北京邮电大学高等数学ppt

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
0 0 a 0 a
Let x t

f ( x ) f ( x ) f ( x ) f ( x )
机动 目录 上页 下页 返回 结束
Example: Find Solution:
1
1
2 x 2 x cos x dx . 2 1 1 x
1
1
1
1 x cos x 2x2 dx dx 1 2 2 1 1 x 1 1 x
Example: Prove Proof



2 0
sin xdx 2 cos n xdx ( n is any positive integer).
n 0


2 0
sin xdx sin n t d t 2 2 2
n 0
cos n tdt
2

18
2(e 2 1).
Integration by Parts
Example: Evaluate

1 2
0
arcsin xdx .
dx 1 x
2

b
a
udv uv a vdu
b a
b
Solution Let u arcsin x , dv dx , then du
0
T


a
0
f ( x )dx f (a x )dx
0
a
(let t a x )

2 0
f (sin x )dx 2 f (cos x )dx
0


0
f (sin x )dx 2 2 f (sin x )dx
0

(7)


0
xf (sin x )dx f (sin x )dx
2 0


2

0
f (sin x )dx
Integration by Parts
Integration by parts for indefinite integrals
When u and v are differentiable functions of x, the Product Rule for differentiation tell us that
偶函数
奇函数
40
2 2 x 1 x (1 1 x ) dx 4 dx 2 2 0 1 1 x 1 (1 x )
2
40 (1 1 x )dx 4 40
2
1
1
1 x 2 dx
4 .
单位圆的面积
(t ) (t )
必需注意换元必换限 , 原函数中的变量不必代回 .
b
a
udv uv a vdu
b a
b

4
0
e x dx .
Solution Let
2 x t , then x t , dx 2tdt . Thus
4

0
e dx e 2tdt 2 tde 2 te
x t t 0 0
2
2

t 2 0
e t dt
0
2
0
2 cos n tdt
0

2 cos n xdx .
0

6
Integration by Substitutions for definite integrals
1 Example: Find lim 2 x 0 x sin xt 0 t dt du u . t 0 u 0; t x u x 2 . Solution Let xt u, then t , dt x x Then x 2 sin u du x sin xt x 2 sin u 0 t dt 0 u x 0 u du x So 0 2 x sin u 0 sin x 2 0 u du x 2 2 x 1 x sin xt lim 2 dt lim 1. lim 2 0 x 0 x x 0 x 0 t x 2x
b
Since

a
f ( x )dx F (b) F (a )
d F ( t ) f ( t ) ( t ), dt
we have


f ( t ) ( t )dt F ( t )

F ( ) F ( )
F (b) F (a )
, v x,

1 2
0
arcsin xdx x arcsin x 0
1 2
1 2
xdx 1 x2
0
1 1 1 1 2 d (1 x 2 ) 2 6 2 0 1 x2

a a
f ( x )dx 0
a a
(2) If f ( x )=f ( x ), then

f ( x )dx 2 f ( x )dx
0
a
偶倍奇零
(3) If f ( x T ) f ( x ) , then

(4)
(5) (6)
a T
a
f ( x )dx f ( x )dx
例 若 f ( x ) 在[0,1]上连续,证明
0
2
f (sin x )dx f (cos x )dx .
0
2
Proof (1)设 x t 2 x 0 t , 2
dx dt,
0
2
x t 0, 2 0 f (sin x )dx f sin t dt 2 2
School of Science, BUPT
Integration by substitution and by parts in definite integrals
2
Integration by Substitutions for definite integrals
When we want to evaluate the value of a definite integral can find the corresponding indefinite integral



0
0
xf (sin x )dx f (sin x )dx. 2 0
0
Example: Find
Solution
0

x sin x dx 2 1 cos x
0

x sin x sin x dx dx 2 2 2 0 1 cos x 1 cos x
, I . Then

b
a
f ( x )dx f ( t ) ( t )dt .


3
Integration by Substitutions for definite integrals
Proof Let F be an antiderivative of f on the interval I, then
a

2 0
a cos t dt 2 2 a sin t a (1 sin t )
cos t sin t 1 dt sin t cos t 1 1 2 . ln sin t cos t 0 4 2 2 2
2 0
cos t 1 2 dt sin t cos t 2 0
2arcsin( ln x )
e
. 6
1 Example: Find dx . (a 0) 2 2 0 x a x Solution: Let x a sin t , dx a cos tdt , x a t , x 0 t 0, 2

2
when x 1 ; thus by the formula, we have

1
0
1 x 2 dx 2 cos 2 tdt
0
Βιβλιοθήκη Baidu
1 1 2 t sin 2t 2 2 0


.
4
5
Integration by Substitutions for definite integrals
Therefore, the formula holds.
4
Integration by Substitutions for definite integrals
Example: Evaluate

1
0
1 x 2 dx .
Solution Let x sin t ,
dx cos tdt . Then t 0 when x 0; t
x
7
Example: Find
3 e4
e
3 e4
dx . x ln x(1 ln x )
Solution

e
d (ln x ) ln x(1 ln x ) d (ln x ) 2 ln x (1 ln x )
3 e4
3 e4
3 e4
e
e
d ln x 1 ( ln x )2
d dv du ( uv ) u v dx dx dx
Integrating both sides with respect to x and rearranging leads to the integral equation
dv d du u dx ( uv ) dx v dx dx dx dx du uv v dx . dx
0
x t 0,
0 xf (sin x )dx ( t ) f [sin( t )]dt ( t ) f (sin t )dt f (sin t )dt tf (sin t )dt 0 0
0
f (sin x )dx xf (sin x )dx,
17
Integration by Parts
Integration by parts for definite integrals
When u and v are differentiable functions of x on the interval [a , b]. Then

Example: Evaluate
2 2
f (cos t )dt f (cos x )dx;
0 0
例 若 f ( x ) 在[0,1]上连续,证明
0

xf (sin x )dx f (sin x )dx . 2 0
x t dx dt ,
Proof: Let

x 0 t ,
1 d (cos x ) arctan(cos x )0 2 2 0 1 cos x 2 2 ( ) . 4 2 4 4
xf (sin x )dx f (sin x )dx . 2 0


0
(1) If f ( x )=f ( x ), then

b
a
f ( x )dx , if we
f ( x )dx , then we can use
the Newton-Leibniz formula to obtain the value immediately.
Theorem (Integration by substitution for definite integrals) Suppose that the function x ( t ) is continuously differentiable on the interval [ , ] , ( ) a , ( ) b , and that f is continuous in the range of
偶倍奇零
(1) If (2) If Proof
a 0
then

a
a
f ( x )dx 2 f ( x )d x
0
a
then

a
a
a
f ( x )d x 0
a
a f ( x) dx a f ( x) dx 0 f ( x) dx
f (t ) d t f ( x) dx [ f ( x ) f ( x ) ] dx
相关文档
最新文档