全集与补集-ppt
合集下载
高中数学北师大版必修一1.3.2《全集与补集》ppt课件
• ∴∁UA={x|x<-1或x≥1}. • (2)∵U={x|x≤2},A={x|-1≤x<1},
• ∴∁UA={x|x<-1或1≤x≤2}. • (3)∵U={x|-4≤x≤1},A={x|-1≤x<1},
• ∴∁UA={x|-4≤x<-1或x=1}.
• [规律总结] 全集主要在与补集有关问题中用到, 要注意它是求补集的条件,研究补集问题需先确定 全集.
V∁eUBn=n图{7表,8示},出∁UB,A=A,{0B,,1,易3,得5}∁.UA={0,1,3,5,7,8},
• 5{5.}已,知则集实合数Am=={_3_,_4_,__m_}_,. 集合B={3,4},若∁AB=
• [答案] 5
• [解析] 由补集的定义知5∉B,且5∈A,故m=5.
课堂典例讲练
• 解法2:如图所示.
• 因为A∩B={4,5}, • 所以将4,5写在A∩B中. • 因为(∁SB)∩A={1,2,3},所以将1,2,3写在A中.
• 因为(∁SB)∩(∁SA)={6,7,8}, • 所以将6,7,8写在S中A,B之外.
• 因 在为 B中(∁.SB)∩A与(∁SB)∩(∁SA)中均无9,10,所以9,10
• (∁SSA,)∩且(A∁∩SBB集)==合{{4S6,=,57}{,,x8|}(x,∁≤S求B1)0集∩,合A且=Ax和{∈1B,N.2+,}3,},A S,B
• [思路分析] 本题可用直接法求解,但不易求出结 果,用Venn图法较为简单.
• [规范解答] 解法1:(1)因为A∩B={4,5},所以 4∈A,5∈A,4∈B,5∈B.
编后语
老师上课都有一定的思路,抓住老师的思路就能取得良好的学习效果。在上一小节中已经提及听课中要跟随老师的思路,这里再进一步论述听课时如何 抓住老师的思路。
• ∴∁UA={x|x<-1或1≤x≤2}. • (3)∵U={x|-4≤x≤1},A={x|-1≤x<1},
• ∴∁UA={x|-4≤x<-1或x=1}.
• [规律总结] 全集主要在与补集有关问题中用到, 要注意它是求补集的条件,研究补集问题需先确定 全集.
V∁eUBn=n图{7表,8示},出∁UB,A=A,{0B,,1,易3,得5}∁.UA={0,1,3,5,7,8},
• 5{5.}已,知则集实合数Am=={_3_,_4_,__m_}_,. 集合B={3,4},若∁AB=
• [答案] 5
• [解析] 由补集的定义知5∉B,且5∈A,故m=5.
课堂典例讲练
• 解法2:如图所示.
• 因为A∩B={4,5}, • 所以将4,5写在A∩B中. • 因为(∁SB)∩A={1,2,3},所以将1,2,3写在A中.
• 因为(∁SB)∩(∁SA)={6,7,8}, • 所以将6,7,8写在S中A,B之外.
• 因 在为 B中(∁.SB)∩A与(∁SB)∩(∁SA)中均无9,10,所以9,10
• (∁SSA,)∩且(A∁∩SBB集)==合{{4S6,=,57}{,,x8|}(x,∁≤S求B1)0集∩,合A且=Ax和{∈1B,N.2+,}3,},A S,B
• [思路分析] 本题可用直接法求解,但不易求出结 果,用Venn图法较为简单.
• [规范解答] 解法1:(1)因为A∩B={4,5},所以 4∈A,5∈A,4∈B,5∈B.
编后语
老师上课都有一定的思路,抓住老师的思路就能取得良好的学习效果。在上一小节中已经提及听课中要跟随老师的思路,这里再进一步论述听课时如何 抓住老师的思路。
全集与补集_PPT课件
集合
全集与补集
学习目标
学习导航
集合
重点难点 重点:集合的交、并、补的混合运算. 难点:集合交、并、补的区别及Venn图的 使用.
集合
新知初探·思维启动
1.全集 在研究某些集合的时候,这些集合往往是某 个给定集合的子集,这个给定的集合叫作 ___全__集___,常用字母___U___表示.全集含有 我们所要研究的这些集合的全部元素. 2.补集
集合
用好此图,在解题中能起到事半功倍的效果. 3.利用补集思想,采用“正难则反”的解题 策略.
集合
失误防范 区分“且”“或”与补集的关系,“且”求补 集变为“或”,“或”求补集变为“且”.如 如 A=a|a≤-1或a≥32,则 ∁RA=a|-1<a<32.
集合
(2)【解】把集合A、B在数轴上表示如下: 由图知,A∪B={x|2<x<10}, ∴∁R(A∪B)={x|x≤2或x≥10}. ∵∁RA={x|x<3或x≥7}, ∴(∁RA)∩B={x|2<x<3或7≤x<10}.
【思维升华】 求∁U(A∪B)时,可以化为 (∁UA)∩(∁UB).
集合
变式训练
{1,2,4},∴∁U(A∪B)={3,5}.
集合
题型三 由集合的交、并、补求字母 参数
例3 (本题满分12分)已知全集U={1,2,3,4,5}, A={x|x2-5x+m=0},B={x|x2+nx+12= 0},且(∁UA)∪B={1,3,4,5},求m+n的值. 【思路点拨】 入手点:由(∁UA)∪B= {1,3,4,5}可得2∈A.而A,B表示方程的解集, 由此可求m和n的值.
集合
【 解 】 ∵ U = {1,2,3,4,5} , ( ∁ UA) ∪ B = {1,3,4,5},∴2∈A, 2分 又A:{x|x2-5x+m=0}, ∴2是关于x的方程x2-5x+m=0的一个根, 得m=6且A={2,3}.…6分 而(∁UA)∪B={1,3,4,5}. ∴3∈B,又B={x|x2+nx+12=0}. ∴3是关于x的方程x2+nx+12=0的一个根,
全集与补集
学习目标
学习导航
集合
重点难点 重点:集合的交、并、补的混合运算. 难点:集合交、并、补的区别及Venn图的 使用.
集合
新知初探·思维启动
1.全集 在研究某些集合的时候,这些集合往往是某 个给定集合的子集,这个给定的集合叫作 ___全__集___,常用字母___U___表示.全集含有 我们所要研究的这些集合的全部元素. 2.补集
集合
用好此图,在解题中能起到事半功倍的效果. 3.利用补集思想,采用“正难则反”的解题 策略.
集合
失误防范 区分“且”“或”与补集的关系,“且”求补 集变为“或”,“或”求补集变为“且”.如 如 A=a|a≤-1或a≥32,则 ∁RA=a|-1<a<32.
集合
(2)【解】把集合A、B在数轴上表示如下: 由图知,A∪B={x|2<x<10}, ∴∁R(A∪B)={x|x≤2或x≥10}. ∵∁RA={x|x<3或x≥7}, ∴(∁RA)∩B={x|2<x<3或7≤x<10}.
【思维升华】 求∁U(A∪B)时,可以化为 (∁UA)∩(∁UB).
集合
变式训练
{1,2,4},∴∁U(A∪B)={3,5}.
集合
题型三 由集合的交、并、补求字母 参数
例3 (本题满分12分)已知全集U={1,2,3,4,5}, A={x|x2-5x+m=0},B={x|x2+nx+12= 0},且(∁UA)∪B={1,3,4,5},求m+n的值. 【思路点拨】 入手点:由(∁UA)∪B= {1,3,4,5}可得2∈A.而A,B表示方程的解集, 由此可求m和n的值.
集合
【 解 】 ∵ U = {1,2,3,4,5} , ( ∁ UA) ∪ B = {1,3,4,5},∴2∈A, 2分 又A:{x|x2-5x+m=0}, ∴2是关于x的方程x2-5x+m=0的一个根, 得m=6且A={2,3}.…6分 而(∁UA)∪B={1,3,4,5}. ∴3∈B,又B={x|x2+nx+12=0}. ∴3是关于x的方程x2+nx+12=0的一个根,
全集与补集 课件
课堂笔记
1.全集与补集的互相依存关系 (1)全集并非是包罗万象、含有任何元素的集合,它是对于研究问题而言的一个 相对概念,它仅含有所研究问题中涉及的所有元素,如研究整数,Z就是全集,研究 方程的实数解,R就是全集.因此,全集因研究问题而异. (2)补集是集合之间的一种运算.求集合A的补集的前提是A是全集U的子集,随 着所选全集的不同,得到的补集也是不同的,因此,它们是互相依存、不可分割的
B.{1,3,5}
D.{2,3,4}
4 .已知全集U=R,集合A={x|x<-1},B={x|2a<x<a+3},且B⊆∁RA,求a的取值范 围. 解析:由题意得∁RA={x|x≥-1}. (1)若B=∅,则a+3≤2a,即a≥3,满足B⊆∁RA.
1 (2)若B≠∅,则由B⊆∁RA,得2a≥-1且2a<a+3,即 ≤a<3. 2 1 综上可得a≥ . 2
图形语言
3.常见结论
(1)∁UA是从全集U中取出集合A的全部元素之后,所有剩余的元素组成的集合.
(2) 性质: A ∪ ( ∁ UA) = U , A∩( ∁ UA) = ∅ , ∁ U( ∁ UA) = A , ∁ UU = ∅ , ∁ U ∅ = U , ∁U(A∩B)=(∁UA)∪(∁UB),∁U(A∪B)=(∁UA)∩(∁UB). (3)如图所示的深阴影部分是常用到的含有两个集合运算结果的Venn图表示.
人教版
必修一
第一章 集合与函数概念
1.1 集合
1.1.3 集合的基本运算 第二课时 全集与补集
教学目标
1.了解全集、补集的意义. 2.正确理解补集的概念,正确理解符号“∁UA”的涵义. 3.会求已知全集的补集,并能正确应用它们解决一些具体问题.
高一数学必修教学课件第一章全集与补集
解析
首先解出集合$A$和$B$的元素,然后 比较两个集合的元素,根据元素之间 的关系判断集合的关系。
利用集合运算解决实际问题
例题3
某校高一年级有500名学生,其中参加数学竞赛的有200名, 参加物理竞赛的有150名,同时参加数学和物理竞赛的有80 名,求没有参加任何竞赛的学生人数。
解析
设总学生人数为全集$U$,数学竞赛学生人数为集合$A$, 物理竞赛学生人数为集合$B$,根据题目条件列出集合的表 达式,然后利用集合的运算求成果
分组讨论
将学生分成若干小组,每组选取 一个与全集、补集相关的主题进 行讨论,如“全集与补集在生活 中的应用”、“全集与补集的数 学意义”等。
成果展示
每个小组选派一名代表,向全班 展示他们小组的讨论成果,包括 主题阐述、案例分析、问题解决 等。
互动交流
鼓励其他小组的同学对展示的内 容进行提问和评论,促进课堂互 动和交流,加深学生对全集与补 集的理解和应用能力。
02
集合运算法则
交集运算法则
交集定义:两个集合A和B的交集是由所有既属于A又属于B的元素组成的集合。 交集符号:A∩B。
交集运算性质:满足交换律、结合律和分配律。
并集运算法则
并集定义:两个集合A和B的并集是由所有属于A或属于B的元素组成的集 合。
并集符号:A∪B。
并集运算性质:满足交换律、结合律和分配律。
06
总结回顾与课堂互动环节
总结回顾本次课程重点内容
集合的基本概念
回顾了集合的定义、元素与集合的关系、集合的表示方法等基本 概念。
集合的运算
重点讲解了集合的交、并、补运算,通过实例和练习题加深了学生 对集合运算的理解和掌握。
全集与补集
首先解出集合$A$和$B$的元素,然后 比较两个集合的元素,根据元素之间 的关系判断集合的关系。
利用集合运算解决实际问题
例题3
某校高一年级有500名学生,其中参加数学竞赛的有200名, 参加物理竞赛的有150名,同时参加数学和物理竞赛的有80 名,求没有参加任何竞赛的学生人数。
解析
设总学生人数为全集$U$,数学竞赛学生人数为集合$A$, 物理竞赛学生人数为集合$B$,根据题目条件列出集合的表 达式,然后利用集合的运算求成果
分组讨论
将学生分成若干小组,每组选取 一个与全集、补集相关的主题进 行讨论,如“全集与补集在生活 中的应用”、“全集与补集的数 学意义”等。
成果展示
每个小组选派一名代表,向全班 展示他们小组的讨论成果,包括 主题阐述、案例分析、问题解决 等。
互动交流
鼓励其他小组的同学对展示的内 容进行提问和评论,促进课堂互 动和交流,加深学生对全集与补 集的理解和应用能力。
02
集合运算法则
交集运算法则
交集定义:两个集合A和B的交集是由所有既属于A又属于B的元素组成的集合。 交集符号:A∩B。
交集运算性质:满足交换律、结合律和分配律。
并集运算法则
并集定义:两个集合A和B的并集是由所有属于A或属于B的元素组成的集 合。
并集符号:A∪B。
并集运算性质:满足交换律、结合律和分配律。
06
总结回顾与课堂互动环节
总结回顾本次课程重点内容
集合的基本概念
回顾了集合的定义、元素与集合的关系、集合的表示方法等基本 概念。
集合的运算
重点讲解了集合的交、并、补运算,通过实例和练习题加深了学生 对集合运算的理解和掌握。
全集与补集
全集与补集_课件
解 ∁UA={x|-1≤x≤3}, ∁UB={x|-5≤x<-1 或 1≤x≤3}, (∁UA)∩(∁UB)={x|1≤x≤3}, (∁UA)∪(∁UB)={x|-5≤x≤3}, ∁U(A∩B)={x|-5≤x≤3}, ∁U(A∪B)={x|1≤x≤3}, 相等的集合:(∁UA)∩(∁UB)=∁U(A∪B), (∁UA)∪(∁UB)=∁U(A∩B).
()
A.P∩Q∩(∁RH) C.P∩Q∩H
B.P∩Q D.P∩Q∪H
(2)50名学生中,会讲英语的有36人,会讲日语的 有20
ห้องสมุดไป่ตู้
人,既不会讲英语也不会讲日语的有8人, 则既会讲英
语又会讲日语的人数为
()
A.20 B.14 C.12 D.10
解析 (1)由 f2(x)+g2(x)=0 知,f(x)=0 与 g(x)=0 同 时成立,且 h(x)≠0.
全集与补集
自学导引
1.在研究某些集合的时候,这些集合往往是某个给定集 合的子集 ,这个给定的集合叫作全集,常用符号 U 表 示.全集含有我们所要研究的这些集合的 全部 元素.
2.设 U 是全集,A 是 U 的一个子集(即 A⊆U ),则由 U
中所有不属于 A 的元素组成的集合,叫作 U 中子集 A 的补集 (或余集 ),记作∁UA,即∁UA={x|x∈U,且x∉A.} 3.补集与全集的性质 (1)∁UU= ∅ ;(2)∁U∅= U ;(3)∁U(∁UA)= A; (4)A∪∁UA=U ;(5)A∩∁UA= ∅ . 4.已知全集 U={1,2,3,4,5,6,7},A={2,4,5},B={1,3,5,7},
(A )
A.∁UA=B C.∁UA⊇C
B.∁UB=C D.A⊇C
集合的全集及补集ppt课件.ppt
问1 集合 A 与集合 U 是什么关系 ? 问2 在计划买进的品种中,还没买进的品种构成的
集合记为 B,则集合 B 等于什么?
认识到了贫困户贫困的根本原因,才 能开始 对症下 药,然 后药到 病除。 近年来 国家对 扶贫工 作高度 重视, 已经展 开了“ 精准扶 贫”项 目
全集的定义
全集U
冬瓜、 黄瓜、 鲫鱼、 茄子 虾、毛豆、猪肉、 芹菜、 土豆
认识到了贫困户贫困的根本原因,才 能开始 对症下 药,然 后药到 病除。 近年来 国家对 扶贫工 作高度 重视, 已经展 开了“ 精准扶 贫”项 目
练习1 设 U ={ 1,2,3,4,5,6 }, A ={ 5,2,1 },B ={ 5,4,3,2 }.
求
UA
;
UB
; U
∩A
∩
U B; U A U U B .
补集
认识到了贫困户贫困的根本原因,才 能开始 对症下 药,然 后药到 病除。 近年来 国家对 扶贫工 作高度 重视, 已经展 开了“ 精准扶 贫”项 目
教材 P 15 ,练习A 组 第 1~5 题 .
解: U A ={ 3,4,6 }; U B={ 1,6 }; U A∩ U B={ 3,4,6 }∩{ 1,6 }={ 6 };
U A ∪ U B ={ 3,4,6 }∪ { 1,6 } ={ 1,3,4,6 }.
认识到了贫困户贫困的根本原因,才 能开始 对症下 药,然 后药到 病除。 近年来 国家对 扶贫工 作高度 重视, 已经展 开了“ 精准扶 贫”项 目
记作 U A
读作 A 在 U 中的补集
2.用 Venn 图表示出 “ U A ”
U A
UA
认识到了贫困户贫困的根本原因,才 能开始 对症下 药,然 后药到 病除。 近年来 国家对 扶贫工 作高度 重视, 已经展 开了“ 精准扶 贫”项 目
《集合的基本运算:全集与补集》参考课件
对于一个集合A,由全集U中不属于集合A 对于一个集合A,由全集U中不属于集合A A,由全集 的所有元素组成的集合称为集合A相对于全集U 的所有元素组成的集合称为集合A相对于全集U 补集(complementary set),简称为集合 简称为集合A 的补集(complementary set),简称为集合A的补 集,记作 ð A,即 U U,且 Q U, ð A={x|x ∈ 且x ∉ }. U
Veen(1834~1923),英国数学家。 Veen(1834~1923),英国数学家。 主要成就时系统解释了几何表示的方法。 主要成就时系统解释了几何表示的方法。 他作出一系列简单闭曲线, 他作出一系列简单闭曲线,将平面分为 许多间隔,利用这种图表,Veen阐明了 许多间隔,利用这种图表,Veen阐明了 演绎推理的基本原理, 演绎推理的基本原理,这种逻辑图就时 Veen图 此外,在概率论方面, “Veen图”。此外,在概率论方面,他 机会逻辑》 符号逻辑》等在19 的《机会逻辑》和《符号逻辑》等在19 世纪末及20世纪初曾享有很高的声誉; 20世纪初曾享有很高的声誉 世纪末及20世纪初曾享有很高的声誉; 逻辑学方面,他澄清了布尔《 逻辑学方面,他澄清了布尔《思维规律 的研究》中一些含混的概念。 的研究》中一些含混的概念。 Veen(1834~ Veen(1834~1923) Veen还对制作机器感兴趣 还对制作机器感兴趣, Veen还对制作机器感兴趣,曾制作 一部板球滚动机。 一部板球滚动机。
A 三角形 B
锐角三角形 钝角三角形 直角三角形
U
设全集U={x|x是三角形},A={x|x是锐角三角 设全集U={x|x是三角形},A={x|x是锐角三角 是三角形 ={x|x ,B={x|x是钝角三角形} ={x|x是钝角三角形 A∩B, U(A∪B). 形},B={x|x是钝角三角形}.求A∩B,ð (A∪B).
高中数学课件-第一章 全集与补集
至多只有一个元素,求a的取值范围。
用补集思想求参数的范围
全集 补集
作业: 《导学练案》1.3.2
Ⅰ部分:____A_∩__B___ Ⅱ部分:_A__∩__(_C_U_B_)_ Ⅲ部分:_B__∩__(_C_U_A_)_
U
A
B
ⅡⅠ Ⅲ
Ⅳ
Ⅳ部分:__C_U_(_A_∪__B_)_或__(_C_U_A__)_∩__(_C_U_B__) __.
合作探究
例2:设全集为R,A={x|x<5},B={x|x>3}.求:
——全集与补集
自主学习
全集 在研究集合与集合之间的关系时,这些集 合往往是某个给定集合的子集,这个给定的集 合叫做全集.
全集常用符号U表示.
全集含有我们所要研究的这些集合 的全部元素.
自主学习
补集 设U是全集,A是U的一个子集(即AU),则U
中所有不属于A的元素组成的集合,
叫做 U中子集A的补集(或余集).
(1)A∩B; (2)A∪B; (3) CRA, CRB;
(4)(CRA) ∩ (CRB); (5) (CRA) ∪ (CRB);
(6) CR(A∩B);
(7) CR(A ∪ B);
观察(4)(5)(6)(7),你能发现什么结论?
评价提升
1.德·摩根定律
Cu(A ∩ B)= (CuA) ∪ (CuB) Cu(A ∪ B)= (CuA) ∩ (CuB)
∴aa≤+03≥2
∴-1≤a≤0.
评价提升
2.与B A等价的几个式子
(1) A B B B A (2) A B A B A (3)(CU A) B B A (4) A (CU B) U B AFra bibliotek达标拓展
用补集思想求参数的范围
全集 补集
作业: 《导学练案》1.3.2
Ⅰ部分:____A_∩__B___ Ⅱ部分:_A__∩__(_C_U_B_)_ Ⅲ部分:_B__∩__(_C_U_A_)_
U
A
B
ⅡⅠ Ⅲ
Ⅳ
Ⅳ部分:__C_U_(_A_∪__B_)_或__(_C_U_A__)_∩__(_C_U_B__) __.
合作探究
例2:设全集为R,A={x|x<5},B={x|x>3}.求:
——全集与补集
自主学习
全集 在研究集合与集合之间的关系时,这些集 合往往是某个给定集合的子集,这个给定的集 合叫做全集.
全集常用符号U表示.
全集含有我们所要研究的这些集合 的全部元素.
自主学习
补集 设U是全集,A是U的一个子集(即AU),则U
中所有不属于A的元素组成的集合,
叫做 U中子集A的补集(或余集).
(1)A∩B; (2)A∪B; (3) CRA, CRB;
(4)(CRA) ∩ (CRB); (5) (CRA) ∪ (CRB);
(6) CR(A∩B);
(7) CR(A ∪ B);
观察(4)(5)(6)(7),你能发现什么结论?
评价提升
1.德·摩根定律
Cu(A ∩ B)= (CuA) ∪ (CuB) Cu(A ∪ B)= (CuA) ∩ (CuB)
∴aa≤+03≥2
∴-1≤a≤0.
评价提升
2.与B A等价的几个式子
(1) A B B B A (2) A B A B A (3)(CU A) B B A (4) A (CU B) U B AFra bibliotek达标拓展
1.1子集、全集、补集 PPT课件 苏教版
U A
CUA
想一想:制
如果集合S包含我们所要研究的各个集 合,这时S可以看做一个全集,全集通常记 为U.
例3
不等式组
2x-1>0 3x-6 0
的解集为A,U=R,试求A及CUA.
点评:不等式问题通常借助数轴来研究,
但要注意实心点与空心点.
学生练习: A组P9练习3,4 B组P10习题1,2,3,4,5
回顾反思 1.两个集合之间的基本关系只有“包含”与
“相等”两种,可类比两个实数间的大小 关系,同时还要注意区别“属于”与“包 含”两种关系及其表示方法. 2.补集的概念必须要有全集的限制. 3.充分利用“形”来解决问题.
作业
1.完成课时训练二 2.预习提纲: (1)交集与并集的含义是什么?能否说明? (2)求两个集合交集或并集时如何借助图形.
B={y|y为高一⑶班的团员} ⑷A={x|x为高一年级的男生},
B={y|y为高一年级的女生}
1.集合与集合之间的“包含”关系
子集的定义 如果集合A的任何一个元素都是集合B的元
素,则称集合A是集合B的子集(subset), 记为A⊆B或B⊇A,读作:A包含于(is contained in)集合B”,或“集合B包含 (contains)集合A”.
例1写出集合{a,b}的所有的子集. 解析:Ø,{a},{b},{a,b} 变:写出集合{a,b,c}的所有的子集. 解析:Ø,{a},{b},{c},{a,b},{a,c},{b,c},{a,b,c}
猜想:若A中有n个元素,A的子集有_2_n_个.
例2下列三个集合中,哪两个集合具有包含关系? ⑴S={―2,―1,1,2},A={―1,1},B={―2,2}; ⑵S=R,A={x|x≤0,x∈R},B={x|x>0,x∈R}; ⑶S={x|x为地球人},A={x|x为中国人}, B={x|x为外国人}.
CUA
想一想:制
如果集合S包含我们所要研究的各个集 合,这时S可以看做一个全集,全集通常记 为U.
例3
不等式组
2x-1>0 3x-6 0
的解集为A,U=R,试求A及CUA.
点评:不等式问题通常借助数轴来研究,
但要注意实心点与空心点.
学生练习: A组P9练习3,4 B组P10习题1,2,3,4,5
回顾反思 1.两个集合之间的基本关系只有“包含”与
“相等”两种,可类比两个实数间的大小 关系,同时还要注意区别“属于”与“包 含”两种关系及其表示方法. 2.补集的概念必须要有全集的限制. 3.充分利用“形”来解决问题.
作业
1.完成课时训练二 2.预习提纲: (1)交集与并集的含义是什么?能否说明? (2)求两个集合交集或并集时如何借助图形.
B={y|y为高一⑶班的团员} ⑷A={x|x为高一年级的男生},
B={y|y为高一年级的女生}
1.集合与集合之间的“包含”关系
子集的定义 如果集合A的任何一个元素都是集合B的元
素,则称集合A是集合B的子集(subset), 记为A⊆B或B⊇A,读作:A包含于(is contained in)集合B”,或“集合B包含 (contains)集合A”.
例1写出集合{a,b}的所有的子集. 解析:Ø,{a},{b},{a,b} 变:写出集合{a,b,c}的所有的子集. 解析:Ø,{a},{b},{c},{a,b},{a,c},{b,c},{a,b,c}
猜想:若A中有n个元素,A的子集有_2_n_个.
例2下列三个集合中,哪两个集合具有包含关系? ⑴S={―2,―1,1,2},A={―1,1},B={―2,2}; ⑵S=R,A={x|x≤0,x∈R},B={x|x>0,x∈R}; ⑶S={x|x为地球人},A={x|x为中国人}, B={x|x为外国人}.
全集与补集课件
[方法总结] 补集的概念是建立在全集的基础上的, 所以 本题中先求出全集由哪些元素组成,再由交、并、补的概念 分别求得结论.自然数集 N 中最小的数是 0,在求全集时别 丢掉“0”.
设全集 U=R,A={x|x2+px+12=0},B={x|x2-5x+q =0},若(∁UA)∩B={2},A∩(∁UB)={4},求 A∪B. [解析] 因为(∁UA)∩B={2},
补集的应用
[例 2] 设全集 U={2,3,a2+2a-3},A={|2a-1|,2},
∁UA={5},求实数 a 的值. [分析] [解析] ∁UA={5}包含了两层意义:即 5∈U 且 5∉A. ∵∁UA={5},则 A∪(∁UA)={2,|2a-1|,5}=U1,
∴U1 也应为全集,则 U=U1,且 U1、U 都是三元素集.
={4,5},(∁SB)∩A={1,2,3},(∁SA)∩(∁SB)={6,7,8},求集合 A 和 B. [分析] 本题可用直接法求解, 但不易求出结果, 用 Venn
图法较为简单.
[解析] ∈B,5∈B.
解法一: (1)因为 A∩B={4,5}, 所以 4∈A,5∈A,4
(2)因为(∁SB)∩A={1,2,3},所以 1∈A,2∈A,3∈A,1∉B,2∉ B,3∉B. (3)因为(∁SA)∩(∁SB)={6,7,8},所以 6,7,8 既不属于 A,也 不属于 B. 因为 S={x|x≤10,且 x∈N+},所以 9,10 不知所属.
1,0,1,2,3,方程 x2-x-6=0 的解为 x=-2 或 3, 方程 x2-1=0 的解为 x=± 1, 所以 U={-3,-2,-1,0,1,2,3}, A={-2,3},B={-1,1},
所以∁UA={-3,-1,0,1,2}, ∁UB={-3,-2,0,2,3}, (∁UA)∩B={-3,-1,0,1,2}∩{-1,1}={-1,1}, A∪(∁UB)={-2,3}∪{-3, -2,0,2,3}={-3, -2 , 0,2,3}.
相关主题