菜后,为加强油菜的虫害治理,基地派出一批性能相同的无人机,对试种农田喷洒除虫药,由于两区地势差别,派往乙区的无人机架次是甲区的1.2倍(每架次无人机喷洒时间相同),喷洒任务完成后,发现派往甲区的每架次无人机比乙区的平均多喷洒亩,求派往甲区每架次无人机平均喷洒多少亩?【解答】解:(1)设乙区有农田x亩,则甲区有农田(x+10000)亩,根据题意得:80%(x+10000)=x,解得:x=40000,∴x+10000=40000+10000=50000.答:甲区有农田50000亩,乙区有农田40000亩;(2)设派往甲区每架次无人机平均喷洒y亩,则派往乙区每架次无人机平均喷洒(y﹣)亩,根据题意得:=×1.2,解得:y=100,经检验,y=100是所列分式方程的解,且符合题意.答:派往甲区每架次无人机平均喷洒100亩.24.(10分)人工海产养殖合作社安排甲、乙两组人员分别前往海面A,B养殖场捕捞海产品.经测量,A在灯塔C的南偏西60°方向,B在灯塔C的南偏东45°方向,且在A的正东方向,AC=3600米.(1)求B养殖场与灯塔C的距离(结果精确到个位);(2)甲组完成捕捞后,乙组还未完成捕捞,甲组决定前往B处协助捕捞,若甲组航行的平均速度为600米每分钟,请计算说明甲组能否在9分钟内到达B处?(参考数据:≈1.414,≈1.732)【解答】解:(1)过点C作CD⊥AB于点D,在Rt△ACD中,∠ACD=60°,AC=3600米,cos60°=,sin60°=,∴AD=3600×=1800(米),CD=×3600=1800(米).在Rt△BCD中,∠BCD=45°,∴∠B=45°=∠BCD,∴BD=CD=1800(米),∴BC==1800≈1800×1.414≈2545(米).答:B养殖场与灯塔C的距离约为2545米;(2)AB=AD+BD=1800+1800≈1800×1.732+1800≈4917.6(米),600×9=5400(米),∵5400米>4917.6米,∴能在9分钟内到达B处.25.(10分)如图,在平面直角坐标系中,抛物线y=x2+bx+c与x轴交于点A,B,与y轴交于点C,其中B(3,0),C(0,﹣3).(1)求该抛物线的表达式;(2)点P是直线AC下方抛物线上一动点,过点P作PD⊥AC于点D,求PD的最大值及此时点P的坐标;(3)在(2)的条件下,将该抛物线向右平移5个单位,点E为点P的对应点,平移后的抛物线与y轴交于点F,Q为平移后的抛物线的对称轴上任意一点.写出所有使得以QF为腰的△QEF是等腰三角形的点Q的坐标,并把求其中一个点Q的坐标的过程写出来.【解答】解:(1)由题意得:,解得:,则抛物线的表达式为:y=x2+x﹣3;(2)令y=x2+x﹣3=0,则x=﹣4或3,则点A(﹣4,0),由点A、C知,直线AC的表达式为:y=﹣x﹣3,过点P作y轴的平行线交AC于点H,则∠PHC=∠ACO,则tan∠PHC=tan∠ACO=,则sin∠PHC=,则PD=PH•sin∠PHC=PH,设点H(x,﹣x﹣3),则点P(x,x2+x﹣3),则PD=PH=(﹣x﹣3﹣x2﹣x+3)=﹣(x+2)2+,即PD的最大值为:,此时点P(﹣2,﹣);(3)平移后的抛物线的表达式为:y=(x﹣5)2+(x﹣5)﹣3=x2﹣x+2,则点F(0,2),设点Q(,m),则QF2=()2+(m﹣2)2,QE2=+(m+)2,EF2=9+,当QE=QF时,则()2+(m﹣2)2=+(m+)2,解得:m=,则点Q的坐标为(,);当QF=EF时,则()2+(m﹣2)2=9+,解得:m=5或﹣1,则点Q的坐标为:(,5)或(,﹣1);综上,点Q的坐标为:(,)或(,5)或(,﹣1).26.(10分)如图,在等边△ABC中,AD⊥BC于点D,E为线段AD上一动点(不与A,D重合),连接BE,CE,将CE绕点C顺时针旋转60°得到线段CF,连接AF.(1)如图1,求证:∠CBE=∠CAF;(2)如图2,连接BF交AC于点G,连接DG,EF,EF与DG所在直线交于点H,求证:EH=FH;(3)如图3,连接BF交AC于点G,连接DG,EG,将△AEG沿AG所在直线翻折至△ABC所在平面内,得到△APG,将△DEG沿DG所在直线翻折至△ABC所在平面内,得到△DQG,连接PQ,QF.若AB=4,直接写出PQ+QF的最小值.【解答】(1)证明:∵△ABC为等边三角形,∴∠ACB=60°,AC=BC,∵将CE绕点C顺时针旋转60°得到线段CF,∴CE=CF,∠ECF=60°,∵△ABC是等边三角形,∴∠BCA=∠ECF,∴∠BCE=∠ACF,∴△BCE≌△ACF(SAS),∴∠CBE=∠CAF;(2)证明:如图所示,过点F作FK∥AD,交DH点的延长线于点K,连接EK,FD,∵△ABC是等边三角形,∴AB=AC=BC,∵AD⊥BC,∴BD=CD,∴AD垂直平分BC,∴EB=EC,又∵△BCE≌△ACF,∴AF=BE,CF=CE,∴AF=CF,∴F在AC的垂直平分线上,∵AB=BC,∴B在AC的垂直平分线上,∴BF垂直平分AC,∴AC⊥BF,AG=CG=AC,∴∠AGF=90°,又∵DG=AC=CG,∠ACD=60°,∴△DCG是等边三角形,∴∠CGD=∠CDG=60°,∴∠AGH=∠DGC=60°,∴∠KGF=∠AGF﹣∠AGH=90°﹣60°=30°,又∵∠ADK=∠ADC﹣∠GDC=90°﹣60=30°,KF∥AD,∴∠FKG=∠KGF=30°,∴FG=FK,在Rt△CED与Rt△CGF中,,∴Rt△CED≌Rt△CFG,∴GF=ED,∴ED=FK,∴四边形EDFK是平行四边形,∴EH=HF;(3)解:依题意,如图所示,延长AP,DQ交于点R,由(2)可知△DCG是等边三角形,∴∠EDG=30°,∵将△AEG沿AG所在直线翻折至△ABC所在平面内,得到△APG,将△DEG沿DG所在直线翻折至△ABC所在平面内,得到△DQG,∴∠PAG=∠EAG=30°,∠QDG=∠EDG=30°,∴∠PAE=∠QDE=60°,∴△ADR是等边三角形,∴∠QDC=∠ADC﹣∠ADQ=90°﹣60°=30°,由(2)可得Rt△CED≌Rt△CFG,∴DE=GF,∴DE=DQ,∴GF=DQ,∵∠GBC=∠QDC=30°,∴GF∥DQ,∴四边形GDQF是平行四边形,∴QF=DG=AC=2,由(2)可知G是AC的中点,则GA=GD,∴∠AGD=120°,∵折叠,∴∠AGP+∠DGQ=∠AGE+∠DGE=∠AGD=120°,∴∠PGQ=360°﹣2∠AGD=120°,又PG=GE=GQ,∴PQ=PG=GQ,∴当GQ取得最小值时,即GQ⊥DR时,PQ取得最小值,此时如图所示,∴GQ=GC=DC=1,∴PQ=,∴PQ+QF=+2.。

2023年重庆市中考数学真题(B卷)(解析版)

2023年重庆市中考数学真题(B卷)(解析版)

重庆市2023年初中学业水平暨高中招生考试数学试题(B 卷)一、选择题:(本大题10个小题,每小题4分,共40分)在每个小题的下面,都给出了代号为A ,B ,C ,D 的四个答案,其中只有一个是正确的,请将答题卡...上题号右侧正确答案所对应的方框涂黑.1. 4的相反数是( ) A.14B. 14−C. 4D. 4−【答案】D 【解析】【分析】只有符号不同的两个数叫做互为相反数,由此即可得到答案. 【详解】解:4的相反数是4−, 故选:D .【点睛】本题考查相反数的概念,关键是掌握相反数的定义.2. 四个大小相同的正方体搭成的几何体如图所示,从正面看到的视图是( )A. B. C. D.【答案】A 【解析】【分析】从正面看到的有三列,从左到右正方形的个数依次是1,1,2,据此判断即可. 【详解】解:从正面看到视图是:,故选:A .【点睛】本题考查了几何体的视图,明确从正面看到的视图是解题关键. 3. 如图,直线a ,b 被直线c 所截,若a b ,163∠=°,则2∠度数为( ).的的A. 27°B. 53°C. 63°D. 117°【答案】C 【解析】【分析】求2∠的度数,根据平行线的性质求解即可. 【详解】�a b , �1263∠=∠=°, 故选:C .【点睛】此题考查了平行线的性质,解题的关键熟练掌握两直线平行,内错角相等的性质. 4. 如图,已知ABC EDC ∽,:2:3AC EC =,若AB 的长度为6,则DE 的长度为( )A. 4B. 9C. 12D. 13.5【答案】B 【解析】【分析】根据相似三角形的性质即可求出. 【详解】解:∵ABC EDC ∽, ∴::AC EC AB DE =, ∵:2:3AC EC =,6AB =, ∴2:36:DE =, ∴9DE =, 故选:B.【点睛】此题考查的是相似三角形的性质,掌握相似三角形的边长比等于相似比是解决此题的关键. 5. 反比例函数6y x=的图象一定经过的点是( ) A. ()3,2− B. ()2,3−C. ()2,4−−D. ()2,3【答案】D【分析】根据反比例函数的定义,只要点的横纵坐标之积等于k 即可判断该点在函数图象上,据此求解. 【详解】解:∵()()326,236,248,236−×=−×−=−−×−=×=, ∴点()2,3在反比例函数6y x=的图象上, 故选:D .【点睛】本题考查了反比例函数图象上点的坐标特点,熟知点的横纵坐标满足函数解析式是解题关键. 6. 用圆圈按如图所示的规律拼图案,其中第①个图案中有2个圆圈,第②个图案中有5个圆圈,第③个图案中有8个圆圈,第④个图案中有11个圆圈,…,按此规律排列下去,则第⑦个图案中圆圈的个数为( )A. 14B. 20C. 23D. 26【答案】B 【解析】【分析】根据前四个图案圆圈的个数找到规律,即可求解. 【详解】解:因为第①个图案中有2个圆圈,2311=×−; 第②个图案中有5个圆圈,5321=×−; 第③个图案中有8个圆圈,8331=×−; 第④个图案中有11个圆圈,11341=×−; …,所以第⑦个图案中圆圈的个数为37120×−=; 故选:B .【点睛】本题考查了图形类规律探究,根据前四个图案圆圈的个数找到第n 个图案的规律为31n −是解题的关键.7. −的值应在( ) A. 4和5之间 B. 5和6之间C. 6和7之间D. 7和8之间【答案】A【分析】先计算二次根式的乘法,再根据无理数的估算即可得.1=−,253036<<,<<56<<,415∴<−<,故选:A.【点睛】本题考查了二次根式的乘法、无理数的估算,熟练掌握二次根式的乘法法则是解题关键.8. 如图,AB为O的直径,直线CD与O相切于点C,连接AC,若50ACD∠=°,则BAC∠的度数为()A. 30°B. 40°C. 50°D. 60°【答案】B【解析】【分析】连接OC,先根据圆的切线的性质可得90OCD∠=°,从而可得40OCA∠=°,再根据等腰三角形的性质即可得.【详解】解:如图,连接OC,直线CD与O相切,OC CD ∴⊥,90OCD ∴∠=°,50ACD ∠=° ,40OCA ∴∠=°,OA OC = ,40BAC OCA ∴∠=∠=°,故选:B .【点睛】本题考查了圆的切线的性质、等腰三角形的性质,熟练掌握圆的切线的性质是解题关键. 9. 如图,在正方形ABCD 中,O 为对角线AC 的中点,E 为正方形内一点,连接BE ,BE BA =,连接CE 并延长,与ABE ∠的平分线交于点F ,连接OF ,若2AB =,则OF 的长度为( )A. 2B.C. 1D.【答案】D 【解析】【分析】连接AF ,根据正方形ABCD 得到AB BC BE ==,90ABC ∠=°,根据角平分线的性质和等腰三角形的性质,求得45BFE ∠=°,再证明ABF EBF ≌,求得90AFC ∠=°,最后根据直角三角形斜边上的中点等于斜边的一半,即可求出OF 的长度. 【详解】解:如图,连接AF ,四边形ABCD 是正方形,AB BE BC ∴==,90ABC ∠=°,AC=,BEC BCE ∴∠=∠,1802EBC BEC ∴∠=°−∠,290ABE ABC EBC BEC ∴∠=∠−∠=∠−°, BF 平分ABE ∠,1452ABF EBF ABE BEC ∴∠=∠=∠=∠−°,45BFE BEC EBF ∴∠=∠−∠=°,在BAF △与BEF △,AB EB ABF EBF BF BF =∠=∠ =, ()SAS BAF BEF ∴△≌△,45BFE BFA ∴∠=∠=°,90AFC BAF BFE ∴∠=∠+∠=°,O 为对角线AC 的中点,12OF AC ∴==,故选:D .【点睛】本题考查了等腰三角形的判定和性质,三角形内角和定理,正方形的性质,直角三角形特征,作出正确的辅助线,求得45BFE ∠=°是解题的关键.10. 在多项式x y z m n −−−−(其中x y z m n >>>>)中,对相邻的两个字母间任意添加绝对值符号,添加绝对值符号后仍只有减法运算,然后进行去绝对值运算,称此为“绝对操作”.例如:x y z m n x y z m n −−−−=−−+−,x y z m n x y z m n −−−−=−−−+,…….下列说法:①存在“绝对操作”,使其运算结果与原多项式相等; ②不存在“绝对操作”,使其运算结果与原多项式之和为0; ③所有的“绝对操作”共有7种不同运算结果. 其中正确的个数是( ) A. 0 B. 1C. 2D. 3【答案】C【解析】【分析】根据“绝对操作”的定义及绝对值的性质对每一项判断即可解答. 【详解】解:∵x y z m n >>>>, ∴x y z m n x y z m n −−−−=−−−−,∴存在“绝对操作”,使其运算结果与原多项式相等, 故①正确;根据绝对操作的定义可知:在多项式x y z m n −−−−(其中x y z m n >>>>)中,经过绝对操作后,z n m 、、的符号都有可能改变,但是x y 、的符合不会改变,∴不存在“绝对操作”,使其运算结果与原多项式之和为0, 故②正确;∵在多项式x y z m n −−−−(其中x y z m n >>>>)中,经过“绝对操作”可能产生的结果如下: ∴x y z m n x y z m n −−−−=−−−−,x y z m n x y z m n −−−−=−+−−,x y z m n x y z m n x y z m n −−−−=−−−−=−−+−, x y z m n x y z m n x y z m n −−−−=−−−−=−−−+, x y z m n x y z m n −−−−=−+−+,共有5种不同运算结果, 故③错误; 故选C .【点睛】本题考查了新定义“绝对操作”,绝对值的性质,整式的加减运算,掌握绝对值的性质是解题的关键.二、填空题:(本大题8个小题,每小题4分,共32分)请将每小题的答案直接填在答题卡...中对应的撗线上.11. 计算:05(2−+=________. 【答案】6 【解析】【分析】根据绝对值、零指数幂法则计算即可.【详解】解:05(2516−+−=+=.故答案为:6.【点睛】本题考查了实数的混合运算,熟练掌握相关运算法则是解决本题的关键.12. 有四张完全一样正面分别写有汉字“清”“风”“朗”“月”的卡片,将其背面朝上并洗匀,从中随机抽取一张,记下卡片正面上的汉字后放回,洗匀后再从中随机抽取一张,则抽取的两张卡片上的汉字相同的概率是________. 【答案】14【解析】【分析】根据列表法求概率即可求解. 【详解】解:列表如下, 清 风 朗 月 清 清清 清风 清朗 清月 风 风清 风风 风朗 风月 朗 朗清 朗风 朗朗 朗月 月月清月风月朗月月共有16中等可能结果,其中,抽取的两张卡片上的汉字相同的情形有4种, ∴抽取的两张卡片上的汉字相同的概率是14, 故答案为:14. 【点睛】本题考查了列表法求概率,熟练掌握列表法求概率是解题的关键. 13. 若七边形的内角中有一个角为100°,则其余六个内角之和为________. 【答案】800°##800度 【解析】【分析】根据多边形的内角和公式()1802n °−即可得. 【详解】解:�七边形的内角中有一个角为100°,�其余六个内角之和为()18072100800°×−−°=°, 故答案为:800°.【点睛】本题考查了多边形的内角和,熟记多边形的内角和公式是解题关键.14. 如图,在ABC 中,AB AC =,AD 是BC 边中线,若5AB =,6BC =,则AD 的长度为________.【答案】4 【解析】【分析】根据等腰三角形的性质和勾股定理求解即可.【详解】解:∵在ABC 中,AB AC =,AD 是BC 边的中线, ∴AD BC ⊥,12BD BC =, 在Rt △ABD 中,5AB =,132BD BC ==,∴4AD ==,故答案为:4.【点睛】本题考查等腰三角形的性质、勾股定理,熟练掌握等腰三角形的三线合一性质是解答的关键. 15. 为了加快数字化城市建设,某市计划新建一批智能充电桩,第一个月新建了301个充电桩,第三个月新建了500个充电桩,设该市新建智能充电桩个数的月平均增长率为x ,根据题意,请列出方程________.【答案】2301(1)500x += 【解析】【分析】根据变化前数量2(1)x ×+=变化后数量,即可列出方程. 【详解】 第一个月新建了301个充电桩,该市新建智能充电桩个数的月平均增长率为x .∴第二个月新建了301(1)x +个充电桩, ∴第三个月新建了2301(1)x +个充电桩,第三个月新建了500个充电桩,于是有2301(1)500x +=,的故答案为2301(1)500x +=.【点睛】本题考查了一元二次方程的实际应用中的增长率问题,若设平均增长率为x ,则有(1)n a x b +=,其中a 表示变化前数量,b 表示变化后数量,n 表示增长次数.解决增长率问题时要注意区分变化前数量和变化后数量,同时也要注意变化前后经过了几次增长.16. 如图,在矩形ABCD 中,2AB =,4BC =,E 为BC 的中点,连接AE DE ,,以E 为圆心,EB 长为半径画弧,分别与AE DE ,交于点M ,N ,则图中阴影部分的面积为________.(结果保留π)【答案】4π− 【解析】【分析】利用矩形的性质求得2,2AB CD BE CE ====,进而可得45BAE AEB DEC CDE ∠=∠=∠=∠=°,然后根据()2ABE BEM S S S =− 阴影扇形解答即可. 【详解】解:�四边形ABCD 是矩形,2AB =,4BC =,E 为BC 的中点,∴12,22ABCD BE CE BC =====,90ABC DCB ∠=∠=°, ∴45BAE AEB DEC CDE ∠=∠=∠=∠=°, ∴()2145212=22222423602ABEBEM S S S πππ ×=−×××−=×−=−阴影扇形; 故答案为:4π−.【点睛】本题考查了矩形的性质和不规则面积的计算,熟练掌握矩形的性质、明确阴影面积为两个全等的等腰直角三角形的面积减去两个圆心角为45°的扇形面积是解题关键.17. 若关于x 的不等式组213241x x x a x + >++<− 的解集为<2x −,且关于y 的分式方程22211a y y y +++=−−的解为正数,则所有满足条件的整数a 的值之和为________. 【答案】13 【解析】【分析】先求出一元一次不等式组中两个不等式的解集,从而可得5a ≤,再解分式方程可得2a >−且1a ≠,从而可得25a −<≤且1a ≠,然后将所有满足条件的整数a 的值相加即可得.【详解】解:213241x x x a x + >+ +<− ①②, 解不等式①得:<2x −, 解不等式②得:13a x +<−, ∵关于x 的不等式组213241x x x a x + >+ +<− 的解集为<2x −, 123a +∴−≥−, 解得5a ≤, 方程22211a y y y+++=−−可化为()2221a y y +−−=−, 解得23a y +=, 关于y 的分式方程22211a y y y+++=−−的解为正数, 203a +∴>且2103a +−≠, 解得2a >−且1a ≠,52a ∴−<≤且1a ≠,则所有满足条件的整数a 的值之和为10234513−+++++=,故答案为:13.【点睛】本题考查了一元一次不等式组、分式方程,熟练掌握不等式组和分式方程的解法是解题关键. 18. 对于一个四位自然数M ,若它的千位数字比个位数字多6,百位数字比十位数字多2,则称M 为“天真数”.如:四位数7311,�716−=,312−=,�7311是“天真数”;四位数8421,�816−≠,�8421不是“天真数”,则最小的“天真数”为________;一个“天真数”M 的千位数字为a ,百位数字为b ,十位数字为c ,个位数字为d ,记()()3P M a b c d =+++,()5Q M a =−,若()()P M Q M 能被10整除,则满足条件的M 的最大值为________.【答案】 �. 6200 �. 9313【解析】【分析】根据题中“天真数”可求得最小的“天真数”;先根据题中新定义得到()8c d a b +=+−,进而()()()485P M M a Q b a +−−=,若M 最大,只需千位数字a 取最大,即9a =,再根据()()P M Q M 能被10整除求得3b =,进而可求解.【详解】解:根据题意,只需千位数字和百位数字尽可能的小,所以最小的“天真数”为6200;根据题意,6a d −=,2b c −=,69a ≤≤,29b ≤≤,则()8c d a b +=+−,∴()()()348P M a b c d a b =+++=+−, ∴()()()485P M M a Q b a +−−=, 若M 最大,只需千位数字a 取最大,即9a =, ∴()()()498795b P Q b M M =+−=+−, ∵()()P M Q M 能被10整除, ∴3b =,∴满足条件的M 的最大值为9313,故答案为:6200,9313.【点睛】本题是一道新定义题,涉及有理数的运算、整式的加减、数的整除等知识,理解新定义是解答的关键.三、解答题:(本大题8个小题,第19题8分,其余每题各10分,共78分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形(包括辅助线),请将解答过程书写在答题卡...中对应的位置上. 19. 计算:(1)()()263x x x ++−; (2)2293n m n m m − +÷. 【答案】(1)229x +(2)13m n− 【解析】【分析】(1)先根据单项式乘以多项式的法则、完全平方公式计算,再合并同类项;(2)根据分式混合运算的法则解答即可.【小问1详解】解:()()263x x x ++− 22669x x x x =++−+229x +;【小问2详解】 解:2293n m n m m − +÷()()333m n m m m n m n +⋅+− 13m n=−. 【点睛】本题考查了整式和分式的运算,属于基本计算题型,熟练掌握整式和分式混合运算的法则是解题的关键.20. 学习了平行四边形后,小虹进行了拓展性研究.她发现,如果作平行四边形一条对角线的垂直平分线,那么这个平行四边形的一组对边截垂直平分线所得的线段被垂足平分. 她的解决思路是通过证明对应线段所在的两个三角形全等得出结论.请根据她的思路完成以下作图与填空:用直尺和圆规,作AC 的垂直平分线交DC 于点E ,交AB 于点F ,垂足为点O .(只保留作图痕迹)已知:如图,四边形ABCD 是平行四边形,AC 是对角线,EF 垂直平分AC ,垂足为点O . 求证:OE OF =.证明:∵四边形ABCD 是平行四边形,∴DC AB ∥.∴ECO ∠= ① . ∵EF 垂直平分AC ,∴ ② .又EOC ∠=___________③ .∴()COE AOF ASA ∆≅∆.∴OE OF =.小虹再进一步研究发现,过平行四边形对角线AC 中点的直线与平行四边形一组对边相交形成的线段均有此特征.请你依照题意完成下面命题:过平行四边形对角线中点的直线 ④ .【答案】作图:见解析;FAO ∠;AO CO =;FOA ∠;被平行四边形一组对边所截,截得的线段被对角线中点平分【解析】【分析】根据线段垂直平分线的画法作图,再推理证明即可并得到结论.【详解】解:如图,即为所求;证明:∵四边形ABCD 是平行四边形,∴DC AB ∥.∴ECO ∠=FAO ∠. ∵EF 垂直平分AC ,∴AO CO =.又EOC ∠=FOA ∠.∴()COE AOF ASA ≅ .∴OE OF =.故答案为:FAO ∠;AO CO =;FOA ∠;由此得到命题:过平行四边形对角线中点的直线被平行四边形一组对边所截,截得的线段被对角线中点平分,故答案为:被平行四边形一组对边所截,截得的线段被对角线中点平分.【点睛】此题考查了平行四边形的性质,作线段的垂直平分线,全等三角形的判定和性质,熟练掌握平行四边形的性质及线段垂直平分线的作图方法是解题的关键.21. 某洗车公司安装了A ,B 两款自动洗车设备,工作人员从消费者对A ,B 两款设备的满意度评分中各随机抽取20份,并对数据进行整理、描述和分析(评分分数用x 表示,分为四个等级,不满意70x <,比较满意7080x ≤<,满意8090x ≤<,非常满意90x ≥),下面给出了部分信息.抽取的对A 款设备的评分数据中“满意”包含的所有数据:83,85,85,87,87,89;抽取对B 款设备的评分数据:68,69,76,78,81,84,85,86,87,87,87,89,95,97,98,98,98,98,99,100.抽取的对A ,B 款设备的评分统计表 设备 平均数 中位数 众数 “非常满意”所占百分比A88 m 96 45% B 88 87 n40% 根据以上信息,解答下列问题:(1)填空:=a _______,m =_______,n =_______;(2)5月份,有600名消费者对A 款自动洗车设备进行评分,估计其中对A 款自动洗车设备“比较满意”的人数;(3)根据以上数据,你认为哪一款自动洗车设备更受消费者欢迎?请说明理由(写出一条理由即可).【答案】(1)15,88,98(2)90 (3)A 款,理由:评分数据中A 款的中位数比B 款的中位数高(答案不唯一)【解析】【分析】(1)先根据“满意”的人数除以总人数求得“满意”所占百分比,进而求得a ,再根据中位数和众数的定义求得m ,n ;(2)利用样本估计总体即可;(3)根据平均数、中位数、众数及“非常满意”所占百分比即可得出结论.【小问1详解】解: 抽取的对A 款设备的评分数据中“满意”的有6份,∴“满意”所占百分比为:6100%30%20×=, 的∴“比较满意”所占百分比为:130%45%10%15%−−−=,15a ∴=,抽取的对A 款设备的评分数据中的中位数是第10份和第11份数据的平均数,“不满意”和“满意”的评分有()2010%15%5×+=(份),∴第10份和第11份数据为“满意”,评分分别为87,89, ∴8789882m +==, 抽取的对B 款设备的评分数据中出现次数最多的是98,98n ∴=,故答案为:15,88,98;【小问2详解】解:600名消费者对A 款自动洗车设备“比较满意”的人数为:60015%90×=(人), 答:600名消费者对A 款自动洗车设备“比较满意”的人数为90人.【小问3详解】解:A 款自动洗车设备更受欢迎,理由:评分数据中A 款的中位数比B 款的中位数高(答案不唯一). 【点睛】本题考查了扇形统计图,中位数,众数,样本估计总体,从统计图表中获取信息时,认真观察、分析,理解各个数据之间的关系是解题的关键.22. 如图,ABC 是边长为4的等边三角形,动点E ,F 分别以每秒1个单位长度的速度同时从点A 出发,点E 沿折线A B C →→方向运动,点F 沿折线A C B →→方向运动,当两者相遇时停止运动.设运动时间为t 秒,点E ,F 的距离为y .(1)请直接写出y 关于t 的函数表达式并注明自变量t 的取值范围;(2)在给定的平面直角坐标系中画出这个函数的图象,并写出该函数的一条性质;(3)结合函数图象,写出点E ,F 相距3个单位长度时t 的值.【答案】(1)当04t <≤时,y t =;当46t <≤时,122y t =−; (2)图象见解析,当04t <≤时,y 随x 的增大而增大(3)t 的值为3或4.5【解析】【分析】(1)分两种情况:当04t <≤时,根据等边三角形的性质解答;当46t <≤时,利用周长减去2AE 即可;(2)在直角坐标系中描点连线即可;(3)利用3y =分别求解即可.【小问1详解】解:当04t <≤时,连接EF ,由题意得AE AF =,60A ∠=°,∴AEF △是等边三角形,∴y t =;当46t <≤时,122y t =−;【小问2详解】函数图象如图:当04t <≤时,y 随x 的增大而增大;【小问3详解】当04t <≤时,3y =即3t =;当46t <≤时,3y =即1223t −=,解得 4.5t =,故t 的值为3或4.5.【点睛】此题考查了动点问题,一次函数的图象及性质,解一元一次方程,正确理解动点问题是解题的关键.23. 某粮食生产基地为了落实在适宜地区开展双季稻中间季节再种一季油菜的号召,积极扩大粮食生产规模,计划用基地的甲、乙两区农田进行油菜试种.甲区的农田比乙区的农田多10000亩,甲区农田的80%和乙区全部农田均适宜试种,且两区适宜试种农田的面积刚好相同.(1)求甲、乙两区各有农田多少亩?(2)在甲、乙两区适宜试种的农田全部种上油菜后,为加强油菜的虫害治理,基地派出一批性能相同的无人机,对试种农田喷洒除虫药,由于两区地势差别,派往乙区的无人机架次是甲区的1.2倍(每架次无人机喷洒时间相同),喷洒任务完成后,发现派往甲区的每架次无人机比乙区的平均多喷洒503亩,求派往甲区每架次无人机平均喷洒多少亩?【答案】(1)甲区有农田50000亩,乙区有农田40000亩(2)100亩【解析】【分析】(1)设甲区有农田x 亩,则乙区有农田()10000x −亩,根据甲区农田的80%和乙区全部农田均适宜试种,且两区适宜试种农田的面积刚好相同建立方程,解方程即可得;(2)设派往甲区每架次无人机平均喷洒y 亩,派往甲区的无人机架次为a 架次,则派往乙区每架次无人机平均喷洒503y −亩,派往乙区的无人机架次为1.2a 架次,根据两区喷洒的面积相同建立方程,解方程即可得.【小问1详解】解:设甲区有农田x 亩,则乙区有农田()10000x −亩,由题意得:80%10000x x =−,解得50000x =,则10000500001000040000x −=−=,答:甲区有农田50000亩,乙区有农田40000亩.【小问2详解】解:设派往甲区每架次无人机平均喷洒y 亩,派往甲区的无人机架次为a 架次,则派往乙区每架次无人机平均喷洒503y−亩,派往乙区的无人机架次为1.2a 架次, 由题意得:5031.2ay a y=− ,即5031.2y y − , 解得100y =,答:派往甲区每架次无人机平均喷洒100亩.【点睛】本题考查了一元一次方程的应用,找准等量关系,正确建立方程是解题关键.24. 人工海产养殖合作社安排甲、乙两组人员分别前往海面A ,B 养殖场捕捞海产品,经测量,A 在灯塔C 的南偏西60°方向,B 在灯塔C 的南偏东45°方向,且在A 的正东方向,3600AC =米.(1)求B 养殖场与灯塔C 的距离(结果精确到个位);(2)甲组完成捕捞后,乙组还未完成捕捞,甲组决定前往B 处协助捕捞,若甲组航行的平均速度为600米/每分钟,请计算说明甲组能否在9分钟内到达B 1.414≈ 1.732≈)【答案】(1)2545米(2)能,说明过程见解析【解析】【分析】(1)过点C 作CD AB ⊥于点D ,先根据含30度角的直角三角形的性质、等腰三角形的判定可得118002BD CD AC ===米,再解直角三角形即可得; (2)先解直角三角形求出AD 的长,从而可得AB 的长,再根据时间等于路程除以速度即可得.【小问1详解】解:如图,过点C 作CD AB ⊥于点D ,由题意得:60,45ACD BCD ∠=°∠=°, 30,45A B BCD ∴∠=°∠=∠=°,118002BD CD AC ∴===米, 2545sin 45CD BC ∴=≈°米, 答:B 养殖场与灯塔C 的距离为2545米.【小问2详解】解:sin 60AD AC =⋅°=()1800AB AD BD ∴=+=+米,则甲组到达B 处所需时间为()180060038.196+÷=≈(分钟)9<分钟, 所以甲组能在9分钟内到达B 处.【点睛】本题考查了解直角三角形的应用,熟练掌握解直角三角形的方法是解题关键. 25. 如图,在平面直角坐标系中,抛物线214y x bx c =++与x 轴交于点A ,B ,与y 轴交于点C ,其中()3,0B ,()0,3C −.(1)求该抛物线的表达式;(2)点P 是直线AC 下方抛物线上一动点,过点P 作PD AC ⊥于点D ,求PD 的最大值及此时点P 的坐标;(3)在(2)的条件下,将该抛物线向右平移5个单位,点E 为点P 的对应点,平移后的抛物线与y 轴交于点F ,Q 为平移后的抛物线的对称轴上任意一点.写出所有使得以QF 为腰的QEF △是等腰三角形的点Q 的坐标,并把求其中一个点Q 的坐标的过程写出来.【答案】(1)211344y x x =+− (2)PD 取得最大值为45,52,2P −−(3)Q 点的坐标为9,12 −或9,52 或97,24. 【解析】 【分析】(1)待定系数法求二次函数解析式即可求解;(2)直线AC 的解析式为334y x =−−,过点P 作PE x ⊥轴于点E ,交AC 于点Q ,设211,344P t t t +− ,则3,34Q t t −− ,则45PD PQ =,进而根据二次函数的性质即可求解; (3)根据平移的性质得出219494216y x =−− ,对称轴为直线92x =,点52,2P −− 向右平移5个单位得到53,2E−,()0,2F ,勾股定理分别表示出222,,EF QE QF ,进而分类讨论即可求解. 【小问1详解】解:将点()3,0B ,()0,3C −.代入214y x bx c =++得, 2133043b c c ×++= =− 解得:143b c = =− ,�抛物线解析式为:211344y x x =+−, 【小问2详解】 �211344y x x =+−与x 轴交于点A ,B , 当0y =时,2113044x x +−= 解得:124,3x x =−=, �()4,0A −,�()0,3C −.设直线AC 的解析式为3y kx =−, ∴430k −−= 解得:34k =− ∴直线AC 的解析式为334y x =−−, 如图所示,过点P 作PE x ⊥轴于点E ,交AC 于点Q ,设211,344P t t t +− ,则3,34Q t t −− , ∴223111334444PQ t t t t t =−−−+−=−−, �AQE PQD ∠=∠,90AEQ QDP ∠=∠=°, ∴OAC QPD ∠=∠, ∵4,3OA OC ==, ∴5AC =, ∴4cos cos =5PD AO QPD OAC PQ AC ∠==∠=, ∴()222441141425545555PD PQ t t t t t ==−−=−−=−++, ∴当2t =−时,PD 取得最大值为45,()()2211115322344442t t +−=×−+×−−=−, ∴52,2P−−; 【小问3详解】�抛物线211344y x x =+−211494216x =+−将该抛物线向右平移5个单位,得到219494216y x =−− ,对称轴为直线92x =, 点52,2P−− 向右平移5个单位得到53,2E −∵平移后的抛物线与y 轴交于点F ,令0x =,则2194924216y =×−= , ∴()0,2F , ∴22251173224EF =++= ∵Q 为平移后的抛物线的对称轴上任意一点.则Q 点的横坐标为92, 设9,2Q m, ∴22295322QE m =−++ ,()222922QF m =+−, 当QF EF =时,()22922m +− =1174, 解得:1m =−或5m =, 当QE QF =时,2295322m −++=()22922m +− , 解得:74m = 综上所述,Q 点的坐标为9,12 − 或9,52 或97,24.【点睛】本题考查了二次函数综合问题,解直角三角形,待定系数法求解析式,二次函数的平移,线段周长问题,特殊三角形问题,熟练掌握二次函数的性质是解题的关键.26. 如图,在等边ABC 中,AD BC ⊥于点D ,E 线段AD 上一动点(不与A ,D 重合),连接BE ,CE ,将CE 绕点C 顺时针旋转60°得到线段CF ,连接AF .(1)如图1,求证:CBE CAF ∠=∠;(2)如图2,连接BF 交AC 于点G ,连接DG ,EF ,EF 与DG 所在直线交于点H ,求证:EH FH =;(3)如图3,连接BF 交AC 于点G ,连接DG ,EG ,将AEG 沿AG 所在直线翻折至ABC 所在平面内,得到APG ,将DEG 沿DG 所在直线翻折至ABC 所在平面内,得到DQG ,连接PQ ,QF .若4AB =,直接写出PQ QF +的最小值.【答案】(1)见解析 (2)见解析(32【解析】【分析】(1)根据旋转的性质得出CE CF =,60ECF ∠=°,进而证明()SAS BCE ACF ≌△△,即可得为证;(2)过点F 作∥FK AD ,交DH 点的延长线于点K ,连接EK ,FD ,证明四边形四边形EDFK 是平行四边形,即可得证;(3)如图所示,延长,AP DQ 交于点R ,由(2)可知DCG △是等边三角形,根据折叠的性质可得30PAG EAG ∠=∠=°,30QDG EDG ∠=∠=°,进而得出ADR 是等边三角形,由(2)可得Rt Rt CED CFG ≌,得出四边形GDQF 是平行四边形,则122QF DC AC ===,进而得出3602120PGQ AGD ∠=°−∠=°,则PQ=,当GQ 取得最小值时,即GQ DR ⊥时,PQ 取得最小值,即可求解. 【小问1详解】证明:�ABC 为等边三角形,�60ACB ∠=°,AC BC =,�将CE 绕点C 顺时针旋转60°得到线段CF ,∴CE CF =,60ECF ∠=°∴ACB ECF ∠=∠∴ACB ACE ECF ACE −=−∠∠∠∠即BCE ACF ∠=∠在BCE 和ACF △中EC FC BCE ACF BC AC = ∠=∠ =, ∴()SAS BCE ACF ≌△△,∴CBE CAF ∠=∠;【小问2详解】证明:如图所示,过点F 作∥FK AD ,交DH 点的延长线于点K ,连接EK ,FD ,�ABC 是等边三角形,�AB AC BC ==,�AD BC ⊥∴BD CD =∴AD 垂直平分BC ,∴EB EC =又∵BCE ACF ≌,∴,AF BECF CE ==, ∴AF CF =,∴F 在AC 的垂直平分线上,∵AB BC =∴B 在AC 的垂直平分线上,∴BF 垂直平分AC∴AC BF ⊥,12AGCG AC == ∴90AGF ∠=° 又∵12DG AC CG ==,60ACD ∠=° ∴DCG △是等边三角形,∴60CGD CDG ∠=∠=°∴60AGH DGC ∠=∠=°∴906030KGF AGF AGH ∠=∠−∠=°−°=°,又∵906030ADK ADC GDC ∠=∠−∠=°−°=°,KF AD ∥∴30HKF ADK ∠=∠=°∴30FKG KGF ∠=∠=°,∴FG FK =在Rt CED 与Rt CGF △中,CF CE CD CG = =∴Rt Rt CED CFG ≌∴GF ED =∴ED FK =∴四边形EDFK 是平行四边形,∴EH HF =;【小问3详解】解:依题意,如图所示,延长,AP DQ 交于点R ,由(2)可知DCG △是等边三角形,∴30EDG ∠=°�将AEG 沿AG 所在直线翻折至ABC 所在平面内,得到APG ,将DEG 沿DG 所在直线翻折至ABC 所在平面内,得到DQG ,∴30PAG EAG ∠=∠=°,30QDG EDG ∠=∠=° ∴60PAE QDE ∠=∠=°, ∴ADR 是等边三角形,∴906030QDCADC ADQ ∠=∠−∠=°−°=° 由(2)可得Rt Rt CED CFG ≌∴DE GF =,∵DE DQ =,∴GF DQ =,∵30GBC QDC ∠=∠=°, ∴GF DQ ∥∴四边形GDQF 是平行四边形, ∴122QF DG AC === 由(2)可知G 是AC 的中点,则GA GD =∴30GAD GDA ∠=∠=°∴120AGD ∠=°∵折叠,120AGP DGQ AGE DGE AGD ∴∠+∠=∠+∠=∠=°,∴3602120PGQ AGD ∠=°−∠=°, 又PGGE GQ ==,∴PQ =,∴当GQ 取得最小值时,即GQ DR ⊥时,PQ 取得最小值,此时如图所示,∴11122GQ GC DC ===,∴PQ =,∴2PQ QF +.【点睛】本题考查了等边三角形的性质,旋转的性质,轴对称的性质,勾股定理,平行四边形的性质与判定,全等三角形的性质与判定,熟练掌握以上知识是解题的关键.。

2023年重庆市中考数学真题(A卷)(原卷版和解析版)

2023年重庆市中考数学真题(A卷)(原卷版和解析版)

重庆市2023年初中学业水平暨高中招生考试数学试题(A 卷)(全卷共三个大题,满分150分,考试时间120分钟)注意事项:1.试题的答案书写在答题卡上,不得在试题卷上直接作答2.作答前认真阅读答题卡上的注意事项;3.作图(包括作辅助线)请一律用黑色2B 铅笔完成;4.考试结束,由监考人员将试题卷和答题卡一并收回参考公式:抛物线()20y ax bx c a =++≠)的顶点坐标为2424,b ac b a a ⎛⎫ ⎪⎝-⎭-,对称轴为2bx a =-一、选择题:(本大题10个小题,每小题4分,共40分)在每个小题的下面,都给出了代号为A 、B 、C 、D 的四个答案,其中只有一个是正确的,请将答题卡上题号右侧正确答案所对应的方框涂黑.1.8的相反数是()A.8- B.8C.18D.18-2.四个大小相同的正方体搭成的几何体如图所示,从正面得到的视图是()A.B.C.D.3.反比例函数4y x=-的图象一定经过的点是()A.()14, B.()14--, C.()22-,D.()22,4.若两个相似三角形周长的比为1:4,则这两个三角形对应边的比是()A.1:2B.1:4C.1:8D.1:165.如图,,⊥∥AB CD AD AC ,若155∠=︒,则2∠的度数为()A.35︒B.45︒C.50︒D.55︒6.估计2810+的值应在()A.7和8之间B.8和9之间C.9和10之间D.10和11之间7.用长度相同的木棍按如图所示的规律拼图案,其中第①个图案用了9根木棍,第②个图案用了14根木棍,第③个图案用了19根木棍,第④个图案用了24根木棍,……,按此规律排列下去,则第⑧个图案用的木棍根数是()A.39B.44C.49D.548.如图,AC 是O 的切线,B 为切点,连接OA OC ,.若30A ∠=︒,23AB =3BC =,则OC 的长度是()A.3B.23C.13 D.69.如图,在正方形ABCD 中,点E ,F 分别在BC ,CD 上,连接AE ,AF ,EF ,45EAF ∠=︒.若BAE α∠=,则FEC ∠一定等于()A.2αB.902α︒-C.45α︒-D.90α︒-10.在多项式x y z m n ----(其中x y z m n >>>>)中,对相邻的两个字母间任意添加绝对值符号,添加绝对值符号后仍只有减法运算,然后进行去绝对值运算,称此为“绝对操作”.例如:x y z m n x y z m n ----=--+-,x y z m n x y z m n ----=---+,…….下列说法:①存在“绝对操作”,使其运算结果与原多项式相等;②不存在“绝对操作”,使其运算结果与原多项式之和为0;③所有的“绝对操作”共有7种不同运算结果.其中正确的个数是()A.0B.1C.2D.3二、填空题:(本大题8个小题,每小题4分,共32分)请将每小题的答案直接填在答题卡中对应的横线上.11.计算1023-+=_____.12.如图,在正五边形ABCDE 中,连接AC ,则∠BAC 的度数为_____.13.一个口袋中有1个红色球,有1个白色球,有1个蓝色球,这些球除颜色外都相同.从中随机摸出一个球,记下颜色后放回,摇匀后再从中随机摸出一个球,则两次都摸到红球的概率是___________.14.某新建工业园区今年六月份提供就业岗位1501个,并按计划逐月增长,预计八月份将提供岗位1815个.设七、八两个月提供就业岗位数量的月平均增长率为x ,根据题意,可列方程为___________.15.如图,在Rt ABC △中,90BAC ∠= ,AB AC =,点D 为BC 上一点,连接AD .过点B 作BE AD ⊥于点E ,过点C 作CF AD ⊥交AD 的延长线于点F .若4BE =,1CF =,则EF 的长度为___________.16.如图,O 是矩形ABCD 的外接圆,若4,3AB AD ==,则图中阴影部分的面积为___________.(结果保留π)17.若关于x 的一元一次不等式组+34222x x a ⎧≤⎪⎨⎪-≥⎩,至少有2个整数解,且关于y 的分式方程14222a y y -+=--有非负整数解,则所有满足条件的整数a 的值之和是___________.18.如果一个四位自然数abcd 的各数位上的数字互不相等且均不为0,满足ab bc cd -=,那么称这个四位数为“递减数”.例如:四位数4129,∵411229-=,∴4129是“递减数”;又如:四位数5324,∵53322124-=≠,∴5324不是“递减数”.若一个“递减数”为a312,则这个数为___________;若一个“递减数”的前三个数字组成的三位数abc 与后三个数字组成的三位数bcd 的和能被9整除,则满足条件的数的最大值是___________.三、解答题:(本大题8个小题,第19题8分,其余每题各10分,共78分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形(包括辅助线),请将解答过程书写在答题卡中对应的位置上.19.计算:(1)()()()211a a a a -++-;(2)22.211x x x x x x ⎛⎫÷- ⎪+++⎝⎭20.学习了平行四边形后,小虹进行了拓展性研究.她发现,如果作平行四边形一条对角线的垂直平分线,那么这个平行四边形的一组对边截垂直平分线所得的线段被垂足平分.她的解决思路是通过证明对应线段所在的两个三角形全等得出结论.请根据她的思路完成以下作图与填空:用直尺和圆规,作AC 的垂直平分线交DC 于点E ,交AB 于点F ,垂足为点O .(只保留作图痕迹)已知:如图,四边形ABCD 是平行四边形,AC 是对角线,EF 垂直平分AC ,垂足为点O .求证:OE OF =.证明:∵四边形ABCD 是平行四边形,∴DC AB ∥.∴ECO ∠=①.∵EF 垂直平分AC ,∴②.又EOC ∠=___________③.∴()COE AOF ASA ∆≅∆.∴OE OF =.小虹再进一步研究发现,过平行四边形对角线AC 中点的直线与平行四边形一组对边相交形成的线段均有此特征.请你依照题意完成下面命题:过平行四边形对角线中点的直线④.21.为了解A 、B 两款品质相近的智能玩具飞机在一次充满电后运行的最长时间,有关人员分别随机调查了A 、B 两款智能玩具飞机各10架,记录下它们运行的最长时间(分钟),并对数据进行整理、描述和分析(运行最长时间用x 表示,共分为三组:合格6070x ≤<,中等7080x ≤<,优等80x ≥),下面给出了部分信息:A 款智能玩具飞机10架一次充满电后运行最长时间是:60,64,67,69,71,71,72,72,72,82B 款智能玩具飞机10架一次充满电后运行最长时间属于中等的数据是:70,71,72,72,73两款智能玩具飞机运行最长时间统计表,B 款智能玩具飞机运行最长时间扇形统计图类别AB平均数7070中位数71b众数a67方差30.426.6根据以上信息,解答下列问题:(1)上述图表中=a ___________,b =___________,m =___________;(2)根据以上数据,你认为哪款智能玩具飞机运行性能更好?请说明理由(写出一条理由即可);(3)若某玩具仓库有A 款智能玩具飞机200架、B 款智能玩具飞机120架,估计两款智能玩具飞机运行性能在中等及以上的共有多少架?22.某公司不定期为员工购买某预制食品厂生产的杂酱面、牛肉面两种食品.(1)该公司花费3000元一次性购买了杂酱面、牛肉面共170份,此时杂酱面、牛肉面的价格分别为15元、20元,求购买两种食品各多少份?(2)由于公司员工人数和食品价格有所调整,现该公司分别花费1260元、1200元一次性购买杂酱面、牛肉面两种食品,已知购买杂酱面的份数比牛肉面的份数多50%,每份杂酱面比每份牛肉面的价格少6元,求购买牛肉面多少份?23.如图,ABC 是边长为4的等边三角形,动点E ,F 分别以每秒1个单位长度的速度同时从点A 出发,点E 沿折线A B C →→方向运动,点F 沿折线A C B →→方向运动,当两者相遇时停止运动.设运动时间为t 秒,点E ,F 的距离为y .(1)请直接写出y 关于t 的函数表达式并注明自变量t 的取值范围;(2)在给定的平面直角坐标系中画出这个函数的图象,并写出该函数的一条性质;(3)结合函数图象,写出点E ,F 相距3个单位长度时t 的值.24.为了满足市民的需求,我市在一条小河AB 两侧开辟了两条长跑锻炼线路,如图;①A D C B ---;②A E B --.经勘测,点B 在点A 的正东方,点C 在点B 的正北方10千米处,点D 在点C 的正西方14千米处,点D 在点A 的北偏东45︒方向,点E 在点A 的正南方,点E 在点B 的南偏西60︒方向.(参考数据:2 1.41,3 1.73)≈≈(1)求AD 的长度.(结果精确到1千米)(2)由于时间原因,小明决定选择一条较短线路进行锻炼,请计算说明他应该选择线路①还是线路②?25.如图,在平面直角坐标系中,抛物线22y ax bx =++过点()1,3,且交x 轴于点()1,0A -,B 两点,交y 轴于点C .(1)求抛物线的表达式;(2)点P 是直线BC 上方抛物线上的一动点,过点P 作PD BC ⊥于点D ,过点P 作y 轴的平行线交直线BC 于点E ,求PDE △周长的最大值及此时点P 的坐标;(3)在(2)中PDE △周长取得最大值的条件下,将该抛物线沿射线CB 方向平移5个单位长度,点M 为平移后的抛物线的对称轴上一点.在平面内确定一点N ,使得以点A ,P ,M ,N 为顶点的四边形是菱形,写出所有符合条件的点N 的坐标,并写出求解点N 的坐标的其中一种情况的过程.26.在Rt ABC 中,90ACB ∠=︒,=60B ∠︒,点D 为线段AB 上一动点,连接CD .(1)如图1,若9AC =,BD =,求线段AD 的长.(2)如图2,以CD 为边在CD 上方作等边CDE ,点F 是DE 的中点,连接BF 并延长,交CD 的延长线于点G .若G BCE ∠=∠,求证:GF BF BE =+.(3)在CD 取得最小值的条件下,以CD 为边在CD 右侧作等边CDE .点M 为CD 所在直线上一点,将BEM 沿BM 所在直线翻折至ABC 所在平面内得到BNM .连接AN ,点P 为AN 的中点,连接CP ,当CP 取最大值时,连接BP ,将BCP 沿BC 所在直线翻折至ABC 所在平面内得到BCQ ,请直接写出此时NQCP的值.重庆市2023年初中学业水平暨高中招生考试数学试题(A 卷)(全卷共三个大题,满分150分,考试时间120分钟)注意事项:1.试题的答案书写在答题卡上,不得在试题卷上直接作答2.作答前认真阅读答题卡上的注意事项;3.作图(包括作辅助线)请一律用黑色2B 铅笔完成;4.考试结束,由监考人员将试题卷和答题卡一并收回参考公式:抛物线()20y ax bx c a =++≠)的顶点坐标为2424,b ac b a a ⎛⎫ ⎪⎝-⎭-,对称轴为2bx a =-一、选择题:(本大题10个小题,每小题4分,共40分)在每个小题的下面,都给出了代号为A 、B 、C 、D 的四个答案,其中只有一个是正确的,请将答题卡上题号右侧正确答案所对应的方框涂黑.1.8的相反数是()A.8- B.8C.18D.18-【答案】A 【解析】【分析】根据只有符号不同的两个数互为相反数进行解答即可得.【详解】解:8的相反数是8-,故选A .【点睛】本题考查了相反数的定义,掌握相反数的定义是解题的关键.2.四个大小相同的正方体搭成的几何体如图所示,从正面得到的视图是()A.B.C.D.【答案】D【解析】【分析】根据从正面看得到的图形是主视图,可得答案.【详解】从正面看第一层是2个小正方形,第二层右边1个小正方形,故选:D .【点睛】考查了简单组合体的三视图,从正面看得到的图形是主视图.3.反比例函数4y x=-的图象一定经过的点是()A.()14, B.()14--, C.()22-,D.()22,【答案】C 【解析】【分析】根据题意将各项的坐标代入反比例函数4y x=-即可解答.【详解】解:A 、将1x =代入反比例函数4y x=-得到14y =-≠,故A 项不符合题意;B 、项将1x =-代入反比例函数4y x =-得到44y =≠-,故B 项不符合题意;C 、项将=−2代入反比例函数4y x =-得到22y ==,故C 项符合题意;D 、项将2x =代入反比例函数4y x=-得到22y =-≠,故D 项不符合题意;故选C .【点睛】本题考查了反比例函数图象上点的坐标特征,只要点在函数图象上则其坐标一定满足函数解析式,掌握反比例函数图象上点的坐标特征是解题的关键.4.若两个相似三角形周长的比为1:4,则这两个三角形对应边的比是()A.1:2B.1:4C.1:8D.1:16【答案】B 【解析】【分析】根据相似三角形的周长比等于相似三角形的对应边比即可解答.【详解】解:∵两个相似三角形周长的比为1:4,∴相似三角形的对应边比为1:4,故选B .【点睛】本题考查了相似三角形的周长比等于相似三角形的对应边比,掌握相似三角形的性质是解题的关键.5.如图,,⊥∥AB CD AD AC ,若155∠=︒,则2∠的度数为()A.35︒B.45︒C.50︒D.55︒【答案】A【解析】【分析】根据两直线平行,同旁内角互补可得CAB ∠的度数,根据垂直的定义可得90CAD ∠=︒,然后根据2CAB CAD Ð=Ð-Ð即可得出答案.【详解】解:∵AB CD ∥,155∠=︒,∴18055125CAB Ð=°-°=°,∵AD AC ⊥,∴90CAD ∠=︒,∴21259035CAB CAD Ð=Ð-Ð=°-°=°,故选:A .【点睛】本题考查了平行线的性质以及垂线的定义,熟知两直线平行同旁内角互补是解本题的关键.6.估计2810+的值应在()A.7和8之间B.8和9之间C .9和10之间 D.10和11之间【答案】B【解析】【分析】先计算二次根式的混合运算,再估算结果的大小即可判断.28101620=45=+∵25 2.5<<,∴455<<,∴8459<+<,故选:B .【点睛】此题考查了二次根式的混合运算,无理数的估算,正确掌握二次根式的混合运算法则是解题的关键.7.用长度相同的木棍按如图所示的规律拼图案,其中第①个图案用了9根木棍,第②个图案用了14根木棍,第③个图案用了19根木棍,第④个图案用了24根木棍,……,按此规律排列下去,则第⑧个图案用的木棍根数是()A.39B.44C.49D.54【答案】B【解析】【分析】根据各图形中木棍的根数发现计算的规律,由此即可得到答案.【详解】解:第①个图案用了459+=根木棍,第②个图案用了45214+⨯=根木棍,第③个图案用了45319+⨯=根木棍,第④个图案用了45424+⨯=根木棍,……,第⑧个图案用的木棍根数是45844+⨯=根,故选:B .【点睛】此题考查了图形类规律的探究,正确理解图形中木棍根数的变化规律由此得到计算的规律是解题的关键.8.如图,AC 是O 的切线,B 为切点,连接OA OC ,.若30A ∠=︒,AB =3BC =,则OC 的长度是()A.3B.C.D.6【答案】C【解析】【分析】根据切线的性质及正切的定义得到2OB =,再根据勾股定理得到OC =【详解】解:连接OB ,∵AC 是O 的切线,B 为切点,∴OB AC ⊥,∵30A ∠=︒,AB =,∴在Rt OAB 中,3tan 23OB AB A =⋅∠==,∵3BC =,∴在Rt OBC 中,OC ==,故选C .【点睛】本题考查了切线的性质,锐角三角函数,勾股定理,掌握切线的性质是解题的关键.9.如图,在正方形ABCD 中,点E ,F 分别在BC ,CD 上,连接AE ,AF ,EF ,45EAF ∠=︒.若BAE α∠=,则FEC ∠一定等于()A.2αB.902α︒-C.45α︒-D.90α︒-【答案】A【解析】【分析】利用三角形逆时针旋转90︒后,再证明三角形全等,最后根据性质和三角形内角和定理即可求解.【详解】将ADF 绕点A 逆时针旋转90︒至ABH ,∵四边形ABCD 是正方形,∴AB AD =,90B D BAD C ∠=∠=∠=∠=︒,由旋转性质可知:DAF BAH ∠=∠,90D ABH ∠=∠=︒,AF AH =,∴180AHB ABC ∠+∠=︒,∴点H B C ,,三点共线,∵BAE α∠=,45EAF ∠=︒,90BAD HAF ∠=∠=︒,∴45DAF BAH α∠=∠=︒-,45EAF EAH ∠=∠=︒,∵90AHB BAH ∠+∠=︒,∴45AHB α∠=︒+,在AEF 和AEH 中AF AH FAE HAE AE AE =⎧⎪∠=∠⎨⎪=⎩,∴()AFE AHE SAS ≌,∴45AHE AFE α∠=∠=︒+,∴45AHE AFD AFE α∠=∠=∠=︒+,∴902DFE AFD AFE α∠=∠+∠=︒+,∵90DFE FEC C FEC ∠=∠+∠=∠+︒,∴2FEC α∠=,故选:A .【点睛】此题考查了正方形的性质,全等三角形的判定和性质,旋转的性质,解题的关键是能正确作出旋转,再证明三角形全等,熟练利用性质求出角度.10.在多项式x y z m n ----(其中x y z m n >>>>)中,对相邻的两个字母间任意添加绝对值符号,添加绝对值符号后仍只有减法运算,然后进行去绝对值运算,称此为“绝对操作”.例如:x y z m n x y z m n ----=--+-,x y z m n x y z m n ----=---+,…….下列说法:①存在“绝对操作”,使其运算结果与原多项式相等;②不存在“绝对操作”,使其运算结果与原多项式之和为0;③所有的“绝对操作”共有7种不同运算结果.其中正确的个数是()A.0B.1C.2D.3【答案】C【解析】【分析】根据“绝对操作”的定义及绝对值的性质对每一项判断即可解答.【详解】解:∵x y z m n >>>>,∴x y z m n x y z m n ----=----,∴存在“绝对操作”,使其运算结果与原多项式相等,故①正确;根据绝对操作的定义可知:在多项式x y z m n ----(其中x y z m n >>>>)中,经过绝对操作后,z n m 、、的符号都有可能改变,但是x y 、的符合不会改变,∴不存在“绝对操作”,使其运算结果与原多项式之和为0,故②正确;∵在多项式x y z m n ----(其中x y z m n >>>>)中,经过“绝对操作”可能产生的结果如下:∴x y z m n x y z m n ----=----,x y z m n x y z m n ----=-+--,x y z m n x y z m n x y z m n ----=----=--+-,x y z m n x y z m n x y z m n ----=----=---+,x y z m n x y z m n ----=-+-+,共有5种不同运算结果,故③错误;故选C .【点睛】本题考查了新定义“绝对操作”,绝对值的性质,整式的加减运算,掌握绝对值的性质是解题的关键.二、填空题:(本大题8个小题,每小题4分,共32分)请将每小题的答案直接填在答题卡中对应的横线上.11.计算1023-+=_____.【答案】1.5【解析】【分析】先根据负整数指数幂及零指数幂化简,再根据有理数的加法计算.【详解】1023-+=11=1.52+.故答案为1.5.【点睛】本题考查了负整数指数幂及零指数幂的意义,任何不等于0的数的负整数次幂,等于这个数的正整数次幂的倒数,非零数的零次幂等于1.12.如图,在正五边形ABCDE 中,连接AC ,则∠BAC 的度数为_____.【答案】36°【解析】【分析】首先利用多边形的内角和公式求得正五边形的内角和,再求得每个内角的度数,利用等腰三角形的性质可得∠BAC 的度数.【详解】正五边形内角和:(5﹣2)×180°=3×180°=540°∴5401085B ︒︒∠==,∴180B 1801083622BAC ︒︒︒︒-∠-∠===.故答案为36°.【点睛】本题主要考查了正多边形的内角和,熟记多边形的内角和公式:(n-2)×180°是解答此题的关键.13.一个口袋中有1个红色球,有1个白色球,有1个蓝色球,这些球除颜色外都相同.从中随机摸出一个球,记下颜色后放回,摇匀后再从中随机摸出一个球,则两次都摸到红球的概率是___________.【答案】19【解析】【分析】列表得出所有等可能结果,从中找到符合条件的结果数,再根据概率公式求解即可.【详解】解:根据题意列表如下:红球白球蓝球红球(红球,红球)(白球,红球)(蓝球,红球)白球(红球,白球)(白球,白球)(蓝球,白球)蓝球(红球,蓝球)(白球,蓝球)(蓝球,蓝球)由表知,共有9种等可能结果,其中两次都摸到红球的有1种结果,所以两次摸到球的颜色相同的概率为19,故答案为:19.【点睛】本题考查了列表法或树状图法求概率.用到的知识点为:概率=所求情况数与总情况数之比.14.某新建工业园区今年六月份提供就业岗位1501个,并按计划逐月增长,预计八月份将提供岗位1815个.设七、八两个月提供就业岗位数量的月平均增长率为x ,根据题意,可列方程为___________.【答案】()2150111815x +=【解析】【分析】设七、八两个月提供就业岗位数量的月平均增长率为x ,根据题意列出一元二次方程,即可求解.【详解】解:设七、八两个月提供就业岗位数量的月平均增长率为x ,根据题意得,()2150111815x +=,故答案为:()2150111815x +=.【点睛】本题考查了一元二次方程的应用,增长率问题,根据题意列出方程是解题的关键.15.如图,在Rt ABC △中,90BAC ∠= ,AB AC =,点D 为BC 上一点,连接AD .过点B 作BE AD ⊥于点E ,过点C 作CF AD ⊥交AD 的延长线于点F .若4BE =,1CF =,则EF 的长度为___________.【答案】3【解析】【分析】证明AFC BEA ≌△△,得到,BE AF CF AE ==,即可得解.【详解】解:∵90BAC ∠=︒,∴90EAB EAC ∠+∠=︒,∵BE AD ⊥,CF AD ⊥,∴90AEB AFC ∠=∠=︒,∴90ACF EAC ∠+∠=︒,∴ACF BAE ∠=∠,在AFC △和BEA △中:AEB CFA ACF BAE AB AC ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴()AAS AFC BEA ≌△△,∴4,1AF BE AE CF ====,∴413EF AF AE =-=-=,故答案为:3.【点睛】本题考查全等三角形的判定和性质.利用同角的余角相等和等腰三角形的两腰相等证明三角形全等是解题的关键.16.如图,O 是矩形ABCD 的外接圆,若4,3AB AD ==,则图中阴影部分的面积为___________.(结果保留π)【答案】25124π-【解析】【分析】根据直径所对的圆周角是直角及勾股定理得到5BD =,再根据圆的面积及矩形的性质即可解答.【详解】解:连接BD ,∵四边形ABCD 是矩形,∴BD 是O 的直径,∵4,3AB AD ==,∴5BD ==,∴O 的半径为52,∴O 的面积为254π,矩形的面积为3412⨯=,∴阴影部分的面积为25124π-;故答案为25124π-;【点睛】本题考查了矩形的性质,圆的面积,矩形的面积,勾股定理,掌握矩形的性质是解题的关键.17.若关于x 的一元一次不等式组+34222x x a ⎧≤⎪⎨⎪-≥⎩,至少有2个整数解,且关于y 的分式方程14222a y y -+=--有非负整数解,则所有满足条件的整数a 的值之和是___________.【答案】4【解析】【分析】先解不等式组,确定a 的取值范围6a ≤,再把分式方程去分母转化为整式方程,解得12a y -=,由分式方程有正整数解,确定出a 的值,相加即可得到答案.【详解】解:+34222x x a ⎧≤⎪⎨⎪-≥⎩①②解不等式①得:5x ≤,解不等式②得:1+2a x ≥,∴不等式的解集为1+52a x ≤≤,∵不等式组至少有2个整数解,∴1+42a ≤,解得:6a ≤;∵关于y 的分式方程14222a y y -+=--有非负整数解,∴()1422a y ---=解得:12a y -=,即102a -≥且122a -≠,解得:1a ≥且5a ≠∴a 的取值范围是16a ≤≤,且5a ≠∴a 可以取:1,3,∴134+=,故答案为:4.【点睛】本题考查了分式方程的解,以及解一元一次不等式组,熟练掌握运算法则是解题关键.18.如果一个四位自然数abcd 的各数位上的数字互不相等且均不为0,满足ab bc cd -=,那么称这个四位数为“递减数”.例如:四位数4129,∵411229-=,∴4129是“递减数”;又如:四位数5324,∵53322124-=≠,∴5324不是“递减数”.若一个“递减数”为a312,则这个数为___________;若一个“递减数”的前三个数字组成的三位数abc 与后三个数字组成的三位数bcd 的和能被9整除,则满足条件的数的最大值是___________.【答案】①.4312②.8165【解析】【分析】根据递减数的定义进行求解即可.【详解】解:∵a312是递减数,∴1033112a +-=,∴4a =,∴这个数为4312;故答案为:4312∵一个“递减数”的前三个数字组成的三位数abc 与后三个数字组成的三位数bcd 的和能被9整除,∴101010a b b c c d +--=+,∵1001010010abc bcd a b c b c d +=+++++,∴110010110100110001abc bcd a b c b b a b a b c +=++++++--=,∵()11010199112a b a b a b +=+++,能被9整除,∴112a b +能被9整除,∵各数位上的数字互不相等且均不为0,∴12345678,,,,,,,87654321a a a a a a a a b b b b b b b b ========⎧⎧⎧⎧⎧⎧⎧⎧⎨⎨⎨⎨⎨⎨⎨⎨========⎩⎩⎩⎩⎩⎩⎩⎩,∵最大的递减数,∴8,1a b ==,∴1089110c c d ⨯-⨯-=+,即:1171c d +=,∴c 最大取6,此时5d =,∴这个最大的递减数为8165.故答案为:8165.【点睛】本题考查一元一次方程和二元一次方程的应用.理解并掌握递减数的定义,是解题的关键.三、解答题:(本大题8个小题,第19题8分,其余每题各10分,共78分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形(包括辅助线),请将解答过程书写在答题卡中对应的位置上.19.计算:(1)()()()211a a a a -++-;(2)22.211x x x x x x ⎛⎫÷- ⎪+++⎝⎭【答案】(1)21a -(2)11x +【解析】【分析】(1)先计算单项式乘多项式,平方差公式,再合并同类项即可;(2)先通分计算括号内,再利用分式的除法法则进行计算.【小问1详解】解:原式2221a a a =-+-21a =-;【小问2详解】原式()222.11x x x x x x ⎛⎫+-=÷ ⎪++⎝⎭()22211x x x x =÷++()22211x x x x +=⋅+11x =+.【点睛】本题考查整式的混合运算,分式的混合运算.熟练掌握相关运算法则,正确的计算,是解题的关键.20.学习了平行四边形后,小虹进行了拓展性研究.她发现,如果作平行四边形一条对角线的垂直平分线,那么这个平行四边形的一组对边截垂直平分线所得的线段被垂足平分.她的解决思路是通过证明对应线段所在的两个三角形全等得出结论.请根据她的思路完成以下作图与填空:用直尺和圆规,作AC 的垂直平分线交DC 于点E ,交AB 于点F ,垂足为点O .(只保留作图痕迹)已知:如图,四边形ABCD 是平行四边形,AC 是对角线,EF 垂直平分AC ,垂足为点O .求证:OE OF =.证明:∵四边形ABCD 是平行四边形,∴DC AB ∥.∴ECO ∠=①.∵EF 垂直平分AC ,∴②.又EOC ∠=___________③.∴()COE AOF ASA ∆≅∆.∴OE OF =.小虹再进一步研究发现,过平行四边形对角线AC 中点的直线与平行四边形一组对边相交形成的线段均有此特征.请你依照题意完成下面命题:过平行四边形对角线中点的直线④.【答案】作图:见解析;FAO ∠;AO CO =;FOA ∠;被平行四边形一组对边所截,截得的线段被对角线中点平分【解析】【分析】根据线段垂直平分线的画法作图,再推理证明即可并得到结论.【详解】解:如图,即为所求;证明:∵四边形ABCD 是平行四边形,∴DC AB ∥.∴ECO ∠=FAO ∠.∵EF 垂直平分AC ,∴AO CO =.又EOC ∠=FOA ∠.∴()COE AOF ASA ≅ .∴OE OF =.故答案为:FAO ∠;AO CO =;FOA ∠;由此得到命题:过平行四边形对角线中点的直线被平行四边形一组对边所截,截得的线段被对角线中点平分,故答案为:被平行四边形一组对边所截,截得的线段被对角线中点平分.【点睛】此题考查了平行四边形的性质,作线段的垂直平分线,全等三角形的判定和性质,熟练掌握平行四边形的性质及线段垂直平分线的作图方法是解题的关键.21.为了解A 、B 两款品质相近的智能玩具飞机在一次充满电后运行的最长时间,有关人员分别随机调查了A 、B 两款智能玩具飞机各10架,记录下它们运行的最长时间(分钟),并对数据进行整理、描述和分析(运行最长时间用x 表示,共分为三组:合格6070x ≤<,中等7080x ≤<,优等80x ≥),下面给出了部分信息:A 款智能玩具飞机10架一次充满电后运行最长时间是:60,64,67,69,71,71,72,72,72,82B 款智能玩具飞机10架一次充满电后运行最长时间属于中等的数据是:70,71,72,72,73两款智能玩具飞机运行最长时间统计表,B 款智能玩具飞机运行最长时间扇形统计图类别A B平均数7070中位数71b众数a67方差30.426.6根据以上信息,解答下列问题:a___________,b=___________,m=___________;(1)上述图表中=(2)根据以上数据,你认为哪款智能玩具飞机运行性能更好?请说明理由(写出一条理由即可);(3)若某玩具仓库有A款智能玩具飞机200架、B款智能玩具飞机120架,估计两款智能玩具飞机运行性能在中等及以上的共有多少架?【答案】(1)72,70.5,10;(2)B款智能玩具飞机运行性能更好;因为B款智能玩具飞机运行时间的方差比A款智能玩具飞机运行时间的方差小,运行时间比较稳定;(3)两款智能玩具飞机运行性能在中等及以上的大约共有192架.【解析】【分析】(1)由A款数据可得A款的众数,即可求出a,由B款扇形数据可求得合格数及优秀数,从而求得中位数及优秀等次的百分比;(2)根据方差越小越稳定即可判断;(3)用样本数据估计总体,分别求出两款飞机中等及以上的架次相加即可.【小问1详解】解:由题意可知10架A款智能玩具飞机充满电后运行最长时间中,只有72出现了三次,且次数最多,则该a=;组数据的众数为72,即72由B款智能玩具飞机运行时间的扇形图可知,合格的百分比为40%,⨯=(架)则B款智能玩具飞机运行时间合格的架次为:1040%4则B 款智能玩具飞机运行时间优等的架次为:10451--=(架)则B 款智能玩具飞机的运行时间第五、第六个数据分别为:70,71,故B 款智能玩具飞机运行时间的中位数为:707170.52+=B 款智能玩具飞机运行时间优等的百分比为:1100%10%10⨯=即10m =故答案为:72,70.5,10;【小问2详解】B 款智能玩具飞机运行性能更好;因为B 款智能玩具飞机运行时间的方差比A 款智能玩具飞机运行时间的方差小,运行时间比较稳定;【小问3详解】200架A 款智能玩具飞机运行性能在中等及以上的架次为:620012010⨯=(架)200架A 款智能玩具飞机运行性能在中等及以上的架次为:61207210⨯=(架)则两款智能玩具飞机运行性能在中等及以上的共有:12072192+=架,答:两款智能玩具飞机运行性能在中等及以上的大约共有192架.【点睛】本题考查了扇形统计图,中位数、众数、百分比,用方差做决策,用样本估计总体;解题的关键是熟练掌握相关知识综合求解.22.某公司不定期为员工购买某预制食品厂生产的杂酱面、牛肉面两种食品.(1)该公司花费3000元一次性购买了杂酱面、牛肉面共170份,此时杂酱面、牛肉面的价格分别为15元、20元,求购买两种食品各多少份?(2)由于公司员工人数和食品价格有所调整,现该公司分别花费1260元、1200元一次性购买杂酱面、牛肉面两种食品,已知购买杂酱面的份数比牛肉面的份数多50%,每份杂酱面比每份牛肉面的价格少6元,求购买牛肉面多少份?【答案】(1)购买杂酱面80份,购买牛肉面90份(2)购买牛肉面90份【解析】【分析】(1)设购买杂酱面x 份,则购买牛肉面()170x -份,由题意知,()152********x x +⨯-=,解。

2023重庆市数学中考真题及答案(B卷)

2023重庆市数学中考真题及答案(B卷)

2023年重庆市中考数学试卷(B卷)一、选择题:(本大题10个小题,每小题4分,共40分)在每个小题的下面,都给出了代号为A,B,C,D的四个答案,其中只有一个是正确的,请将答题卡上题号右侧正确答案所对应的方框涂黑.1.(4分)4的相反数是( )A.B.C.﹣4D.42.(4分)四个大小相同的正方体搭成的几何体如图所示,从正面看到的视图是( )A.B.C.D.3.(4分)如图,直线a,b被直线c所截,若a∥b,∠1=63°,则∠2的度数为( )A.27°B.53°C.63°D.117°4.(4分)如图,已知△ABC∽△EDC,AC:EC=2:3,若AB的长度为6,则DE的长度为( )A.4B.9C.12D.13.55.(4分)反比例函数y=的图象一定经过的点是( )A.(﹣3,2)B.(2,﹣3)C.(﹣2,﹣4)D.(2,3)6.(4分)用圆圈按如图所示的规律拼图案,其中第①个图案中有2个圆圈,第②个图案中有5个圆圈,第③个图案中有8个圆圈,第④个图案中有11个圆圈,…,按此规律排列下去,则第⑦个图案中圆圈的个数为( )A.14B.20C.23D.267.(4分)估计×(﹣)的值应在( )A.4和5之间B.5和6之间C.6和7之间D.7和8之间8.(4分)如图,AB为⊙O的直径,直线CD与⊙O相切于点C,连接AC,若∠ACD=50°,则∠BAC的度数为( )A.30°B.40°C.50°D.60°9.(4分)如图,在正方形ABCD中,O为对角线AC的中点,E为正方形内一点,连接BE ,BE=BA,连接CE并延长,与∠ABE的平分线交于点F,连接OF,若AB=2,则OF 的长度为( )A.2B.C.1D.10.(4分)在多项式x﹣y﹣z﹣m﹣n(其中x>y>z>m>n)中,对相邻的两个字母间任意添加绝对值符号,添加绝对值符号后仍只有减法运算,然后进行去绝对值运算,称此为“绝对操作”.例如:x﹣y﹣|z﹣m|﹣n=x﹣y﹣z+m﹣n,|x﹣y|﹣z﹣|m﹣n|=x﹣y﹣z﹣m+n,….下列说法:①存在“绝对操作”,使其运算结果与原多项式相等;②不存在“绝对操作”,使其运算结果与原多项式之和为0;③所有的“绝对操作”共有7种不同运算结果.其中正确的个数是( )A.0B.1C.2D.3二、填空题:(本大题8个小题,每小题4分,共32分)请将每小题的答案直接填在答题卡中对应的横线上.11.(4分)计算:|﹣5|+(2﹣)0= .12.(4分)有四张完全一样正面分别写有汉字“清”“风”“朗”“月”的卡片,将其背面朝上并洗匀,从中随机抽取一张,记下卡片正面上的汉字后放回,洗匀后再从中随机抽取一张,则抽取的两张卡片上的汉字相同的概率是 .13.(4分)若七边形的内角中有一个角为100°,则其余六个内角之和为 .14.(4分)如图,在△ABC中,AB=AC,AD是BC边的中线,若AB=5,BC=6,则AD 的长度为 .15.(4分)为了加快数字化城市建设,某市计划新建一批智能充电桩,第一个月新建了301个充电桩,第三个月新建了500个充电桩,设该市新建智能充电桩个数的月平均增长率为x,根据题意,请列出方程 .16.(4分)如图,在矩形ABCD中,AB=2,BC=4,E为BC的中点,连接AE.DE.以E为圆心,EB长为半径画弧,分别与AE,DE交于点M,N.则图中阴影部分的面积为 (结果保留π).17.(4分)若关于x的不等式组的解集为x<﹣2,且关于y的分式方程+=2的解为正数,则所有满足条件的整数a的值之和为 .18.(4分)对于一个四位自然数M,若它的千位数字比个位数字多6,百位数字比十位数字多2,则称M为“天真数”.如:四位数7311,∵7﹣1=6,3﹣1=2,∴7311是“天真数”;四位数8421,∵8﹣1≠6,∴8421不是“天真数”,则最小的“天真数”为 ;一个“天真数”M的千位数字为a,百位数字为b,十位数字为c,个位数字为d,记P(M)=3(a+b)+c+d,Q(M)=a﹣5,若能被10整除,则满足条件的M的最大值为 .三、解答题:(本大题8个小题,第19题8分,其余每题各10分,共78分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形(包括辅助线),请将解答过程书写在答题卡中对应的位置上.19.(8分)计算:(1)x(x+6)+(x﹣3)2;(2)(3+)÷.20.(10分)在学习了平行四边形的相关知识后,小虹进行了拓展性研究,她发现,如果作平行四边形一条对角线的垂直平分线,那么这条垂直平分线在该四边形内部的线段被这条对角线平分.其解决问题的思路为通过证明对应线段所在两个三角形全等即可得出结论.请根据她的思路完成以下作图和填空:用直尺和圆规作平行四边形ABCD对角线AC的垂直平分线,交DC于点E,交AB于点F,垂足为O.(只保留作图痕迹)如图,四边形ABCD是平行四边形,AC是对角线,EF垂直平分AC,垂足为O.求证:EO=FO.证明:∵四边形ABCD是平行四边形∴DC∥AB.∴∠ECO= .∵EF垂直平分AC,∴ .又∠EOC= ,∴△COE≌△AOF(ASA).∴EO=FO.再进一步研究发现,过平行四边形对角线中点的所有与该四边形一组对边相交所得的线段均具备此特征,请你依照题目中的相关表述完成下面命题的填空:过平行四边形对角线中点的直线 .21.(10分)某洗车公司安装了A,B两款自动洗车设备,工作人员从消费者对A、B两款设备的满意度评分中各随机抽取20份,并对数据进行整理、描述和分析(评分分数用x 表示,分为四个等级:不满意x<70,比较满意70≤x<80,满意80≤x<90,非常满意x≥90),下面给出了部分信息:抽取的对A款设备的评分数据中“满意”包含的所有数据:83,85,85,87,87,89;抽取的对B款设备的评分数据:68,69,76,78,81,84,85,86,87,87,87,89,95,97,98,98,98,98,99,100.抽取的对A,B款设备的评分统计表设备平均数中位数众数“非常满意”所占百分比A88m9645%B8887n40%根据以上信息,解答下列问题:(1)填空:a= ,m= ,n= ;(2)5月份,有600名消费者对A款自动洗车设备进行评分,估计其中对A款自动洗车设备“比较满意”的人数;(3)根据以上数据,你认为哪一款自动洗车设备更受消费者欢迎?请说明理由(写出一条理由即可).22.(10分)如图,△ABC是边长为4的等边三角形,动点E,F均以每秒1个单位长度的速度同时从点A出发,E沿折线A→B→C方向运动,F沿折线A→C→B方向运动,当两点相遇时停止运动.设运动的时间为t秒,点E,F的距离为y.(1)请直接写出y关于t的函数关系式并注明自变量t的取值范围;(2)在给定的平面直角坐标系中,画出这个函数图象,并写出该函数的一条性质;(3)结合函数图象,直接写出点E,F相距3个单位长度时t的值.23.(10分)某粮食生产基地为了落实在适宜地区开展双季稻中间季节再种一季油菜的号召,积极扩大粮食生产规模,计划用基地的甲、乙两区农田进行油菜试种,甲区的农田比乙区的农田多10000亩,甲区农田的80%和乙区全部农田均适宜试种,且两区适宜试种农田的面积刚好相同.(1)求甲、乙两区各有农田多少亩?(2)在甲、乙两区适宜试种的农田全部种上油菜后,为加强油菜的虫害治理,基地派出一批性能相同的无人机,对试种农田喷洒除虫药,由于两区地势差别,派往乙区的无人机架次是甲区的1.2倍(每架次无人机喷洒时间相同),喷洒任务完成后,发现派往甲区的每架次无人机比乙区的平均多喷洒亩,求派往甲区每架次无人机平均喷洒多少亩?24.(10分)人工海产养殖合作社安排甲、乙两组人员分别前往海面A,B养殖场捕捞海产品.经测量,A在灯塔C的南偏西60°方向,B在灯塔C的南偏东45°方向,且在A的正东方向,AC=3600米.(1)求B养殖场与灯塔C的距离(结果精确到个位);(2)甲组完成捕捞后,乙组还未完成捕捞,甲组决定前往B处协助捕捞,若甲组航行的平均速度为600米每分钟,请计算说明甲组能否在9分钟内到达B处?(参考数据:≈1.414,≈1.732)2)25.(10分)如图,在平面直角坐标系中,抛物线y=x2+bx+c与x轴交于点A,B,与y 轴交于点C,其中B(3,0),C(0,﹣3).(1)求该抛物线的表达式;(2)点P是直线AC下方抛物线上一动点,过点P作PD⊥AC于点D,求PD的最大值及此时点P的坐标;(3)在(2)的条件下,将该抛物线向右平移5个单位,点E为点P的对应点,平移后的抛物线与y轴交于点F,Q为平移后的抛物线的对称轴上任意一点.写出所有使得以QF为腰的△QEF是等腰三角形的点Q的坐标,并把求其中一个点Q的坐标的过程写出来.26.(10分)如图,在等边△ABC中,AD⊥BC于点D,E为线段AD上一动点(不与A,D重合),连接BE,CE,将CE绕点C顺时针旋转60°得到线段CF,连接AF.(1)如图1,求证:∠CBE=∠CAF;(2)如图2,连接BF交AC于点G,连接DG,EF,EF与DG所在直线交于点H,求证:EH=FH;(3)如图3,连接BF交AC于点G,连接DG,EG,将△AEG沿AG所在直线翻折至△ABC所在平面内,得到△APG,将△DEG沿DG所在直线翻折至△ABC所在平面内,得到△DQG,连接PQ,QF.若AB=4,直接写出PQ+QF的最小值.2023年重庆市中考数学试卷(B卷)参考答案与试题解析一、选择题:(本大题10个小题,每小题4分,共40分)在每个小题的下面,都给出了代号为A,B,C,D的四个答案,其中只有一个是正确的,请将答题卡上题号右侧正确答案所对应的方框涂黑.1.(4分)4的相反数是( )A.B.C.﹣4D.4【分析】只有符号不同的两个数叫做互为相反数,由此即可得到答案.【解答】解:4的相反数是﹣4.故选:C.【点评】本题考查相反数,关键是掌握相反数的定义.2.(4分)四个大小相同的正方体搭成的几何体如图所示,从正面看到的视图是( )A.B.C.D.【分析】根据从正面看得到的图形是主视图,可得答案.【解答】解:从正面看,可得选项A的图形.故选:A.【点评】本题考查了简单组合体的三视图.解题的关键是理解简单组合体的三视图的定义,明确从正面看得到的图形是主视图.3.(4分)如图,直线a,b被直线c所截,若a∥b,∠1=63°,则∠2的度数为( )A.27°B.53°C.63°D.117°【分析】根据平行线的性质可以得到∠1=∠2,然后根据∠1的度数,即可得到∠2的度数.【解答】解:∵a∥b,∴∠1=∠2,∵∠1=63°,∴∠2=63°,故选:C.【点评】本题考查平行线的性质,解答本题的关键是明确题意,利用平行线的性质解答.4.(4分)如图,已知△ABC∽△EDC,AC:EC=2:3,若AB的长度为6,则DE的长度为( )A.4B.9C.12D.13.5【分析】根据相似三角形的性质联立方程即可求解.【解答】解:∵△ABC∽△EDC,AC:EC=2:3.∴,∴当AB=6时,DE=9.故选:B.【点评】本题主要考查了相似三角形的性质,找到对应的边成比例是解题的关键.5.(4分)反比例函数y=的图象一定经过的点是( )A.(﹣3,2)B.(2,﹣3)C.(﹣2,﹣4)D.(2,3)【分析】根据k=xy对各选项进行逐一判断即可.【解答】解:反比例函数y=中k=6,A、∵(﹣3)×2=﹣6≠6,∴此点不在函数图象上,故本选项不合题意;B、∵2×(﹣3)=﹣6≠6,∴此点不在函数图象上,故本选项不合题意;C、∵﹣2×(﹣4)=8≠6,∴此点不在函数图象上,故本选项不合题意;D、∵2×3=6,∴此点在函数图象上,故本选项符合题意.故选:D.【点评】本题考查的是反比例函数图象上点的坐标特点,熟知反比例函数中k=xy为定值是解答此题的关键.6.(4分)用圆圈按如图所示的规律拼图案,其中第①个图案中有2个圆圈,第②个图案中有5个圆圈,第③个图案中有8个圆圈,第④个图案中有11个圆圈,…,按此规律排列下去,则第⑦个图案中圆圈的个数为( )A.14B.20C.23D.26【分析】根据前4个图中的个数找到规律,再求解.【解答】解:第①个图案中有2个圆圈,第②个图案中有2+3×1=5个圆圈,第③个图案中有2+3×2=8个圆圈,第④个图案中有2+3×3=11个圆圈,...,则第⑦个图案中圆圈的个数为:2+3×6=20,故选:B.【点评】本题考查了规律型﹣图形的变化类,找到变换规律是解题的关键.7.(4分)估计×(﹣)的值应在( )A.4和5之间B.5和6之间C.6和7之间D.7和8之间【分析】先化简题干中的式子得到﹣1,明确的范围,利用不等式的性质求出﹣1的范围得出答案.【解答】解:原式=﹣1.∵5<<6.∴4<﹣1<5.故选:A.【点评】本题以计算选择为背景考查了无理数的估算,考核了学生对式子的化简和比较大小的能力,解题关键是将式子化简,确定无理数的范围最后利用不等式的性质.8.(4分)如图,AB为⊙O的直径,直线CD与⊙O相切于点C,连接AC,若∠ACD=50°,则∠BAC的度数为( )A .30°B .40°C .50°D .60°【分析】连接OC ,根据切线的性质得到∠OCD =90°,求得∠ACO =40°,根据等腰三角形的性质得到∠A =∠ACO =40°.【解答】解:连接OC ,∵直线CD 与⊙O 相切于点C ,∴∠OCD =90°,∵∠ACD =50°,∴∠ACO =90°﹣50°=40°,∵OC =OA ,∴∠BAC =∠ACO =40°,故选:B .【点评】本题考查了切线的性质,正确地作出辅助线是解题的关键.9.(4分)如图,在正方形ABCD 中,O 为对角线AC 的中点,E 为正方形内一点,连接BE ,BE =BA ,连接CE 并延长,与∠ABE 的平分线交于点F ,连接OF ,若AB =2,则OF 的长度为( )A .2B .C .1D .【分析】连接AF ,根据正方形ABCD 得到AB =BC =BE ,∠ABC =90°,根据角平分线的性质和等腰三角形的性质,求得∠BFE =45°,再证明△ABF ≌△EBF ,求得∠AFC =90°,最后根据直角三角形斜边上的中线等于斜边的一半,即可求出OF 的长度.【解答】解:如图,连接AF,∵四边形ABCD是正方形,∴AB=BE=BC,∠ABC=90°,AC=AB=2,∴∠BEC=∠BCE,∴∠EBC=180°﹣2∠BEC,∴∠ABE=∠ABC﹣∠EBC=2∠BEC﹣90°,∵BF平分∠ABE,∴∠ABF=∠EBF=∠ABE=∠BEC﹣45°,∴∠BFE=∠BEC﹣∠EBF=45°,在△BAF与△BEF中,,∴△BAF≌△BEF(SAS),∴∠BFE=∠BFA=45°,∴∠AFC=∠BAF+∠BFE=90°,∵O为对角线AC的中点,∴OF=AC=,故选:D.【点评】本题考查了等腰三角形的判定和性质,三角形内角和定理,正方形的性质,直角三角形特征,作出正确的辅助线,求得∠BFE=45°是解题的关键.10.(4分)在多项式x﹣y﹣z﹣m﹣n(其中x>y>z>m>n)中,对相邻的两个字母间任意添加绝对值符号,添加绝对值符号后仍只有减法运算,然后进行去绝对值运算,称此为“绝对操作”.例如:x﹣y﹣|z﹣m|﹣n=x﹣y﹣z+m﹣n,|x﹣y|﹣z﹣|m﹣n|=x﹣y﹣z﹣m+n,….下列说法:①存在“绝对操作”,使其运算结果与原多项式相等;②不存在“绝对操作”,使其运算结果与原多项式之和为0;③所有的“绝对操作”共有7种不同运算结果.其中正确的个数是( )A.0B.1C.2D.3【分析】根据给定的定义,举出符合条件的说法①和②.说法③需要对绝对操作分析添加一个和两个绝对值的情况,并将结果进行比较排除相等的结果,汇总得出答案.【解答】解:|x﹣y|﹣z﹣m﹣n=x﹣y﹣z﹣m﹣n,故说法①正确.若使其运算结果与原多项式之和为0,需出现﹣x,显然无论怎么添加绝对值,都无法使x的符号为负号,故说法②正确.当添加一个绝对值时,共有4种情况,分别是|x﹣y|﹣z﹣m﹣n=x﹣y﹣z﹣m﹣n;x﹣|y﹣z|﹣m﹣n=x﹣y+z﹣m﹣n;x﹣y﹣|z﹣m|﹣n=x﹣y﹣z+m﹣n;x﹣y﹣z﹣|m﹣n|=x﹣y﹣z ﹣m+n.当添加两个绝对值时,共有3种情况,分别是|x﹣y|﹣|z﹣m|﹣n=x﹣y﹣z+m﹣n;|x﹣y|﹣z﹣|m﹣n|=x﹣y﹣z﹣m+n;x﹣|y﹣z|﹣|m﹣n|=x﹣y+z﹣m+n.共有7种情况;有两对运算结果相同,故共有5种不同运算结果,故说法③不符合题意.故选:C.【点评】本题考查新定义题型,根据多给的定义,举出符合条件的代数式进行情况讨论;需要注意去绝对值时的符号,和所有结果可能的比较.主要考查绝对值计算和分类讨论思想的应用.二、填空题:(本大题8个小题,每小题4分,共32分)请将每小题的答案直接填在答题卡中对应的横线上.11.(4分)计算:|﹣5|+(2﹣)0= 6 .【分析】由|﹣5|=5,(2﹣)0=1【解答】解:|﹣5|+(2﹣)0=5+1=6.故答案为:6.【点评】本题考查实数的运算.解题的关键是去绝对值注意符号;掌握任意非零实数的零次幂都等于1.12.(4分)有四张完全一样正面分别写有汉字“清”“风”“朗”“月”的卡片,将其背面朝上并洗匀,从中随机抽取一张,记下卡片正面上的汉字后放回,洗匀后再从中随机抽取一张,则抽取的两张卡片上的汉字相同的概率是 .【分析】根据题意,可以画出相应的树状图,然后即可求出相应的概率.【解答】解:树状图如图所示,由上可得,一共有16种等可能性,其中抽取的两张卡片上的汉字相同的有4种可能性,∴抽取的两张卡片上的汉字相同的概率为=,故答案为:.【点评】本题考查列表法与树状图法,解答本题的关键是明确题意,画出相应的树状图,求出相应的概率.13.(4分)若七边形的内角中有一个角为100°,则其余六个内角之和为 800° .【分析】利用多边形内角和公式求得七边形的内角和后与100°作差即可.【解答】解:由题意可得七边形的内角和为:(7﹣2)×180°=900°,∵该七边形的一个内角为100°,∴其余六个内角之和为900°﹣100°=800°,故答案为:800°.【点评】本题主要考查多边形的内角和,此为基础且重要知识点,必须熟练掌握.14.(4分)如图,在△ABC中,AB=AC,AD是BC边的中线,若AB=5,BC=6,则AD 的长度为 4 .【分析】根据等腰三角形的性质可得AD⊥BC,在Rt△ABD中,根据勾股定理即可求出AD的长.【解答】解:∵AB=AC,AD是BC边的中线,∴AD⊥BC,∴∠ADB=90°,∵AB=5,BC=6,∴BD=CD=3,在Rt△ABD中,根据勾股定理,得AD===4,故答案为:4.【点评】本题考查了等腰三角形的性质,涉及勾股定理,熟练掌握等腰三角形的性质是解题的关键.15.(4分)为了加快数字化城市建设,某市计划新建一批智能充电桩,第一个月新建了301个充电桩,第三个月新建了500个充电桩,设该市新建智能充电桩个数的月平均增长率为x,根据题意,请列出方程 301(1+x)2=500 .【分析】设该市新建智能充电桩个数的月平均增长率为x,根据第一个月新建了301个充电桩,第三个月新建了500个充电桩,即可得出关于x的一元二次方程.【解答】解:设该市新建智能充电桩个数的月平均增长率为x,依题意得:301(1+x)2=500.故答案为:301(1+x)2=500.【点评】本题考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键.16.(4分)如图,在矩形ABCD中,AB=2,BC=4,E为BC的中点,连接AE.DE.以E为圆心,EB长为半径画弧,分别与AE,DE交于点M,N.则图中阴影部分的面积为 4﹣π (结果保留π).【分析】用三角形ADE的面积减去2个扇形的面积即可.【解答】解:∵AD=2AB=4,E为BC的中点,∴AB=2,BE=CE=2,∴∠BAE=∠AEB=∠CDE=∠DEC=45°,∴阴影部分的面积为﹣2×=4﹣π.故答案为:4﹣π.【点评】此题主要考查了扇形面积求法以及等腰直角三角形的性质,应用扇形面积的计算方法进行求解是解决本题的关键.17.(4分)若关于x的不等式组的解集为x<﹣2,且关于y的分式方程+=2的解为正数,则所有满足条件的整数a的值之和为 13 .【分析】先通过不等式组的解确定a的范围,再根据分式方程的解求a值即可得出答案.【解答】解:解不等式组,得:,∵原不等式组的解集为:x<﹣2,∴﹣≥﹣2,∴a≤5,解分式方程+=2,得y=,∵y>0且y≠1,∴>0且≠1,∴a>﹣2且a≠1,∴﹣2<a≤5,且a≠1,∴符合条件的整数a有:﹣1,0,2,3,4,5,∴﹣1+0+2+3+4+5=13.故答案为:13.【点评】本题主要考查解一元一次不等式组、解分式方程,熟练掌握一元一次不等式组、分式方程的解法是解决本题的关键.18.(4分)对于一个四位自然数M,若它的千位数字比个位数字多6,百位数字比十位数字多2,则称M为“天真数”.如:四位数7311,∵7﹣1=6,3﹣1=2,∴7311是“天真数”;四位数8421,∵8﹣1≠6,∴8421不是“天真数”,则最小的“天真数”为 6200 ;一个“天真数”M的千位数字为a,百位数字为b,十位数字为c,个位数字为d,记P(M)=3(a+b)+c+d,Q(M)=a﹣5,若能被10整除,则满足条件的M的最大值为 9313 .【分析】它的千位数字比个位数字多6,百位数字比十位数字多2,则称M为“天真数”.分为两部分:第一部分千位数和个位数之间的关系,第二部分百位数和十位数之前的关系.【解答】解:求最小的“天真数”,首先知道最小的自然数的0.先看它的千位数字比个位数字多6,个位数为最小的自然数0时,千位数为6;百位数字比十位数字多2,十位数为最小的的自然数0时,百位数是2;则最小的“天真数”为6200.故答案为:6200.一个“天真数”M的千位数字为a,百位数字为b,十位数字为c,个位数字为d.由“天真数”的定义得a=d+6,所以6≤a≤9,b=c+2,所以0≤c≤7,又P(M)=3(a+b)+c+d=3(a+c+2)+c+a﹣6=4a+4c;Q(M)=a﹣5.=论能被10整除当a取最大值9时,即当a=9时,满足能被10整除,则c=1,“天真数”M为9313.故答案为:9313.【点评】新定义题型,各数字的取值范围,最值:最小自然数0.三、解答题:(本大题8个小题,第19题8分,其余每题各10分,共78分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形(包括辅助线),请将解答过程书写在答题卡中对应的位置上.19.(8分)计算:(1)x(x+6)+(x﹣3)2;(2)(3+)÷.【分析】(1)按照单项式乘以多项式的法则以及完全平方公式进行计算即可;(2)按照分式的混合运算法则进行计算即可.【解答】解:(1)x(x+6)+(x﹣3)2=x2+6x+x2﹣6x+9=2x2+9;(2)===.【点评】本题考查了分式的混合运算和整式的混合运算,熟练掌握混合运算法则是解题的关键,计算时一定要细心.20.(10分)在学习了平行四边形的相关知识后,小虹进行了拓展性研究,她发现,如果作平行四边形一条对角线的垂直平分线,那么这条垂直平分线在该四边形内部的线段被这条对角线平分.其解决问题的思路为通过证明对应线段所在两个三角形全等即可得出结论.请根据她的思路完成以下作图和填空:用直尺和圆规作平行四边形ABCD对角线AC的垂直平分线,交DC于点E,交AB于点F,垂足为O.(只保留作图痕迹)如图,四边形ABCD是平行四边形,AC是对角线,EF垂直平分AC,垂足为O.求证:EO=FO.证明:∵四边形ABCD是平行四边形∴DC∥AB.∴∠ECO= ∠FAO .∵EF垂直平分AC,∴ OA=OC .又∠EOC= ∠FOA ,∴△COE≌△AOF(ASA).∴EO=FO.再进一步研究发现,过平行四边形对角线中点的所有与该四边形一组对边相交所得的线段均具备此特征,请你依照题目中的相关表述完成下面命题的填空:过平行四边形对角线中点的直线 被平行四边形一组对边所截,截得的线段被对角线中点平分 .【分析】根据要求画出图形,证明△COE≌△AOF(ASA),可得结论.【解答】解:图形如图所示:理由:∵四边形ABCD是平行四边形,∴DC∥AB.∴∠ECO=∠FAO,∵EF垂直平分AC,∴AO=OC.又∠EOC=∠FOA,∴△COE≌△AOF(ASA).∴EO=FO.再进一步研究发现,过平行四边形对角线中点的所有与该四边形一组对边相交所得的线段均具备此特征,所以过平行四边形对角线中点的直线被平行四边形一组对边所截,截得的线段被对角线中点平分,故答案为:∠FAO,OA=OC,∠FOA,过平行四边形对角线中点的直线被平行四边形一组对边所截,截得的线段被对角线中点平分.【点评】本题考查命题与定理,平行四边形的性质,全等三角形的判定和性质等知识,解题的关键是理解题意,正确寻找全等三角形解决问题.21.(10分)某洗车公司安装了A,B两款自动洗车设备,工作人员从消费者对A、B两款设备的满意度评分中各随机抽取20份,并对数据进行整理、描述和分析(评分分数用x 表示,分为四个等级:不满意x<70,比较满意70≤x<80,满意80≤x<90,非常满意x ≥90),下面给出了部分信息:抽取的对A款设备的评分数据中“满意”包含的所有数据:83,85,85,87,87,89;抽取的对B款设备的评分数据:68,69,76,78,81,84,85,86,87,87,87,89,95,97,98,98,98,98,99,100.抽取的对A,B款设备的评分统计表设备平均数中位数众数“非常满意”所占百分比A88m9645%B8887n40%根据以上信息,解答下列问题:(1)填空:a= 15 ,m= 88 ,n= 98 ;(2)5月份,有600名消费者对A款自动洗车设备进行评分,估计其中对A款自动洗车设备“比较满意”的人数;(3)根据以上数据,你认为哪一款自动洗车设备更受消费者欢迎?请说明理由(写出一条理由即可).【分析】(1)用“1”分别减去其他三个等级所占百分比可得a的值,根据中位数的定义可得m的值,根据众数的定义可得n的值;(2)用600乘A款自动洗车设备“比较满意”所占百分比即可;(3)通过比较A,B款设备的评分统计表的数据解答即可.【解答】解:(1)由题意得,a%=1﹣10%﹣45%﹣=15%,即a=15;把A款设备的评分数据从小到大排列,排在中间的两个数是87,89,故中位数m==88;在B款设备的评分数据中,98出现的次数最多,故众数n=98.故答案为:15;88;98;(2)600×15%=90(名),答:估计其中对A款自动洗车设备“比较满意”的人数大约为90名;(3)A款自动洗车设备更受消费者欢迎,理由如下:因为两款自动洗车设备的评分数据的平均数相同,但A款自动洗车设备的评分数据的中位数比B款高,所以A款自动洗车设备更受消费者欢迎(答案不唯一).【点评】本题考查扇形统计图,中位数、众数以及样本估计总体,理解中位数、众数的意义,掌握中位数、众数的计算方法是解决问题的前提.22.(10分)如图,△ABC是边长为4的等边三角形,动点E,F均以每秒1个单位长度的速度同时从点A出发,E沿折线A→B→C方向运动,F沿折线A→C→B方向运动,当两点相遇时停止运动.设运动的时间为t秒,点E,F的距离为y.(1)请直接写出y关于t的函数关系式并注明自变量t的取值范围;(2)在给定的平面直角坐标系中,画出这个函数图象,并写出该函数的一条性质;(3)结合函数图象,直接写出点E,F相距3个单位长度时t的值.【分析】(1)根据动点E、F运动的路线和速度分段进行分析,写出不同时间的函数表达式并注明自变量t的取值范围即可;(2)根据画函数图象的方法分别画出两段函数图象,然后写出这个函数的其中一条性质即可;(3)根据两个函数关系式分别求出当y=3时的t值即可解决问题.【解答】解:(1)当点E、F分别在AB、AC上运动时,△AEF为边长等于t的等边三角形,∴点E,F的距离等于AE、AF的长,∴当0<t≤4时,y关于t的函数表达式为y=t,当点E、F都在BC上运动时,点E,F的距离等于4﹣2(t﹣4),∴当4<t≤6时,y关于t的函数表达式为y=4﹣2(t﹣4)=12﹣2t,∴y关于t的函数表达式为;(2)由(1)中得到的函数表达式可知:当t=0时,y=0;当t=4时,y=4;当t=6时,y=0,分别描出三个点(0,0),(4,4)(6,0),然后顺次连线,如图:根据函数图象可知这个函数的其中一条性质:当0<t≤4时,y随t的增大而增大.(答案不唯一,正确即可)(3)把y=3分别代入y=t和y=12﹣2t中,得:3=t,3=12﹣2t,解得:t=3或t=4.5,∴点E,F相距3个单位长度时t的值为3或4.5.【点评】本题是一道三角形综合题,主要考查等边三角形的性质、一次函数的图象和性质,以及一次函数的应用,深入理解题意是解决问题的关键.23.(10分)某粮食生产基地为了落实在适宜地区开展双季稻中间季节再种一季油菜的号召,积极扩大粮食生产规模,计划用基地的甲、乙两区农田进行油菜试种,甲区的农田比乙区的农田多10000亩,甲区农田的80%和乙区全部农田均适宜试种,且两区适宜试种农田的面积刚好相同.(1)求甲、乙两区各有农田多少亩?(2)在甲、乙两区适宜试种的农田全部种上油菜后,为加强油菜的虫害治理,基地派出一批性能相同的无人机,对试种农田喷洒除虫药,由于两区地势差别,派往乙区的无人机架次是甲区的1.2倍(每架次无人机喷洒时间相同),喷洒任务完成后,发现派往甲区的每架次无人机比乙区的平均多喷洒亩,求派往甲区每架次无人机平均喷洒多少亩?【分析】(1)设乙区有农田x亩,则甲区有农田(x+10000)亩,根据“甲区农田的80%和乙区全部农田均适宜试种,且两区适宜试种农田的面积刚好相同”,可得出关于x的。

2023年重庆市中考数学真题(A卷)(含答案解析)

2023年重庆市中考数学真题(A卷)(含答案解析)
17.
那么称这个四位数为“递减数”.例如:四位数 4129,∵ 41 12 29 ,∴4129 是“递减数”;
又如:四位数 5324,∵ 53 32 21 24 ,∴5324 不是“递减数”.若一个“递减数”为 a312 ,
则这个数为___________;若一个“递减数”的前三个数字组成的三位数 abc 与后三个数字
已知:如图,四边形 ABCD 是平行四边形, AC 是对角线, EF 垂直平分 AC ,垂足为
点 O.
求证: OE OF .
证明:∵四边形 ABCD 是平行四边形,
∴ DC ∥ AB .
∴ ECO ① .
∵ EF 垂直平分 AC ,
∴② .
又 EOC ___________③ .
∴ COE AOF ASA .
∴ OE OF .
小虹再进一步研究发现,过平行四边形对角线 AC 中点的直线与平行四边形一组对边相
交形成的线段均有此特征.请你依照题意完成下面命题:
过平行四边形对角线中点的直线 ④ .
20.为了解 A、B 两款品质相近的智能玩具飞机在一次充满电后运行的最长时间,有关
人员分别随机调查了 A、B 两款智能玩具飞机各 10 架,记录下它们运行的最长时间(分
组成的三位数 bcd 的和能被 9 整除,则满足条件的数的最大值是___________.
三、解答题
18.计算:
(1) a 2 a a 1 a 1 ;
(2)
x2
x

x
.
2
x 2x 1
x 1
19.学习了平行四边形后,小虹进行了拓展性研究.她发现,如果作平行四边形一条对
【详解】解:∵两个相似三角形周长的比为 1: 4 ,
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

重庆市2003年普通高中招生统一考试数 学 试 卷(本卷共四大题,满分150分,考试时间120分钟)重庆市云阳县养鹿中学 周忠海一、选择题:(本大题12个小题,每小题4分,共48分) 1、下列各组数中,互为相反数的是( )A 、2与21B 、2)1(-与1C 、-1与2)1(- D 、2与∣-2∣2、下列一元二次方程中,没有实数根的是( )A 、0122=-+x x B 、02222=++x xC 、0122=++x x D 、022=++-x x3、如图,⊙O 中弦AB 、CD 相交于点F ,AB =10,AF =2。

若CF ∶DF =1∶4,则CF 的长等于( ) A 、2 B 、2 C 、3 D 、224、三峡大坝从6月1日开始下闸蓄水,如果平均每天流入库区的水量为a 立方米,平均每天流出的水量控制为b 立方米。

当蓄水位低于135米时,b <a ;当蓄水位达到135米时,b =a ;设库区的蓄水量y (立方米)是时间t (天)的函数,那么这个函数的大致图象是( )5、随着通讯市场竞争的日益激烈,某通讯公司的手机市话收费标准按原标准每分钟降低了a 元后,再次下调了25%,现在的收费标准是每分钟b 元,则原收费标准每分钟为( )A 、⎪⎪⎭⎫ ⎝⎛-a b 45元 B 、⎪⎭⎫ ⎝⎛+a b 45元 C 、⎪⎭⎫ ⎝⎛+a b 43元 D 、⎪⎭⎫ ⎝⎛+a b 34元 6、如下图,在△ABC 中,若∠AED =∠B ,DE =6,AB =10,AE =8,则BC 的长为( )CABA 、415B 、7C 、215D 、5247A 、618B 、638C 、658D 、678第6题图EDCBA450 1200第8题图DCB A 第10题图PDCBA8、已知:如图,梯形ABCD 中,AD ∥BC ,∠B =450,∠C =1200,AB =8,则CD 的长为( )A 、638B 、64C 、238 D 、249一位同学可能获得的奖励为( )A 、3项B 、4项C 、5项D 、6项10、如图:△ABP 与△CDP 是两个全等的等边三角形,且PA ⊥PD 。

有下列四个结论 :①∠PBC =150;②AD∥BC;③直线PC 与AB 垂直;④四边形ABCD 是轴对称图形。

其中正确结论的个数为( )A 、1B 、2C 、3D 、411、如图:在等腰直角三角形ABC 中,∠C =900,AC =6,D 是AC 上一点,若tan ∠DBA=51,则AD 的长为( )A 、2B 、2C 、1D 、2212、在平行四边形ABCD 中,AB =6,AD =8,∠B 是锐角,将△ACD 沿对角线AC 折叠,点D 落在△ABC所在平面内的点E 处。

如果AE 过BC 的中点,则平行四边形ABCD 的面积等于( ) A 、48 B 、610 C 、712 D 、224 二、填空题:(本大题8个小题,每小题4分,共32分)DCB A13、分解因式:y x y x 42422-+-= 。

14、计算:1212222---+= 。

15、如图:EB 、EC 是⊙O 的两条切线,B 、C 是切点,A 、D 是⊙O 上两点,如果∠E =460,∠DCF =320,则∠A 的度数是 。

16、已知1x 、2x 是关于x 的方程01)1(22=-++-a x x a 的两个实数根,且1x +2x =31,则21x x ⋅= 。

17、已知关于x 的不等式组⎩⎨⎧>--≥-0125a x x 无解,则a 的取值范围是 。

18、如图:函数kx y -=(k ≠0)与x y 4-=的图象交于A 、B 两点,过点A 作AC 垂直于y 轴,垂足为点C ,则△BOC 的面积为 。

19、如图:正方形ABCD 中,过点D 作DP 交AC 于点M 、交AB 于点N ,交CB 的延长线于点P ,若MN =1,PN =3,则DM 的长为 。

20、把一个半径为8cm 的圆片,剪去一个圆心角为900的扇形后,用剩下的部分做成一个圆锥的侧面,那么这个圆锥的高为 。

三、解答题:(本大题4个小题,共48分)下列各题解答时必须给出必要的演算过程或推理步骤。

21、(12分)已知x =3是方程1210=++x kx 的一个根,求k 的值和方程其余的根。

第19题图P N MDCBA 第15题图F EC22、(12分)某中学新建了一栋4层的教学大楼,每层楼有8间教室,进出这栋大楼共有4道门,其中两道正门大小相同,两道侧门大小也相同。

安全检查中,对4道门进行了测试:当同时开启一道正门和两道侧门时,2分钟内可以通过560名学生;当同时开启一道正门和一道侧门时,4分钟内可以通过800名学生。

(1)求平均每分钟一道正门和一道侧门各可以通过多少名学生?(2)检查中发现,紧急情况时因学生拥挤,出门的效率将降低20%。

安全检查规定:在紧急情况下全大楼的学生应在5分钟内通过这4道门安全撤离。

假设这栋教学大楼每间教室最多有45名学生,问:建造的这4道门是否符合安全规定?请说明理由。

23、(12分)在举国上下众志成诚抗击“非典”的斗争中,疫情变化牵动着全国人民的心,请根据下列疫情统计图表回答问题:(1)上图是5月11日至5月29日全国疫情每天新增数据统计走势图,观察后回答:①每天新增确诊病例与新增疑似病例人数之和超过100人的天数共有天。

②在本题的统计中,新增确诊病例的人数的中位数是;③本题在对新增确诊病例的统计中,样本是 ,样本的容量是 。

(2)下表是我国一段时间内全国确诊病例每天新增的人数与天数的频率统计表。

(按人数分人以下的分组组距是 。

②填写本统计表中未完成的空格。

③在统计的这段时期中,每天新增确诊病例人数在80人以下的天数共有 天。

24、(12分)如图:已知⊙O 1和⊙O 2 相交于A 、B 两点,P 是⊙O 1上一点,PB 的延长线交⊙O 2 于点C ,PA 交⊙O 2于点D ,CD 的延长线交⊙O 1于点N 。

(1)过点A 作AE∥CN 交⊙O 1于点E ,求证:PA =PE ; (2)连结PN ,若PB =4,BC =2,求PN 的长。

PC四、解答题:(本大题2个小题,共22分)下列各题解答时必须给出必要的演算过程或推理步骤。

25、(12分)已知抛物线42)4(2++-+-=m x m x y 与x 轴交于点A (1x ,0)、B (2x ,0)两点,与y 轴交于点C ,且1x <2x ,1x +22x =0。

若点A 关于y 轴的对称点是点D 。

(1)求过点C 、B 、D 的抛物线的解析式;(2)若P 是(1)中所求抛物线的顶点,H 是这条抛物线上异于点C 的另一点,且△HBD 与△CBD 的面积相等,求直线PH 的解析式。

26、(10分)电脑CPU 蕊片由一种叫“单晶硅”的材料制成,未切割前的单晶硅材料是一种薄型圆片,叫“晶圆片”。

现为了生产某种CPU 蕊片,需要长、宽都是1cm 的正方形小硅片若干。

如果晶圆片的直径为10.05cm 。

问一张这种晶圆片能否切割出所需尺寸的小硅片66张?请说明你的方法和理由。

(不计切割损耗)重庆市2003年普通高中招生统一考试数学试题参考答案及评分意见一、选择题:(每小题4分,共48分) CCBAD ,CCABD ,BC 二、填空题:(每小题4分,共32分) 13、)22)(2(++-y x y x 14、22+15、990 16、-117、a ≥3 18、2 19、2 20、72 三、解答题:(每小题12分,共48分)(除23小题外,其余各题的评分均为累计计分)21、解:将x =3代入原方程得:132310=++k(1分)解得:k =-3 (4分)将k =-3代入原方程得:13210=-+x x (5分)整理得:0652=+-x x (8分)解得:1x =2,2x =3 (10分) 经检验:1x =2,2x =3都是原方程的解。

(11分)∴当x =3是方程的一个根时,k =-3,方程的另一个根为x =2 (12分) 22、解:(1)设平均每分钟一道正门可以通过x 名学生,一道侧门可以通过y 名学生,(1分)由题意得:⎩⎨⎧=+=+800)(4560)2(2y x y x (4分)解得:⎩⎨⎧==80120y x (7分)答:平均每分钟一道正门可以通过120名学生,一道侧门可以通过80名学生。

(8分) (2)这栋楼最多有学生4×8×45=1440(名)拥挤时5分钟4道门能通过:%)201)(80120(25-+⨯=1600(名)(10分)∵1600>1440∴建造的4道门符合安全规定。

(12分)23、(1)(共6分)① 7 (2分);② 26 (1分);③ 5月11日至5月29日每天新增确诊病例人数(2分) 19 (1分)(2)(共6分)每空位或每空格1分① 10人 ;②11、40、0.125、0.325 ;③ 25 ; 24、(1)证明:连结AB (1分) ∵四边形AEPB 是⊙O 1的内接四边形∴∠ABC =∠E (2分) 在⊙O 2中,∠ABC =∠ADC∴∠ADC =∠E (4分) 又∵AE ∥CN∴∠ADC =∠PAE 故∠PAE =∠E∴PA =PE (6分)PCPC(2)连结AN (7分) 四边形ANPB 是⊙O 1的内接四边形∴∠ABC =∠PNA (8分) 由(1)可知∴∠PDN =∠ADC =∠ABC ∴∠PDN =∠PNA又∠DPN =∠NPA∴△PDN ∽△PNA (10分) ∴PA PD PN ⋅=2(11分) 又∵在⊙O 2中,由割线定理:PB ·PC =PD ·PA ∴62)24(4=+⨯=⋅=PC PB PN (12分)四、解答题:(共22分)25、解:(1)由题意得:⎪⎪⎩⎪⎪⎨⎧>+=++-=∆--=⋅-=+=+032)42(4)4(4240222212121m m m m x x m x x x x由①②得:821-=m x ,42+-=m x将1x 、2x 代入③得:42)4)(82(--=+--m m m整理得:01492=+-m m∴1m =2 2m =7 (2分) ∵1x <2x∴82-m <4+-m ∴m <4∴2m =7(舍去) (3分) ∴1x =-4,2x =2,点C 的纵坐标为:42+m =8 ∴A 、B 、C 三点的坐标分别是A (-4,0)、B (2,0)、C (0,8) (4分)又∵点A 与点D 关于y 轴对称∴D (4,0) (5分) 设经过C 、B 、D 的抛物线的解析式为:)4)(2(--=x x a y (6分) 将C (0,8)代入上式得:)40)(20(8--=a ∴a =1∴所求抛物线的解析式为:862+-=x x y (7分)(2)∵862+-=x x y =1)3(2--x ∴顶点P (3,-1) (8分)设点H 的坐标为H (0x ,0y )∵△BCD 与△HBD 的面积相等 ∴∣0y ∣=8∵点H 只能在x 轴的上方,故0y =8将0y =8代入862+-=x x y 中得:0x =6或0x =0(舍去) ∴H (6,8) (9分) 设直线PH 的解析式为:b kx y +=则⎩⎨⎧=+-=+8613b k b k (10分) 解得:k =3 b =-10∴直线PH 的解析式为:103-=x y (12分) 26、答:可以切割出66个小正方形。

相关文档
最新文档