南沙头通道及横沙通道对长江口深水航道的影响分析-海洋科学

合集下载

上海市海洋局关于横沙浅滩固沙保滩稳定河势(横沙大道外延)工程先行段工程用海预审意见的函

上海市海洋局关于横沙浅滩固沙保滩稳定河势(横沙大道外延)工程先行段工程用海预审意见的函

上海市海洋局关于横沙浅滩固沙保滩稳定河势(横沙大道外延)工程先行段工程用海预审意见的函文章属性•【制定机关】上海市海洋局•【公布日期】2023.05.16•【字号】沪海洋〔2023〕36号•【施行日期】2023.05.16•【效力等级】地方规范性文件•【时效性】现行有效•【主题分类】水利其他规定正文上海市海洋局关于横沙浅滩固沙保滩稳定河势(横沙大道外延)工程先行段工程用海预审意见的函沪海洋〔2023〕36号上海市堤防泵闸建设运行中心:你单位提交的横沙浅滩固沙保滩稳定河势(横沙大道外延)工程先行段工程用海预审申请及附送的有关文件、报告、资料等收悉。

经审查,现函复如下:一、本项目位于长江口北港和北槽间的横沙浅滩区域,申请用海内容包括横沙大道外延工程、北缘护底、隔堤及配套平台。

其中,横沙大道外延工程长度约26.02公里,北缘护底长度约16.8公里。

本项目用海选址与拟建内容符合海洋功能分区要求,用海类型为“特殊用海”中的“海岸防护工程用海”,用海方式为“非透水构筑物用海”和“透水构筑物用海”。

我局原则同意本项目用海选址和用途,用海面积控制在694公顷以内。

二、本项目应进一步完善横沙大道外延工程平面布局,优化横沙大道外延工程与北导堤之间隔堤、横沙新洲5#安全平台东北侧配套平台的用海范围和用海方式。

项目建设应严格控制用海方式、采用科学施工工艺,禁止围填海。

三、本项目对长江口北槽深水航道及南槽航道产生影响,应进一步沟通交通运输部长江口航道管理局等部门,加强技术论证,满足其管理要求。

四、本项目附近海域涉及重要经济鱼类的“三场一通道”和珍稀水生生物的栖息地和洄游通道,应研究制定珍稀水生生物保护应急预案。

五、本项目涉及一般湿地,应调查评估工程前后湿地面积变化,采取必要措施,达到湿地面积总量管控目标。

六、本项目用海申请时应提交与交通运输部长江口航道管理局、上海市土地储备中心等利益相关方的书面协议。

七、本项目工可批复后,请及时向我局提出用海申请,依法取得海域使用权之前,不得使用海域。

长江河段的航道高回淤量整治措施探究

长江河段的航道高回淤量整治措施探究

长江河段的航道高回淤量整治措施探究作者:薛生科来源:《科技资讯》 2015年第5期薛生科(江苏省徐州市睢宁县航道管理站江苏徐州 221200)摘要:作为长江航运开发的重要课题,长江中下游河段的航道治理研究越来越得到重视。

长江口深水航道的治理工程分为一期、二期、三期工程,主要是对北槽和南北槽分流口进行大规模地河口整治工作。

三期工程自2006年开工之后,航道的维护疏浚量迅猛上升,沿航道的回淤分布不均匀。

该文从实践角度提出了河口治理中高回淤量整治的相关措施。

关键词:航道治理长江河段高回淤量整治中图分类号:U612 文献标识码:A 文章编号:1672-3791(2015)02(b)-0110-01长江河口是我国最大的河流入海口,它的水文特征是水丰沙多,其地貌特征是四口通海、三级分汊及口门处的拦门沙沉积浅滩[1]。

长江河口是在泥沙丰富、径流量大、潮流强的条件下形成的一个分汊型河口。

自徐六泾以下,长江河口被崇明岛分为北支与南支,在浏河口以下南支被横沙岛和长兴岛分为北港、南港,南港在九段以下又被九段沙分为北槽、南槽,形成了三级分汊四口入海的格局[2]。

长江口是咸淡水交汇区,由于外海的入侵,在垂线分布上咸水峰呈现密度环流的形态,加上径流的影响,逐渐形成了利于泥沙淤积的环境,促成了河口的浅滩区。

在浅滩区内,滩槽中的泥沙交换频繁,形成了河口最大的浑浊带高含沙区。

这个区域不仅河道的宽浅沙洲汊道交替、河势复杂多变,同时,这里也是淤积疏浚困难的地方,进而成为长江河口的入海通道的瓶颈所在之处。

长江口的深水航道治理采用“疏浚整治”与“固基相结合”的治理方针,由南导堤、分流口、北导堤、航道疏浚与丁坝群五部分组成。

第一期的工程航道浚深度为8.5 m;第二期的工程航道浚深度10m;第三期的工程航道浚深度12.5m;远景规划的航道浚深度是15m。

第一、二期的疏浚工程量现已基本完成计划量,但三期工程的航道疏浚量增多,并且沿航道的回淤分布较为不均匀。

长江口横沙浅滩及邻近海域含沙量与沉积物特征分析

长江口横沙浅滩及邻近海域含沙量与沉积物特征分析

长江口横沙浅滩及邻近海域含沙量与沉积物特征分析徐海根;虞志英;钮建定;李身铎;郑建朝【摘要】长江口在河流动力和海洋动力相互作用和相互制约下,在河口口门形成了庞大的河口拦门沙系,在河口口外形成了巨大的水下三角洲.横沙浅滩是河口拦门沙系的重要组成部分.横沙浅滩含沙量不仅受到流域来水来沙条件的影响,更主要的是受到台风暴潮和寒潮大风的影响,除了大潮含沙量大于小潮含沙量的特征外,冬季含沙量大大大于夏季含沙量.横沙浅滩5 m水深含沙量的总体水平约为0.459 kg/m3.横沙浅滩邻近海域含沙量在向海方向上迅速降低.除潮汐大小含沙量呈现大小变化之外,冬季含沙量大于夏季含沙量是其主要特征.长江流域来沙近年来呈现减少趋势,邻近海域含沙量有所减少,局部海床出现冲刷现象.横沙浅滩沉积以细粉砂为主,水下三角洲沉积物以粘土质粉砂为主,横沙浅滩及邻近海域沉积物的平面分布和垂向分布均反映了横沙浅滩沉积物和水下三角洲沉积物的组合结构.拟建横沙浅滩挖入式港池和外航道沉积地层均为第四纪疏松沉积层,特别是水下三角洲地层,可挖性好,容易成槽,对工程建设有利.【期刊名称】《华东师范大学学报(自然科学版)》【年(卷),期】2013(000)004【总页数】13页(P42-54)【关键词】长江口;横沙浅滩;水下三角洲;含沙量;沉积物【作者】徐海根;虞志英;钮建定;李身铎;郑建朝【作者单位】华东师范大学河口海岸学国家重点实验室,上海 200062;华东师范大学河口海岸学国家重点实验室,上海 200062;中交第三航务工程勘察有限公司,上海200032;华东师范大学河口海岸学国家重点实验室,上海 200062;中交第三航务工程勘察有限公司,上海 200032【正文语种】中文【中图分类】P7510 引言拟选横沙浅滩挖入式港池及外航道位于长江口横沙浅滩及邻近海域.长江全长6 300 km,流域面积180万km2,流域来水来沙丰富.长江口潮汐强度属于中等.口门多年平均潮差2.66 m,最大潮差4.62 m.长江口潮量巨大.在多年平均流量和平均潮差的情况下,洪季大潮进潮量有53亿m3,枯季小潮进潮量也达13亿m3.长江河口河流作用显著,海洋作用强劲,两者相互作用和相互制约,导致在河口口门泥沙集聚和沉积,形成河口拦门沙系,包括拦门沙航道和拦门沙浅滩,两者相间分布.拦门沙浅滩有崇明东滩、横沙东滩和横沙浅滩、九段沙等.横沙东滩和横沙浅滩以N23丁坝分界,以西与横沙岛相接,称横沙东滩,以东为横沙浅滩.长江口拦门沙向海方向为巨大的长江水下三角洲.面积达1万km2以上,下界水深30~50 m,北面与苏北浅滩相接,南面连接杭州湾海底平原.它是长江入海泥沙扩散沉积形成的一个巨大地貌单元.1 含沙量横沙浅滩含沙量具有长江口拦门沙浅滩含沙量的共同特征.含沙量不仅受上游来水来沙的影响,更加受到台风、寒潮、波浪和潮汐潮流的巨大影响.我们在邻近的佘山水文站从1998年到2001年连续三年观测含沙量资料(见表1),得到多年平均含沙量为0.459 kg/m3.佘山水文站在崇明东滩5 m水深处,可以代表横沙浅滩5m水深处的含沙量总体水平.20世纪80年代,上海市海岸带和海涂资源综合调查时,横沙浅滩5 m水深处含沙量为0.5 kg/m3,与上述数据相当[1,2].横沙浅滩含沙量季节性变化明显(见图1).7月最小,11月最大,月均值前者为0.21 kg/m3,后者为0.74 kg/m3.11月最大含沙量曾出现过17.29 kg/m3.含沙量的季节性变化,显然不是上游来水来沙变化为主因,而是台风暴潮和寒潮大风影响的结果.表1 1998—2001年佘山站含沙量统计表Tab.1 Statistic table of concentration of Sheshan Station from1998 to 2001 kg·m-31 0.46 1.76 8 0.384.20 2 0.44 1.39 9 0.40 3.02 3 0.53 3.86 10 0.47 4.34 4 0.42 2.75 11 0.74 17.29 5 0.26 1.48 12 0.44 1.76 6 0.24 1.10 年平均0.42 17.29 7 0.21 1.81横沙浅滩邻近海域含沙量降低.如表2所示,北港口门含沙量比口外大.含沙量向海方向急剧降低,在洪季北港口门平均含沙量为0.786 kg/m3,口外20 m等深线附近仅为0.153 kg/m3.图1 佘山全年含沙量Fig.1 Monthly suspended sediment concentration at Sheshan Station表2 1982年含沙量同步观测结果Tab.2 Observed suspended sediment concentration in 1982 kg·m-32301(北港口门) 0.728 0.844 0.7860.803 0.746 0.774 2302(北港口外) 0.167 0.139 0.153 2401(北槽口门)0.329 0.587 0.458 1.130 1.068 1.091 2402(北槽口外) 0.242 0.238 0.2401982年洪季平均含沙量分布如图2所示.大潮含沙量大,小潮含沙量小;含沙量等值线大潮外推,小潮内移;含沙量分布向海方向急剧降低.图2 洪季大小潮平均含沙量分布图(kg·m-3)Fig.2 Distribution of average concentration of flood season(kg·m-3)1982年枯季平均含沙量分布如图3所示.大潮含沙量大,小潮含沙量小;含沙量等值线大潮外推,小潮内移;含沙量平面分布,向海方向急剧降低.图3 枯季大小潮平均含沙量分布图(kg·m-3)Fig.3 Distribution of average concentration of dry season(kg·m-3)根据图2和图3分析,含沙量季节性变化明显.冬季含沙量比夏季大.0.2 kg/m3含沙量等值线,洪季大潮分布在20 m等深线以西,枯季大潮可东移到40 m等深线附近.1998年北槽深水航道建设工程开始,横沙东滩促淤圈围工程跟着开工建设,到2004年横沙浅滩及邻近海域的含沙量有如下的分布特征.如表3所示,横沙浅滩5 m水深以浅地区,平均含沙量均在0.5 kg/m3至1.0kg/m3;在横沙浅滩东侧前沿水深5~10 m的鸡骨礁附近含沙量明显降低,平均含沙量降至0.5 kg/m3以下.实测最大含沙量分布在底层,可达1.0kg/m3 以上[5].表3 2004年含沙量同步观测结果Tab.3 Observed suspended sediment concentration in 2004 kg·m-312 N2(北导堤外) 0.40 0.60 0.43 0.89 N4(横沙鸡骨礁-10 m) 0.19 0.35 0.22 0.54 CS5D(-10 m航道侧)0.53 0.86 1.07 1.CS4D(口内) 0.42 0.59 0.74 1.512004年北槽口及附近海域含沙量平面分布如图4所示.从中可以看出,北槽口含沙量大,向海方向急剧降低.0.1 kg/m3含沙量等值线介于10 m和20 m等深线之间,含沙量等值线走向与地形等深线走向相似.长江流域来沙近年发生了显著变化,对河口含沙量已经产生了影响.长江多年平均径流总量约9 000亿m3,年内分布具有季节性(见图5).流域来沙,在各种因素的影响下近年呈现减少趋势.以安徽大通站为例,年均输沙量1951—1989年为4.71亿t,1990—2000年为3.46亿吨,2000—2009年为1.92亿t,2006年为0.848亿t,2011年仅为0.77亿t(见表4和图6).流域来沙减少已致长江口口内含沙量降低,邻近海域也有所降低[4].长江口邻近海域海底地形出现冲刷带,可能与流域来沙减少有关.不过,这方面还得进行进一步的现场测量和研究工作.图4 2004年长江口全潮平均含沙量分布图Fig.4 Distribution of average tidal concentration of Changjiang Estuary in 2004表4 长江大通站输沙量Tab.4 Sediment discharge of Changjiang Datong Stationmm 1950—2000 4.33 0.486 0.年份年输沙量/亿t 年均含沙量/(kg·m-3) D50/017 2003 2.06 0.223 0.010 2011 0.77图5 大通站年径流量变化过程Fig.5 Annual runoff of the Changjiang River in Datong Station图6 大通站年输沙量变化过程Fig.6 Annual sediment discharges of the Changjiang River in Datong Station2 沉积物横沙浅滩及邻近海域动力条件和泥沙运动十分复杂,沉积环境也有多样,因此沉积物类型较多.沉积物类型,粗至细砂,细至粘土,各种类型都有.如细砂、粉砂质砂、砂质粉砂、粉砂、粘土质粉砂、粉砂质粘土和粘土[2,3,5,7].但是,它们分布有序,很有规律.横沙浅滩基本上由粉细砂物质组成.图7为取样站,表5为颗粒分析成果表.有细砂、粉砂质砂、砂质粉砂组成.个别滩地也有粘土质粉砂等细物质沉积,但不是主要的. 图7 横沙浅滩沉积物取样站位图Fig.7 Sediment sampling stations around Hengsha Shoal1982年横沙浅滩及邻近海域沉积物平面分布如图8所示.横沙浅滩由粉砂质砂组成.拦门沙航道由粘土质粉砂组成.邻近海域水下三角洲由粉砂和粘土质粉砂等细颗粒物质组成.2004年横沙浅滩及邻近海域沉积物平面分布如图9所示.横沙浅滩由粉砂质砂组成.拦门沙航道由粘土质粉砂组成.邻近海域5~10 m等深线之间沉积物由粉砂组成,10 m等深线以深的水下三角洲由粘土质粉砂组成.表5 沉积物粒度分析成果统计Tab.5 Statistics of sediment grain sizeQ179 65.8 20.4 13.8 0.126 0.116 TS 2001.5 Q180 50.4 34.9 14.3 0.063 0.067 TS 2001.5 Q181 44 40.5 15 0.051 0.054 TS 2001.5 Q182 75.3 14.75 9.95 0.136 0.125 S 2001.5 Q188 60.52 39.44 27.34 0.122 0.111 Y-TS 2001.5 Q189 76.7 15.58 7.54 0.140 0.129 S 2001.5 Q190 12.5 61.78 25 0.012 0.028 YT 2001.5 Q191 70.9 18.85 10 0.132 0.128 S 2001.5 Q199 20.3 60.56 18.6 0.0200.048 ST 2001.5 Q200 20.2 60.15 19.1 0.019 0.047 ST 2001.5 Q201 73.1 15.29 11.3 0.139 0.120 S 2001.5 Q208 57.7 29.03 12.90.096 0.093 TS 2001.5 Q209 50.9 31.87 16.7 0.067 0.076 TS 2001.5图8 1982年长江口底砂D50(mm)分布图Fig.8 Distributions of Changjiang Estuary sediment(D50)in 1982图9 2004年长江口底砂D50(mm)分布图Fig.9 Distributions of Changjiang Estuary sediment(D50)in 2004长江口表层沉积物中泥的百分含量平面分布图(见图10)和砂的百分含量平面分布图(见图11),是20世纪80年代上海市海岸带和海涂资源综合调查沉积调查的资料.从中可以看出,横沙浅滩表层沉积物泥的百分含量不足10%或20%,砂的百分含量在50%~80%以上.横沙浅滩邻近海域水下三角洲表层沉积物中泥的百分含量在50%以上,砂的百分含量不足20%.应予指出,长江口东北部分,东经122°30′以东和北纬31°20′以北一大片海域,泥的百分含量不足10%,砂的百分含量大于80%,是一个粗颗粒沉积物的存在区.横沙浅滩拟建挖入式港池建议提出以后[6],中交第三航务工程勘察设计院有限公司在横沙浅滩及邻近海域布置和进行了4个工程地质钻孔(见表6,图12和图13),为研究工程区域沉积物垂向分布提供了资料[7].地质历史上,长江口经过复杂的变化.冰后期海侵,长江口成为溺谷.河流入海泥沙堆积,溺谷变成河口湾,再变成三角洲河口.三角洲河口发育阶段,河口拦门沙发育(包括拦门沙航道和拦门沙浅滩),水下三角洲发育.C3孔可以代表河口拦门沙沉积剖面.表层为河口拦门沙航道沉积,物质细,粉质粘土,第二层为河口拦门沙浅滩沉积,物质粗,粉细砂.根据历史海图分析,1842年北港口航道在佘山附近入海,现在北港口航道已在佘山以南,已经移到以前的横沙浅滩位置.根据目前横沙浅滩表层沉积物对比分析,实际上第二层粗物质粉细砂与目前滩面表层沉积物相似.所以C3孔可以代表横沙浅滩沉积物的沉积剖面.横沙浅滩粉细砂沉积层的底板高程约在鸡骨礁(122°22.9′E、31°10.4′N)理论最低潮面下13.20 m 左右.第三层、第四层、第五层,物质变细,粉质粘土、淤泥粘土到粘土,为全新世水下三角洲沉积.底板高程约在鸡骨礁理论最低潮面下48.50 m左右.第六层,物质有所粗化,粉质粘土夹粉砂,属晚更新世沉积地层.图10 长江口沉积物泥百分含量分布图Fig.10 Distributions of Changjiang Estuary mud percentage concentration图11 长江口沉积物砂百分比含量分布图Fig.11 Distributions of Changjiang Estuary sand percentage concentration表6 勘探点位置表Tab.6 Locations of drilling coresC1 31°14.9997′122°25.0110′ 长江口锚地,鸡骨礁外C2 31°15.0029′ 122°20.2960′ 横沙浅滩东侧,鸡骨礁北约8 km C3 31°20.3153′ 122°07.9836′ 横沙浅滩北侧,长江口北港水道C4 31°7.4900′ 122°19.9900′ 横沙浅滩南侧,鸡骨礁南约5 km,长江口南港水道C1孔位于横沙浅滩以东邻近海域,在10 m等深线以外的水下三角洲上.第一层,淤泥;第二层,淤泥质粉质粘土;第三层,淤泥质粘土;第四层,粘土.都是细颗粒沉积物,都属第四纪全新世水下三角洲沉积.与C3孔水下三角洲沉积剖面相似.底板高程在鸡骨礁理论最低潮面下58 m左右.第四层向下的地层为晚更新世沉积地层.C2孔介于C1孔和C3孔之间,在横沙浅滩东侧5 m等深线附近.第一层为粉细砂,属于河口拦门沙浅滩沉积.第二层,淤泥质粘土;第三层,粘土,属于水下三角洲沉积.这与C3、C1的水下三角洲沉积剖面相似.底板高程在鸡骨礁理论最低潮面下46.80 m左右.该层以下为晚更新世沉积地层.实际上,C3、C2、C1三个钻孔可以构成从横沙浅滩到水下三角洲的一个沉积纵剖面.剖面上部河口拦门沙浅滩沉积,以灰色粉细沙为主,局部为灰黄色,饱和,松散~稍密,砂质不纯,颗粒较均匀,含云母和贝壳碎片,夹粘性泥层.剖面下部呈现灰黄色淤泥质粉质粘土,饱和,流塑,土质均匀,切面较光滑,夹少量粉砂层,含少量有机质,偶见粉砂小团块,摇振见反应,韧性中等,再现灰色淤泥质粘土,饱和,流塑,土质均匀,切面光滑,有光泽,夹少量粉砂或粉土微粒层,含少量贝壳碎片,无摇振反应,韧性高,标准贯入击数<1;最后为灰色粘土,饱和,软塑,土质均匀,切面光滑,有光泽,夹粉砂微粒层,含少量贝壳碎片,无摇振反应,韧性高,标准贯入击数2~5击.构成的沉积纵剖面,从横沙浅滩到水下三角洲,沉积物有两大类型,上部为河口拦门沙浅滩沉积,物质粗,向海方向尖灭;下部为水下三角洲沉积,物质细,遍及横沙浅滩和水下三角洲.晚更新世地层在全新世地层之下,标准贯入击数高.这种沉积物沉积剖面结构对横沙浅滩挖入式港池和外航道建设十分有利.C4孔位于横沙浅滩南侧10 m等深线附近,依然显示河口浅滩沉积和水下三角洲沉积的二元结构特征.但是,在鸡骨礁理论最低潮面下48.00m以下的晚更新世地层确为粉细砂,并不是其余3个钻孔所显示的粉质粘土夹粉砂,说明晚更新世沉积地层平面变化比较复杂.在现有资料情况下,C3、C2、C1沉积物垂向分布特征,已经包涵了横沙浅滩及邻近海域,而且沉积物分布有序、规律,可以作为拟选工程横沙浅滩挖入式港池和外航道建设的沉积物分布的特征资料.疏松沉积层,可控性好,对拟建工程建设有利.3 小结综合以上讨论分析,可得:① 长江口在河流和海洋相互作用与相互制约下,形成了庞大的河口拦门沙系和水下三角洲两大地貌单元.拟选横沙浅滩挖入式港池和外航道就在河口拦门沙浅滩和水下三角洲上.② 横沙浅滩5 m水深处含沙量在0.459 kg/m3左右.大潮含沙量大于小潮,冬季含沙量大于夏季,台风暴潮、寒潮大风对浅滩地区泥沙运动作用明显.邻近海域含沙量低,向海方向急剧减小.含沙量大潮大于小潮,冬季大于夏季.近年来长江流域来沙呈现减小趋势,邻近海域含沙量也因此有所降低,局部海床有所冲刷.③ 横沙浅滩表层沉积物粗,以粉细砂为主,水下三角洲表层沉积物细,以粘土质粉砂为主.根据地质钻孔资料分析,C3孔、C2孔、C1孔显示的沉积物垂向分布,全新世地层可以分为两层,上层由粉细砂组成,属于河口拦门沙浅滩沉积,下层由淤泥质粉质粘土、淤泥质粘土、粘土组成,属于水下三角洲沉积.都是疏松沉积层,可挖性好,对横沙浅滩挖入式港池和外航道建设有利.上述意见仅根据现有资料所做的初步分析.实际上,含沙量和沉积物特征及其分布十分复杂,随着研究工作进展,还应做更多、更广泛的调查研究工作.[参考文献][1]陈吉余.中国河口海岸研究与实践[M].北京:高等教育出版社,2007.[2]陈吉余.上海市海岸带和海涂资源综合调查报告[M].上海:上海科学技术出版社,1988.[3]郭蓄民,许世远,王靖泰,等.长江河口地区全新统的分层与分区[G]//严钦尚,许世远.长江三角洲现代沉积研究.上海:华东师范大学出版社,1987. [4]何青.河口泥沙[M]//陈吉余.21世纪的长江河口初探.北京:海洋出版社,2009.[5]虞志英.长江口北槽口外水下地形[G]//沉积环境变化和对三期外航道的影响.上海:华东师范大学河口海岸国家重点实验室,2004.[6]中交第三航务工程勘察设计院有限公司,华东师范大学河口海岸国家重点实验室.上海国际航运中心横沙浅滩挖入式港池规划方案研究报告[R].上海:华东师范大学,2012.[7]中交第三航务工程勘察设计院有限公司.上海新港区选址(横沙)项目研究前期工作报告[R].上海:中交第三航务工程勘察设计院有限公司,2012.。

长江口横沙通道冲淤变化与地形特征演变

长江口横沙通道冲淤变化与地形特征演变

长江口横沙通道冲淤变化与地形特征演变陈婷;张行南;徐双全;李万春;张文婷;包鑫如【期刊名称】《人民长江》【年(卷),期】2022(53)4【摘要】长江口横沙通道是南北港航道的重要联络通道,研究该通道的冲淤及地形演变,对于掌握通道水动力条件及保证生产作业安全具有重要意义。

采用2005~2020年长江口实测水下地形数据,利用ArcGIS建立精度为20 m×20 m的数字高程模型;通过绘制横沙通道地形图、冲淤变化图、等深线图和横断面图,对横沙通道整体地貌的演变特征和局部深坑的形成机制进行了定量及定性分析。

结果表明:近期横沙通道北口出现南北长约1.85 km,最大深度达56.1 m的深坑,深坑累计扩大约380万m^(3),南延约770 m,有向深槽演变的可能。

通道整体呈现“淤冲淤”的演变模式,以冲刷为主,两侧存在局部淤积,累计冲刷2880万m^(3)。

深坑不断扩大的主要原因是受长兴岛北沿促淤圈围工程与青草沙水库工程建设的影响,通道北口的水动力增强,落潮流流量增加,所形成的弯道横向环流进一步加速了深坑的发育,冲刷趋势加剧。

【总页数】6页(P14-19)【作者】陈婷;张行南;徐双全;李万春;张文婷;包鑫如【作者单位】河海大学水文水资源学院;河海大学水安全与水科学协同创新中心;上海市水务局【正文语种】中文【中图分类】TV148【相关文献】1.长江口深水航道回淤特征与回淤量变化相关因素浅析2.长江口北槽河槽地形变化及深水航道回淤特征分析3.长江口横沙通道近期演变及水动力特性分析4.长江口深水航道三期工程北槽演变特征及航道回淤部分原因分析5.基于GIS的长江口北港冲淤演变及河道特征可视化分析因版权原因,仅展示原文概要,查看原文内容请购买。

长江口深水航道的回淤问题

长江口深水航道的回淤问题

长江口深水航道的回淤问题31,谈泽炜1 , 李文正1 , 虞志英2金(11 长江口航道建设有限公司, 上海200003; 21 华东师范大学河口海岸国家重点实验室, 上海200062)中图分类号: U 617 文献标识码: A 文章编号: 100323688 (2003) 0520001207在取得上述结果的同时, 也出现不利的方面, 主要是北槽分流比减少和丁坝上游段受丁坝壅水影响及横沙通道冲刷泥沙下泄等出现成片淤积(图22) , 和上一期工程的经验及二期数、物模研究工作的成果表明, 在修筑导堤形成北槽边界、堵截串沟、形成微弯河型之后, 进一步调整流场和地形以减少航道回淤要依靠丁坝群的综合作用。

全方面的问题; 二是通过丁坝群增加航道附近单宽流量, 在目前工程的场合, 上段与下段可能会带来相反的效果, 这也是不能不引起注意的。

图23 5~11 号区段平均落急流速增幅与全槽放宽率关系图22 南港南北槽冲淤变化图(1998209~2002202)丁坝群调整流场主要通过形成治导线来起作用。

治导线的形态特征以平均放宽率Α来表示。

据上海航道设计研究院数学模型成果整理得到不同丁坝布置方案下北槽上、下段治导线的平均放宽率和落急流速增量的关系(图23、图24) , 表明随着整个整治段放宽率的减小, 下段流速渐增而上段流速渐减, 从而对上段河槽地形的调整和航道回淤可能产生不利的影响。

因此, 在评估和比较丁坝布局方案时,必须上、下段综合考虑, 而且要进一步注意通过流场调整达到的地形调整的程度和状态对实现三期工程航道水深目标的影响和效果。

关于整治建筑物的减淤作用问题, 通常关注如何提高航道附近流带的单宽流量, 以减少航道内的泥沙落淤, 这无疑是对的。

但应注意二点: 一是整治汊水流阻力增加引起的潮流量减少, 当潮流量减少到一定程度之后, 单宽流量将不再提高, 这与龙口水流流速随龙口断面变化的情况相仿, 从长期效应看, 整治汊潮量即分流比的减少也会带来河势安图24 1~5 号区段平均落急流速增幅与全槽放宽率关系212 航道轴线定线和疏浚工艺与标准的改进( 1) 由动床冲刷物模试验得到总体工程布置下的冲刷地形和深泓位置, 结合流场和整治建筑物设计条件等, 在工程立项阶段慎重确定了航道轴线位置。

长江口横沙岛附近河势演变研究

长江口横沙岛附近河势演变研究

长江口横沙岛附近河势演变研究丘慧琪;李圣雨【摘要】近年来长江口一系列重大整治工程出现在横沙岛周围,工程将一定程度引起河床冲淤变化,通过横沙岛局部保滩工程项目前沿滩势近期演变特征研究,分析预测其未来的演变趋势,以及堤外滩涂地形变化的情况,对保滩工程的实施提供可靠的决策依据,确保一线海塘的安全.【期刊名称】《吉林水利》【年(卷),期】2018(000)010【总页数】7页(P16-21,24)【关键词】长江口;横沙岛;河势演变;北港;横沙通道【作者】丘慧琪;李圣雨【作者单位】上海友为工程设计有限公司,中国上海 2100093;上海友为工程设计有限公司,中国上海 2100093【正文语种】中文【中图分类】TV1471 引言长江是中国最长的河流,全长约6 300余km。

其河口也是我国最大的河口,上起徐六泾,在平面上呈三级分汊、四口入海的河势格局。

崇明岛将长江口分为北支和南支,长兴岛和横沙岛将南支分为北港和南港,九段沙将南港分为北槽和南槽(图1)。

图1 长江口河势图及重要工程位置横沙岛是长江口三大岛屿之一,位于长江口与东海的交汇处,三面临江,一面濒海,背靠长兴岛,北与崇明岛遥相呼应。

由于长江上游泥沙下泄,海水顶托,在河口淤积而形成的岛屿。

在19世纪40―60年代,横沙岛附近为长江口南北港入海汊道之间的河口拦门沙浅滩。

清咸丰年间(1851―1861年)浅滩逐渐淤涨出露水面,始成沙洲,光绪十二年(1886年)开始围垦,至1908年围垦成陆面积约16.94km2。

由于常年受东海SE向风浪的冲刷及潮滩涨潮优势流的作用,整个岛屿呈现东南坍、西北涨的迁移规律,沙岛南半部(现横沙水文站以南)原有的集镇和农田相继淹没于水中,1929年修建的丁坝亦沦于江底。

这种南岸坍、北岸涨的变化一直持续到20世纪50年代。

约100年的时间,整个横沙岛向西北方向迁移了近10km,南端海岸线后退了5.25km。

1958年横沙岛海塘的全面加固和1960―1965年护岸工程的修筑,使得横沙岛周边岸线渐趋稳定。

长江口深水航道疏浚吹填一体化施工工艺

长江口深水航道疏浚吹填一体化施工工艺

长江口深水航道疏浚吹填一体化施工工艺石进;刘栓;宋理想【摘要】针对长江口地区近年来出现的新圈围造地工程,因条件限制或成本控制不宜设置储泥坑的情况,通过长兴潜堤工程实例,介绍长江口深水航道疏浚吹填一体化施工工艺,对工艺中的疏浚施工、艏吹抛锚定位以及吹泥施工等关键技术进行重点阐述.该工艺无需设置中转储泥坑,疏浚土一次性吹填上岸,并用于造地成陆,在长江口地区应用效果较好.%For the Yangtze River Estuary area in recent years,some new reclamation projects cannot excavate the storage pit because of constraints or cost control.Through Changxing submerged breakwater engineering construction,we introduce the construction technology for integration of deep-water channel dredging and filling in the Yangtze River Estuary,and discuss the key technologies of dredging,anchoring and bowing.The construction technology does not need to set the storage pit,and the dredging soil could be pumped to the shore for land reclamation.It is very effective,resulting in a comprehensive benefit in the Yangtze River Estuary area.【期刊名称】《水运工程》【年(卷),期】2017(000)010【总页数】5页(P216-220)【关键词】长江口深水航道;疏浚吹填一体化;艏吹;施工工艺【作者】石进;刘栓;宋理想【作者单位】交通运输部长江口航道管理局,上海200003;上海长升工程管理有限公司,上海200137;上海长升工程管理有限公司,上海200137【正文语种】中文【中图分类】U616长兴潜堤后方滩涂圈围工程(图1)位于上海市长兴岛东南角、长江口深水航道治理三期工程长兴潜堤工程后方、长江口12.5 m深水航道与横沙水道交汇水域。

长江口深水航道水流特征沿程分布准调和分析

长江口深水航道水流特征沿程分布准调和分析

长江口深水航道水流特征沿程分布准调和分析潘金仙;吴德安;谢新星【摘要】根据长江口深水航道治理工程二期2005年8月大潮期间的水文测验资料,选取NG0、NG3、CB1、CS0、CS1、CB2、CS2、CS6、CSW、CS3、CS7、CS4、CS5共13个站位测点的二个潮周期的六层流速测量资料,对这些测点数据进行准潮流调和分析,得出P1,K1,M2,M3,M4,2MK5,M6,3MK7,M8,M10共10个分潮的潮流调和常数及余流结果,并计算给出了相应椭圆要素.研究分析发现,潮流特征系数值均不超过0.25,沿程各测点区域潮流类型以半日潮为主.对太阴半日分潮M2的椭圆长半轴、椭圆短半轴、椭率以及格林威治迟角等椭圆要素空间分布特征进行分析比较.总结潮流椭圆要素、潮流特征、浅水影响分子、余流以及最大可能潮流流速的沿程空间变化规律以及动力影响分析.M2分潮的椭圆要素有较强的规律性,浅水影响因子随水深变小而增大,在总体上都有沿程减小的趋势.最大可能潮流流速在垂向从表层到近底层逐渐减小,符合水流流速沿水深的分布.研究结果对理解深水航道动力状况、淤积机制和指导航道工程整治具有一定价值.【期刊名称】《科学技术与工程》【年(卷),期】2016(016)007【总页数】6页(P80-85)【关键词】长江口;深水航道;准调和分析;潮流调和常数;潮流椭圆要素【作者】潘金仙;吴德安;谢新星【作者单位】河海大学海岸灾害与防护教育部重点实验室,南京210098;河海大学港口海岸与近海工程学院,南京210098;河海大学海岸灾害与防护教育部重点实验室,南京210098;河海大学港口海岸与近海工程学院,南京210098;河海大学港口海岸与近海工程学院,南京210098【正文语种】中文【中图分类】TV131.65长江口是中国的黄金水道,长江口深水航道工程的合理开发与建设,关系到长三角地区经济社会的新发展[1]。

因此,交通部对长江口深水航道的治理工程于1988年1月南北导堤正式开工,2000年7月主要整治工程完成。

高考地理二轮总复习课后习题 专题4 地质作用与地表形态 专题突破练四

高考地理二轮总复习课后习题 专题4 地质作用与地表形态 专题突破练四

专题突破练四(八省联考)堪察加半岛位于亚欧板块与太平洋板块交界处,是环太平洋“火链”的重要组成部分,包含200多座第四纪火山。

位于堪察加半岛中北部的克柳切夫火山,是全球岩浆产率最大的火山之一(55百万吨/年)。

下图示意堪察加半岛及其周边地区。

据此完成1~2题。

1.堪察加半岛活火山发育的主要原因是( )A.位于板块生长边界,火山喷发频繁B.海洋地壳薄,岩浆易喷出C.位于板块碰撞边界,地壳运动活跃D.岛弧发生断裂,裂隙发育2.组成堪察加半岛的主要岩石( )A.可用作家庭装饰C.可找到化石B.片理结构明显D.存在气孔构造(山东潍坊一模)艾尔萨克雷格岛(下左图)由岩浆活动形成,是英国重要的鸟类栖息地。

岛上岩石致密坚硬、吸水性弱,成为制造冰壶(下右图)的最佳石材(冰壶需不断在冰面上移动,对石材的要求较高)。

1851年,苏格兰K 公司开始从岛上开挖石材生产冰壶,该公司每十年开采一次。

据此完成3~4题。

3.艾尔萨克雷格岛岩石出露的地质过程是( )A.岩浆侵入—地壳抬升—外力侵蚀B.岩浆侵入—地壳抬升—外力堆积C.岩浆喷出—地壳下沉—外力侵蚀D.岩浆喷出—地壳下沉—外力堆积4.K公司每十年开采石材一次,主要是为了( )A.保护石材资源B.减少地质灾害C.提高冰壶价格D.减小对鸟类的影响(山东聊城二模)冰川对地表具有很大的侵蚀破坏能力,冰蚀作用包括磨蚀作用和拔蚀作用。

冰川移动经过地表岩石时,先对底床进行削磨和刻蚀(磨蚀);后把岩块拔起带走(拔蚀)。

羊背石是冰川作用与其他自然因素结合塑造的一种典型冰蚀地貌。

下图为羊背石示意图。

据此完成5~6题。

5.形成图中羊背石的冰川的运动方向是( )A.向东B.向西C.向南D.向北6.羊背石地貌形成条件不包括( )A.移动的冰川B.松软的凸岩C.较大坡度的岩石D.适宜的温差(广东茂名一模)张掖丹霞地貌地处祁连山中段北麓,主要由距今约6500万年形成的红色砾岩、砂岩和泥岩组成,以交错分层、四壁陡峭、色彩斑斓而称奇,被称为“世界十大地理奇观”。

长江口北港航道通航安全及对策分析

长江口北港航道通航安全及对策分析

Marine Technology航海技术长江口北港航道通航安全及对策分析赵春波(中远海运(上海)有限公司,上海 200080)0 前言长江三角洲水域在径流、潮流、上游来沙等陆海作用下,目前已形成“三级分汊,四口入海”的水系分布格局,如图1所示。

长江口水域作为长江中下游港口群的咽喉要道,其通航效率直接关系“21世纪海上丝绸之路”和长江经济带的发展,有效的通航效率需要以充足的航道资源为基础,而长江口水域入海通道中仅有南槽航道和长江口深水航道具备成熟的航行条件,且近年来长江上海段船舶流量的增加,导致长江口深水航道和南槽航道均处于超负荷运行状态,航道资源与通航需求之间的矛盾凸显。

为有效改善航道资源的局限性,适应流域经济发展对长江口航道资源的需求,20世纪90年代起,长江口水域相继开展了一系列航道整治工程。

2010年,《长江口航道发展规划》获批,明确了以长江口深水航道为主航道,南槽航道与北港航道为辅助航道和北支航道的“一主两辅一支”航道体系格局[1]。

根据规划,北港航道将满足3万吨级集装箱船(实载吃水11 m)及5万吨级散货船减载乘潮的尺度要求。

近年来,大量专家学者针对北港航道先后开展了大量研究工作,现有的研究成果中,多数文献围绕北港航道的河势演变和河势稳定性展开[2-8],而针对北港航道通航安全的研究相对较少,为了进一步了解北港航道的航行条件,探索维护北港通航安全的有效措施,本文就北港航道的通航安全因素进行整理和分析,并针对当前存在的缺陷提出了相应的对策。

图1 长江口水系分布图1 长江口北港航道概况1.1 概况长江口北港航道位于长兴岛、横沙岛以及横沙东滩北侧,全长约90 km,是长江的主要入海通道之一。

自形成以来,一直处于自然发育状态,历史上经历了多次演变,曾一度作为上海港的主要入海航道[9]。

目前,北港航道尚无成熟的通航条件,业界对北港航道的管理和投入与南港航道相比,相对较少。

有关北港航道的边界,中版和英版有关资料目前均无明确资料予以界定[10-11],根据浮标的设置情况,可以将北港航道分为三段,如表1和图2所示。

长江口航道疏浚土综合利用及新横沙生态成陆探索

长江口航道疏浚土综合利用及新横沙生态成陆探索

长江口航道疏浚土综合利用及新横沙生态成陆探索包起帆;楼飞;孟舒【摘要】针对长江口新水沙环境和滩涂演变的现状, 以及长江口深水航道疏浚土综合利用面临的困境, 以生态优先、共抓长江大保护的理念为指导, 论述了后续疏浚土综合利用的紧迫性和可行性.从生态环境塑造、滩涂资源保护、长江口河势控制等方面着手, 探讨了开展长江口大保护的有关路径和方法.提出了以横沙大道延伸及促淤护滩工程为依托, 实现2020年后综合利用长江口深水航道疏浚土在新横沙生态成陆的具体方案.【期刊名称】《水运工程》【年(卷),期】2018(000)011【总页数】6页(P80-84,125)【关键词】长江大保护;疏浚土综合利用;新横沙生态成陆【作者】包起帆;楼飞;孟舒【作者单位】华东师范大学国际航院物流研究院, 上海200062;中交上海航道勘察设计研究院有限公司, 上海200120;华东师范大学国际航院物流研究院, 上海200062【正文语种】中文【中图分类】U612;U61620世纪末到21世纪初,长江口深水航道疏浚土的处置经历了全部外抛到部分上滩利用的转变,但总体仍然是以海洋倾倒处置为主。

据统计,自1998年长江口深水航道治理工程开工至2015年的18年间,长江口航道疏浚土总量达到了9.3亿m3[1],其中66%被直接抛海,34%进入开敞式吹泥站,上滩利用率仅为25.9%。

18年间,疏浚土总的外抛量达6.89亿m3,如果加以综合利用,可为上海生态成陆100 km2以上,这对寸土寸金的上海而言弥足珍贵。

大量疏浚土直接外抛,对海洋水环境造成污染、影响周边生态。

同时疏浚土抛海后扩散易引起水体二次污染,增加航道回淤量、工程维护量和疏浚费用。

在交通运输部和上海市的共同努力下,结合横沙东滩西侧的工程项目,2004年后,疏浚土开始逐步采用上滩利用模式。

其中:2004—2009年间,疏浚土上滩处置相对粗放,上滩后泥沙流失较明显,疏浚土资源有效利用率不高。

长江口横沙通道近期演变及水动力特性分析

长江口横沙通道近期演变及水动力特性分析

长江口横沙通道近期演变及水动力特性分析万远扬;孔令双;戚定满;顾峰峰;王巍【摘要】基于近十年来的实测水文地形资料,分析了横沙通道河床演变基本特性和水、沙变化情况,初步揭示了横沙通道的基本演变趋势和动力特性.同时利用数学模型(SWEM),统一边界条件后,详细比较多年来横沙通道水动力因子变化过程,包括潮位、流速、流向、优势流等;通过长系列统一边界的潮流数模计算比较,分析了横沙通道水动力特性.最后结合实测资料及数模计算结果,分析了横沙通道的变化情况与北槽和北港变化情况的基本关系以及基本发展趋势.【期刊名称】《水道港口》【年(卷),期】2010(031)005【总页数】6页(P373-378)【关键词】SWEM;地形演变;数值模拟;长江口;横沙通道【作者】万远扬;孔令双;戚定满;顾峰峰;王巍【作者单位】上海河口海岸科学研究中心,上海,201201;联合国教科文组织-水教育学院,代尔夫特,2601DA;上海河口海岸科学研究中心,上海,201201;上海河口海岸科学研究中心,上海,201201;上海河口海岸科学研究中心,上海,201201;上海河口海岸科学研究中心,上海,201201【正文语种】中文【中图分类】TV143%O242.1Biography:WAN Yuan-yang(1981-),male,assistant professor.横沙通道(北纬31.3度,东经121.8度,图1)位于长江口长兴岛和横沙岛之间,两侧分别连接长江三角洲最大的2个入海通道——北港与北槽,是北港与北槽之间水量、泥沙交换的重要通道。

目前该通道平均宽约1.2 km,长约8 km,贯通水深约10 m(本文中高程系统均为吴淞基面)。

横沙通道也是长江口水域唯一一条独立的、南北向连通通道,是北港和北槽入海前的勾通交换渠道。

由于该通道相对整个长江口而言尺度甚小,且目前状况良好[1],所以一直以来对该通道的研究较少。

随着长江口航道的持续开发以及崇明三岛战略地位的不断升级[2],有必要深入研究横沙通道的演变规律与发展趋势,以便为附近水域的航道、港区开发提供科学参考。

长江口航道疏浚与水域砂矿资源综合利用

长江口航道疏浚与水域砂矿资源综合利用

长江口航道疏浚与水域砂矿资源综合利用吴继红;龚士良【摘要】长江口水域砂体发育且活动频繁,给航运安全带来严重隐患.分析阐述长江口航道疏浚及水域矿砂资源的综合利用.水下砂体是良好的砂矿资源,河道采砂既可实现资源利用,也能促进航道整治,综合效益显著.【期刊名称】《水运工程》【年(卷),期】2009(000)006【总页数】4页(P103-106)【关键词】水下砂体;航道整治;砂矿资源;长江河口【作者】吴继红;龚士良【作者单位】上海市地质调查研究院,上海200072;上海市地质调查研究院,上海200072【正文语种】中文【中图分类】TV221.2;P617长江是我国重要的黄金水道,长江口是内河与远洋航运的咽喉,客货运极为繁忙,是水运交通的重要枢纽,对保障和促进长江流域和沿海地区的经济发展与繁荣具有举足轻重的作用。

长江水量丰沛、含沙丰富,所携泥沙在河口地区沉淀堆积,致使水下砂体异常发育,导致航道淤浅,大型集装箱船必须候潮进港;在长江径流与海洋潮流的多重影响下,水下砂体活动频繁,对航运安全也构成严重威胁。

随着岸带经济圈的崛起与发展,对长江口的通航能力与航运安全提出了更高要求。

而河口与岸带地区规划建设的众多越江工程与基础设施等重大工程,对建筑用料的需求也与日俱增。

长江口水下砂体蕴量丰富,来源充足,颗粒较粗、分选性好,是上佳的砂矿资源,具有良好的开发利用前景。

在长江河口水域,开采砂矿资源作为建筑用料,既可就地取材满足工程建设所需,又能促进长江口航道疏浚,趋利避害一举多得,综合效益是非常显著的。

本文结合实际工作[1],对长江口航道疏浚及其水域砂矿资源的综合利用进行分析阐述。

1.1 河势演变长江河口是由漏斗状河口湾演变而成的。

约在6 000年前,长江河口为一溺谷型河口湾,湾顶在镇江、扬州一带,镇江、扬州以上为正常河流的形态;镇扬以下,沙洲散漫,水流多汊,河道不成形,主泓游移不定。

距今2 000年来,由于大量流域来沙的充填,河口南岸边滩以平均1 000 m/a的速度向海挺进,北岸有许多沙洲相继并岸。

长江口横沙深水港选址及可维护性探讨

长江口横沙深水港选址及可维护性探讨

长江口横沙深水港选址及可维护性探讨楼飞;季岚;陈中;王大伟【摘要】Hengsha east shoal is a large mouth bar in Yangtze estuary. The main problem of building large excavated-in deepwater harbor basin here is the maintainability of the basin and waterway. In this paper,on the basis of the characteristics of current and sediment,the basin and its entrance sites selection and the maintainability of the basin and waterway are discussed. The results show that the entrance of the basin should be set in the east side of Hengsha east shoal and on the south of Jigu reef,and towards southeast. The entrance and waterway should be built in the area where the depth is greater than 10 m. If do so,the tidal prism is large;the siltation is small,and the maintainability is good.% 横沙东滩位于长江口拦门沙区域,该区域建设大型挖入式深水港的关键问题之一是港池及进港航道的可维护性。

本文从自然水沙特性出发,对港池及其口门选址、港池及进港航道的可维护性等问题作探讨分析。

利用长江口航道疏浚土进行横沙成陆实施方案研究

利用长江口航道疏浚土进行横沙成陆实施方案研究

利用长江口航道疏浚土进行横沙成陆实施方案研究唐臣;季岚;贾雨少【摘要】根据长江口航道建设现状以及未来规划目标,结合横沙新港区的规划构想,提出利用长江口北槽深水航道、北港航道、南槽航道疏浚土,进行横沙新港吹填成陆实施方案有关吹泥上滩工艺、疏浚船机等方面的设想,初步分析实施方案的技术可行性和经济合理性,并提出利用航道疏浚土成陆的有益建议。

该实施方案研究可为横沙新港成陆或长江口区域类似工程的设计施工提供技术参考。

% According to the Yangtze estuary waterway construction and planning conditions,combined with the Hengsha new ports plan idea,the paper proposes the implement scheme for using Yangtze estuary water-way dredged soil to Hengsha east shoal reclamation,and analyzes technical feasibility and economic reasonable-ness,and put forward useful suggestions for using dredged soil for reclamation. The study of implement scheme can give technical reference for the design and construction of similar reclamation projects in Hengsha east shoal or the Yangtze estuary region.【期刊名称】《中国工程科学》【年(卷),期】2013(000)006【总页数】8页(P91-98)【关键词】长江口;横沙东滩;航道疏浚土;吹泥上滩工艺【作者】唐臣;季岚;贾雨少【作者单位】中交上海航道勘察设计研究院有限公司,上海 200120;中交上海航道勘察设计研究院有限公司,上海 200120;中交上海航道勘察设计研究院有限公司,上海 200120【正文语种】中文【中图分类】U651 前言上海地处长江出海口,面临东海,是我国沿海经济带与沿江经济带的交汇点,是国际、国内的物流枢纽,水运条件有着得天独厚的优势。

长江口北槽深水航道内增设大型船舶应急锚地的探讨

长江口北槽深水航道内增设大型船舶应急锚地的探讨

第17卷 第11期 中 国 水 运 Vol.17 No.11 2017年 11月 China Water Transport November 2017收稿日期:2017-06-22作者简介:朱春东(1971),男,上海人,上海港引航站、一级引航员。

长江口北槽深水航道内增设大型船舶应急锚地的探讨朱春东(上海港引航站,上海 200439)摘 要:随着船舶的大型化和上海国际航运中心建设以及12.5m 长江太仓段深水航道的贯通,长江的吞吐量及船舶流量双双激增,为确保这条黄金水道的畅通和安全,建议在长江口北槽深水航道内设立大型船舶应急锚地。

关键词:深水航道;大型船舶;应急锚地中图分类号:U697 文献标识码:A 文章编号:1006-7973(2017)11-0003-02一、长江口北槽深水航道工程简介长江口深水航道治理工程分三期实施。

一期工程设计通航水深8.5m,二期工程通航水深10.0m,三期工程通航水深12.5m,底宽350~400m,可满足第三、四代集装箱船(实载吃水11.5m)全天候进出长江口,第五、六代集装箱船和10万t 级散货船及油轮乘潮进出长江口的需要。

长江口通航水深从7m 提高到12.5m,大大提高了航道的通过能力,改善了船舶安全航行的条件,提高了大型船舶的营运水平,带来了显著的社会经济效益。

尤其吃水12m 以上的船舶增长最快,2012年达到了912艘次,相比12.5m 深水航道开通前的2006~2009年合计的17艘次,以及2006年以前0的记录可以说是爆发式增长。

有关研究表明,长江口深水航道水深从7m 增深到12.5m,船舶平均每航次可以多装载50%~110%,大大提高了船舶的营运水平。

受码头、潮汐、航道的限制,截止目前进口靠泊宝钢码头的“宝探”轮为通过长江口北槽深水航道的最大深吃水船舶,淡水13.5m。

2016年长江口12.5m 深水航道完成通航52,037艘次,日均162.61艘次,同比增长5.69%。

长江口南支下段扁担沙护滩工程整治效果分析

长江口南支下段扁担沙护滩工程整治效果分析

长江口南支下段扁担沙护滩工程整治效果分析吴焱【摘要】长江口南支下段暗沙罗列、州滩变迁,是长江口河势变化最为频繁、也最为复杂的河段.采用mike21平面二维水流、泥沙数学模型,对该河段自然状态下以及实施扁担沙护滩工程情况下水动力条件、河床冲淤变化进行模拟,为该河段河势演变以及河势控制工程的研究提供一定的参考.【期刊名称】《水运工程》【年(卷),期】2012(000)011【总页数】6页(P145-150)【关键词】长江口;南支下段;平面二维泥沙模型;河势控制;扁担沙护滩工程【作者】吴焱【作者单位】上海勘测设计研究院,上海200434【正文语种】中文【中图分类】TV14长江口南支河段上起徐六泾,下至吴淞口,全长约70 km。

该河段河势不稳定因素较多,主要表现在近期白茆沙体活动性较大,南门港附近扁担沙滩面串沟发育,并不断向下游发展,下扁担沙南侧上冲下淤等[1]。

近年来该河段实施了一系列工程措施,如新浏河沙头部护滩工程、南沙头通道限流工程、中央沙圈围工程、青草沙水库工程等[2],这些工程对南支下段以及南北港分流口河势的稳定起到了一定的积极作用。

但由于《长江口综合整治规划(2007)》中规划的部分河势控制工程尚未实施,如白茆沙固滩工程、扁担沙护滩工程等[3],使得该河段不稳定因素仍在,七丫口河段节点控制作用尚不充分,南北港分流口河势近年变化剧烈[4]。

本文拟结合长江口南支下段目前存在的问题,依据相关基础资料的分析研究,首先建立长江大通至口外段水流数学模型,然后在此基础上建立南支河段泥沙数学模型,对扁担沙护滩工程实施后的工程效果进行分析,为该河段河势治理提供参考。

1 模型建立1.1 模型范围长江口水流数学模型上游边界取至大通,下游东边界至外海123°30′,北边界至32°15′,南边界至29°33′,模型范围及网格见图1。

图1 长江口水流模型计算范围及网格泥沙数学模型上游边界取至白茆沙体以上、南北支分流口以下处,下游南港边界取至南北槽分流口以上附近,下游北港边界取至横沙通道以上附近,见图2。

长江口深水航道及横沙东滩促淤圈围对滞流点的影响探究

长江口深水航道及横沙东滩促淤圈围对滞流点的影响探究

长江口深水航道及横沙东滩促淤圈围对滞流点的影响探究摘要:横沙东滩促淤圈围工程建设后,位于长江口北槽北导堤的北侧附近水域,由于水动力条件和河床冲淤发生变化,对北槽深水航道维护带来一定影响。

该工程紧邻长江口北槽深水航道,因此需要对北槽深水航道受到的影响进行深入的分析,本文通过建立泥沙数学模型,三维潮流,工程建设给长江口深水航道及横沙东滩促淤圈围带来的滞流点的影响进行论证。

关键词:长江口深水航道横沙东滩促淤圈围;滞流点影响;数学模型对于参加建设的长江口深水航道及横沙东滩大型工程进行分析,是建立在该工程建设中的相关数据基础上进行的。

该工程位于长江口北槽,属于大型滨海沙洲上的重点工程,是对于滩涂资源进行开发利用和保护的重点项目。

工程实施,累计形成了促淤面积97.3平方公里,圈围面积达到了47.43平方公里,新建的长堤,高程4.0米-8.4米。

深水航道开通之后,长江口的维护期开始,回淤量处在较大的数值范围,沿程分布高度非常集中,航道范围内维护较为困难。

工程位置示意图工程建设进行了横沙东滩的促淤圈围建设滞后,附近的河床冲淤和水域的水动力条件都发生了一定的变化,给长江口的北槽深水巷道的维护工作带来了一定的难度。

产生的影响,通过工程建设计算分析、泥沙数学模型、三维潮流的建立,可以得到详细的数据[1]。

1 泥沙数学模型和三维潮流的计算1.1模型控制方程在静压近似值的计算公式中,流体不可压缩,引入垂向坐标系和水平正交曲线,设置三维潮流控制方程组,分别包括了连续、温度、动量、盐度和密度方程。

1.2对于悬沙的运输方程进行求解。

建立在悬沙运输物理机制的基础上,明确了三维水动力的模式,耦合了泥沙运输模块,将模块中的悬沙运输方程设定为:1.3确定重要系数和参数为了对泥沙沉降速度进行更好的参数的确定,要考虑含沙量对絮凝的影响,还要考虑盐度,引进含沙量影响因子和盐度,构造了絮凝公式。

W=F.D.W0,W0指的是某一粒径单颗粒泥沙的沉降速度,F是絮凝因子,D是含沙量和盐度、温度有关系的影响因子。

长江口12.5米深水航道南坝田挡沙堤加高工程总平面方案研究

长江口12.5米深水航道南坝田挡沙堤加高工程总平面方案研究

㊀㊀文章编号:1005 ̄9865(2020)04 ̄0019 ̄10长江口12.5米深水航道南坝田挡沙堤加高工程总平面方案研究应㊀铭ꎬ季㊀岚ꎬ曹慧江ꎬ王大伟(中交上海航道勘察设计研究院有限公司ꎬ上海㊀200120)摘㊀要:长江口12.5米深水航道2010年贯通后ꎬ发挥了巨大社会经济效益ꎬ同时航道回淤量大㊁维护压力大㊁维护费用高的问题突出ꎮ本研究基于北槽四边界水沙通量观测成果ꎬ分析提出了北槽航道回淤泥沙来源ꎻ针对回淤原因ꎬ在已建减淤工程经验总结的基础上ꎬ提出了本次减淤的研究思路ꎬ优化了减淤工程方案的比选指标体系ꎻ采用三维潮流泥沙数模㊁清水动床物模㊁经济技术综合分析等手段ꎬ通过 加高范围 ㊁ 加高高程 及 加高位置 比选ꎬ研究推荐了减淤工程方案ꎮ利用实测回淤量分析了工程减淤效果ꎮ研究结果表明ꎬ南导堤越沙是洪季北槽的重要泥沙来源ꎬ对北槽高浓度含沙量场有一定贡献ꎮ提出了可通过加高北槽南侧的导堤ꎬ实现减少通过南导堤越堤进入北槽的泥沙量ꎬ从而减小北槽含沙量水平ꎬ同时改善北槽下段流态ꎬ降低水沙横向输移ꎬ进而降低航道回淤的减淤思路ꎮ研究推荐的长江口12.5米深水航道减淤工程为南坝田挡沙堤加高工程及先期工程方案ꎮ先期工程位于S4~S9丁坝坝田ꎬ在现有南坝田挡沙堤的基础上加高S4~S8区段ꎬ并延长至S9丁坝ꎬ工程全长约23.8kmꎬ高程+3.5mꎮ工程于2015年11月开工建设ꎬ2016年7月主体工程完工ꎬ工程减淤效果显著ꎬ2016 2018年年均减淤量约954ˑ105m3/aꎬ近三年已节省航道维护疏浚费用约5亿元ꎮ关键词:长江口12.5米深水航道ꎻ南坝田挡沙堤加高工程ꎻ减淤工程ꎻ总平面布置ꎻ回淤量ꎻ越堤流中图分类号:U617.6ꎻTV148㊀㊀㊀文献标志码:A㊀㊀㊀DOI:10.16483/j.issn.1005 ̄9865.2020.04.003收稿日期:2019 ̄11 ̄15基金项目:国家重点研发计划资助(2017YFC0405400)ꎻ上海市科学技术委员会科研计划资助(18DZ1206400)ꎻ南京水利科学研究院港口航道工程交通行业重点实验室开放基金资助作者简介:应㊀铭(1982 ̄)ꎬ男ꎬ江西人ꎬ教授级高级工程师ꎬ主要从事航道工程研究设计工作ꎮE ̄mail:myingsh@sina.com通信作者:季㊀岚(1974 ̄)ꎬ女ꎬ江西人ꎬ教授级高级工程师ꎬ主要从事航道工程研究设计工作ꎮE ̄mail:jilan@shiw.com.cnThestudyongeneralplanlayoutofthejettyheighteningprojectinthesoutherngroinfieldofYangtzeestuary12.5mdeep ̄draftwaterwayYINGMingꎬJILanꎬCAOHuijiangꎬWANGDawei(ShanghaiWaterwayEngineeringDesignandConsultingCo.ꎬLtd.ꎬShanghai200120ꎬChina)Abstract:TheYangtzeestuary12.5mdeep ̄draftwaterwayꎬoncecompletedin2010ꎬhasproducedahugesocialandeconomicbenefitꎬatthesametimeꎬtheamountofsiltationꎬthepressureandthecostofwaterdepthmaintenanceareserious.BasedonfourboundarytideandsedimentfluxobservationresultsꎬthesedimentsourceoftheNorthPassageWaterwayisputforward.Forthesedimentsourceꎬonthebasisofengineeringexperienceꎬtheapproachforstudyingthesiltationreductionprojectisproposed.Using3 ̄Dtidalcurrentsedimentmathematicalmodelandphysicalmodelꎬcomprehensiveanalysisofeconomyandtechnologyandothertechnicalmeansꎬoptimizingevaluationindicessystemꎬandcomparativestudyonheighteningrangeꎬelevationandlocationhavebeencarriedout.Usingthesiltationdatainfieldꎬprojectsiltationreductioneffectisanalyzed.ThesedimenttransportedfromtheSouthJettyistheimportantsedimentsourceoftheNorthChannelꎬandcontributestothehighsuspendedsedimentconcentrationintheNorthChannel.InordertoreducethechannelsiltꎬitisrecomendedtodecreasethesuspendedsedimentconcentrationlevelbyreducingtheamountofthesedimentacrosstheSouthJettytotheNorthChannelꎬtoimprovetheflowregimeandreducethehorizontaltransportof第38卷第4期2020年7月海洋工程THEOCEANENGINEERINGVol.38No.4Jul.2020waterandsedimentinthelowerpartoftheNorthernChannel.ItisrecommendtocarryoutthesiltationreductionprojectꎬthejettyprojectinthesoutherngroinfieldꎬanditsearlyimplementationprojectoftheYangtzeestuary12.5mdeep ̄draftwaterwayꎬwhichheightensS4~S8dikesegmentꎬandisextendedtotheS9dikeꎬwithatotallengthof23.8kmꎬandheightenselevationby+3.5m.TheprojectwasstartedinNovember2015ꎬandfinishedinJuly2016.Theeffectofreducingsiltationthatisabout9.54millionm3peryearisremarkable.Inthepastthreeyearsꎬithassavedabout500millionyuanRMBindredgingcosts.Keywords:Yangtze12.5mdeep ̄draftwaterwayꎻjettyheighteningprojectinthesoutherngroinfieldꎻsiltationreductionprojectꎻlayoutplanꎻsiltationamountꎻovertoppingflow长江口深水航道治理三期工程于2010年3月14日通过交通运输部交工验收ꎬ经一年试通航期检验后于2011年5月18日通过国家竣工验收ꎮ长江口12.5米深水航道在发挥巨大经济效益和社会效益的同时ꎬ航道回淤量大㊁时空分布高度集中的问题也非常突出ꎬ航道水深维护压力大ꎬ每年需投入十几亿元的维护疏浚费用ꎬ航道维护成本居高不下ꎮ因此ꎬ为实现长江口12.5米深水航道减淤降费目标ꎬ保障航道畅通ꎬ在交通运输部长江口航道管理局的组织下ꎬ开展了本次减淤工程的研究ꎮ1㊀长江口12.5m深水航道概况长江口深水航道治理工程历经十三年建设ꎬ采用 整治与疏浚相结合 的治理手段ꎬ建成水深12.5m㊁宽350/400m㊁长92.2km的双向航道ꎬ完成基建疏浚工程量共3.2亿m3[1](图1)ꎮ其中ꎬ 整治 是通过 双导堤+丁坝群 发挥 导流㊁挡沙㊁减淤 功能[2]ꎬ南㊁北导堤长度共计97.3kmꎬ高程+2.0m(上海城建吴淞基面ꎬ下同)ꎻ11座丁坝长度共计34.7kmꎬ坝根高程+2.0mꎬ坝头高程ʃ0mꎻ南坝田挡沙堤长度21.2kmꎬ高程+3.5m~+2.0m(主体高程为+2.5m)ꎮ长江口12.5米深水航道2010 2015年年均回淤量约为8200万m3ꎻ空间分布主要集中在北槽中段H~O疏浚单元(图2)ꎬ该区段回淤量约占全航道的50%ꎻ时间上主要集中在6~11月ꎬ回淤比重超过85%[3]ꎮ图1㊀长江口深水航道治理工程示意Fig.1㊀SchematicdiagramofYangtzeEstuaryDeepwaterChannelRegulationProject图2㊀2010 2015年洪枯季平均回淤强度沿程分布Fig.2㊀Thedistributionmapofmeansiltationintensityoffloodanddryseasonin2010 201502海㊀㊀洋㊀㊀工㊀㊀程第38卷2㊀北槽泥沙来源及减淤思路2.1㊀北槽泥沙来源基于北槽四边界水沙通量观测数据[4]ꎬ北槽深水航道常态回淤原因研究分析表明[5 ̄6]:将北槽视为一个整体ꎬ四侧边界均存在明显的水沙交换ꎬ总体呈现大潮大于小潮㊁洪季大于枯季的特征ꎮ南导堤越堤泥沙是北槽的重要泥沙来源ꎬ对北槽高浓度含沙量场有一定贡献ꎮ比较2011 2013年三年8~9月北槽四边界进沙量ꎬ越过南导堤的沙量是最多的ꎬ北槽下口次之(表1㊁图3)ꎮ观测期大中小潮平均南导堤越沙量分别达到238万t㊁221万t和137万tꎬ下口进沙量分别为151万t㊁127万t和76万tꎻ涨潮期南导堤越堤进沙量和含沙量均是下口的2倍左右(表2)ꎬ且南导堤越堤泥沙主要通过南导堤中下段进入北槽ꎮ表1㊀2011 2013年北槽四边界进入北槽沙量(大中小潮平均)Tab.1㊀ThesedimentdischargeintoNorthChannelfromfourboundaries(averageofspringꎬmediumandneaptides)断面上口/ˑ104t下口/ˑ104t北导堤/ˑ104t南导堤/ˑ104t2011年洪季104151缺测2382012年洪季6312732212013年洪季877611137平均851187199图3㊀2012年9月北槽四边界大㊁中㊁小潮泥沙通量Fig.3㊀ThesedimentdischargeintoNorthChannelfromfourboundariesinSept2012表2㊀南导堤和北槽下口进入北槽平均含沙量比较Tab.2㊀ThesuspendedsedimentconcentrationofSouthernJettyandlowerentrance时间南导堤/(kg m-3)下口/(kg m-3)南导堤/下口2011年洪季1.470.851.72012年洪季2.281.002.32013年洪季1.170.552.12.2㊀减淤思路基于 南导堤越沙是洪季北槽的重要泥沙来源ꎬ对北槽高浓度含沙量场有一定贡献 这一的认识ꎬ可以通过加高南侧导堤ꎬ减少随涨潮流进入北槽的泥沙量ꎬ降低北槽含沙量水平ꎻ同时也能够改善北槽的流场条件ꎬ减小横向水沙输移ꎬ从而实现航道减淤的目的ꎮ12第4期应㊀铭ꎬ等:长江口12.5米深水航道南坝田挡沙堤加高工程总平面方案研究3㊀减淤工程研究3.1㊀总体设想1)保证挡沙功能的基础上ꎬ节省工程投资需保证有效减小越堤泥沙功能ꎬ达到一定的减淤效果的基础上ꎬ通过方案平面布置的优化ꎬ节省工程投资ꎮ2)避免在整治建筑物周边产生局部不利流场和河床变化尽可能避免在整治建筑物周边ꎬ特别是堤头等工程端部ꎬ产生局部不利流场和河床变化ꎬ避免对工程效果产生不利影响ꎮ3)工程对周边环境基本无不利影响充分考虑工程可能对南港㊁南槽㊁九段沙等周边水域ꎬ重要企事业单位的相邻涉水设施或工程ꎬ及防洪排涝产生的影响ꎬ尽量不产生不利影响ꎮ3.2㊀已有工程经验总结1)长江口深水航道治理工程的主要治理思路长江口深水航道治理工程总体方案布置的指导思想是:发挥整治建筑物工程的 导流㊁挡沙㊁减淤 功能ꎬ利用北槽的落潮优势输沙入海ꎬ通过导堤㊁丁坝等整治建筑物工程调整北槽河床形态ꎬ以利于通过疏浚形成和维护深水航道[7]ꎮ其中ꎬ导堤堤顶高程主要是依据发挥 导流㊁挡沙 功能并结合造价因素综合考虑确定的ꎮ经技术经济比较ꎬ 八五 攻关阶段确定了导堤顶高程取+2.0mꎬ+2.0m高程接近北槽水域的中水位ꎬ由此引申出导堤高程采用 中水位 的提法ꎮ而从 导流㊁挡沙 的治理思路出发ꎬ导堤高程越高㊁工程治理效果越好ꎮ三期工程阶段减淤工程的治理思路是 导流为主㊁挡沙为辅 ꎬ实施的减淤工程包括(图4):1)主要减淤工程 YH101丁坝加长工程ꎬ发挥 导流 功能增强了北槽中段的落潮输沙动力ꎻ2)辅助减淤工程 南坝田挡沙堤工程ꎬ在不减弱YH101工程效果的前提下适当发挥一定的 挡沙 功能ꎮ三期工程阶段减淤工程发挥了预期的减淤效果ꎬ加之疏浚能力的投入ꎬ实现了三期12.5m深水航道建设目标ꎮ图4㊀三期工程减淤工程平面布置示意Fig.4㊀ThesketchmapofsiltationreductionprojectofphaseIII2)南坝田挡沙堤工程经验南坝田挡沙堤工程定位为辅助减淤措施ꎬ在主要减淤措施YH101丁坝加长方案的基础上ꎬ适当减弱北槽中段南侧滩面泥沙对航道回淤的不利影响ꎬ起到辅助减淤的效果ꎻ并不应对YH101方案实施后的流场调整效果产生负面影响ꎮ因此ꎬ当时研究确定的挡沙堤高程为+3.5m~+2.0mꎬ其中S3.5~S4区段高程为+3.5mꎬS4~S7区段高程为+2.5mꎬS7~S8区段高程为+2.0mꎮ工程实施后ꎬ南坝田挡沙堤工程阻挡部分南侧滩面来沙ꎬS4丁坝附近由于挡沙堤高程较高(+2.5m~+3.5m)滩面高程已淤高至+2.5m以上ꎮ利用三维潮流泥沙数模复演计算南坝田挡沙堤工程洪季减淤量约230万m3ꎬ减淤幅度约3%ꎮ南坝田挡沙堤的高程不够与当时方案研究将其定位于减淤辅助方案ꎬ主要从落潮优势流指标判断不能对主要减淤工程YH101方案产生影响有关ꎮ22海㊀㊀洋㊀㊀工㊀㊀程第38卷3)本工程治理思路与前期研究阶段是一脉相承的ꎬ认识上有所深化和完善随着南导堤对应的九段沙区段的淤涨ꎬ南导堤中下段的 挡沙 功能逐步削弱ꎬ涨潮期存在大量悬沙越过南导堤进入北槽ꎬ为充分发挥南导堤 挡沙 功能㊁降低北槽含沙量水平ꎬ从而减少航道回淤量ꎬ提出研究南导堤(南坝田挡沙堤)加高工程ꎮ3.3㊀方案比选指标优化本次工程方案研究一方面关注方案的减淤效果ꎬ另一方面力求对周边水域基本无不利影响ꎮ方案比选指标体系分为方案减淤效果和方案实施影响两大类指标ꎮ根据常态回淤原因最新研究成果ꎬ在以往分析指标的基础上ꎬ增加了与航道回淤紧密相关的 底层低流速期历时和含沙量 指标ꎬ其中底层低流速期指底层流速ɤ0.5m/s时段ꎮ剔除了在南坝田挡沙堤工程后评价过程中发现不适合作为减淤效果的主要判别依据的落潮优势流指标ꎮ本次方案减淤效果比选的主要指标包括:北槽四边界水沙通量㊁北槽涨落潮流场及流态㊁北槽航道低流速期历时和含沙量变化㊁北槽地形调整情况㊁深水航道回淤量等ꎮ方案影响类指标包括分流比㊁南槽水沙通量㊁北槽盐度㊁周边水域潮位ꎬ关注对象包括九段沙㊁南槽和南港等周边河段ꎮ3.4㊀南导堤加高方案比选南导堤加高方案研究通过 方案初步筛选 和 方案综合比选 两个阶段研究得到推荐方案(图5)ꎮ其中ꎬ方案初步筛选包括 加高范围㊁加高高程 比选ꎬ方案综合比选为南导堤和南坝田挡沙堤两个加高位置的技术经济综合比选ꎮ在推荐方案的基础上ꎬ综合考虑工程流场㊁泥沙场的调整效果㊁航道减淤效果以及可能的附加影响ꎬ按照 积极稳妥 的原则ꎬ研究提出了先期实施方案ꎬ后期根据工程实施效果和对周边影响的评估结果ꎬ再决策是否进一步加高ꎮ图5㊀减淤方案研究流程框图Fig.5㊀Flowchartofstudyonsiltationreductionproject4㊀减淤方案比选与推荐4.1㊀加高范围方案选根据南导堤越堤沙量分布特征ꎬS3~S4丁坝区段南侧为九段沙滩顶ꎬ越水越沙量相对较小ꎻS4丁坝以下至南导堤末端为越水越沙集中段ꎻS3丁坝以上九段沙窜沟和江亚南沙窜沟越堤水沙量相对较大ꎮ因此ꎬ选择南导堤上段加高㊁下段加高和全段加高三组不同加高范围的方案进行比选ꎬ各方案均加高至+5.0m(基本出水)ꎮ经比选ꎬ南导堤下段加高方案与南导堤全段加高方案减淤效果较为接近ꎬ而单独加高南导堤上段方案回淤量减小不明显ꎻ且南导堤下段加高对周边影响相对最小ꎬ因此南导堤加高范围推荐减淤效果较好且投资相对较少的下段加高方案ꎮ4.2㊀加高高程方案选南导堤越水越沙发生在潮位高于南导堤顶高程+2.0m以上ꎬ从南导堤越堤泥沙对应水位分析ꎬ南导堤沿线越堤水沙量较大时刻水位基本在+4.2m~+4.5mꎬ沿堤水位并无明显变化规律ꎬ本次加高高程沿程一致ꎮ32第4期应㊀铭ꎬ等:长江口12.5米深水航道南坝田挡沙堤加高工程总平面方案研究根据2012年洪季越堤水沙通量连续7天观测资料统计不同水位之上越堤水沙量得到(图6)ꎬ若南导堤S3.5以下区段加高至+3.5m㊁+4.0m㊁+4.5m和+5.0m不同高程大中小潮累计拦截+2.0m以上越堤潮量比率分别为71%㊁90%㊁98%和100%ꎻ大中小潮累计拦截沙量比率分别为63%㊁85%㊁97%和100%ꎮ加高至+4.5m与+5.0m拦截越堤水沙量相近ꎮ经比选ꎬ加高高程越高ꎬ减淤效果越好ꎬ+4.5m方案回淤量减幅与+5.0m方案效果基本接近ꎬ数模计算减淤幅度约17.1%~18.0%ꎬ而工程费用当高程高于+4.5m时增加幅度较大ꎮ综合减淤效果和投资效益看ꎬ推荐南导堤下段加高+4.5m加高方案ꎮ图6㊀南导堤加高至不同顶高程拦截越堤水沙量比率(以2012年洪季连续7天观测资料统计)㊀Fig.6㊀Blockedratiosoftidalandsedimentdischargesatdifferentheightenedelevations(basedon7daysofconsecutiveobservationdataduringthe2012floodseason)4.3㊀方案综合比选为阻挡南导堤越堤水沙进入北槽ꎬ加高位置可以选择在南导堤自身基础上加高ꎬ也可以选择在已建南坝田挡沙堤的基础上加高ꎮ需通过技术经济综合比选ꎬ充分论证两个加高位置方案的减淤效果㊁技术可行性㊁施工条件以及外部条件ꎬ推荐较优方案ꎮ南导堤下段加高+4.5m方案(方案一)和南坝田挡沙堤加高+4.5m方案(方案二)两个比选方案的减淤效果基本相当和对周边影响均较小ꎻ两个方案实施技术可行ꎬ但南导堤加高施工条件相对稍差ꎻ南导堤下段加高方案(方案一)工程费用较低ꎮ从以上技术经济比选ꎬ南导堤下段加高方案(方案一)相对南坝田挡沙堤加高方案(方案二)更优ꎮ但南导堤轴线是九段沙湿地国家级自然保护区北界ꎬ且南导堤下段核心区㊁缓冲区和试验区三线合一ꎬ为尽量减少对国家级自然保护区的影响ꎬ推荐减淤效果相当㊁对周边影响同样较小的南坝田挡沙堤加高方案(方案二)ꎮ5㊀分期实施及先期工程效果预测5.1㊀先期工程方案平面布置南坝田挡沙堤加高+3.5m方案(图7)ꎬ位于S4~S9丁坝坝田ꎬ主要在现有南坝田挡沙堤的基础上加高S4~S8区段ꎬ并延长至S9丁坝ꎮ该工程全长约23.8kmꎬ高程+3.5mꎮ图7㊀南坝田挡沙堤加高工程先期实施方案平面示意Fig.7㊀ThesketchmapofjettyheighteningprojectintheSouthernGroinField42海㊀㊀洋㊀㊀工㊀㊀程第38卷5.2㊀先期工程方案效果分析5.2.1㊀北槽水沙通量变化与总体方案(+4.5m)相比ꎬ先期工程方案加高高程降低后ꎬ北槽四边界7天大中小潮水沙通量变化趋势定性一致ꎬ变化幅度减小ꎮ先期工程方案实施后ꎬ北槽四边界水沙通量变化如下(表3㊁4)ꎮ1)南导堤进潮量和进沙量整体减小ꎬ其中南导堤下段(S3.5以下区段ꎬ下同)明显减小ꎬ南导堤上段(S3.5以上区段ꎬ下同)增大:南导堤下段进潮量由74ˑ108m3减小至34ˑ108m3ꎬ进沙量由75ˑ108kg减小至28ˑ108kgꎻ南导堤上段进潮量由11ˑ108m3增加至16ˑ108m3ꎬ进沙量由11ˑ108kg增加至15ˑ108kgꎮ南导堤出潮量和出沙量变化小ꎮ2)由于南导堤越堤水沙量减小ꎬ北槽水沙横向输移减弱ꎬ北导堤出潮量由92ˑ108m3减小至74ˑ108m3ꎬ出沙量由45ˑ108kg减小至32ˑ108kgꎮ北导堤进潮量和进沙量变化小ꎮ3)北槽上口进入北槽潮量由105ˑ108m3略增至107ˑ108m3ꎬ进沙量由45ˑ108kg略增至47ˑ108kgꎻ出潮量由54ˑ108m3略减至50ˑ108m3ꎬ出沙量由23ˑ108kg减小至22ˑ108kgꎮ4)北槽下口进潮量由98ˑ108m3略增至111ˑ108m3ꎬ由于含沙量水平降低ꎬ进沙量由35ˑ108kg略减至34ˑ108kgꎻ北槽下口出潮量由141ˑ108m3略增至143ˑ108m3ꎬ由于北槽内含沙量水平降低ꎬ出沙量大幅减小ꎬ由93ˑ108kg降至75ˑ108kgꎮ表3㊀数模计算北槽4边界潮通量变化表Tab.3㊀ThechangeoftidaldischargeatthefourboundariesoftheNorthChannel边界本底总体方案先期工程方案进槽/ˑ108m3出槽/ˑ108m3进槽/ˑ108m3出槽/ˑ108m3进槽/ˑ108m3出槽/ˑ108m3北槽上口105541074810750北槽下口98141122143111143北导堤5.7926.0625.974南导堤856.7279.2507.3南导堤上111.3171.1161南导堤下745.5108346.2表4㊀数模计算北槽4边界7天沙通量变化表Tab.4㊀ThechangeofsedimentdischargeatthefourboundariesoftheNorthChannel边界本底总体方案先期工程方案进槽/ˑ108kg出槽/ˑ108kg进槽/ˑ108kg出槽/ˑ108kg进槽/ˑ108kg出槽/ˑ108kg北槽上口452347214722北槽下口359338693475北导堤2452242.032南导堤864.5226.9446南导堤上110.8160.6150.5南导堤下753.85.76.2285.55.2.2㊀北槽流场变化方案实施后ꎬ航道沿程落急流速分布与本底基本一致(图8)ꎬ涨急流速北槽中下段增幅小于0.10m/sꎬ上段最大减小0.10m/sꎮ先期工程方案实施后ꎬ北槽中下段横流明显减小(图9)ꎬ往复流特征更加明显ꎬ尤其是涨潮期由南侧边滩往航道方向的流速分量明显减小ꎬ该流速流向变化特征将有利于减少南侧高浓度泥沙进入航槽ꎮ52第4期应㊀铭ꎬ等:长江口12.5米深水航道南坝田挡沙堤加高工程总平面方案研究图8㊀先期工程方案涨落急流速变化Fig.8㊀Thechangesofpeakvelocityduringperiodoffloodandebb图9㊀先期实施方案北槽中下段流矢变化Fig.9㊀Thechangesofvelocityanddirectionofflowbeforeandaftertheproject5.2.3㊀低流速期历时和含沙量变化从低流速期历时变化看(图10)ꎬ由于涨潮流速增加ꎬ北槽下段低流速历时有所减小ꎬ但减小幅度变小ꎮ三维数模计算的含沙量场结果反映了工程实施后阻挡越堤泥沙进入北槽和北槽流场变化对含沙量场的综合影响ꎬ计算结果表明ꎬ先期工程方案实施后挡沙效果依然明显ꎬ北槽中下段低流速期含沙量减小ꎬ减幅为1~2kg/m3左右(图11)ꎮ图10㊀先期实施方案全潮低流速历时沿程变化Fig.10㊀Thechangesoftheperiodoflowvelocityduringwholetide图11㊀先期实施方案全潮低流速期含沙量沿程变化Fig.11㊀Thechangesofsuspendedsedimentconcentrationduringtheperiodoflowvelocityduringwholetide62海㊀㊀洋㊀㊀工㊀㊀程第38卷5.2.4㊀地形调整情况和减淤效果南坝田挡沙堤加高方案对北槽河床地形影响较小ꎬ扣除本底方案后ꎬ北槽主槽河床基本冲淤平衡ꎬ工程实施后不会对北槽河床有明显的调整作用ꎮ航道回淤量变化是含沙量㊁流速㊁流向等各指标变化的综合结果ꎬ利用三维潮流泥沙数模计算先期方案实施后ꎬ航道常态回淤的减淤幅度约10%ꎬ减淤区段主要分布在北槽中下段(图12)ꎮ图12㊀先期实施方案后预测航道回淤沿程变化Fig.12㊀Thepredictedchangesofchannelsiltationdistribution5.3㊀先期工程方案影响分析先期工程方案实施后ꎬ北槽落潮分流比增大0.1个百分点ꎻ南港涨落潮流速增幅较小ꎬ最大增幅仅为0.02m/sꎬ对南港外高桥港区基本无影响ꎬ长兴水道涨落潮潮流速基本不受影响ꎻ南槽航道落潮流速基本没有变化ꎻ涨潮流速主要以增加为主ꎬ增幅在0.01~0.03m/sꎻ九段沙滩面涨潮流速最大减幅可达0.14m/sꎬ落潮流速最大减幅约0.05m/sꎮ加高至+4.5m方案对周边影响均较小ꎮ与加高至+4.5m方案相比ꎬ先期工程方案对周边影响指标变幅均有减小ꎬ加高高程降低后ꎬ工程对周边水域的影响的程度进一步降低ꎬ先期工程方案不会对长江口整体河势㊁以及周边滩槽产生明显的负面影响ꎮ6㊀先期工程实施效果2016年7月南坝田挡沙堤加高先期工程主体工程完工后有利地改善了北槽内水沙环境ꎬ对北槽航道减淤起到了主要作用ꎮ根据第三方开展的减淤效果评价[8]ꎬ2016 2018年深水航道北槽段(B ̄III ̄I单元)常态回淤量平均为4455ˑ105m3ꎬ与工程前2015年的5409ˑ105m3相比ꎬ年常态回淤量平均值减小了954ˑ105m3(表5)ꎬ减少幅度为17.6%ꎬ达到了工可阶段常态回淤量减淤幅度10%的预期目标ꎮ工程对南港㊁南槽㊁北槽上段和九段沙等周边滩槽水动力㊁地形和环境等影响不明显ꎮ深水航道北槽段维护疏浚综合单价以18.6元/m3计ꎬ三年工程已节约维护费用约5亿元ꎮ表5㊀工程实施前后深水航道北槽段常态回淤量变化表Tab.5㊀Changesofthenormalsiltationamountinthenorthernchannelsectionofthedeepwaterchannel工程后时段工程后年回淤量/105m3工程前回淤量/105m3减淤量/105m3减淤幅度/(%)2016年7月-2017年6月45362017月1-12月47232018月1-12月4105平均4455以2015年为本底5409-873-16.1-686-12.7-1304-24.1-954-17.6注: - 表示减少ꎬ + 表示增加ꎮ7㊀结㊀语通过北槽四边界水沙通量观测等实测资料分析ꎬ针对回淤原因ꎬ在总结已建减淤工程实践经验的基础72第4期应㊀铭ꎬ等:长江口12.5米深水航道南坝田挡沙堤加高工程总平面方案研究82海㊀㊀洋㊀㊀工㊀㊀程第38卷上ꎬ提出本次的减淤思路及减淤方案研究思路ꎬ通过方案比选得到长江口12.5米深水航道减淤工程推荐方案ꎬ并对工程实施后的减淤效果进行了分析ꎬ结论如下:1)南导堤越堤泥沙是北槽的重要泥沙来源ꎬ对北槽高浓度含沙量场有一定贡献ꎻ且南导堤越堤泥沙主要通过南导堤中下段进入北槽ꎮ2)研究提出了以 挡沙 减少北槽南导堤涨潮越堤泥沙㊁改善中下段流态的减淤工程 长江口12.5米深水航道减淤工程南坝田挡沙堤加高工程ꎬ并积极稳妥地提出了分两期加高ꎮ3)先期工程总平面布置为:加高现有南坝田挡沙堤S4~S8区段ꎬ新建S8~S9区段挡沙堤ꎬ总长约23.8kmꎬ堤顶高程均为+3.5mꎮ4)先期工程实施后ꎬ年均常态回淤量降低约954ˑ105m3ꎬ降幅约17.6%ꎬ工程减淤幅度达到10%的预期目标ꎬ且工程基本无不利影响ꎮ参考文献:[1]㊀交通运输部长江口航道管理局.长江口深水航道治理工程实践与创新[M].北京:人民交通出版社股份有限公司ꎬ2015.(YangtzeEstuaryWaterwayAdministrationBureauoftheMinistryofTransport.PracticeandInnovationintheYangtzeEstuaryDeepwaterChannelImprovementProject[M].Beijing:ChinaCommunicationPressCo.Ltd.ꎬ2015.(inChinese)) [2]㊀金鏐. 导流㊁挡沙㊁减淤 长江口深水航道治理设计思想的新飞跃 纪念敬爱的窦国仁院士[J].海洋工程2001ꎬ19(3):3 ̄4.(JINLiu. Diversionꎬsandcontrolꎬsiltreduction anewleapforwardinthedesignoftheYangtzeEstuarydeep ̄waterchannelproject inhonoroftherespectedacademicianDouGuoren[J].TheOceanEngineeringꎬ2001ꎬ19(3):3 ̄4(inChinese))[3]㊀应铭ꎬ季岚ꎬ周海.长江口北槽12.5m深水航道回淤的物理过程[J].水运工程ꎬ2017(11):77 ̄85.(YINGMingꎬJILanꎬZHOUHai.StudyonsiltationphysicalprocessoftheYangtzeestuaryNorthpassage12.5mdeep ̄draftchannel[J].Port&WaterwayEngineeringꎬ2017(11):77 ̄85.(inChinese))[4]㊀北槽四边界水沙通量观测技术报告[R].上海:上海河口海岸科学研究中心ꎬ2013.(Technicalreportonwaterandsedimentchargeobservationatthefourboundaryofnorthchannel[R].Shanghai:ShanghaiEstuarineandCoastalScienceResearchCenterꎬ2013.(inChinese))[5]㊀南港 北槽深水航道常态回淤原因研究[R].上海:中交上海航道勘察设计研究院有限公司ꎬ2014.(StudyonthecausesofnormalsiltationofthedeepchannelintheNorthChannelandSouthpassage[R].Shanghai:ShanghaiWaterwayEngineeringDesignandConsultingCo.Ltd.ꎬ2014.(inChinese))[6]㊀刘杰ꎬ王元叶ꎬ赵德昭ꎬ等.长江口北槽悬沙来源的观测与分析[J].泥沙研究ꎬ2015(5):19 ̄23.(LIUJieꎬWANGYuanyeꎬZHAODezhaoꎬetal.StudyonsuspendedsedimentsourcesintheNorthPassageoftheYangtzeEstuary[J].JournalofSedimentResearchꎬ2015(5):19 ̄23.(inChinese))[7]㊀刘杰ꎬ乐嘉海ꎬ胡志峰ꎬ等.长江口深水航道治理一期工程实施对北槽拦门沙的影响[J].海洋工程ꎬ2003ꎬ21(2):58 ̄64.(LIUJieꎬLEJiahaiꎬHUZhifengꎬetal.TheinfluenceontheNorthPassagebarafterexecutingthefirstphaseregulationprojectoftheYangtzeestuary[J].TheOceanEngineeringꎬ2003ꎬ21(2):58 ̄64.(inChinese))[8]㊀长江口12.5米深水航道减淤工程南坝田挡沙堤加高工程减淤效果分析报告[R].天津:交通运输部天津水运工程科学研究所ꎬ2018.(AnalysisreportofreducingsiltationeffectofthejettyheighteningprojectintheSouthernGroinFieldofYangtzeestuary12.5mDeep ̄draftWaterway[R].Tianjin:TianjinWaterTransportationEngineeringResearchInstituteoftheMinistryofTransportꎬ2018.(inChinese))。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

75南沙头通道及横沙通道对长江口深水航道的影响分析陈 维1, 匡翠萍1, 顾 杰2, 秦 欣2(1. 同济大学 土木工程学院, 上海200092; 2.上海海洋大学 海洋科学学院, 上海201306)摘要: 根据长江口南沙头通道、横沙通道和南北槽分汊口的断面水深变化及长江口南北港和南北槽的分流比变化实测资料, 分析了长江口北槽深水航道淤积的原因。

结果表明, 北槽深水航道上段淤积受多种因素影响, 其中, 南沙头通道和横沙通道的发展对深水航道影响最大。

南沙头通道的发展在加大落潮流量的同时, 对南港南岸会产生一定的冲刷, 后经沙洲的阻挡, 把泥沙带向南港北岸, 在北槽进口段处落淤, 直接影响了进入深水航道的落潮量; 横沙通道由于直接贯通了北港北槽的水沙交换, 因而削弱了南港和北槽之间的水沙交换, 促使北槽深水航道上段产生淤积, 这也是南槽河道上段刷深的一个主要原因, 而南槽河道的发展必然减少了进入北槽的落潮量, 进一步加剧了北槽深水航道上段的淤积。

同时, 科氏力与北槽南导堤分流口鱼咀工程对深水航道也造成了一定的不可忽视的影响。

研究成果对治理北槽深水航道淤积问题保障深水航道正常运行具有十分重要的科学实践意义。

关键词: 南沙头通道; 横沙通道; 深水航道; 河势; 冲淤变化中图分类号: P737.12 文献标识码: A 文章编号: 1000-3096(2013)04-0075-06自从1998年长江口北槽深水航道工程开工建设以来, 对长江口局部地区水动力条件特别是南支产生了很大的影响, 许多学者对北槽水动力及泥沙特性做了相关的研究[1-5], 严以新等[6]根据长江口深水航道治理工程一、二、三期及远景规划, 对南北槽河势的发展进行了分析计算, 认为北槽落潮分流比将维持在48%左右; 郁微微等[7]建立了一个长江口二维潮流场数值模型, 分别对深水航道工程实施前后进行了计算, 计算结果表明深水航道工程对长江口流速及南北槽进口断面潮量的影响较大; 刘杰等[8]对长江口深水航道治理一期工程实施后北槽冲淤进行了分析, 认为一期工程实施后北槽上段河床进入冲刷调整期; 郑宗生等[9]利用地理信息系统建立了不同时期的长江口水下数字高程模型, 对长江口北槽航道水下地形变化进行了定量分析, 认为一、二期工程完成后, 增加了主槽流速, 减少了航道回淤; 杜景龙等[10]在地理信息系统软件mapinfo 的支持下, 分析了北槽深水航道工程对九段沙冲淤演变的影响, 认为九段沙东侧水下三角洲受工程的影响, 淤积速率持续降低并且底端发生冲刷。

目前, 北槽深水航道上段淤积较为严重, 本文根据南沙头通道水深变化、横沙通道断面水深变化、南北槽分汊口断面水深变化、南北港分流比变化及南北槽分流比变化实测资料来分析北槽深水航道上段淤积的原因。

1 长江口北槽深水航道工程介绍长江口是一个分汊型河口, 它是在径流量大、泥沙丰富、潮流亦强的特定条件下形成的[6]。

长江口在徐六泾以下, 由崇明岛分隔为南支和北支, 南支河段在浏河口以下又被长兴岛和横沙岛分隔为南港与北港, 南港在九段以下再被九段沙分隔为南槽与北槽, 形成三级分汊、四口入海的格局[1](图1)。

图1 长江口河势现状图Fig. 1 The Changjiang River Estuary收稿日期: 2011-11-14; 修回日期: 2013-01-30 基金项目: 上海市教委重点学科项目(J50702)作者简介: 陈维(1987-), 女, 湖南常德人, 博士研究生, 主要从事河口海岸及港口工程研究; 顾杰, 通信作者, 男, 教授, 博士, 江苏兴化人, 主要从事水文、海岸工程和环境工程等研究, E-mail: jgu@76海洋科学/ 2013年/第37卷/第4期长江口深水航道工程分为三期, 一期工程于1998年1月27日正式开工, 至2000年3月完成, 修筑南导堤30.0 km 、北导堤27.89 km, 建丁坝10座, 总长11.19 km, 在分流口修筑鱼咀工程南线堤 1.6 km, 潜堤3.2 km, 航道底宽扩宽至300 m(口外段350 m), 水深从7 m 达到8.5 m, 航道长达到 51.77 km 。

二期工程于2002年4月开工, 至2004年12月完成, 南导堤向外延伸至48.077 km, 北导堤向外延伸至49.2 km, 新建二期丁坝9座, 总长14.3 km, 续建一期丁坝5座, 总加长4.6 km, 航道底宽扩宽至350 m(口外段400 m), 设计水深10.0 m, 航道总长74.47 km 。

三期工程于2006年9月30日开工, 在长兴岛尾南侧新建 2 km 的长兴潜堤, 疏浚航道 90.8 km, 形成全长92.2 km 、宽350~400 m 、水深 12.5 m 的双向航道(图2) [11]。

图2 长江口深水航道工程示意图Fig. 2 Sketch map of deepwater navigation channel in theChangjiang River Estuary2 长江口河势演变分析2.1 南支河势演变分析南支河段以七丫口为界分为上、下两段。

上段全长约35.0 km, 为双分汊河型, 河段相对稳定。

下段全长35.5 km, 又称三沙河段(扁担沙、新浏河沙、中央沙), 为多分汊河型, 是长江口最不稳定的河段, 具体表现为洲滩游移不定(俗称三沙游荡), 动力条件复杂, 滩槽易位, 冲淤多变[12]。

扁担沙分河道为南支主槽和新桥水道。

南支主槽在宝山水库附近分三股水流分别进入南、北港, 其中新浏河沙与南岸之间为新宝山水道, 通往南港; 新浏河沙与中央沙之间为南沙头通道, 通往南港; 扁担沙与中央沙之间的通道为新桥通道, 是通往北港的主要水道。

2.1.1 南沙头通道对南港及北槽的影响1979年洪水后, 扁担沙南部的沙体在落潮流顶冲下脱离扁担沙, 成为心滩沙洲, 称南沙头, 南沙头与中央沙之间的南沙头通道也随之形成。

1986年, 新浏河沙体与南沙头合并, 称新浏河沙 [12]。

图3为南沙头通道处横断面1983~2005年的水深变化图[13], 起点距离是从南到北, 从图中可以看出, 该断面处于南、北港分汊口处, 河势一直处于不稳定状态。

1983~1984年, 南港主河道基本上位于河道中央, 南沙头通道水深大致在8 ~10 m; 1986年, 南港主河道深泓向北偏移, 受此深泓偏移的影响,新浏河沙向北移动, 南沙头通道最深处水深维持在10 m 左右; 到了1995年, 南港原主河道严重淤积, 近南岸河床受到冲刷成为主河道, 深泓靠南岸, 南沙头通道受到冲刷, 水面拓宽, 最深处超过12 m; 两年后(1997年), 南港近南岸的主河道被淤积, 河道深泓偏向北岸, 而南沙头通道被淤积, 最深处仅5 m, 且通向北港的通道被刷深; 至2005年, 南沙头通道渐被刷深, 最深处达14 m 。

此后数年, 南沙头通道一直在扩大。

2008年, 南沙头通道入口实施了护底工程, 目的是为了抑制该通道的发展, 同时也为了归顺南港水流, 但南沙头通道的水流对南港河道的影响却仍然存在着不确定的因素。

图4是南、北港1958~2007年50年间的落潮分流比变化过程, 从图中可以看出, 1958年至1963年, 南、北港分流比接近50%, 南、北港分流处于较为稳定的时期。

1964年开始北港分流比大于南港, 直至1979年两者分流比又基本相等, 但自从1979年南沙头通道形成后, 从1980年至1994年, 北港分流比小于南港, 南沙头通道起到了增加南支水流进入南港的作用。

1995年至2002年, 北港分流比增大, 且大于南港, 这期间南沙头通道得到拓宽, 新宝山水道淤积严重, 南沙头通道对新宝山水道的影响不可忽视。

特别是2002年, 北港分流比远大于南港, 南沙头通道不仅刷深, 其入口也向北明显偏移。

2007年, 南港分流比有所增大, 这与南沙头通道动摇不定仍然存在着一定的关系。

现南沙头通道与南港南岸的夹角约为45°[14], 落潮时, 由于增加了横向流速, 不仅对新宝山水道水流产生一定的抑制作用, 同时由于横向流速会产77图3 南支南沙头通道横断面1从1983~ 2005年水深变化图Fig. 3 Water depth variation along a cross-section of the Nanshatou Passage in the South Branch from 1983 to 2005图4 南、北港1958~2007年落潮分流比变化过程Fig. 4 Ebb flow split ratios of the South and the NorthChannel from 1958 to 2007生环流, 增加了水流在南港的停留时间, 这对泥沙向下输送产生不利的影响; 此外, 南沙头通道水流对南港南岸也会产生一定的冲刷作用, 经南岸沙洲的阻挡及黄浦江水流的作用, 把泥沙带向南港北岸, 在北槽进口段前产生淤积; 此外落潮流由于此沙洲的影响, 流向偏向南槽, 减弱了进入北槽深水航道的水量, 从而引起北槽深水航道上段的淤积。

2.1.2 横沙通道对北槽的影响横沙通道为1954年特大洪水造床作用在口门地区与北槽同期塑造的新生汊道, 位于长兴岛和横沙岛之间, 是长江口水域唯一一条独立的、南北向连通的通道, 两侧分别连接长江口最大的两个入海通道——北港与北槽, 是北港和北槽入海前的勾通交换渠道, 也是它们之间进行水沙交换的重要通道。

目前该通道平均宽约1 200 m, 长约8 000 m, 贯通水深约为10 m [12]。

近半个世纪以来, 横沙通道经历了冲刷扩大、中段淤积及束窄加深3个阶段, 横沙通道发展变化的原因是由于河口汊道潮波变形引起的相位差, 表现形式为横向汊道两端存在横比降, 且北口潮差大于南口。

而南北水位的差值洪季大于枯季, 大潮大于小潮。

潮差及潮汐相位的不同组合, 使得横沙通道的水流产生较大的变化。

当水面横比降减小时, 通道涨落潮流速减缓, 导致悬沙淤积, 反之则引起河底冲刷。

特别是北港深槽往南摆移, 有利于潮流与横沙通道的交换, 对横沙通道的水深变化起着重要的作用。

图5是横沙通道南北口横断面1997~2009年水深变化[15], 起点距离是从西到东, 从北口断面可以看出: 1997年, 横沙通道北口断面河宽约为1 000 m, 河型呈“V ”型, 深泓偏横沙岛一侧, 最大水深约为14 m; 2001年, 北口断面整体被冲刷, 刷深范围为1~2 m, 横沙岛一侧冲刷程度较长兴岛一侧大, 且深泓向横沙岛一侧偏移了100 m 左右; 2004年, 北口断面总体冲刷, 深泓向横沙岛一侧偏移, 河道扩宽约200 m; 2009年, 北口断面进一步冲刷, 深泓再向横沙岛一侧偏移, 深泓刷深约2 m 左右。

相关文档
最新文档