反硝化除磷工艺研究.
反硝化除磷理论与工艺研究进展
Hale Waihona Puke 反硝化除磷 由于可 以利用 硝酸盐 ( 或亚 硝酸 盐 ) 为电子 受 硝化细菌独立存 在于不 同的反应 器 中。虽 然在 两种工 艺 中都 可 作 然 双 体, 且在缺 氧环境下反硝化脱氮 的同时进行 吸磷 ; 外 , 另 污水 中的 以发现反 硝化 除磷 的现 象 , 而 研 究表 明, 污 泥 系 统更 有 优
省了许多充氧曝气 的费用 ; 其次 , 硝酸盐 作为 D B体 内贮 存有 机 P 在该工艺 中 , 原水先 进 入厌 氧池 , 硝化 除磷 菌 在厌 氧池 吸 物的氧化 电子受体 , 反 可以使反硝化在不 需要大量外 加碳 源的条件 收 有机底物并 以 P B的形式贮存在胞 内 , H 同时快速释 放磷 。随后 下顺 利进 行 , 这样 就节 省 了进 水 中有机 物 的消耗 , 也从 根本 上减
A N工艺具 有常规 脱氮 除磷 工 艺无 法 比拟 的优 点 。首 先 由 [ ] K b . Va osrct C M. P op ou e vl rm 1 u aT , nL odeh M. . . h shrsrmoa f o
于采用 了反硝化 除磷 的原理 , 决 了碳 源不 足 的问题 ; 次 由于 解 其 硝化 细菌和聚 磷 菌 的独 立培 养 , 决 了两者 之 间泥 龄 不 同的 问 解
用 的酶 , 才能使其具有反硝化 除磷能力 。 传统 除磷 工艺 中的聚磷 菌 ( A s 体 内含 有 P B, 硝 酸盐 P O) H 其 还原性为 阴性 , 不能进行反硝化脱 氮 , 能厌氧 释磷 、 氧过量 吸 但 好 磷 。这类细菌包 括不 动杆菌 属和 部分 棒状杆 菌属 等 。而传统 脱
生物反硝化除磷工艺试验研究
打 开 的 时 间越 长 。 水 的 浇 流 水 量 越 大 , 之 流 水 量 反
在 各种 杂 志上 发 表论 文 6篇 , 就职 于襄 樊 学院 机械 与 汽 车 工程 学 院。 雷傻 杰 (9 2 ) 男 , 族 , 师 , 阳汽 车 职 业技 术学 院 17 一 。 汉 讲 襄
图 4 Y0 0 O输 出波 形 图
冲宽 度 D 7的 值 可 以根 据实 际 情 况 确 定 。 1
转换成脉冲信号 , 过输入端 口 X 0 通 0 0传 回 P C, 冲数 据通 过 L 脉
高速计数器 C 3 2 5统 计 脉 冲 的个 数 来 分 辨湿 度 的 大 小 ,采 样 周
期 由计 数 器 决定 ( 问 K 0 时 2 o可 以根 据 实 际情 况确 定 ) 。
工艺启动过程中.O C D去 除 率 一 直 比较 稳 定 ( 3 。 第 l 图 )在
阶段 . 性 污 泥 中 的 微 生 物 在 厌 氧 池 中 对 有 机 物 的 有 效 地 吸 收 活
氧 释 磷 量 明 显 下 降 , P 去除 率 下 降 . 此 阶 段 T T P去 除 率 约 为
8 % .N去 除 率 维 持 在 6 %左 右 : 3阶 段 , 着 D A s富 集 0 T 0 第 随 PO
的进 行 , P O 所 占 比 例 开始 上升 , 时 厌 氧 释 磷 量 开 始上 升 , D A s 此 系统 的反 硝 化 除 磷 效 果 有 所 改 善 ,此 阶 段 内 T P去 除 率 上 升 为 9 %芹 右 . 时 T 去 除 率 也 有 一 定 的 上 升 到 7 %左 右 ; 4阶 0 同 N O 第 段 . 过 改 变 进 水 的 C N P 降 低 了进 水 的 氨 氮 负 荷 之 后 , 氧 通 //. 厌 释 磷 量逐 渐 上 升并 且 稳 定 在 3 m ・ -左 右 , P O 得 到 进 一 步 6 g L‘ D A s 的 富集 , 统 的 反 硝 化 除 磷性 能逐 渐 稳 定 , 阶段 内 T 系 此 P的 去 除 率 维 持 在 9 % 以上 , T 的去 除 率 也 上 升 接 近 8 %。 0 而 N 0
反硝化除磷工艺研究进展
were described.
K eywords:denitrifying deph0sphorization;denitrifying phosphorus removaling bacteria;influencing factors;
new-style technics
废水 中的微生 物能 够 同化 磷 的量极 少 。大部 分 硝化菌和聚磷 菌之间 的矛盾 。从而可 以利用 兼性厌
Research Progress of Process on Denitrifying Deph0sph0rizati0n
Wertren Yinfenf,LI Xians ̄
(1.Yuyao Environmental Protection Bureau,Yuyao 315400,China;2.School of Environmental Science and Engineering.Suzhou University of Science and Technology.Suzhou 215011,China)
。 污 水 治理
中国 资源 综 合利 用
China Resources Comprehensive Utilization
Vo1.28.No.2 2010年 2月
反硝化 除磷工艺研究进展
闻人 银峰 .李 祥
(1.浙 江 省余 姚 市 环 境保 护局 ,浙 江 余 姚 315400;2.苏 州 科 技 学 院 环境 科 学 与工 程 学 院 ,江 苏 苏 州 215011)
- 40-
第 2期
闻 人 银 峰 等 :反 硝 化 除磷 工 艺 研 究 进 展
摘 要 :阐述 了 目前 生物 除磷 机 理 的 研 究 进展 情 况 ,介 绍 了 目前 反 硝化 除磷 的原 理 、作 用 茵 群 。 并对 目前 在反 硝 化 基 础 之 上发 展 起 来的 几 种反 硝 化 除 磷 工 艺进 行 比较说 明 。 关键 词 :反 硝 化 除 磷 ,反 硝 化 除磷 茵 ,影 响 因素 ;新 _T-艺 中图 分类 号 :X703 文 献 标识 码 :A 文 章编 号 :1008—9500(2010)02—0040-04
AOA工艺内源反硝化强化深度脱氮除磷
AOA工艺内源反硝化强化深度脱氮除磷AOA工艺内源反硝化强化深度脱氮除磷摘要:过量的氮和磷污染对水体生态造成严重威胁,因此高效的脱氮除磷技术显得尤为重要。
AOA工艺内源反硝化技术是近年来被广泛研究和应用的一种脱氮除磷技术。
本文通过介绍AOA工艺的原理、优势和应用,探讨其在深度脱氮除磷方面的应用前景和潜力。
一、引言水体中的氮和磷污染是近几十年来全球面临的严重环境问题之一。
氮和磷是水体生物生长和发展所必需的元素,但过量的氮磷导致了水体富营养化,引发藻类大量繁殖,水质恶化,甚至导致水体缺氧和死亡。
因此,高效的脱氮除磷技术对于改善水质,保护水体生态环境至关重要。
二、AOA工艺的原理和优势AOA工艺(Anaerobic-Anoxic-Aerobic)是一种采用内源反硝化方式进行脱氮除磷的工艺。
其原理是通过在一个系统中引入缺氧和厌氧环境,利用内源反硝化菌将硝态氮还原为氮气,并通过缺氧环境中的异养微生物将磷酸盐转化为无机磷,从而达到脱氮除磷的效果。
AOA工艺相较于传统的生物处理技术具有以下优势:1. 高效脱氮除磷:AOA工艺通过内源反硝化和异养微生物的耦合作用,能够实现高效的脱氮和除磷效果,大大降低了水体中氮磷浓度。
2. 节约能源:传统的脱氮除磷技术往往需要外源供碳源,而AOA工艺通过内源反硝化可以利用废水中的有机物作为碳源,减少了外源能源的需求。
3. 减少污泥产生:传统的脱氮除磷技术常常伴随着大量的污泥产生,而AOA工艺由于使用了内源反硝化菌和异养微生物,大大降低了污泥产生量。
三、AOA工艺在深度脱氮除磷方面的应用前景和潜力AOA工艺作为一种新兴的脱氮除磷技术,目前已经被应用于许多水处理厂和污水处理厂。
它在深度脱氮除磷方面具有很大的应用前景和潜力。
1. 提高脱氮效果:AOA工艺可以通过调节操作条件和优化菌种结构,进一步提高脱氮效果,从而满足更加严格的脱氮要求。
2. 实现资源回收利用:AOA工艺不仅可以脱氮除磷,还可以回收废水中的有机物和磷酸盐,实现资源的回收利用,减少对外部环境的依赖。
反硝化除磷工艺原理以及研究进展
反硝化除磷工艺原理以及研究进展反硝化除磷工艺一直以来都是污水处理领域研究的热点,随着环保意识的不断提高,工艺的研究、改进和应用也在不断推进。
在这篇文章中,我们将重点介绍反硝化除磷工艺的原理、发展历程以及目前的研究进展,并对其未来的应用前景进行展望。
1. 反硝化除磷工艺的原理反硝化除磷工艺是一种利用硝化-反硝化的生物反应过程去除污水中氮、磷元素的工艺。
其原理是,通过污水里的有机物质,使污水中的有机物质被氨氧化成以NH4+为主要形态的氮化物,然后将NH4+通过硝化由细菌氧化成NO3-。
而在后续的反硝化过程中,反硝化细菌利用NO3-作为电子受体,将NO3- 还原成N2气体,同时磷元素被沉淀在活性污泥中。
2. 反硝化除磷工艺的发展历程反硝化除磷工艺的研究可追溯至上世纪60年代,当时相关研究人员在对生活污水处理过程中,意外发现生物膜反应器在净化污水时可同时达到除磷和除氮的效果,同时出水中还具有较低的有机物含量。
然而,由于当时的反硝化除磷工艺并不完善,存在的问题较多,因此直到上世纪80年代,才逐渐发展出采用前置浸出法去除COD,此后通过反硝化除磷,再加上碳源补加进一步提高除磷效果的新工艺。
随着上述工艺不断完善,反硝化除磷工艺逐步成为了当今污水处理领域中广泛应用的一种成熟工艺方法。
3. 反硝化除磷工艺的研究进展自反硝化除磷工艺被提出以来,相关领域的研究工作已经取得了许多进展,其中包括:(1) 研究采用新型碳质填料增强反硝化除磷工艺的效果新型碳质填料具有高比表面积、孔径分布均匀、生物可附着性好等特点,对于提高反硝化除磷工艺的效果具有良好的应用前景。
研究中发现,采用新型碳质填料结合生物反应器培养啮齿动物阶段污泥,反应器内的Pb2+、Cu2+等重金属离子含量分别下降了50%、74%。
(2) 研究通过温度的调节来影响反硝化除磷的效率研究发现,适当降低反硝化除磷工艺中反硝化反应的温度可以提高反应效率。
此外,在反应器中采用沼气将一些固体废弃物转化为高含量的磷酸盐,可增强反硝化除磷的效果,而不改变反应器的能源消耗情况。
反硝化除磷实验方案
附着——悬浮耦合短程SBR硝化反硝化工艺的实验方案1.实验用水水质:为了方便进行长期的活性污泥培养驯化,本试验在研究过程中,均采用自配模拟生活污水。
以静置后的自来水为水源,然后根据培养以及研究需要投加不同质量的葡萄糖、NH4Cl、KH2PO4来达到所需的COD、氨氮和磷酸盐浓度值。
同时投加适量营养液提供微生物的生理活动所需的微量元素。
以低浓度HCI和NaOH溶液调节各反应系统的pH值。
另外在短程硝化配水中,投加NaHCO3保证体系中的碱度。
_____________________________________________ 进水成分浓度(mg/l)________________________________________________FeCl3·6H2O 1.5H3BO3 0·15CuSO4·5H2O 0·03KI 0·18MnCl2·4H2O 0·12ZnSO4·7H2O 0·12CoCl2·6H2O 0·15EDTA 10_________________________________________________由于硝化细菌和反硝化除磷菌生长环境条件的差异,所以对两类功能菌采取分开驯化培养的方式,待驯化完成后,再耦合在一起构成一体式附着-悬浮SBR反应器。
试验中所采用的分析方法均按照国家环境保护局发布的标准方法。
COD:重铬酸钾法;NH+3-N:纳氏试剂光度法;NO2-N:N-(1-萘基)-乙二胺光度法;NO3-N:麝香草酚分光光度法;MLSS:重量法;pH:pHs-2C酸度计。
2、短程硝化污泥的培养试验将污水处理厂曝气池活性污泥,在SBR反应器内,维持低氧(D O≈1.0-1.5mg/L)的运行方式,利用较高温度条件下(31士1℃)亚硝化菌生长速率远大于硝化菌的特性,采用加热装置控制体系温度在31士1℃。
反硝化除磷污水处理工艺的主要影响因素探讨
反硝化除磷污水处理工艺的主要影响因素探讨反硝化除磷是一种常用的污水处理工艺,它具有高效、环保等优点。
然而,反硝化除磷工艺的性能受到许多影响因素的制约。
本文将从环境因素、操作参数和污水性质三个方面对反硝化除磷污水处理工艺的主要影响因素进行探讨。
环境因素对反硝化除磷工艺的影响主要体现在温度、pH 值和氧气含量三个方面。
首先,温度是影响反硝化除磷效率的重要因素之一。
高温有利于细菌的生长繁殖,加快反硝化除磷反应速率,提高处理效果。
其次,pH值对反硝化除磷的影响也十分显著。
一般来说,中性至弱碱性的pH范围有利于反硝化细菌的生长和代谢活动,从而提高反硝化除磷效果。
最后,氧气含量对反硝化除磷的影响也十分重要。
反硝化细菌在缺氧环境下才能发挥其除磷功能,因此要保持污水处理系统内氧气的充分供应,避免出现过高的氧气浓度,以充分利用反硝化除磷工艺的优势。
操作参数对反硝化除磷工艺的影响主要包括曝气量、进水流量和COD/P比值。
首先是曝气量的影响。
适当的曝气量能提供足够的氧气供应,促使反硝化细菌活跃,提高除磷效果。
进水流量也是影响反硝化除磷效果的重要参数之一。
过高的进水流量会降低反应器中污水和生物菌体的停留时间,导致反硝化除磷效果下降。
此外,COD/P比值也是影响反硝化除磷效果的重要因素。
适当的COD/P比值有利于微生物的代谢反应,提高反硝化除磷效果。
污水性质对反硝化除磷工艺的影响主要包括BOD5/COD比值、污水中抑制物质的含量和总磷浓度。
首先是BOD5/COD比值的影响。
适当的BOD5/COD比值有利于微生物菌群的稳定和健康生长,提高反硝化除磷效果。
其次,污水中抑制物质的含量对反硝化除磷效果也有影响。
高浓度的重金属、抗生素等抑制物质会对反硝化细菌的生长和代谢活动产生负面影响,降低反硝化除磷效果。
最后,总磷浓度是影响反硝化除磷效果的重要因素之一。
高浓度的总磷会影响微生物菌群的活性和代谢功能,减少反硝化除磷效果。
综上所述,反硝化除磷工艺的性能受到环境因素、操作参数和污水性质的综合影响。
反硝化聚磷菌的筛选驯化及其脱氮除磷的效能研究
反硝化聚磷菌的筛选驯化及其脱氮除磷的效能研究摘要:反硝化聚磷菌是一类具有优异脱氮及除磷功能的微生物,本文以反硝化聚磷菌的筛选驯化及其脱氮除磷的效能研究为题,对反硝化聚磷菌的生理特性、筛选驯化、环境适应能力及其在脱氮除磷过程中的应用等方面进行了探讨和总结。
首先对常见的反硝化聚磷菌进行了分类和鉴定,介绍了其生长特性、代谢途径和代表菌的特点。
然后探讨了反硝化聚磷菌的筛选方法和驯化过程,阐述了物理、化学和基因工程等方法在反硝化聚磷菌筛选中的应用,并从优化培养基、控制生长条件等方面进行了菌株驯化的研究。
其次,针对反硝化聚磷菌在不同环境条件下的适应能力,探讨了其在环境因素变化下的适应性和增强适应性的机制,如微量元素的作用和自适应突变等方面。
最后,重点阐述了反硝化聚磷菌在脱氮除磷过程中的应用和效能,包括同步脱氮除磷工艺的研究、反硝化聚磷菌与其他微生物协同作用的研究等。
本文总结了反硝化聚磷菌在环境净化中具有潜在的应用前景,为其进一步开发利用提供了科学依据。
关键词:反硝化聚磷菌,筛选驯化,环境适应能力,脱氮除反硝化聚磷菌是一类可以同时完成污水处理中氮和磷的去除的微生物。
本文对反硝化聚磷菌的生理特性、筛选驯化、环境适应能力及其在脱氮除磷过程中的应用等方面进行了综述。
首先,本文分类和鉴定了常见的反硝化聚磷菌,并介绍了它们的生长特性、代谢途径和代表菌的特点。
接着,本文探讨了反硝化聚磷菌的筛选方法和驯化过程,包括物理、化学和基因工程等方法,并重点阐述了菌株驯化方面的研究。
此外,本文还对反硝化聚磷菌在不同环境条件下的适应能力进行了探讨,包括其在环境因素变化下的适应性和增强适应性的机制,例如微量元素的作用和自适应突变等方面。
最后,本文重点介绍了反硝化聚磷菌在脱氮除磷过程中的应用和效能,包括同步脱氮除磷工艺的研究、反硝化聚磷菌与其他微生物协同作用的研究等。
本文总结了反硝化聚磷菌在环境净化中具有潜在的应用前景,为其进一步开发利用提供了科学依据未来反硝化聚磷菌的应用前景非常广阔,特别是其在污水处理领域的应用。
高效反硝化聚磷菌的筛选及其脱氮除磷条件和性能研究
高效反硝化聚磷菌的筛选及其脱氮除磷条件和性能研究高效反硝化聚磷菌的筛选及其脱氮除磷条件和性能研究引言:随着工业化进程和人口数量的不断增长,废水处理成为一个重要的环境保护问题。
氮和磷是废水中的主要污染物,其过度排放对水体生态系统产生了巨大的影响。
因此,研究高效反硝化聚磷菌的筛选、脱氮除磷条件和性能具有重要的理论意义和应用价值。
一、高效反硝化聚磷菌筛选方法在废水处理过程中应用高效反硝化聚磷菌具有很大的潜力,但在实际操作中,如何筛选出高效的菌种仍然是一个挑战。
目前,采用筛选菌群、精确鉴定和进一步培养的方法成为常用的筛选高效菌种的方法。
通过研究和对比已有的菌种,综合考虑菌株的生理特性、菌株的适应性以及菌株对果胶的利用能力等因素,可以筛选得到高效反硝化聚磷菌。
二、脱氮除磷条件的研究为了进一步提高高效反硝化聚磷菌的脱氮除磷效果,需要研究相应的条件。
首先,反硝化过程需要提供合适的碳源,可以选择易于降解的有机物来提供碳源,如果胶、乳酸等。
其次,需要有适宜的温度和pH条件。
通常,25-30°C和pH为7-8的条件是比较适宜的。
此外,还需要适量添加无机盐,如氯化钠和硫酸铵等,来提供反硝化和除磷过程所需的元素。
三、高效反硝化聚磷菌的性能研究高效反硝化聚磷菌不仅需要在脱氮除磷方面表现出良好的性能,而且需要对其他的废水处理指标具有一定的影响。
通过研究菌种的效能特点、反应动力学、通量等参数,可以评估高效反硝化聚磷菌在废水处理中的性能。
此外,还需要对其代谢产物进行分析,了解其对环境的潜在影响。
四、应用前景与实际应用高效反硝化聚磷菌的筛选及其脱氮除磷条件和性能研究不仅对理论研究具有重要的意义,而且对实际应用也具有重要的价值。
目前,高效反硝化聚磷菌在废水处理领域的应用已经取得了一些成果,并逐渐得到应用和推广。
未来,随着技术的不断进步,相信高效反硝化聚磷菌在废水处理领域将发挥更大的作用。
结论:高效反硝化聚磷菌的筛选及其脱氮除磷条件和性能研究对于废水处理具有重要的理论意义和应用价值。
反硝化除磷工艺原理以及
反硝化除磷的影响因素
污水中有机物浓度
污水中氮、磷浓度
有机物浓度越高,反硝化细菌和聚磷菌的 代谢活性越强,反硝化除磷效果越好。
氮、磷浓度越高,反硝化细菌和聚磷菌的 生长速率越快,反硝化除磷效果越好。
污水中pH值
污水中温度
pH值对反硝化细菌和聚磷菌的生长和代谢 活性有重要影响,适宜的pH值范围为6.57.5。
反硝化除磷的优势与挑战
反硝化除磷的优势
高效率
反硝化除磷工艺能够在短时间内高效 去除污水中的氮和磷,达到国家排放 标准。
适应性强
该工艺适用于多种类型的污水,包括 生活污水、工业废水和农田径流等。
节能环保
反硝化除磷工艺不需要添加化学药剂 ,节省了用药成本,同时也减少了二 次污染。
生物降解
该工艺利用微生物进行生物降解,相 比化学方法更有利于保护生态环境。
厌氧-缺氧-好氧(A2/O)工艺
一种常用的反硝化除磷工艺,通过在厌氧、缺氧、好氧三个不同环境条件下,利 用微生物的代谢作用将污水中的有机物、氮、磷等污染物去除。
反硝化除磷的原理
反硝化作用
在缺氧条件下,反硝化细菌利用硝酸盐氮作为电子受体,将有机物转化为氮气。
除磷原理
在厌氧条件下,聚磷菌吸收污水中的有机物,并将其转化为能量储存物质——聚磷酸盐;在好氧条件下,聚磷菌 将储存的聚磷酸盐分解为正磷酸盐,并释放能量;在缺氧条件下,反硝化细菌将正磷酸盐还原为磷元素,并将其 以磷酸盐的形式去除。
反硝化除磷工艺在污水处理厂中的应用,可以有效地改善水 质,减少水体富营养化的风险,同时也可以降低污水处理厂 的运营成本。
工业废水处理
工业废水处理是反硝化除磷工艺应用 的另一个重要场景。在工业废水处理 中,由于废水中含有大量的氮、磷等 污染物,因此需要采用有效的处理工 艺进行去除。
简析反硝化除磷工艺
简析反硝化除磷工艺近年来,污水处理厂的氮磷排放要求越来越严格,部分流域已要求达到一级A要求。
针对除磷脱氮的城镇污水处理厂升级改造工作也在全国范围内迅速开展。
目前,应用广泛的脱氮除磷工艺如A2/O、氧化沟、SBR等,均是基于传统生物硝化和反硝化机理开发而来,仅能去除污水中部分的氮和磷。
通常情况下,这些工艺普遍存在基建投资大(采用空间分隔,反应器容量大)、运行费用高(硝化充氧能耗高、市政污水厂需投加碳源和补充碱度等)以及温室气体排放等一系列问题。
应用反硝化除磷菌进行污水脱氮除磷,能较好地解决这一问题,其已成为污水生物处理技术领域研究的热点之一。
它能“一碳两用”,同时达到脱氮除磷的目的,而且还具有节省曝气量、减小污泥产量的优点,因此越来越受到学者的关注。
1、反硝化除磷简介1.1 反硝化除磷原理传统聚磷菌是一类以氧作为电子受体的菌种,被称作好养聚磷菌,而反硝化聚磷菌DPB是在厌氧/缺氧交替运行条件下,富集的一类兼有反硝化作用和除磷作用的兼性厌氧微生物。
该微生物能利用氧气或硝酸根离子作为电子受体,且其基于胞内聚β-羟基丁酸酯(PH B)、糖原质和磷酸盐等物质的生物代谢过程与传统厌氧/好养法中的PAO相似。
反硝化除磷工艺就是以DPB为菌种,通过“一碳两用”方式在缺氧段同时完成过量吸磷和反硝化过程而达到脱氮除磷双重目的的一种工艺。
在厌氧阶段,DPB快速吸收乙酸、丙酸等低分子脂肪酸,同时降解细胞内的多聚磷酸盐以无机磷酸盐的形式释放出来,然后利用上述过程产生的能量ATP 和糖原酵解还原产物NADH2合成大量PHB储存在体内。
DPB的释磷过程主要取决于胞外有机物的性质和水平。
在缺氧阶段,DPB以硝酸根离子代替氧作为电子受体氧化PHB,利用降解PHB所产生的能量,过量摄取环境中的无机磷酸盐并以多聚磷酸盐的形式储存,同时将硝酸盐还原成N2或氮化物,将反硝化和除磷这两个过程合二为一,一碳两用,达到同步脱氮除磷的目的。
反硝化除磷现象的发现,强化了生物的脱氮除磷效率,推动了强化除磷工艺的发展,可以节约碳源50%,污泥产量减少50%,除磷过程只需硝化曝气量,总体曝气量可减少30%左右。
A2-O工艺反硝化除磷的实现及性能的研究
A2-O工艺反硝化除磷的实现及性能的研究A2/O工艺反硝化除磷的实现及性能的研究摘要:反硝化除磷技术是目前污水处理领域的一项重要技术,可以有效地处理含有高浓度氮和磷的废水。
本文通过研究A2/O工艺中的反硝化除磷机制,分析了该技术的实际应用及其性能表现。
研究结果显示,A2/O工艺反硝化除磷具有高效去除氮磷的特点,同时还具备适应性强、操作稳定等优点。
本文着重介绍了该技术的关键步骤、工艺参数及控制策略,为实际工程应用提供了一定的参考。
第一章引言反硝化除磷技术是指通过细菌的代谢途径,将废水中的硝酸盐和磷酸盐转化为氮气和固体磷,从而实现废水兼顾脱氮和除磷的目的。
该技术在污水处理领域得到广泛应用,对保护水体环境、提高水质具有重要意义。
第二章 A2/O工艺反硝化除磷机制A2/O工艺是一种常用的生化处理方法,其主要通过好氧、缺氧和厌氧三个阶段的处理来实现废水的除磷和脱氮。
在A2/O工艺中,磷一般是在好氧区进行除磷,而反硝化作用则发生在缺氧和厌氧区。
由于硝化和反硝化反应同时进行,因此可以实现废水的脱氮除磷。
第三章 A2/O工艺反硝化除磷的实际应用通过对多个中小型污水处理厂的实际应用情况进行调研,发现A2/O工艺反硝化除磷在实际处理过程中具有较好的效果。
该工艺可以快速去除氮磷,提高废水处理的效率。
此外,A2/O工艺还具备适应性强、操作稳定等优点。
第四章 A2/O工艺反硝化除磷性能研究为了进一步评估A2/O工艺反硝化除磷的性能,开展了一系列实验。
结果表明,该工艺能够在较短的时间内去除废水中的氮磷,同时能够保持较高的除磷效果。
第五章 A2/O工艺反硝化除磷的关键步骤及工艺参数通过分析A2/O工艺反硝化除磷的关键步骤和工艺参数,提出了一系列的控制策略。
这些控制策略能够改善工艺的稳定性和性能表现,并提供了一定的指导意义。
第六章结论与展望本文通过研究A2/O工艺反硝化除磷技术,表明该技术在废水处理领域具有很好的应用前景。
在未来的研究中,可以进一步优化工艺参数和控制策略,提高A2/O工艺反硝化除磷的性能表现。
反硝化除磷工艺及影响因素研究
聚 磷 菌 极 为 相 似 的 代 谢 特 征 和 同 样 高 的 生 物 除 磷 效 能 。 由
随 着 反 硝 化 除 磷 现 象 的 发 现 , 究 者 开 始 了 对 反 硝 化 4 反 硝化 除磷 工艺 影 响 因素 研 究 研
4 4 电子 受体 .
S 结 语
反硝 化除磷 工艺 将 反硝 化 脱氮 和 生物 除 磷 有机 结 合 , 在 生 物 除 磷 工 艺 中 , 水 中 的 N0 一或 NO 影 响 厌 氧 节 约 了碳 源 和 曝 气 能 耗 , 少 了 污 泥 产 量 , 一 种 可 持 续 生 进 i 减 是 释 磷 进 而 影 响 缺 氧 吸 磷 。 而 缺 氧 吸 磷 效 果 与 硝 酸 盐 量 有 物 脱 氮 除 磷 工 艺 。
~
2 0 / 围 内 , 氧 吸 磷 速 率 随 C 4 mg I范 缺 O 0 / 0 ~ 0 mg I 相 中 , 同 经 历 厌 氧 、 氧 和 好 氧 环 境 。 主 要 工 艺 形 式 有 低 。王 亚 宜 等 实 验 表 明 , 始 C 共 缺 缺 mg I, UC M U T、 C S S R 等 。单 污 泥 系 统 通 过 硝 化 、 硝 范 围 内 , 氧 阶 段 后 期 水 中 磷 的 浓 度 基 本 为 0 / 且 磷 的 T、 C B F 、B 反 O OD 浓 度 达 到 化 及 强 化 生 物 除 磷 等 过 程 实 现 氮 磷 去 除 , 是 D B细 菌 、 但 P 硝 摄 取 速 率 随 C D 浓 度 的 增 大 而 升 高 。 当 C
化细菌及其他 异 养菌 同时 存 在 于悬 浮 增 长的 混 合液 中 , 硝
反硝化除磷技术研究进展
第7期高峰,等:反硝化除磷技术研究进展-79-反硝化除磷技术研究进展高峰',李明?(1.山东省德州生态环境监测中心,山东德州253000;2.德州市生态环境监控中心,山东德州253000)摘要:主要简述了反硝化除磷技术的原理及其工艺运行的主要影响因素,分析了运用反硝化除磷工艺的单污泥系统(A/O、UCT、MUCT、BCFS、SBR)和双污泥系统(A?N、Dephanox、A?N/SBR)的运行特点。
关键词:反硝化除磷;原理;影响因素;工艺中图分类号:X703文献标识码:A文章编号:1008-021X(2021)07-0079-02Application Status and Research Progress of Denitrifying Phosphorus Removal TechnologyGao Feng',Li Ming1(1.Dezhou Ecological Environment Monitoring Center of Shandong Province,Dezhou253000China;2.Dezhou City Ecological Environment Monitoring Center,Dezhou253000,China)Abstract:In this paper,the principle of denitrifying phosphorus removal technology and the main influencing factors of its operation are described,and the operating characteristics of single sludge system(A?/O,UCT,MUCT,BCFS,SBR)and double sludge system(A N,Dephanox,A?N/SBR)using denitrifying phosphorus removal process are analyzed.Key words:denitrifying phosphorus removal;principle;influencing factors;process反硝化除磷是指反硝化除磷菌在缺氧的条件下,以硝酸盐代替氧为电子受体,同步完成反硝化脱氮和过量吸磷过程。
A2/O工艺反硝化除磷试验研究
r e s p e c t i v e l y .Th e r a t i o wa s 6 2. 3% .Th e r e b y.t he r a t i o o f DP Bs t ha t c o ul d u p t a k e p ho s p h o r o u s u n d e r a n o x i c c o n d i t i o n a n d P AOs wa s 6 2 . 3% . Ke y wo r ds:A /0;b i o l o g i c a l p h o s p h o r us r e mo v a l ;d e n i t r i f y i n g ph o s p h o us r r e mo v a l
9 5 . 6 % ,达到稳定除磷效果时 ,磷酸盐 的平均 去除 率为 8 2 . 9 % 。缺氧段吸磷量所 占比例从 2 7 . 4 %增至 6 5 . 7 % ,反应后期平均 比值 为6 2 . 6 % 。污泥特性实验 表明最大缺氧吸磷速率为 5 . 7 9 m g P / ( g M L S S・ h ) ,最大好氧吸磷速率为 9 . 2 9 m g P / ( g M L S S・ h ) ,两者的
2 Eng i n e e ing r Re s e a r c h Ce n t e r o f Ch e mi c a l Ze r o Di s c h a r g e,Cho n g q i n g 4 0 1 1 2 0;
反硝化除磷工艺原理及研究进展
这些工艺 中存在着各种各样的微生物 , 它们的基质类型 、 对环境条 件要求不 同, 由此产生了矛盾和竞争 。 11 .. 泥 龄 的 矛 盾 2污 传 统工艺中 , 除磷通过 排出剩余污泥来实 现 , 泥龄越长 , 污泥含磷 量越低 , 而硝化菌的世代周期则较 长。 硝化过程需要的长泥龄和除磷需 要 的短 泥 龄 之 间 存 在 矛 盾 。 11 .3碳 源 的 竞 争 . 脱氮除磷系统中 ,碳源主要用于反硝化 、释磷和异养菌的正常代 谢。在缺氧段 , 反硝化菌先于聚磷菌利用有机碳源 , 导致聚磷菌没有充 足的碳源 , 从而降低了释磷 程度。而在硝化段 , 过多 的碳源会使异养菌 迅速生长 , 消耗溶解氧 , 进而降低 硝化速率 。 11 .. 4硝酸盐的矛盾 聚磷菌需要在严格的厌氧条件下才可 以发挥作用释磷 ,传统工艺 中, 污泥 回流会将 部分硝酸盐带人厌 氧区 , 从而导致 了非严格厌氧 , 影 响聚磷 菌的释磷效率 。 11 .. 解 氧 的 矛 盾 5溶 传 统工艺将厌氧 、 缺氧 、 好氧各过程 同处 一个系统 , 活性 污泥絮体 对气泡的吸附作 用不可避免的将 D O带入缺氧段和厌 氧段 ,影响 了聚 磷菌的释磷能力和反硝化菌的脱 氮能力 。 这些矛盾广泛存在于现有的脱氮除磷工艺 中,严重影响 了处理效 率。 因此 , 如何对传统工艺进行 改进 , 消除这些竞争和矛盾 , 并保证低碳 源下脱 氮除磷 的效率 , 目前水处理领域亟待解决 的难题 。 是 1 . 2反硝化除磷的提出 2 0世纪 7 0年代 以来 , 反硝化 除磷渐渐引起人们 的注意 , 并得 到迅 速 发 展 。 反硝 化 聚磷 菌 的发 现 和 证 实 主要 经 历 了 以下 几 个 阶 段 : 17 97年 , son和 Neo s 反 硝 化 过 程 中首 次 观 测 到 磷 快 速 吸 O br i l在 hl 收现象 ; 1 8 , o eu发现一些聚磷菌在缺氧状态下具有利用硝 酸盐作 96年 C m a 为电子受体除磷 的功能 , 同时 / 缺氧 S R, 明了 N r可以作 为电子受体除磷 ; B 证 O 19 92年 , ne 利用反硝化除磷 特性 开发的 N、 Wa nr P去除新工艺 , 证 实了缺氧条件下一些除磷菌具有反硝化能力 ; 19 年 , b 发现在厌氧 / 9 3 Ku a 缺氧交替运行 条件下 ,易富集一类兼 性厌氧微生物 , 以硝 酸盐为 电子受体 , 存缺氧环境下 同时进行反 硝化和 除磷 ; 1 9 ~ 9 6年 ,m le 9 5 19 S od ̄和 K b 等在 UC ua T工艺 中证实 了中试 规模 的脱氮除磷系统 中除磷菌的反硝化功能。 目前 , 某些反硝化除磷工艺在欧美 一些 国家 已经应 用于实际工程 , 并取得了 良好 的脱氮除磷效果 。 2反硝化除磷原理 . 多数研究者认为聚磷菌包括两类菌属 ,一类 只能以氧作 为电子受 体 ,被称作好氧 聚磷菌 ,而另一类既能 以氧 又能 以硝酸盐作 为电子受 体, 即反硝化聚磷菌 D B Deii ig h shrsrm vn atr ) P ( ntf n P opou —e oigB c i 。 ry ea D B在缺氧条件 下能 以硝酸盐代 替溶解 氧作 为电子受 体进行 聚 P 磷, 同时将 硝酸盐还原成 N 或氮化物 , 将反硝 化和除磷 这两个过 程合 二为一 , 一碳两用 , 达到 同步脱氮除磷 的 目的。它 的厌氧释磷机理与好
反硝化聚磷菌特性与反硝化除磷工艺研究
反硝化聚磷菌特性与反硝化除磷工艺研究反硝化聚磷菌特性与反硝化除磷工艺研究摘要:反硝化聚磷菌是一种具有独特功能的微生物,可以同时进行反硝化和除磷作用。
本文通过对反硝化聚磷菌特性和反硝化除磷工艺的研究,总结了反硝化聚磷菌的特点和应用前景,并对其在废水处理中的性能和工艺进行了研究。
1. 引言废水中的氮磷污染对环境和人类健康造成了严重的威胁,因此,开展高效的废水处理工艺研究具有重要的意义。
反硝化聚磷菌作为一种具有独特功能的微生物,可以将废水中的氮磷同时去除,被广泛应用于生物除磷和突破传统反硝化工艺的研究。
2. 反硝化聚磷菌特性反硝化聚磷菌具有多种特性,包括耐酸碱、高温、高盐等特性。
此外,反硝化聚磷菌还可以利用废水中的有机物作为能源,并通过反硝化过程将废水中的氮释放为气体。
因此,反硝化聚磷菌具有广阔的应用前景。
3. 反硝化除磷工艺研究反硝化除磷工艺是将反硝化和除磷过程结合起来,通过合理控制反硝化聚磷菌的生长环境和氧气供应,实现废水中氮磷的高效去除。
研究表明,通过调节废水中的碳氮比、温度等因素,可以显著提高反硝化聚磷菌的除磷效果。
4. 反硝化聚磷菌在废水处理中的应用反硝化聚磷菌已经被广泛应用于废水处理过程中。
通过构建合适的反硝化除磷反应器,配合优化的废水处理工艺,可以实现高效、低成本的废水处理。
此外,反硝化聚磷菌还可以用于资源化利用,通过收集废水中的氮磷物质,制备肥料等。
5. 研究进展与展望目前,关于反硝化聚磷菌特性和反硝化除磷工艺的研究还存在一些问题。
一方面,对反硝化聚磷菌特性的研究还不够深入,需要进一步探索其生态环境和代谢途径。
另一方面,反硝化除磷工艺的优化还存在一定的挑战,需要进一步提高除磷效率和降低处理成本。
综上所述,反硝化聚磷菌作为一种具有独特功能的微生物,在废水处理中具有广泛应用前景。
通过对其特性和工艺的研究,可以实现高效、低成本的废水处理效果。
然而,对反硝化聚磷菌特性和工艺的研究仍面临一些挑战,需要继续深入探索。
反硝化除磷原理
反硝化除磷原理一、引言1.1 研究背景在当今环境污染日益严重的背景下,水体污染已成为世界性的问题。
氮和磷是水体中主要的污染成分之一,过量的氮、磷会引发水体富营养化,导致藻类大量繁殖,使水体的生态系统遭受严重破坏。
1.2 目标和意义针对水体中氮、磷污染的问题,发展反硝化除磷技术具有重要的意义。
反硝化除磷技术是通过微生物的作用,将水体中的硝态氮和磷酸根离子还原为氮气和无机磷,从而减少水体中的氮、磷含量,达到净化水体的目的。
二、反硝化除磷的原理反硝化除磷是一种联合作用的微生物反应过程,需要有特定的微生物参与。
其原理主要包括硝化作用、硝化作用和反硝化作用。
2.1 硝化作用硝化作用是一种氧气需求量较大的微生物反应,将水体中的氨氮氧化为亚硝酸盐、硝酸盐等氮化物。
硝化作用主要包括氨氧化和亚硝酸氧化两个过程。
硝化作用的步骤如下:1.氨氧化:氨氧化细菌(如亚硝酸氧化菌Nitrosomonas)将水体中的氨氮氧化为亚硝酸盐。
2.亚硝酸氧化:亚硝酸氧化菌(如硝酸氧化菌Nitrobacter)将亚硝酸盐进一步氧化成硝酸盐。
2.2 反硝化作用反硝化作用是在缺氧或微氧条件下进行的微生物反应,将水体中的硝酸盐还原为氮气。
具体反应过程如下所示:1.亚硝酸还原:反硝化细菌(如反硝化杆菌Denitrifying bacteria)将硝酸盐依次还原为亚硝酰胺、亚硝酸和一氧化氮等氮化物。
2.氮气释放:氮氧化菌将一氧化氮进一步还原为氮气,并释放到空气中,从而达到除去水体中氮的目的。
2.3 磷的除去反硝化除磷技术除了能够减少水体中氮的含量,还能够去除水体中的磷污染。
实际上,反硝化除磷技术主要通过微生物的作用将水体中的磷酸根离子还原为无机磷,从而减少水体中的磷含量。
2.4 微生物的作用反硝化除磷技术的核心是特定微生物的作用。
亚硝酸盐还原菌和磷酸盐还原菌是反硝化除磷过程中的关键微生物。
亚硝酸盐还原菌具有还原硝酸盐为一氧化氮或氮气的能力,而磷酸盐还原菌则能够将磷酸根离子还原为无机磷。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第26卷第2期2007年3月 食品与生物技术学报Journal of Food Science and Biotechnology Vol.26 No.1Mar. 2007 文章编号:167321689(2007)022******* 收稿日期:2006204215.作者简介:邹华(19722),男,江苏无锡人,工学博士,主要从事废水生物技术处理方面的研究.Email :zouhua @反硝化除磷工艺研究邹华, 阮文权, 陈坚(江南大学工业生物技术教育部重点实验室,江苏无锡214122)摘 要:研究了反硝化除磷工艺的运行效果。
结果表明,此反硝化除磷工艺可以较好地进行除磷脱氮,但是磷的去除对进水氮的浓度有一定的要求。
在进水COD 400mg/L ,总磷15mg/L ,氨氮84mg/L 的条件下COD 的降低率可达96%以上,氮的去除率稳定在86%~88%,磷的去除率为92%~95%。
进水氨氮质量浓度为60mg/L 时,磷的去除率为78%,在进水氨氮质量浓度降为44mg/L 时磷的去除率降为68%。
反硝化除磷比以氧为电子受体的生物除磷可减少耗氧5515%,剩余污泥的产生量可减少53%,温室气体CO 2的产生量可减少体积分数2114%。
关键词:废水处理;强化生物除磷(EB PR );反硝化除磷;除磷脱氮中图分类号:X 703文献标识码:AStudy of Denitrifying Dephosphatation ProcessZOU Hua , RUAN Wen 2quan , C H EN Jian(Key Laboratory of Industrial Biotechnology ,Ministry of Education ,Southen Yangtze University ,Wuxi 214122,China )Abstract :A denit rifying dep ho sp hatation p rocess was operated in t his st udy.The result s showed t hat t he denit rifying dep hosp hatation process could remove p ho sp horus and nit rogen successf ully at an adequate concent ration of nit rogen in inflow.Above 96%COD was removed when t he inflow COD ,total p hosp horus (TP )and ammonia nit rogen (N H 32N )were 400mg/L ,15mg/L and 84mg/L respectively ,86%~88%nit rogen and 92%~95%p hosp horus was removed simultaneously.But when t he inflow N H 32N was 60mg/L ,78%p hosp horus was removed ,once t he inflow N H 32N dropped to 44mg/L ,only 68%p hosp horus was removed in t he system.In t he system used nit rate as elect ron acceptor ,t he oxygen consumption was 55.5%less t han t he system t hat oxygen was used as elect ron acceptor.The sludge and CO 2production was 53%and 21.4%less ,respectively.K ey w ords :wastewater t reat ment ;Enhanced Biological Phosp horus Removal (EB PR );denitrifying dep ho sp hatation ;p hosp horus and nit rogen removal 研究废水除磷技术,控制磷的排放,保护水体不受富营养化的影响是一个亟待解决的问题。
目前一个使用很广的处理方法是强化生物除磷(EB PR ),其利用聚磷菌在“压抑”(如:厌氧)条件下能利用分解体内聚磷酸盐产生的能量,将碳源合成聚羟基烷酸(P HA )的形式储存,同时释放磷酸盐[1]。
在随后存在电子受体(如:氧)的条件下能吸收比所释放的更多的磷合成聚磷酸盐颗粒并储存于胞内,并通过排放剩余污泥达到从废水中除磷的目的。
废水生物除磷工艺是一项高效低能耗的废水处理技术,它在有效去除废水中有机污染物的同时起到除磷效果,受到人们的普遍重视。
强化生物除磷的大量研究结果都证实,硝酸盐也可以被聚磷菌用作为最终电子受体进行生物除磷[2-3],即反硝化除磷。
由于反硝化除磷不需要氧,并能做到“一碳两用”,降低除磷脱氮对碳源的需求量[4]。
因此,对于解决目前废水处理中除磷脱氮碳源(COD )不足的问题,以及降低曝气及运行费用都有很重要的意义,而且其还可减少污泥和温室气体CO 2的产生[5-6]。
作者对根据反硝化除磷原理组合的反硝化除磷工艺流程的运行效果进行了一些初步研究,并从理论上对反硝化除磷工艺和厌氧/好氧除磷工艺的耗氧量、污泥产生量及CO 2产生量进行了比较。
1 实验装置和方法1.1 实验装置及流程实验所用系统由厌氧池、1#沉淀池、好氧池、2#沉淀池、缺氧池和3#沉淀池组成,如图1所示。
其中,厌氧区有效容积为3165L ,好氧区及缺氧区为5112L ,沉淀池都为211L 。
进水体积流量114L/h ,厌氧区水力停留时间215h ,好氧区及缺氧区的为4h。
图1 实验装置示意图Fig.1 The experimental system sketch m ap112 实验用水及接种污泥11211 实验用水 实验用水为人工合成废水,废水成分同文献[1-3]:COD 400mg/L ;PO 43-2P 15mg/L ;p H 710;氨氮浓度因需要而改变。
11212 接种污泥 接种污泥为经驯化有高效除磷效果的污泥。
接种后系统中ML SS 为410mg/L 。
113 实验装置的运行控制反硝化除磷工艺流程共运行近半年的时间(163d )。
期间分为2个阶段:第1阶段(启动阶段)78d :启动运行了反硝化工艺。
平均进水COD 400mg/L ,总磷15mg/L ,氨氮84mg/L 。
第2阶段(运行阶段)85d :运行了反硝化工艺。
进水COD 和总磷浓度不变,改变进水氨氮质量浓度为60mg/L ,44mg/L ,90mg/L ,84mg/L 。
运行中控制污泥龄10d 。
114 分析项目及测试方法COD :采用5B —1型COD 快速测定仪测定;NO 32N :酚二磺酸光度法[7];TP :采用钼锑抗分光光度法测定[7];N H 4+2N :纳氏试剂光度法[7];ML VSS :采用重量法测定[7];ML SS :采用重量法测定[7];SV :30min 沉降法;SV I :采用标准方法测定S V 30m。
2 结果与讨论211 反硝化除磷工艺的运行21111 启动阶段 流程在厌氧池后有个沉淀池,污泥和废水经过厌氧阶段后进入沉淀池。
沉淀后清液进入好氧池进行硝化,沉淀污泥进入缺氧池进行反硝化除磷。
这样好氧池中只进行好氧硝化作用,其所需的曝气量只需满足硝化的要求即可,所有磷的去除都是在缺氧条件下去除的。
此流程可进一步减少除磷脱氮对曝气和碳源的要求。
流程中硝化污泥和除磷污泥分开为两个独立的污泥循环流,可分别进行控制泥龄、ML SS 等,以满足硝化和除磷的不同需要。
反硝化除磷系统的启动运行获得了较好的除磷脱氮效果。
图2、3和4是运行结果图。
COD 、总磷、总氮在经过60d 的启动运行后都获得了稳定的、很好的去除。
COD 的降低率随着时间的推移逐渐提高,最终稳定在96%以上。
总磷的去除率从51%提高至92%~95%。
总氮的去除率从53%逐渐提高,60d 后稳定在86%~88%。
可见,经过60d 以上的启动后,系统能够很好的去除COD 和氮磷,去除率都超过或接近90%。
27食 品 与 生 物 技 术 学 报 第26卷 图2 COD 的去除情况Fig.2 The removal ofCOD图3 总磷的去除情况Fig.3 The removal of total phosphate21112 运行阶段 图5~7和表1为反硝化除磷工艺在进水氨氮平均质量浓度分别是60mg/L ,44mg/L ,90mg/L ,84mg/L 的条件下的运行结果。
由图可知在所有进水氨氮质量浓度条件下,COD 一图4 总氮的去除情况Fig.4 The removal of nitrogen直有很好的降低效果,稳定在96%~98%,氮的去除率也较为稳定,在83%~89%之间稍有波动。
磷的去除情况由于进水氨氮质量浓度的不同有较大的波动。
在进水氨氮质量浓度降为60mg/L 时,磷的去除率降为45%,后逐渐提高至78%;在进水氨氮质量浓度降为44mg/L 时,磷的去除率降为30%,后逐渐提高至68%;当氨氮质量浓度变为90mg/L 时,磷的去除率为80%,后逐渐提高至94%。
可见反硝化除磷系统能够有效地去除废水中的COD 和氮磷。
磷的去除与进水中氮的含量有关,进水含有足够的氮才能够保证反硝化除磷所需的电子受体(NO 3-)的量。
因此反硝化除磷工艺适用于原水含氮量较高的废水,对于原水含氮量较少的废水需在处理中适当地添加氮,才能很好地运行此工艺。
图5 COD 的降低情况Fig.5 The removal ofCOD图6 总磷的去除情况Fig.6 The removal of total phosphate37 第2期图7 总氮的去除情况Fig.7 The removal of nitrogen 表1 反硝化除磷工艺的运行结果T ab.1 COD,phosphorus,nitrogen,MLSS concentrationand SVI in different part of denitrifying dephos2phatation system日期项目/(mg/L)进水厌氧池好氧池缺氧池(反硝化除磷)去除率/%第102天COD38535.68997.7 TP14.267.565.3 3.575.4氨氮质量浓度60.656.80 6.288.0硝基氮质量浓度1.1052.0 1.1ML SS/ 3.65 3.43 3.78/SV I/72.584.574.6/第130天COD39739.817.51596.2 TP14.282.673.6 4.667.6氨氮质量浓度44.945.80 5.1288.6硝基氮质量浓度0043.60ML SS/ 4.01 4.56 4.02/SV I/44.265.345.6/第145天COD40040.210997.8TP13.589.386.90.894.1氨氮质量浓度89.883.5012.085.3硝基氮质量浓度 2.3079.6 1.2ML SS/ 3.98 4.45 3.98/SV I/50.664.750.8/第161天COD40036.578.397.9 TP14.289.888.2193.0氨氮质量浓度84.480.2010.387.8硝基氮质量浓度0077.90ML SS/ 4.01 4.43 3.97/SV I/56.865.756.6/212 反硝化除磷工艺与厌氧/好氧除磷工艺的比较根据Smolders的生物除磷过程好氧代谢的化学量模型,每去除0104mol磷需消耗0155mol O2,同时产生0134mol生物量,消耗0159mol CO2[8]。