《直线与平面平行的判定》教学设计
直线与平面平行的判定定理教案
![直线与平面平行的判定定理教案](https://img.taocdn.com/s3/m/82782a705627a5e9856a561252d380eb629423d2.png)
直线与平面平行的判定定理教案在几何学中,判定直线与平面是否平行是非常重要的基础知识。
本教案将介绍直线与平面平行的判定定理,帮助学生更好地理解和掌握这一知识点。
一、直线与平面平行的判定定理1. 定理一:一条直线与平面平行的充分必要条件是,这条直线与平面内一条直线平行。
证明:设直线l与平面α平行,直线m与平面α内一条直线平行。
不妨设直线m与直线l相交于点A,过点A作平面α的一条平行直线n。
则直线l与平面α平行,直线m与平面α内一条直线平行,因此直线l与直线m平行,即得证。
2. 定理二:一条直线与平面平行的充分必要条件是,这条直线与平面内一条平行线的垂线平行。
证明:设直线l与平面α平行,直线m与平面α内一条平行线的垂线平行。
不妨设直线m与直线l相交于点A,过点A作平面α的一条平行线n。
则直线l与平面α平行,直线m与平面α内一条平行线的垂线平行,因此直线l与直线m平行,即得证。
二、教学重点与难点1. 教学重点:理解直线与平面平行的判定定理,掌握定理的证明方法。
2. 教学难点:理解平面内平行线的垂线平行的概念,掌握直线与平面平行的判定方法。
三、教学过程与方法1. 导入:通过提出问题引导学生思考直线与平面平行的概念,激发学生的学习兴趣。
2. 讲解:通过示意图和具体例题,讲解直线与平面平行的判定定理,引导学生理解定理的含义和应用方法。
3. 练习:让学生进行练习,通过多个例题加深对直线与平面平行的判定方法的理解,提高解题能力。
4. 总结:对直线与平面平行的判定定理进行总结,强调定理的重要性和应用范围。
四、教学反思与展望直线与平面平行的判定定理是几何学中的基础知识,理解和掌握这一定理对学生的几何学学习至关重要。
本教案通过系统的讲解和练习,帮助学生掌握直线与平面平行的判定方法,提高解题能力。
在未来的教学中,可以通过更多的实例和练习,进一步巩固学生的理解和应用能力,帮助他们更好地掌握直线与平面平行的判定定理。
直线与平面平行判定定理说课教案
![直线与平面平行判定定理说课教案](https://img.taocdn.com/s3/m/9f96d68dcf2f0066f5335a8102d276a2002960bb.png)
直线与平面平行判定定理说课教案第一章:直线与平面平行的概念引入教学目标:1. 让学生理解直线与平面平行的基本概念。
2. 培养学生运用几何图形进行直观思考的能力。
教学内容:1. 直线与平面平行的定义。
2. 直线与平面平行的判定条件。
教学步骤:1. 引入直线与平面平行的概念,通过实物模型或图形进行展示,让学生感受直线与平面平行的直观形象。
3. 讲解直线与平面平行的判定条件,引导学生理解并掌握判定方法。
巩固练习:2. 利用直线与平面平行的判定条件,证明一条直线与一个平面平行。
第二章:直线与平面平行判定定理的证明教学目标:1. 使学生理解直线与平面平行判定定理的内容。
2. 培养学生运用逻辑推理和几何证明的能力。
教学内容:1. 直线与平面平行判定定理的表述。
2. 直线与平面平行判定定理的证明过程。
教学步骤:1. 引入直线与平面平行判定定理,让学生理解定理的含义。
2. 讲解直线与平面平行判定定理的证明过程,引导学生理解并掌握证明方法。
3. 通过图形示例,让学生运用直线与平面平行判定定理进行判断。
巩固练习:1. 证明一条直线与一个平面平行。
第三章:直线与平面平行判定定理的应用教学目标:1. 使学生掌握直线与平面平行判定定理的应用方法。
2. 培养学生运用定理解决实际问题的能力。
教学内容:1. 直线与平面平行判定定理在实际问题中的应用。
2. 直线与平面平行判定定理在其他几何问题中的应用。
教学步骤:1. 讲解直线与平面平行判定定理在实际问题中的应用,引导学生运用定理解决问题。
2. 引导学生思考直线与平面平行判定定理在其他几何问题中的应用,如证明定理、求解几何问题等。
巩固练习:第四章:直线与平面平行判定定理的综合训练教学目标:1. 使学生熟练掌握直线与平面平行判定定理。
2. 培养学生运用定理解决综合问题的能力。
教学内容:1. 直线与平面平行判定定理的综合应用。
2. 直线与平面平行判定定理与其他几何定理的关联。
教学步骤:1. 给出直线与平面平行判定定理的综合应用问题,引导学生运用定理解决问题。
直线与平面平行的判定定理教学设计(教案)
![直线与平面平行的判定定理教学设计(教案)](https://img.taocdn.com/s3/m/ca6bd6744a73f242336c1eb91a37f111f1850d22.png)
直线与平面平行的判定定理教学设计(教案)一、教学目标1. 让学生理解直线与平面平行的概念。
2. 引导学生掌握直线与平面平行的判定定理。
3. 培养学生的空间想象能力和逻辑思维能力。
二、教学内容1. 直线与平面平行的定义。
2. 直线与平面平行的判定定理。
三、教学重点与难点1. 教学重点:直线与平面平行的判定定理及其证明。
2. 教学难点:直线与平面平行的判定定理的证明和应用。
四、教学方法1. 采用问题驱动法,引导学生探究直线与平面平行的判定定理。
2. 利用几何模型和动画,直观展示直线与平面平行的判定过程。
3. 设计典型例题,培养学生运用判定定理解决问题的能力。
五、教学过程1. 导入新课:通过生活中的实例,引导学生思考直线与平面之间的关系。
2. 讲解直线与平面平行的定义,让学生明确直线与平面平行的概念。
3. 引导学生探究直线与平面平行的判定定理,讲解定理的证明过程。
4. 利用几何模型和动画,直观展示直线与平面平行的判定过程,加深学生理解。
5. 设计典型例题,引导学生运用判定定理解决问题,巩固所学知识。
6. 课堂小结:总结本节课的主要内容和知识点。
7. 布置作业:布置一些有关直线与平面平行的判定定理的练习题,巩固所学知识。
这五个章节的内容是教案的核心部分,后续的章节可以根据这五个章节的内容进行扩展和延伸。
希望这个教案能对你有所帮助!六、教学评估1. 课堂提问:通过提问了解学生对直线与平面平行判定定理的理解程度。
2. 作业批改:检查学生作业,了解学生对直线与平面平行判定定理的掌握情况。
3. 课堂练习:设计一些有关直线与平面平行的判定定理的练习题,让学生当堂练习,及时了解学生学习效果。
七、教学策略的调整1. 根据学生掌握情况,对直线与平面平行判定定理的讲解进行调整,使之更易于学生理解。
2. 对于学习有困难的学生,提供个别辅导,帮助他们理解直线与平面平行的判定定理。
3. 对于理解较深刻的学生,提供一些拓展性的问题,激发他们的思维。
直线与平面平行的判定教案
![直线与平面平行的判定教案](https://img.taocdn.com/s3/m/5f147ca6541810a6f524ccbff121dd36a32dc437.png)
直线与平面平行的判定教案一、教学目标通过本教案的学习,学生将能够:1.理解直线与平面平行的概念;2.掌握判断直线与平面平行的方法;3.运用所学知识解决相关问题。
二、教学内容1.直线与平面的概念回顾;2.直线与平面平行的定义;3.判断直线与平面平行的几何方法。
三、教学过程步骤一:直线与平面的概念回顾(15分钟)1.复习直线的定义:直线是由无数个点连成的,延伸方向两个方向无限延伸的线段。
2.复习平面的定义:平面是由无数个点组成的,延伸方向无限延伸的二维空间。
3.引导学生回忆直线和平面的特性,如直线上的两点确定一条直线,平面上的三点不共线,等。
步骤二:直线与平面平行的定义(10分钟)1.定义:直线与平面平行是指直线与平面上的所有点之间没有交点。
2.解读定义:当直线在平面上移动时,不与平面相交。
3.引导学生理解平行的概念,即两者间没有交点,彼此永不相交。
步骤三:判断直线与平面平行的几何方法(30分钟)1.法一:垂直关系判断法。
a.若直线与平面的任意一条线段垂直,则直线与平面平行。
b.示意图:垂直关系判断示意图2.法二:法向量判断法。
a.若直线的方向向量与平面的法向量垂直,则直线与平面平行。
b.示意图:法向量判断示意图3.法三:点判断法。
a.若直线上的一点在平面上,则直线与平面平行。
b.示意图:点判断示意图步骤四:练习与解答(25分钟)1.给出几个直线和平面的示例,要求学生通过判断法判断其是否平行,并解释判断思路。
2.给出一些实际生活中的问题,要求学生用直线与平面平行的判断方法解决,并说明解决思路。
四、教学通过本节课的学习,我们了解了直线与平面的平行关系,并学会了几种判断直线与平面平行的方法。
这些方法能够帮助我们在几何问题中准确判断直线与平面是否平行,并给出合理解释。
通过练习与实际问题的解决,我们不仅加深了对知识的理解,还培养了我们分析和解决问题的能力。
希望同学们能够通过不断练习和应用,掌握判断直线与平面平行的技巧,并将其应用到实际学习和生活中。
直线与平面平行的判定定理教学设计(教案)
![直线与平面平行的判定定理教学设计(教案)](https://img.taocdn.com/s3/m/aabf321a326c1eb91a37f111f18583d048640f74.png)
直线与平面平行的判定定理教学设计(教案)第一章:教学目标1.1 知识与技能让学生掌握直线与平面平行的判定定理,并能够运用该定理判断直线与平面的位置关系。
1.2 过程与方法通过观察实例,引导学生发现直线与平面平行的判定规律,培养学生运用几何推理解决问题的能力。
1.3 情感态度与价值观激发学生对几何学的兴趣,培养学生的逻辑思维能力和创新意识。
第二章:教学重难点2.1 教学重点直线与平面平行的判定定理的表述及证明。
2.2 教学难点如何引导学生理解并证明直线与平面平行的判定定理。
第三章:教学方法与手段3.1 教学方法采用问题驱动法、实例分析法、小组讨论法等。
3.2 教学手段多媒体课件、几何模型、黑板等。
第四章:教学过程4.1 导入新课通过展示生活中的实例,如墙角、桌面等,引导学生观察直线与平面的位置关系,激发学生的学习兴趣。
4.2 探究与讲解引导学生发现直线与平面平行的判定规律,讲解直线与平面平行的判定定理及证明过程。
4.3 巩固练习设计相关练习题,让学生运用所学知识判断直线与平面的位置关系。
4.4 拓展与应用引导学生思考直线与平面平行在现实生活中的应用,如建筑设计、机械制造等。
第五章:作业布置与课后反思5.1 作业布置布置一些有关直线与平面平行的判定定理的应用题,巩固所学知识。
5.2 课后反思教师应及时反思本节课的教学效果,针对学生的掌握情况,调整教学策略,为后续教学做好准备。
第六章:教学评价6.1 评价目标评价学生对直线与平面平行判定定理的理解程度及运用能力。
6.2 评价方法采用课堂问答、练习批改、小组讨论等方式进行评价。
6.3 评价内容重点评价学生对直线与平面平行判定定理的掌握情况,以及能够运用该定理解决实际问题的能力。
第七章:教学拓展7.1 拓展内容介绍直线与平面平行判定定理在现实生活中的应用,如建筑设计、计算机图形学等。
7.2 拓展方式邀请相关领域专家进行讲座,或组织学生进行实地考察。
7.3 拓展目标培养学生对几何学的兴趣,提高学生的实践能力。
直线与平面平行的判定教案
![直线与平面平行的判定教案](https://img.taocdn.com/s3/m/5cbcc828195f312b3069a59b.png)
直线与平面平行的判定教案直线与平面平行的判定教案范文直线与平面平行的判定教案1一、教学目标1.借助对图片、实例的观察,抽象概括出直线与平面垂直的定义,并能正确理解直线与平面垂直的定义。
2.通过直观感知,操作确认,归纳直线与平面垂直判定的定理,并能运用判定定理证明一些空间位置关系的简单命题,进一步培养学生的空间观念。
3.让学生亲身经历数学研究的过程,体验探索的乐趣,增强学习数学的兴趣。
二、教学重点、难点1.教学重点:操作确认并概括出直线与平面垂直的定义和判定定理。
2.教学难点:操作确认并概括出直线与平面垂直的判定定理及初步运用。
三、课前准备1.教师准备:教学课件2.学生自备:三角形纸片、铁丝(代表直线)、纸板(代表平面)、三角板四、教学过程设计1.直线与平面垂直定义的建构(1)创设情境①请同学们观察图片,说出旗杆与地面、高楼的侧棱与地面的位置有什么关系?②请把自己的数学书打开直立在桌面上,观察书脊与桌面的位置有什么关系?③请将①中旗杆与地面的位置关系画出相应的几何图形。
(2)观察归纳①思考:一条直线与平面垂直时,这条直线与平面内的直线有什么样的位置关系?②多媒体演示:旗杆与它在地面上影子的位置变化。
③归纳出直线与平面垂直的定义及相关概念。
定义:如果直线l与平面α内的任意一条直线都垂直,我们就说直线l与平面α互相垂直,记作:l⊥α.直线l叫做平面α的垂线,平面α叫做直线l的垂面.直线与平面垂直时,它们唯一的公共点P叫做垂足。
用符号语言表示为:(3)辨析(完成下列练习):①如果一条直线垂直于一个平面内的无数条直线,那么这条直线就与这个平面垂直。
②若a⊥α,bα,则a⊥b。
在创设情境中,学生练习本上画图,教师针对学生出现的问题,如不直观、不标字母等加以强调,并指出这就叫直线与平面垂直,引出课题。
在多媒体演示时,先展示动画1使学生感受到旗杆AB所在直线与过点B的直线都垂直。
再展示动画2使学生明确旗杆AB所在直线与地面内任意一条不过点B 的直线B1C1也垂直,进而引导学生归纳出直线与平面垂直的定义。
直线与平面平行的判定定理教学设计(教案)
![直线与平面平行的判定定理教学设计(教案)](https://img.taocdn.com/s3/m/9a271dfea0c7aa00b52acfc789eb172ded6399db.png)
直线与平面平行的判定定理(一)教学设计(教案)1000字一、教学目标:1. 了解直线与平面平行的定义及判定方法;2. 能运用相关的知识解决几何问题;3. 培养学生的逻辑思维、分析问题的能力。
二、教学重点:1. 直线与平面平行的定义及判定方法;2. 运用相关的知识解决几何问题。
三、教学难点:1. 引导学生理解直线与平面平行的概念;2. 培养学生的分析推理能力。
四、教学方法:1. 演示法:通过图形演示、引导学生理解直线与平面平行的概念;2. 讨论法:通过讨论引导学生理解判定方法及其应用;3. 实践法:通过习题训练提高学生解决问题的能力。
五、教学过程:1. 导入环节:教师先提问:“直线与平面什么时候叫做平行?”引导学生基于实际生活中的经验进行回答,帮助学生由表及里地理解平行的概念。
2. 讲授环节:(1)直线与平面平行的定义教师通过图形演示,向学生讲解直线与平面平行的定义。
然后向学生介绍平行的概念及平行公理。
(2)平行公理教师通过展示平行公理,指导学生理解平行公理的内容。
(3)判定直线与平面平行的方法学生已经知道直线与平面平行的定义,那么如何判定一个直线与一个平面是否平行呢?教师可以通过讲授以下几点:①两点法:在这种情况下,绘制从平面内通过直线的两条不相交的直线。
然后,选择一个点,可以是直线与另一直线的交点或是单独的一个点,到其中一个直线,从而确定所需的指向平面的向量(请参见示例)。
然后,将向量应用到直线的另一个点上并绘制另一条直线。
如果第二条直线不与平面相交,则直线与平面平行。
②垂线法:从平面内通过直线绘制一条垂直于该直线的直线。
如果该直线与平面相交于一个点,则它与该平面垂直,与该平面平行。
③斜率法:对于平行的一段直线,它们的斜率是相等的。
(4)一些练习题在这部分,教师可以通过一些练习题,让学生掌握相关的知识点,同时还可以提高学生的分析推理能力。
3. 巩固练习环节:教师可以出几道题目,让学生在课堂上进行解答,并就解答过程进行引导。
直线与平面平行的判定 优秀教案
![直线与平面平行的判定 优秀教案](https://img.taocdn.com/s3/m/4e37153e24c52cc58bd63186bceb19e8b8f6ecf3.png)
直线与平面平行的判定优秀教案一、教学目标1. 知识与技能:使学生能够准确理解直线与平面平行的定义,掌握直线与平面平行的判定定理,并能灵活运用这些定理进行空间平行关系的判定。
2. 过程与方法:通过实例分析、动手实践、逻辑推理等方式,培养学生的空间想象能力和几何推理能力。
3. 情感态度与价值观:激发学生对空间几何的兴趣,培养学生严谨的科学态度和探索精神。
二、教学重难点重点:直线与平面平行的判定定理的理解和应用。
难点:对判定定理的深入理解和灵活运用。
三、教学准备教具:黑板、粉笔、直尺、模型(如门、书本等)四、教学过程(一)导入新课1. 复习提问:空间中直线与平面有几种位置关系?分别是什么?2. 引入课题:今天我们要来学习的是直线与平面平行的判定。
(二)新课展开1. 直线与平面的位置关系(1)通过实物模型(如门、书本等)展示直线与平面的三种位置关系:直线在平面内、直线与平面相交、直线与平面平行。
(2)引导学生理解直线与平面平行的定义:如果一条直线与一个平面没有公共点,那么这条直线与这个平面平行。
2. 直线与平面平行的判定定理(1)引导学生观察实物模型,发现直线与平面平行的判定条件:如果一条直线与一个平面内的两条相交直线都平行,那么这条直线与这个平面平行。
(2)通过实例分析,让学生理解判定定理的应用。
例如,门转动到离开门框的任何位置时,门的边缘线始终与门框所在的平面平行。
3. 判定定理的证明(1)引导学生根据判定定理的条件,利用反证法进行证明。
(2)通过证明过程,让学生理解判定定理的严谨性和正确性。
4. 判定定理的应用(1)通过例题讲解,让学生掌握利用判定定理证明直线与平面平行的方法。
(2)引导学生自主思考,尝试运用判定定理解决空间平行关系问题。
(三)课堂练习1. 判断题:判断下列说法是否正确,并说明理由。
(1)如果一条直线与一个平面内的无数条直线平行,那么这条直线与这个平面平行。
(2)如果一条直线与一个平面内的两条平行直线平行,那么这条直线与这个平面平行。
直线与平面平行的判定定理教学设计(教案)
![直线与平面平行的判定定理教学设计(教案)](https://img.taocdn.com/s3/m/5ae26217326c1eb91a37f111f18583d049640fb7.png)
直线与平面平行的判定定理教学设计(教案)第一章:直线与平面平行的概念引入1.1 教学目标让学生了解直线与平面平行的概念。
学生能够通过实例判断直线与平面是否平行。
1.2 教学内容直线与平面平行的定义。
直线与平面平行的判定方法。
1.3 教学步骤1. 引入直线与平面平行的概念,展示实例图片,引导学生观察并描述直线与平面的关系。
2. 给出直线与平面平行的定义,解释其含义。
3. 引导学生通过实例判断直线与平面是否平行,引导学生运用定义进行判断。
1.4 教学评估通过课堂提问,检查学生对直线与平面平行概念的理解。
通过实例判断练习,检查学生能否运用定义判断直线与平面是否平行。
第二章:直线与平面平行的判定定理2.1 教学目标让学生了解直线与平面平行的判定定理。
学生能够运用判定定理判断直线与平面是否平行。
2.2 教学内容直线与平面平行的判定定理。
判定定理的证明。
2.3 教学步骤1. 引入直线与平面平行的判定定理,展示实例图片,引导学生观察并描述直线与平面的关系。
2. 给出判定定理,解释其含义。
3. 进行判定定理的证明,解释证明过程。
4. 引导学生通过实例判断直线与平面是否平行,引导学生运用判定定理进行判断。
2.4 教学评估通过课堂提问,检查学生对直线与平面平行判定定理的理解。
通过实例判断练习,检查学生能否运用判定定理判断直线与平面是否平行。
第三章:直线与平面平行的判定定理的应用3.1 教学目标让学生能够运用直线与平面平行的判定定理解决实际问题。
3.2 教学内容直线与平面平行的判定定理在实际问题中的应用。
3.3 教学步骤1. 引入实际问题,展示实例图片,引导学生观察并描述直线与平面的关系。
2. 引导学生运用判定定理解决实际问题,解释解题过程。
3. 提供练习题,让学生独立解决实际问题,并提供解答。
3.4 教学评估通过课堂提问,检查学生对直线与平面平行判定定理在实际问题中的应用的理解。
通过练习题,检查学生能否独立解决实际问题。
直线与平面平行的判定定理教学设计(教案)
![直线与平面平行的判定定理教学设计(教案)](https://img.taocdn.com/s3/m/ba4e8f484531b90d6c85ec3a87c24028915f85fc.png)
直线与平面平行的判定定理教学设计(教案)第一章:教学目标1.1 知识与技能目标1. 理解直线与平面平行的概念。
2. 掌握直线与平面平行的判定定理。
3. 能够运用判定定理判断直线与平面的平行关系。
1.2 过程与方法目标1. 通过观察实例,培养学生的空间想象能力。
2. 通过证明过程,培养学生的逻辑思维能力。
1.3 情感态度与价值观目标1. 激发学生对几何学的兴趣。
2. 培养学生的团队合作精神。
第二章:教学内容2.1 直线与平面平行的概念1. 直线与平面的位置关系:相交、平行、包含。
2. 直线与平面平行的定义:在同一平面内,直线与平面不相交。
2.2 直线与平面平行的判定定理1. 定理的表述。
2. 定理的证明过程。
2.3 判定定理的应用1. 判断直线与平面的平行关系。
2. 判断平面与平面的平行关系。
第三章:教学重点与难点3.1 教学重点1. 直线与平面平行的概念。
2. 直线与平面平行的判定定理。
3.2 教学难点1. 直线与平面平行的判定定理的证明过程。
2. 判断直线与平面的平行关系。
第四章:教学方法与手段4.1 教学方法1. 讲授法:讲解直线与平面平行的概念和判定定理。
2. 案例分析法:分析实例,引导学生理解判定定理的应用。
3. 小组讨论法:分组讨论,培养学生的团队合作精神。
4.2 教学手段1. 投影仪:展示实例和证明过程。
2. 几何模型:帮助学生直观地理解直线与平面平行的关系。
第五章:教学过程5.1 导入新课1. 利用实例引入直线与平面平行的概念。
2. 引导学生思考如何判断直线与平面的平行关系。
5.2 知识讲解1. 讲解直线与平面平行的概念。
2. 证明直线与平面平行的判定定理。
5.3 课堂练习1. 布置判断题:判断直线与平面的平行关系。
2. 学生互相讨论,教师指导。
5.4 课堂小结1. 总结直线与平面平行的判定定理。
2. 强调判定定理的应用。
5.5 课后作业1. 完成练习题:判断直线与平面的平行关系。
《直线与平面平行的判定》教案-人教A版高中数学必修二
![《直线与平面平行的判定》教案-人教A版高中数学必修二](https://img.taocdn.com/s3/m/bfb123a26429647d27284b73f242336c1eb930b2.png)
《直线与平面平行的判定》教案一、教学内容分析本节选自教材《基础模块》下第九章,本节内容在立体几何学习中起着承上启下的作用,具有重要的意义与地位。
本节课是在前面已学空间点、线、面位置关系的基础作为学习的出发点,结合有关的实物模型,通过直观感知、操作确认(合情推理,不要求证明)归纳出直线与平面平行的判定定理。
本节课的学习对培养学生空间感与逻辑推理能力起到重要作用,特别是对线线平行、面面平行的判定的学习作用重大。
二、学生学习情况分析任教的学生在年级段属中上程度,学生学习兴趣较高,学生已经学习完空间直线与直线的位置关系以及直线与直线平行,并掌握直线与直线平行的判断方法.在日常生活中积累了许多线面平行的素材,和直观判断的方法,但对这些方法是否正确合理缺乏深入理性的分析.在空间想象和逻辑论证等方面的能力有待于再进一步学习中提高.学习立体几何所具备的语言表达及空间感与空间想象能力相对不足,学习方面有一定困难。
三、设计思想本节课的设计遵循从具体到抽象的原则,适当运用多媒体辅助教学手段,借助实物模型,通过直观感知,操作确认,合情推理,归纳出直线与平面平行的判定定理,将合情推理与演绎推理有机结合,让学生在观察分析、自主探索、合作交流的过程中,揭示直线与平面平行的判定、理解数学的概念,领会数学的思想方法,养成积极主动、勇于探索、自主学习的学习方式,发展学生的空间观念和空间想象力,提高学生的数学逻辑思维能力。
四、教学目标通过直观感知——观察——操作确认的认识方法理解并掌握直线与平面平行的判定定理,掌握直线与平面平行的画法并能准确使用数学符号语言、文字语言表述判定定理。
培养学生观察、探究、发现的能力和空间想象能力、逻辑思维能力。
让学生在观察、探究、发现中学习,在自主合作、交流中学习,体验学习的乐趣,增强自信心,树立积极的学习态度,提高学习的自我效能感。
五、教学重点与难点教学重点:直线与平面平行的判定定理.教学难点:直线与平面平行的判定定理验证和应用六、教学过程设计(一)知识准备、新课引入提问1:根据公共点的情况,空间中直线a和平面α有哪几种位置关系?并完成下表:我们把直线与平面相交或平行的位置关系统称为直线在平面外,用符号表示为a⊄α提问2:根据直线与平面平行的定义(没有公共点)来判定直线与平面平行你认为方便吗?谈谈你的看法,并指出是否有别的判定途径。
高中数学《直线与平面平行的判定》教案
![高中数学《直线与平面平行的判定》教案](https://img.taocdn.com/s3/m/518c6712580102020740be1e650e52ea5518ced1.png)
高中数学《直线与平面平行的判定》教案一、教学目标1.了解平面和直线的性质。
2.学会判断平面和直线是否平行。
3.掌握平面和直线平行的性质和应用。
4.了解平面和直线的几何应用。
二、教学重点1.直线和平面平行的概念、性质。
2.平行线的判定、条件。
3.平面和直线平行的判定、条件。
三、教学难点平行线判定的学习。
四、教学方法理论讲授、图像分析、练习、探究。
五、教学过程1.导入请学生回顾“平面”和“直线”的定义和性质。
2.提出问题请学生思考如何确定平面和直线是否平行。
3.学习平行线的判定(1)定义:“如果两条直线在同一平面内且不相交,则这两条直线互相平行。
”(2)判定方法:①同向性判定法:向同一方向延申出两条射线,如果两条射线在另一条直线上的同一侧,则两线平行;反之,不平行。
②夹角大小判定法:如果两条线段及其相邻角之和为180度,则两线段是平行的。
③斜率判定法:如果两条直线的斜率相等,则两直线平行。
4.学习平面和直线平行的判定(1)定义:“如果一条直线和一个平面没有交点,那么这条直线在这个平面上的任意一条互不重合的直线上的任意一点和这条直线的任意一点的连线就在这个平面上,这时这条直线与这个平面是平行的。
”(2)判定方法:①两直线平行,其中一条直线在所在平面内,则另一条直线与该平面平行。
②直线与平面垂线所在的平面与给定平面互相平行。
③如果一平面与一直线在空间中相交,并且在交点处的夹角是直角,则该平面与该直线平行。
5.练习请学生完成平面和直线平行的练习题。
6.课堂巩固请学生回答以下问题:(1)平行的两条直线斜率是否相同?(2)如何确定两平面是否平行?(3)如果一条直线在平面内,直线上有一点在平面外,这条直线与平面是否平行?(4)如果一个平面和一条直线互相平行,它们有什么共同点?7.作业请学生完成课堂练习题,并预习下节课内容。
六、板书设计高中数学《直线与平面平行的判定》1.平行线的判定①同向性判定法②夹角大小判定法③斜率判定法2.平面和直线平行的判定①两直线平行,在所在平面内,另一条直线与该平面平行。
《直线与平面平行的判定》优秀教案
![《直线与平面平行的判定》优秀教案](https://img.taocdn.com/s3/m/0c2814c077eeaeaad1f34693daef5ef7ba0d12b8.png)
《直线与平⾯平⾏的判定》优秀教案直线与平⾯平⾏的判定教学⽬标 1.知识⽬标⑴进⼀步熟悉掌握空间直线和平⾯的位置关系;⑵理解并掌握直线与平⾯平⾏的判定定理、图形语⾔、符号语⾔、⽂字语⾔;⑶灵活运⽤直线和平⾯的判定定理,把“线⾯平⾏”转化为“线线平⾏”。
2.能⼒训练⑴掌握由“线线平⾏”证得“线⾯平⾏”的数学证明思想;⑵进⼀步培养学⽣的观察能⼒、空间想象⼒和类⽐、转化能⼒,提⾼学⽣的逻辑推理能⼒。
3.德育渗透⑴培养学⽣的认真、仔细、严谨的学习态度;⑵建⽴“实践——理论——再实践”的科学研究⽅法。
教学重点直线与平⾯平⾏的判定定理教学难点直线与平⾯平⾏的判定定理的应⽤教学⽅法启发式、引导式、观察分析、理论联系实际教具模型、尺、多媒体设备教学过程(⼀)内容回顾师:在上节课我们介绍了直线与平⾯的位置关系,有⼏种?可将图形给以什么作为划分的标准?直线与平⾯平⾏直线与平⾯相交直线在平⾯内 //a αa α{}a A α=(⼆)新课导⼊1、如何判定直线与平⾯平⾏师:请同学回忆,我们昨天是受⽤了什么⽅法证明直线与平⾯平⾏?有直线在平⾯外能不能说明直线与平⾯平⾏?⽣:借助定义,说明直线与平⾯没有公共点。
师:判断直线与平⾯有没有公共点,需要将直线和平⾯延展开看它们有没有交点,但延展判断并不⽅便灵敏,那就需要我们挖掘⼀种新的判定⽅法。
我们来看看⽣活中的线⾯平⾏能给我们什么启发呢?若将⼀本书平放在桌⾯上,翻动书的封⾯,观察封⾯边缘所在直线l与书本所在的平⾯具有怎样的位置关系?师:你们能⽤⾃⼰的话概括出线⾯平⾏的判定定理吗?⽣:如果平⾯外⼀条直线和这个平⾯内的⼀条直线平⾏,那么这条直线和这个平⾯平⾏。
2、分析判定定理的三种语⾔师:定理的条件细分有⼏点?⽣:线在平⾯外,线在平⾯内,线线平⾏(师⽣互动共同整理出定理的图形语⾔、符号语⾔、⽂字语⾔)图形语⾔符号语⾔⽂字语⾔线线平⾏,则线⾯平⾏。
(三)例题讲解师:如果要证明线⾯平⾏,关键在哪⾥?⽣:在平⾯内找到⼀条直线,证明线线平⾏。
《直线与平面平行的判定》优秀教案
![《直线与平面平行的判定》优秀教案](https://img.taocdn.com/s3/m/23abd731f342336c1eb91a37f111f18583d00c94.png)
《直线与平面平行的判定》优秀教案教案名称:直线与平面平行的判定教学目标:1. 理解直线与平面平行的概念;2. 掌握直线与平面平行的判定方法;3. 能够应用直线与平面平行的判定方法解决相关问题。
教学重点:1. 直线与平面平行的定义;2. 直线与平面平行的判定方法。
教学难点:直线与平面平行的判定方法的应用。
教学准备:教学课件、教学实物模型、教学板书。
教学过程:Step 1:引入主题(5分钟)1. 教师出示一张图片,上面有一条直线和一个平面,并向学生提问:“你们认为直线与平面之间有什么样的关系?”2. 让学生思考一分钟,然后鼓励他们发表自己的观点。
Step 2:导入知识(10分钟)1. 教师出示一张包含直线与平面平行定义的PPT,并向学生解释直线与平面平行的概念。
2. 教师让学生通过自主学习、小组讨论等方式,总结直线与平面平行的特点,并向全班汇报。
Step 3:直线与平面平行的判定方法(20分钟)1. 教师出示包含直线与平面平行判定方法的PPT,并向学生介绍常用的判定方法,如:平行线与平面的夹角相等、直线与平面的法线垂直等。
2. 教师以示例的形式演示如何应用这些判定方法,引导学生进行思考和讨论。
Step 4:巩固与拓展(20分钟)1. 教师出示一些练习题,让学生在小组内进行讨论和解答。
2. 教师随机抽查学生的答案,并给予评价和指导。
Step 5:归纳总结(10分钟)1. 教师带领学生总结直线与平面平行的判定方法,并板书总结内容。
2. 教师与学生一起进行讨论,确认总结内容的准确性。
Step 6:课堂作业(5分钟)1. 布置课堂作业:要求学生完成一些与直线与平面平行判定相关的练习题。
2. 提醒学生将作业按时交到指定的地方。
Step 7:课堂反馈(5分钟)1. 教师与学生一起回顾本节课的重点内容,确认学生对直线与平面平行的判定方法的理解程度。
2. 学生可以就本节课的教学内容提出问题或意见。
教学反思:本节课通过引入主题、导入知识、讲解判定方法、练习与拓展、总结归纳等环节,全面提高了学生对直线与平面平行的理解和应用能力。
直线和平面平行的判定定理应用教案
![直线和平面平行的判定定理应用教案](https://img.taocdn.com/s3/m/003c6c3d9a6648d7c1c708a1284ac850ac020414.png)
直线和平面平行的判定定理应用教案一、教学目标1. 让学生掌握直线和平面平行的判定定理。
2. 培养学生运用判定定理解决实际问题的能力。
3. 提高学生的空间想象能力和思维能力。
二、教学内容1. 直线和平面平行的判定定理。
2. 判定定理的应用。
三、教学重点与难点1. 教学重点:直线和平面平行的判定定理及其应用。
2. 教学难点:判定定理在实际问题中的运用。
四、教学方法1. 采用讲解法,引导学生理解判定定理的内涵。
2. 利用几何模型,直观展示直线和平面的位置关系。
3. 设计练习题,培养学生的实际应用能力。
五、教学过程1. 导入:回顾直线和平面的位置关系,引导学生思考如何判断直线和平面的平行关系。
2. 新课讲解:介绍直线和平面平行的判定定理,结合几何模型展示,让学生理解判定定理的推导过程。
3. 例题讲解:分析典型例题,引导学生运用判定定理解决问题,巩固所学知识。
4. 课堂练习:设计相关练习题,让学生独立完成,检验对判定定理的掌握程度。
5. 总结与拓展:对本节课的内容进行总结,引导学生思考判定定理在实际问题中的应用,拓展思维。
6. 作业布置:布置适量作业,巩固所学知识。
六、教学评估1. 课堂练习的完成情况,观察学生对判定定理的理解和应用能力。
2. 学生对典型例题的分析和解答,评估其逻辑思维和解决问题的能力。
3. 作业的完成质量,了解学生对课堂所学知识的巩固程度。
七、教学反馈与调整1. 根据学生的课堂表现和作业完成情况,及时给予反馈,指出优点和不足。
2. 对学习有困难的学生,提供个别辅导,帮助其克服困难。
3. 根据学生的学习情况,调整教学进度和难度,确保教学内容适合学生的实际需求。
八、课后作业1. 复习本节课所学的直线和平面平行的判定定理。
2. 完成课后练习题,包括判断题和应用题,巩固所学知识。
3. 选择一道拓展题,提高自己的空间想象能力和思维能力。
九、课后反思1. 回顾本节课的教学内容,总结教学方法和策略。
2. 思考如何更好地引导学生理解和应用判定定理。
直线与平面平行判定教学设计
![直线与平面平行判定教学设计](https://img.taocdn.com/s3/m/ca9ae8d909a1284ac850ad02de80d4d8d15a013a.png)
《直线与平面平行的判定》教学设计【教材分析】新课程必修2教材中立体几何课程以培养学生的逻辑思维水平和空间想象水平为主要目标.在内容安排和处理方式上,增强了引导学生通过自己的观察、操作等活动获得数学结论的过程,把合情推理作为学习过程中的一个重要的推理方式.教材中首先说明能够用直线与平面平行的定义判断直线和平面平行,但用定义不方便,由此引发探索判定定理的需要.结合实例,合情推理,得出判定定理。
在判定定理的应用过程中,学生进一步体会空间问题平面化的数学思想方法.【教学目标】(1) 通过直观感知.动手实践,理解直线与平面平行的判定定理、并能实行应用.(2) 进一步培养学生观察.发现问题的水平和空间想象水平.过程与方法(1) 启发式.以实物为载体,启发.诱导学生逐步经历定理的直观感知过程.(2) 指导学生实行合情推理、澄清概念、加深理解、准确使用.情感态度与价值观(1) 学生在亲自经历数学研究的过程中,体验创造的激情,感受数学的魅力.(2) 培养学生由现象—猜测—证明的逻辑思维水平,养成合情推理的探究精神.【教学重点与难点】教学重点:通过直观感知.动手实践,归纳出直线和平面平行的判定,并能使用判定解决问题.教学难点:直线和平面平行的判定定理的探索过程及其灵活应用.【教学过程】当堂练习练习1:课本55页练习1练习2:如图在正方体ABCD—A1B1C1D1中,E,F分别是棱BC,C1D1的中点.求证:EF∥平面BDD1B1.学生自主完成,教师个别辅导.最后统一解题规范.练1是定理的简单应用,练2是定理的灵活应用,有利于学生对所学知识的深入理解.反思领悟(1)直线与平面平行的判定定理.(2)证明线面平行的常用解题技巧.(3)转化的数学思想.作业:补充习题.学生自我反思总结.小结点出重点。
直线与平面平行的判定定理教案
![直线与平面平行的判定定理教案](https://img.taocdn.com/s3/m/18ce2d274531b90d6c85ec3a87c24028905f855a.png)
直线与平面平行的判定定理教案一、教学目标1.掌握直线与平面平行的判定定理。
2.能够运用所学知识解决相关问题。
二、教学内容直线与平面平行的判定定理三、教学重难点1.重点:直线与平面平行的判定方法。
2.难点:如何运用所学知识解决相关问题。
四、教学方法讲授法、示范法、启发式教学法五、教学过程1.导入(5分钟)通过引入相关问题,引发学生对本节课的兴趣,并激发他们思考的欲望,例如:“如果一条直线和一个平面是相交的,那么它们是否可能是平行的呢?”2.讲解(20分钟)(1)定义:如果一条直线和一个平面没有交点,那么这条直线与该平面就是平行的。
(2)判定方法:①法向量法:如果一条直线的方向向量与该平面的法向量垂直,则这条直线和该平面是相交于一个点或者互相重合,因此不可能是平行的。
反之,则它们是平行的。
②截距法:如果一条直线在该平面上有两个不同的交点,则这条直线和该平面相交,因此不可能是平行的。
反之,则它们是平行的。
(3)实例演示:通过具体的例子,让学生更好地理解直线与平面平行的判定方法。
3.练习(20分钟)让学生在课堂上完成一些相关练习,以检验他们对所学知识的掌握情况。
4.总结(5分钟)通过总结本节课所学内容,让学生更好地理解和记忆直线与平面平行的判定定理。
六、教学评估1.教师观察法:观察学生在课堂上的表现,了解他们对所学知识的掌握情况。
2.书面测试法:通过给学生布置相关试题,以考查他们对所学知识的掌握情况。
七、教后反思本节课采用了多种教学方法,如讲授法、示范法和启发式教学法等。
通过引入问题、讲解定理、演示实例和练习等环节,使得本节课具有很好的连贯性和完整性。
同时,在评估环节中也采用了多种方式进行考查,以更全面地了解学生对所学知识的掌握情况。
在今后的教学中,需要进一步完善教学方法,提高课堂效果。
直线与平面平行的判定定理教学设计(教案)
![直线与平面平行的判定定理教学设计(教案)](https://img.taocdn.com/s3/m/4e5713dbd5d8d15abe23482fb4daa58da0111ce0.png)
章节一:直线与平面平行的概念引入教学目标:使学生了解直线与平面平行的基本概念,理解直线与平面平行的直观含义。
教学内容:1. 直线与平面的基本概念复习2. 直线与平面平行的定义3. 直线与平面平行的实例解析教学方法:采用直观演示法,结合实例进行讲解。
教学活动:1. 复习直线与平面的基本概念2. 引入直线与平面平行的定义3. 通过实例解析直线与平面平行的特征章节二:直线与平面平行的判定定理教学目标:使学生理解直线与平面平行的判定定理,能够运用判定定理判断直线与平面的平行关系。
教学内容:1. 直线与平面平行的判定定理的表述2. 直线与平面平行的判定定理的证明3. 直线与平面平行的判定定理的应用教学方法:采用讲解法,结合图形进行说明。
教学活动:2. 讲解直线与平面平行的判定定理的证明3. 通过例题演示直线与平面平行的判定定理的应用章节三:直线与平面平行的判定定理的运用教学目标:使学生能够运用直线与平面平行的判定定理解决实际问题。
教学内容:1. 直线与平面平行的判定定理在实际问题中的应用2. 直线与平面平行关系的判断与证明教学方法:采用案例教学法,引导学生运用判定定理解决实际问题。
教学活动:1. 分析直线与平面平行的判定定理在实际问题中的应用2. 提供练习题,让学生运用判定定理判断直线与平面的平行关系章节四:直线与平面平行的判定定理的综合训练教学目标:使学生能够综合运用直线与平面平行的判定定理解决复杂问题。
教学内容:1. 直线与平面平行关系的复杂问题解析2. 综合运用直线与平面平行的判定定理进行判断与证明教学方法:采用问题解决法,引导学生进行综合训练。
教学活动:1. 提供直线与平面平行关系的复杂问题,让学生进行分析2. 引导学生综合运用判定定理进行判断与证明章节五:直线与平面平行的判定定理的复习与总结教学目标:使学生巩固直线与平面平行的判定定理,总结学习过程中的重点与难点。
教学内容:1. 直线与平面平行的判定定理的复习2. 学习过程中的重点与难点总结教学方法:采用问答法,引导学生进行复习与总结。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《直线与平面平行的判定》教学设计一、教学内容分析:本节课内容选自人教A版数学必修②第二章第一节课,本节内容在立体几何学习中起着承上启下的作用,具有重要的意义与地位。
本节课是在前面已学空间点、线、面位置关系的基础作为学习的出发点,结合有关的实物模型,通过直观感知、操作确认(合情推理,不要求证明)归纳出直线与平面平行的判定定理。
本节课的学习对培养学生空间感知与逻辑推理能力起到重要作用,特别是对线线平行、面面平行的判定的学习作用重大。
二、学生学习情况分析:本人任教的学生在年段属中上程度,学生学习兴趣较高,但学习立体几何所具备的语言表达及空间感与空间想象能力相对不足,学习方面有一定困难。
三、设计思想本节课的设计遵循从具体到抽象的原则,适当运用多媒体辅助教学手段,借助实物模型,通过直观感知,操作确认,合情推理,归纳出直线与平面平行的判定定理,将合情推理与演绎推理有机结合,让学生在观察分析、自主探索、合作交流的过程中,揭示直线与平面平行的判定、理解数学的概念,领会数学的思想方法,养成积极主动、勇于探索、自主学习的学习方式,发展学生的空间观念和空间想象力,提高学生的数学逻辑思维能力。
四、教学三维目标(一)知识与技能:通过直观感知——观察——操作确认的认识方法理解并掌握直线与平面平行的判定定理,掌握直线与平面平行的画法并能准确使用数学符号语言、文字语言表述判定定理。
(二)过程与方法:培养学生观察、探究、发现的能力和空间想象能力、逻辑思维能力。
(三)情感态度与价值观:让学生在观察、探究、发现中学习,在自主合作、交流中学习,体验学习的乐趣,增强自信心,树立积极的学习态度,提高学习的自我效能感。
五、教学重点与难点重点是判定定理的引入与理解,难点是判定定理的应用及立体几何空间感、空间观念的形成与逻辑思维能力的培养。
六、教学过程设计(一)知识准备、新课引入提问1:根据公共点的情况,空间中直线a和平面有哪几种位置关系?并完成下表:(多媒体幻灯片演示)位置关系公共点符号表示图形表示我们把直线与平面相交或平行的位置关系统称为直线在平面外,用符号表示为a提问2:根据直线与平面平行的定义(没有公共点)来判定直线与平面平行你认为方便吗?谈谈你的看法,并指出是否有别的判定途径。
[设计意图:通过提问,学生复习并归纳空间直线与平面位置关系引入本节课题,并为探寻直线与平面平行判定定理作好准备。
](二)判定定理的探求过程1、直观感知提问:根据同学们日常生活的观察,你们能感知到并举出直线与平面平行的具体事例吗?生1:例举日光灯与天花板,树立的电线杆与墙面。
生2:门转动到离开门框的任何位置时,门的边缘线始终与门框所在的平面平行(由学生到教室门前作演示),然后教师用多媒体动画演示。
[学情预设:此处的预设与生成应当是很自然的,但老师要预见到可能出现的情况如电线杆与墙面可能共面的情形及门要离开门框的位置等情形。
]2、动手实践教师取出预先准备好的直角梯形泡沫板演示:当把互相平行的一边放在讲台桌面上并转动,观察另一边与桌面的位置给人以平行的感觉,而当把直角腰放在桌面上并转动,观察另一边与桌面给人的印象就不平行。
又如老师直立讲台,则大家会感觉到老师(视为线)与四周墙面平行,如老师向前或后倾斜则感觉老师(视为线)与左、右墙面平行,如老师向左、右倾斜,则感觉老师(视为线)与前、后墙面平行(老师也可用事先准备的木条放在讲台桌上作上述情形的演示)。
[设计意图:设置这样动手实践的情境,是为了让学生更清楚地看到线面平行与否的关键因素是什么,使学生学在情境中,思在情理中,感悟在内心中,学自己身边的数学,领悟空间观念与空间图形性质。
]3、探究思考(1)上述演示的直线与平面位置关系为何有如此的不同?关键是什么因素起了作用呢?通过观察感知发现直线与平面平行,关键是三个要素:①平面外一条线②平面内一条直线③这两条直线平行(2)如果平面外的直线a与平面内的一条直线b平行,那么直线a与平面平行吗?4、归纳确认:(多媒体幻灯片演示并板书)直线和平面平行的判定定理:平面外的一条直线与平面内的一条直线平行,则该直线和这个平面平行。
简单概括:(内外)线线平行线面平行符号表示:温馨提示:作用:判定或证明线面平行。
关键:在平面内找(或作)出一条直线与面外的直线平行。
思想:空间问题转化为平面问题(三)定理运用,问题探究(多媒体幻灯片演示)1、想一想:(1)判断下列命题的真假?说明理由:①如果一条直线不在平面内,则这条直线就与平面平行( )②过直线外一点可以作无数个平面与这条直线平行( )③一直线上有二个点到平面的距离相等,则这条直线与平面平行( )(2)若直线a与平面内无数条直线平行,则a与的位置关系是( )A、a ||B、aC、a ||或aD、[学情预设:设计这组问题目的是强调定理中三个条件的重要性,同时预设(1)中的③学生可能认为正确的,这样就无法达到老师的预设与生成的目的,这时教师要引导学生思考,让学生想象的空间更广阔些。
此外教师可用预先准备好的羊毛针与泡沫板进行演示,让羊毛针穿过泡沫板以举不平行的反例,如果有的学生空间想象力强,能按老师的要求生成正确的结果则就由个别学生进行演示。
]2、作一作:设a、b是二异面直线,则过a、b外一点p且与a、b都平行的平面存在吗?若存在请画出平面,不存在说明理由?先由学生讨论交流,教师提问,然后教师总结,并用准备好的羊毛针、铁线、泡沫板等演示平面的形成过程,最后借多媒体展示作图的动画过程。
[设计意图:这是一道动手操作的问题,不仅是为了拓展加深对定理的认识,更重要的是培养学生空间感与思维的严谨性。
]3、证一证:例1(见课本60页例1):已知空间四边形ABCD中,E、F分别是AB、AD的中点,求证:EF || 平面BCD。
变式一:空间四边形ABCD中,E、F、G、H分别是边AB、BC、CD、DA中点,连结EF、FG、GH、HE、AC、BD请分别找出图中满足线面平行位置关系的所有情况。
(共6组线面平行)变式二:在变式一的图中如作PQ EF,使P点在线段AE上、Q点在线段FC上,连结PH、QG,并继续探究图中所具有的线面平行位置关系?(在变式一的基础上增加了4组线面平行),并判断四边形EFGH、PQGH分别是怎样的四边形,说明理由。
[设计意图:设计二个变式训练,目的是通过问题探究、讨论,思辨,及时巩固定理,运用定理,培养学生的识图能力与逻辑推理能力。
]例2:如图,在正方体ABCD—A1B1C1D1中,E、F分别是棱BC与C1D1中点,求证:EF || 平面BDD1B1分析:根据判定定理必须在平面BDD1B1内找(作)一条线与EF平行,联想到中点问题找中点解决的方法,可以取BD或B1D1中点而证之。
思路一:取BD中点G连D1G、EG,可证D1GEF为平行四边形。
思路二:取D1B1中点H连HB、HF,可证HFEB为平行四边形。
[知识链接:根据空间问题平面化的思想,因此把找空间平行直线问题转化为找平行四边形或三角形中位线问题,这样就自然想到了找中点。
平行问题找中点解决是个好途径好方法。
这种思想方法是解决立几论证平行问题,培养逻辑思维能力的重要思想方法]4、练一练:练习1:见课本61页练习1、2练习2:(多媒体幻灯片给出)将两个全等的正方形ABCD和ABEF拼在一起,设M、N 分别为AC、BF中点,求证:MN || 平面BCE。
变式:若将练习2中M、N改为AC、BF分点且AM = FN,试问结论仍成立吗?试证之。
[设计意图:设计这组练习,目的是为了巩固与深化定理的运用,特别是通过练习2及其变式的训练,让学生能在复杂的图形中去识图,去寻找分析问题、解决问题的途径与方法,以达到逐步培养空间感与逻辑思维能力。
](四)课堂小结先由学生口头总结,然后教师归纳总结(由多媒体幻灯片展示):1、线面平行的判定定理:平面外的一条直线与平面内的一条直线平行,则该直线与这个平面平行。
2、定理的符号表示:简述:(内外)线线平行则线面平行3、定理运用的关键是找(作)面内的线与面外的线平行,途径有:取中点利用平行四边形或三角形中位线性质等。
七、板书设计直线与平面平行的判定判定定理:直线和平面平行的判定定理:平面外的一条直线与平面内的一条直线平行,则该直线和这个平面平行。
简单概括:(内外)线线平行线面平行符号表示:例1:证明:例2:证明练习1 练习2八:教学反思本节“直线与平面平行的判定”是学生学习空间位置关系的判定与性质的第一节课,也是学生开始学习立几演泽推理论述的思维方式方法,因此本节课学习对发展学生的空间观念和逻辑思维能力是非常重要的。
本节课的设计遵循“直观感知——操作确认——思辩论证”的认识过程,注重引导学生通过观察、操作交流、讨论、有条理的思考和推理等活动,从多角度认识直线和平面平行的判定方法,让学生通过自主探索、合作交流,进一步认识和掌握空间图形的性质,积累数学活动的经验,发展合情推理、发展空间观念与推理能力。
本节课的设计注重训练学生准确表达数学符号语言、文字语言及图形语言,加强各种语言的互译。
比如上课开始时的复习引入,让学生用三种语言的表达,动手实践、定理探求过程以及定理描述也注重三种语言的表达,对例题的讲解与分析也注意指导学生三种语言的表达。
本节课对定理的探求与认识过程的设计始终贯彻直观在先,感知在先,学自己身边的数学,感知生活中包涵的数学现象与数学原理,体验数学即生活的道理,比如让学生举生活中能感知线面平行的例子,学生会举出日光灯与天花板,电线杆与墙面,转动的门等等,同时老师的举例也很贴进生活,如老师直立时与四周墙面平行,而向前、向后倾斜则只与左右墙面平行,而向左、右倾斜则与前后黑板面平行。
然后引导学生从中抽象概括出定理。
本节课对定理的运用设计了想一想、作一作、证一证、练一练等环节,能从易到难,由浅入深地强化对定理的认识,特别是对“证一证”中采用一题多解,一题多变的变式教学,有利于培养学生思维的广阔性与深刻性。
本节课的设计还注重了多媒体辅助教学的有效作用,在复习引入,定理的探求以及定理的运用等过程中,都有效地使用了多媒体。