组合数学(西安电子科技大学(第二版))第二章母函数_版24样版
组合数学(第二版)递推关系
![组合数学(第二版)递推关系](https://img.taocdn.com/s3/m/596e14bc710abb68a98271fe910ef12d2af9a9fd.png)
递推关系
其次,证明an 是通解.若给定一组初始条件
可以仿照齐次方程通解的证明方法,证得相应于条件式 (3.2.11)的解一定可以表示为式 (3.2.10)的形式.
关于 的求法已经解决,这里的主要问题是求式(3.2.2) 的特解an * .遗憾的是寻求特 解还没有一般通用的方法.然而, 当非齐次线性递推关系的自由项f(n)比较简单时,采用 下面的 待定系数法比较方便.
递推关系 【例 3.4.2】 棋盘染色问题:给一个具有1行n 列的1×n
棋盘(见图3.4.1)的每一个 方块涂以红、蓝二色之一,要求相 邻的两块不能都染成红色,设不同的染法共有an 种,试 求an.
图 3.4.1 1×n 棋盘
递推关系
递推关系
【例3.4.3】 交替子集问题:有限整数集合Sn={1,2,…,n} 的一个子集称为交替的, 如果按上升次序列出其元素时,排列 方式为奇、偶、奇、偶、…….例如{1,4,7,8}和 {3,4,11}都是, 而{2,3,4,5}则不是.令gn表示交替子集的数目(其中包括空集), 证明
且有gn=Fn+2.
递推关系
证 显然,g1=2,对应S1 的交替子集为⌀和{1}.g2=3,对应S2 的交替子集为⌀、 {1}、{1,2}.
将Sn 的所有子集分为两部分: (1)Sn-1={1,2,…,n-1}的所有子集; (2)Sn-1的每一个子集加入元素n 后所得子集. 例如,n=4,S4={1,2,3,4}的所有子集划分为两类,即 (1)⌀、{1}、{2}、{3}、{1,2}、{1,3}、{2,3}、{1,2,3}; (2){4}、{1,4}、{2,4}、{3,4}、{1,2,4}、{1,3,4}、 {2,3,4}、{1,2,3,4}.
组合数学第2章答案
![组合数学第2章答案](https://img.taocdn.com/s3/m/28561d2614791711cc791771.png)
组合数学第2章答案2.1 求序列{0,1,8,27,…3n …}的母函数。
解:()()++++++=++++++=nn n x n x x x x G x a x a x a x a a x G 3323322102780()46414321313=+-+--==-----n n n n n n n a a a a a n a n a左右同乘再连加:464:0464:0464:0464:4321543211123455012344=+-+-=+-+-=+-+-=+-+-----------n n n n n n n n n n n n a a a a a x a a a a a x a a a a a x a a a a a x母函数:()()42162036-+-=x x x x G2.2 已知序列()()3433{,,……()33,,n +……},求母函数。
解:1(1)nx -的第k 项为:11()k n n +-- ,对于本题,n=4, ∴母函数为:41(1)x -2.3 已知母函数G (X )=25431783x x x--+,求序列{ n a }解:G (X )=)61)(91(783x x x +-+=)61()91(x Bx A ++-从而有: ⎩⎨⎧-==⇒⎩⎨⎧=-=+4778963B A B A B A G (X )=)61(4)91(7x x +-+-G (X )=7)999x (13322 ++++x x -4))6((-6)(-6)x (13322 +-+++x xn a =7*n )6(*49n -- 2.4.已知母函数239156xx x ---,求对应的序列{}n a 。
解:母函数为239()156x G x x x -=--39(17)(18)xx x -=+- A BG(x)17x 18xA(18x)B(17x)39x=++--++=-令 A B 38A +7B =9+=⎧⎨--⎩解得:A=2 B=1所以 ii i 0i 021G(x)2*(7x)(8x)17x 18x ∞∞===+=-++-∑∑n n n a 2*(7)8=-+2.5 设n n F G 2=,其中F n 是第n 个Fibonacci 数。
组合数学(西安电子科技大学(第二版))习题3
![组合数学(西安电子科技大学(第二版))习题3](https://img.taocdn.com/s3/m/434126a1b0717fd5360cdcba.png)
习题三(递推关系)1.解下列递推关系:(1)120171000,1n n n a a a a a ---+=⎧⎨==⎩ (2)12016900,1n n n a a a a a --++=⎧⎨==⎩ (3)20100,2n n a a a a -+=⎧⎨==⎩ (4)120121n n n a a a a a --=-⎧⎨==⎩ (5)123012990,1,2n n n n a a a a a a a ---=+-⎧⎨===⎩ 解:(1)对应的特征方程为:27100x x -+=,解得122,5x x ==。
所以齐次递推方程的通解为:25n n n a A B =+,代入初始条件,得:00a A B =+=,1251a A B =+=,解得:11,33A B =-=, 故 112533n n n a =-+。
(2)对应的特征方程为:2690x x ++=,解得:123x x ==-,所以,齐次递推方程的通解为:()(3)n n a A Bn =+-,代入初始条件,00a A ==,1()(3)1a A B =+-=,解得:10,3A B ==-,故1(3)3n n a n =--。
(3)对应的特征方程为:210x +=,解得:12,x i x i ==-,所以,齐次递推方程的通解为:()()n n n a A i B i =+-,代入初始条件,00a A B =+=,12a A i B i =-=,解得:,A i B i =-=,故 11()()n n n a i i --=+-。
(4)对应的特征方程为:2210x x -+=,解得:121x x ==,所以,齐次递推方程的通解为:n a A Bn =+,代入初始条件,01a A ==,11a A B =+=,解得:1,0A B ==,故 1n a =。
(5)对应的特征方程为:32990x x x --+=,解得:1231,3,3x x x ===-,所以,齐次递推方程的通解为:3(3)n n n a A B C =++-,代入初始条件,00a A B C =++=,1331a A B C =+-=,2992a A B C =++=, 解得,111,,4312A B C =-==-,故 1113(3)412n n n a -=-+--2.求由A ,B ,C ,D 组成的允许重复的排列中AB 至少出现一次的排列数。
组合数学(2)
![组合数学(2)](https://img.taocdn.com/s3/m/47f8089583d049649b6658ff.png)
k>h Sk-Sh =39
即 ah + ah+1 +… + ak = 39
20
例8 试证在边长为 √2的正方形里任取5点,
至少有2点的距离不超过1.
如右下图所示,将边长为√2的正方形划为4
个全等的小正方形.设置相隔距离最远的点在
四个角,显然中心位置安排第五点到其他
A
1
1
E
B
四个点距离相等,而且是
最大距离,等于1。
(j – i)m= ( qj – qi)n
23
由上式可以看出,由于n与m没有除1外
的公因子,因此n是(j – i)的一个因子。然
而, 0≤i<j≤n-1, 意味着: 0 <j-i≤n-1<n,也
就是说n不可能是j - i的因子。该矛盾产生于
我们的假设: n个整数
0m+a, 1m+a, 2m+a, ….., (n-1)m+a中有两 个除以n有相同的余数r的数。因此我们断言: 这个n数中的每一个数除以n都有不同的余数。
19
S1<S2<…<S100,且 S100 = (a1 + … +a10) + (a11 + … +a20)+… + (a91 + … +a100)
根据假定有 S100≤10×16 = 160
作序列S1 , S2 , … , S100 , S1 +39, … , S100+39 . 共200项.其中最大项 S100+39≤160+39=199 由鸽巢原理,必有两项相等.而且必是前段中 某项与后段中某项相等.设 Sk = Sh + 39,
组合数学 第2章 母函数
![组合数学 第2章 母函数](https://img.taocdn.com/s3/m/7c73c2d8ce2f0066f5332274.png)
第二章 母函数及其应用问题:对于不尽相异元素的部分排列和组合,用第一章的方法是比较麻烦的(参见表2.0.1)。
新方法:母函数方法,问题将显得容易多了。
其次,在求解递推关系的解、整数分拆以及证明组合恒等式时,母函数方法是一种非常重要的手段。
母函数方法的基本思想是把离散的数列同多项式或幂级数一一对应起来,从而把离散数列间的结合关系转化为多项式或幂级数之间的运算。
2.1 母 函 数(一)母函数(1)定义定义2.1.1 对于数列{}n a ,称无穷级数()∑∞=≡0n nnxax G 为该数列的(普通型)母函数,简称普母函数或母函数。
(2)例例2.1.1 有限数列C (n ,r ),r =0,1,2, …,n 的普母函数是()nx +1。
例2.1.2 无限数列{1,1,…,1,…}的普母函数是+++++=-nxx x x2111(3)说明● n a 可以为有限个或无限个; ● 数列{}n a 与母函数一一对应,即给定数列便得知它的母函数;反之,求得母函数则数列也随之而定;例如,无限数列{0,1,1,…,1,…}的普母函数是 +++++n x x x 20=xx -1● 这里将母函数只看作一个形式函数,目的是利用其有关运算性质完成计数问题,故不考虑“收敛问题”,而且始终认为它是可“逐项微分”和“逐项积分”的。
(4)常用母函数(二)组合问题(1)组合的母函数定理2.1.1 组合的母函数:设{}m m e n e n e n S ⋅⋅⋅=,,,2211 ,且n 1+ n 2+…+ n m =n ,则S 的r 可重组合的母函数为()x G =∏∑==⎪⎪⎭⎫ ⎝⎛mi n j ji x 10=∑=n r r r x a 0 (2.1.1) 其中,r 可重组合数为rx 之系数r a ,r =0,1,2, …,n .定理2.1.1的最大优点在于:● 将无重组合与重复组合统一起来处理;● 使处理可重组合的枚举问题变得非常简单。
组合数学第二章习题解答
![组合数学第二章习题解答](https://img.taocdn.com/s3/m/8be3c6d6b9f3f90f76c61be3.png)
1+ x G(x) = (1− x)4
2.13已知
an = ∑k ,
3 k=1
n+1
1+4x+ x2 ∞ =∑ n+1 3 xn ( ) 4 (1−x) n=0
求序列{an}的母函数
G(x) =1+(1+23)x+(1+23 +33)x2 +...+(1+23 +...+(n+1)3)xn +... G(x) =(1+ x+ x2 +...) +23 x(1+ x+ x2 +...) +...(n+1)3 xn(1+ x+ x2 +...) +...
2.25 分母展开求出an的递推关系,再求出bn的递推关系 将分母展开(1-x)(1+x-x2)=1-2x2+x3 因此an满足递推关系:an-2an-2+an-3=0,a0=4,a1=-3 an-an-1+an-1-an-2-an-2+an-3 = bn+bn-1-bn-2=0 b0=4,b1=-7,母函数为:
b +(b +b )x 0 1 0 4−3x = 1+ x − x2 1+ x − x2
G x) = (
2.26 逐项展开,两边合并。
2.27 求下列递推关系的一般解
(a)an-4an-1=5n
a −4 n−1 −5 n−1 +2 a −2 = 0 a a 0 n n a −9 n−1 +2 a −2 = 0 a 0 n n 特 方 的 为和 征 程 解 4 5 一 解 : r 4n +r 5n 般 为 1 2
组合数学(第二版)波利亚(Pólya)定理
![组合数学(第二版)波利亚(Pólya)定理](https://img.taocdn.com/s3/m/d4b5f002326c1eb91a37f111f18583d048640f57.png)
波利亚(Pólya)定理
图 6.2.3 十五子智力游戏
波利亚(Pólya)定理
波利亚(Pólya)定理
定理 6.2.6
当n≥2时,Sn 中偶置换的全体构成一个n!/2阶
的子群,称为交代群,记为An.
证 先证An 为群.
(1)封闭性:设p1,p2∈An,显然p1p2∈An,因为将二者分解的
结果相乘,仍得偶数个对换的乘积.
波利亚(Pólya)定理
6.3.3 等价类
定义 6.3.4 设G 是集S={1,2,…,n}上的置换群,若存在
i,j∈S ,满足p(i)=j, 则称i与j等价,记为i~j,S 中与i等价的元素的
全体记为Ei,称为元素i的“轨迹”或 “踪迹”.Ei 中元素的个
数称为轨迹的长度.
不难看出,元素i与j的这种等价关系满足如下三条性质:
关于普通乘法不存在单位元.而在 Z、Q、R、C中,虽然关于
普通乘法有单位元1,但数0没有逆元.
波利亚(Pólya)定理
波利亚(Pólya)定理
波利亚(Pólya)定理
6.1.2 群的性质
定理 6.1.1 群具有以下性质:
(1)单位元e唯一;
(2)逆元唯一;
(3)满足消去律:即对a,b,c∈G,若ab=ac,则b=c;若ba=ca,则
【例 6.3.3】 将S3 按共轭情况分类的结果见表6.3.1
波利亚(Pólya)定理
【例 6.3.4】 4次置换群
G={(1)(2)(3)(4),(12),(34),(12)(34)},共有3个 共轭类:
其中第2类含2个置换
波利亚(Pólya)定理
定理 6.3.1 在n 元对称群Sn 中,
证 设置换p 为(λ1,λ2,…,λn)型,将p 用轮换表示为
组合数学第二章1母函数PPT课件
![组合数学第二章1母函数PPT课件](https://img.taocdn.com/s3/m/32c6a53dbceb19e8b8f6bac9.png)
若 有 两 个 色 子 , 则
( t t 2 . . . t 6 ) ( t t 2 . . . t 6 ) t 2 2 t 3 3 t 4 4 t 5 5 t 6 . . . .
中 的 t 6 的 系 数 5 显 然 相 当 于 t 1 t 5 t 6 , t 2 t 4 t 6 , t 3 t 3 t 6 , t 5 t 1 t 6 , t 4 t 2 t 6 诸 乘 积 都 产 生 t 6 这 一 项 的 方 案 数
[a 0 a 1 x a 2 x 2 ]/1 ( x ) A (x )/1 ( x )
26
2.2 母函数的性质
例. 已知
A (x ) 1 x x 2 x n 1 1 x
B (x ) 1 2 x 3 x2 4 x3 (1 1 x )2
(k1)xk
k0
(11x)2
27
2.2 母函数的性质
证
1:b0 a0a1a2 A(1)
x:b1 a1a2 A(1)a0
x2:b2
a2 A(1)a0a1
_ ) _ _ _ _ _
B (x ) A (1 )1 [x x 2 ] a 0 x (1 x x 2 ) a 1 x 2 (1 x x 2 )
30
2.2 母函数的性质
B(x)1A(1x)(a0a1x )x/1(x)
我们来看如下的例子ppt课件方法的引入我们也可以从另一角度来看要使两个色子掷出6点第一个色子除了6以外的都可选这有5种选法一旦第一个选定第二个色子就只有一种可能的选法按乘法法则有515种注意到出现15有两种选法出现24也有两种选法而出现33只有一种选法这些选法互斥且穷尽了出现6点的一切可能的选法按加法法则共有2215种不同选法
[C(n,0)C(n,1)x C(n,n)xn]
组合数学(西安电子科技大学(第二版))第二章母函数_版24样版
![组合数学(西安电子科技大学(第二版))第二章母函数_版24样版](https://img.taocdn.com/s3/m/500bbe37a21614791711285f.png)
g ( x) (1 x x ....)( 1 x x ...)
3 6 4 8
(1 x 2 x 4 ....)( 1 x 5 x10 ...) 1 1 1 1 3 2 4 5 1 x 1 x 1 x 1 x
sfsf
15
2.1母函数
n
r C n , r x n 0
例 从n双互不相同的五指袜子中取出r只,要求没有任何两只是 成对的,共有多少种不同的取法?
r r C n , r 2 x 解:生成函数为: G( x ) (1 2 x)
n
n 0
sfsf
17
2.1母函数
例 某班有甲乙丙三个小组,人数分别为5,6,9。把5本相同的 书分给甲、乙、丙3个小组,再发到个人手上,每人最多发一本。 考虑将分给某组的某本书发给该组的同学A与将其发给同学B被 认为是不同的分法(每个同学最多一本),而且甲、乙两组最 少1本,甲组最多5本,乙组最多6本,丙组最少2本,最多9本, 问有多少种不同的分配方案? 解:
5 6 9 4 5 6 9 5 6 9 5 6 9 5 1 1 2 x 1 1 3 1 2 2 2 1 2 x 5 6 9 20 5 6 9 x
sfsf
52
2.3指数型母函数
例、求1,3,5,7,9五个数字组成的n位数的个数(每个数 字可重复出现),要求1、3、7出现的次数一样多,5和9 出现的次数不加限制。求这样的n位数的个数。
sfsf
53
2.3指数型母函数
组合数学(西安电子科技大学(第二版))习题2
![组合数学(西安电子科技大学(第二版))习题2](https://img.taocdn.com/s3/m/d88ca1c4bb4cf7ec4afed0ba.png)
习题二(母函数及其应用)1.求下列数列的母函数(0,1,2,)n =(1)(1)n a n ⎧⎫⎛⎫-⎨⎬ ⎪⎝⎭⎩⎭;(2){5}n +; (3){(1)}n n -; (4){(2)}n n +;解:(1)母函数为:00()(1)()(1)nn n a n n a a G x x x x n n ∞∞==⎛⎫⎛⎫=-=-=- ⎪ ⎪⎝⎭⎝⎭∑∑;(2)母函数为:22554()(5)5(1)1(1)nnn n n n x xG x n x nx x x x x ∞∞∞===-=+=+=+=---∑∑∑; ♦ 方法二:()()()001022()(5)14414111114541(1)1nnnn n n n n G x n x n x x x x x x x x x x ∞∞∞===∞+==+=++''⎛⎫=+=-+⎪---⎝⎭-=+=---∑∑∑∑ (3)母函数为:2323000222()(1)(1)2(1)(1)(1)nnnn n n x x x G x n n x n n x nx x x x ∞∞∞====-=+-=-=---∑∑∑; ♦ 方法二:()()()()()2202222002222023()(1)00121121nn n n nn n n n n G x n n x xn n xxn n x xx x x x x x x x ∞∞-==∞∞+==∞+==-=++-"=++=""⎛⎫⎛⎫== ⎪⎪-⎝⎭⎝⎭=-∑∑∑∑∑(4)母函数为:232300023()(2)(1)(1)(1)(1)nnnn n n x x x x G x n n x n n x nx x x x ∞∞∞===-=+=++=+=---∑∑∑。
♦ 方法二:()()()()()()()()00212100023223()(2)1211111121111111131nnnnn n n n n n n n n n n n G x n n x n n x n x x x x x x x xx x x x x x x x x x x ∞∞∞∞====∞∞∞∞++++=====+=++-+-"'"'⎛⎫⎛⎫=--=-- ⎪ ⎪--⎝⎭⎝⎭"'⎛⎫⎛⎫=--=-- ⎪ ⎪----⎝⎭--⎝⎭-=-∑∑∑∑∑∑∑∑2.证明序列(,),(1,),(2,),C n n C n n C n n ++ 的母函数为 11(1)n x +- 。
组合数学第二章081126
![组合数学第二章081126](https://img.taocdn.com/s3/m/813f0be4b8f67c1cfad6b8e5.png)
1 C (m.1) x C (m.2) x
2
.... C (m.m) x
n m
得:
C(m+n,r )=C(m,0)C(n,r)+C(m,1)C(n,r-1)+…+C(m,r)C(n,0)
第二章 母函数与递推关系
2.1 母函数的引入 同样利用
1 x 1 1/ x
第二章 母函数与递推关系
2.6 指数型母函数 1 问题提出 设有 n 个元素, 其中元素 a1 重复了 n1 次, 元素 a2 重复了 n2 次, …, ... ak 重复了 nk 次,n=n1+n2+ +nk 从中取 r 个排列,求不同的排列数 如果 n1=n2= =nk=1,则是一般的排列问题。 现在由于出现重复,故不同的排列计数便比较复杂。先考虑 n 个 元素的全排列,若 n 个元素没有完全一样的元素,则应有 n!种排列。 若考虑 ni 个元素 ai 的全排列数为 ni! ,则真正不同的排列数为
...
第二章 母函数与递推关系
2.6 指数型母函数 解的分析 先讨论一个具体问题:若有 8 个元素,其中设 a1 重复 3 次,a2 重 复 2 次,a3 重复 3 次。从中取 r 个组合,其组合数为 cr,则序列 c0,c1,c2,c3,c4,c5,c6,c7 的母函数为
从 x 的系数可知,这 8 个元素中取 4 个组合,其组合数为 10。这 10 个组合可从下面展开式中得到
第二章 母函数与递推关系
2.1 母函数的引入
... 定义:对于序列 a0,a1,a1, ,定义 G x a0 a1 x a2 x ... 为序
2
... 列 a0,a1,a1, 的母函数。
组合数学第二章2指数型母函数
![组合数学第二章2指数型母函数](https://img.taocdn.com/s3/m/e53a462b67ec102de2bd8981.png)
G ( x) (1 x x x )(1 x x )(1 x x x )
2 3 2 2 3
(1 2 x 3 x 2 3x 3 2 x 4 x 5 ) (1 x x 2 x 3 ) 1 3 x 6 x 2 9 x 3 10 x 4 9 x 5 6 x 6 3 x 7 x 8
2.5 指数型母函数---问题提出
设有n个元素,其中元素a1重复了n1次,元 素a2 重复了n2次,…,ak重复了nk次,
n n1 n2 nk
从中取r个排列,求不同的排列数 如果 n1 n2 nk 1,则是一般的排列 问题。
2.5 指数型母函数---问题提出
x x x Ge ( x) (1 ) 1! 2! n1! x x x x x x (1 ) (1 ) 1! 2! n2 ! 1! 2! nk !
2 n2 2 nk
2
n1
2.5 指数型母函数---举例
由此可以看出指数型母函数在解决有重复 元素的排列时的优越性。 例1:求由两个 a ,1个b ,2个c 组成的不 同排列总数。 根据结论(a),不同的排列总数为
5! n 30 2!2!1!
2.5 指数型母函数---举例
例2 设{a n }是数列,求它的指数生成函数f(x) e 1)a n =P(m,n), n=0,1,2,... 2)a n =1,
n
n=0,1,2,...
3)a n =b , n=0,1,2,...
m xn 解 :1)f e (x) P(m, n) C(m, n)x n (1 x) m n! n 0 n 0
2 2 1 3
组合数学 第二章
![组合数学 第二章](https://img.taocdn.com/s3/m/d4d177166edb6f1aff001fe2.png)
2 nm
5
展开 式 的 各 项具 有 形 式 : x k1 x k2 ⋯ x km = x k1 + k2 +⋯+ km
其中x k1 来自第一个因式,x k2 来自第二个因式, , ⋯
x km 来 自 第 m 个 因 式 , 且 0 ≤ k i ≤ n, i = 1 2 ⋯ m . , , , i
2 2 2
这表明有5种取球情况 :
(i) 常数项1表示一个球也不取,方案只有1种;
(ii) x + y + z 表示取1个球的取法,方案有3种,分 别为 红 、 黑 、白 三 种 球 只取 1 个; (iii) x 2 + xy + xz + yz 表示取2个球的取法,方案有
,1个 ,1个 4种,分别为2个红球,1个红球1个黑球,1个红球1个白 ,1个 球,1个黑球1个白球;
这6个组合是:
aaabbbbccc, aaabbbcccc, aaabbccccc, aabbbbcccc, aabbbccccc, abbbbccccc
14
例3 设有 2个红球,1个黑球,1个白球.问 : (1) 共有多少种不同的选取方法 ? 试加以枚举. (2) 若每次从中任取3个,有多少种不同的取法?
}的 例 1 求 数 列 {a n } 的 母 函 数 , 其 中 a n 是 多 重 集 { ∞ ⋅ e1 , ∞ ⋅ e 2 , ⋯ , ∞ ⋅ e k } k + n − 1 的 n可 重 组 合 数 . n
组合数学(西安电子科技大学(第二版))习题4答案
![组合数学(西安电子科技大学(第二版))习题4答案](https://img.taocdn.com/s3/m/5a3e700a4a7302768e9939d5.png)
习题四(容斥原理)1.试求不超过200的正整数中素数的个数。
解:因为2215225,13169==,所以不超过200的合数必是2,3,5,7,11,13的倍数,而且其因子又不可能都超过13。
设i A 为数i 不超过200的倍数集,2,3,5,7,11,13i =,则22001002A ⎢⎥==⎢⎥⎣⎦,3200663A ⎢⎥==⎢⎥⎣⎦,5200405A ⎢⎥==⎢⎥⎣⎦,7200287A ⎢⎥==⎢⎥⎣⎦, 112001811A ⎢⎥==⎢⎥⎣⎦,132001513A ⎢⎥==⎢⎥⎣⎦,232003323A A ⎢⎥==⎢⎥⨯⎣⎦, 252002025A A ⎢⎥==⎢⎥⨯⎣⎦,272001427A A ⎢⎥==⎢⎥⨯⎣⎦,2112009211A A ⎢⎥==⎢⎥⨯⎣⎦, 2132007213A A ⎢⎥==⎢⎥⨯⎣⎦,352001335A A ⎢⎥==⎢⎥⨯⎣⎦,37200937A A ⎢⎥==⎢⎥⨯⎣⎦, 3112006311A A ⎢⎥==⎢⎥⨯⎣⎦,3132005313A A ⎢⎥==⎢⎥⨯⎣⎦,57200557A A ⎢⎥==⎢⎥⨯⎣⎦, 5112003511A A ⎢⎥==⎢⎥⨯⎣⎦,5132003513A A ⎢⎥==⎢⎥⨯⎣⎦,7112002711A A ⎢⎥==⎢⎥⨯⎣⎦, 7132002713A A ⎢⎥==⎢⎥⨯⎣⎦,111320011113A A ⎢⎥==⎢⎥⨯⎣⎦,2352006235A A A ⎢⎥==⎢⎥⨯⨯⎣⎦, 2372004237A A A ⎢⎥==⎢⎥⨯⨯⎣⎦,231120032311A A A ⎢⎥==⎢⎥⨯⨯⎣⎦,231320022313A A A ⎢⎥==⎢⎥⨯⨯⎣⎦ 2572002257A A A ⎢⎥==⎢⎥⨯⨯⎣⎦,251120012511A A A ⎢⎥==⎢⎥⨯⨯⎣⎦,251320012513A A A ⎢⎥==⎢⎥⨯⨯⎣⎦, 271120012711A A A ⎢⎥==⎢⎥⨯⨯⎣⎦,271320012713A A A ⎢⎥==⎢⎥⨯⨯⎣⎦, 21113200021113A A A ⎢⎥==⎢⎥⨯⨯⎣⎦,3572001357A A A ⎢⎥==⎢⎥⨯⨯⎣⎦,351120013511A A A ⎢⎥==⎢⎥⨯⨯⎣⎦351320013513A A A ⎢⎥==⎢⎥⨯⨯⎣⎦,371120003711A A A ⎢⎥==⎢⎥⨯⨯⎣⎦,…, 235720002357A A A A ⎢⎥==⎢⎥⨯⨯⨯⎣⎦,…,23571113200023571113A A A A A A ⎢⎥==⎢⎥⨯⨯⨯⨯⨯⎣⎦, 所以 23571113200(1006640281815)(3320149713965533221)(6432211110111i i j i j k i j k lii ji j ki j k li j k l m i j k l m ni j k l mi j k l m nA A A A A A S A A A A A A A A A A A A A A A A A A A A A <<<<<<<<<<<<<<<=-+-+-+=-++++++++++++++++++++-+++++++++++++∑∑∑∑∑∑0)00041+-+=但这41个数未包括2,3,5,7,11,13本身,却将非素数1包含其中, 故所求的素数个数为:416146+-=2.问由1到2000的整数中:(1)至少能被2,3,5之一整除的数有多少个? (2)至少能被2,3,5中2个数同时整除的数有多少个? (3)能且只能被2,3,5中1个数整除的数有多少个? 解:设i A 为1到2000的整数中能被i 整除的数的集合,2,3,5i =,则2200010002A ⎢⎥==⎢⎥⎣⎦,320006663A ⎢⎥==⎢⎥⎣⎦,520004005A ⎢⎥==⎢⎥⎣⎦, 23200033323A A ⎢⎥==⎢⎥⨯⎣⎦,25200020025A A ⎢⎥==⎢⎥⨯⎣⎦,35200013335A A ⎢⎥==⎢⎥⨯⎣⎦, 235200066235A A A ⎢⎥==⎢⎥⨯⨯⎣⎦, (1)即求235A A A ++,根据容斥原理有:235235232535235()1000666400(333200133)661466A A A A A A A A A A A A A A A ++=++-+++=++-+++=(2)即求232535A A A A A A ++,根据容斥原理有:232535232535235235235235()333200133266534A A A A A A A A A A A A A A A A A A A A A A A A ++=++-+++=++-⨯=(3)即求[1]N ,根据Jordan 公式有:1112233235232535235[1]2()310006664002(333200133)366932N q C q C q A A A A A A A A A A A A =-+=++-⨯+++⨯=++-⨯+++⨯=3.求从1到500的整数中能被3和5整除但不能被7整除的数的个数。
《组合数学》教案 2章(母函数)及课后习题讲解
![《组合数学》教案 2章(母函数)及课后习题讲解](https://img.taocdn.com/s3/m/ebd6d79edaef5ef7ba0d3c37.png)
第二章母函数及其应用问题:对于不尽相异元素的部分排列和组合,用第一章的方法新方法:母函数方法。
基本思想:把离散的数列同多项式或幂级数一一对应起来,算。
2.1 母函数(一)母函数(1)定义【定义2.1.1】对于数列{}n a ,称无穷级数()∑∞=≡0n n n x a x G 为该数列的(普通型)母函数,简称普母函数或母函数。
(2)例【例2.1.1】有限数列rn C (r =0, 1, 2, …, n )的普母函数:()x G =nn n n n nx C x C x C C ++++ 2210=()nx +1【例2.1.2】无限数列{1, 1. …, 1, …}的普母函数:()x G = +++++nx x x 21=x-11(3)说明● n a 可以为有限个或无限个。
● 数列{}n a 与母函数一一对应。
{0, 1, 1, …, 1, …}↔ +++++n x x x 20=xx -1 ● 将母函数视为形式函数,目的是利用其有关运算性质完成计数问题,故不考虑“收敛问题”。
(4)常用母函数(二) 组合问题 (1)组合的母函数【定理2.1.1】组合的母函数:设{}m m e n e n e n S ⋅⋅⋅=,,,2211 ,且n 1+n 2+…+n m =n ,则S 的r 可重组合的母函数为()x G =∏∑==⎪⎪⎭⎫ ⎝⎛mi n j j i x 10=∑=n r r r x a 0其中,r 可重组合数为rx 之系数r a ,r =0, 1, 2, …, n 。
理论依据:多项式的任何一项与组合结果一一对应。
【例2.1.3】设有6个红球,7个黑球,8个白球,问 (1) 共有多少种不同的选取方法,试加以枚举? (2) 若每次从中任取3个,有多少种不同的取法? (解)(1)元素符号化(x ,y ,z ↔红、黑、白球),元素的个数以符号的指数区分。
母函数G (x , y , z ) =(1+x +x 2) (1+y ) (1+z )=1+(x +y +z )+(x 2+xy +xz +yz )+(x 2x +x 2x +xxx )+( x 2yz )5种情况:① 数字1表示一个球也不取的情况,共有1种方案; ② 取1个球的方案有3种,即红、黑、白三种球只取1个; ③ 取2个球的方案有4种,即2红、1红1黑、1红1白、1黑1白; ④ 取3个球的方案有3种,即2红1黑、2红1白、三色球各一; ⑤ 取4个球的方案有1种,即全取。
组合数学课件 第二章母函数与递推关系
![组合数学课件 第二章母函数与递推关系](https://img.taocdn.com/s3/m/8f6b491c43323968011c92ce.png)
§2.1
母函数
另一方面:
(1 x) m (1 x) n (1 x) m n
[C (n,0) C (n,1) x C (n, n) x n ] [C (m,0) C (m,1) x 1 C (m, m) x m ] x [C (m n,0) C (m n,1) x C (m n, m n) x
242问题的求解242问题的求解242问题的求解242问题的求解242问题的求解其中25线性常系数递推关系定义如果序列满足阶常系数线性递推关系称为的初始条件称为的特征多项式25线性常系数递推关系25线性常系数递推关系将这些式子两边分别相加得到25线性常系数递推关系25线性常系数递推关系因此次多项式我们知道在复数域中25线性常系数递推关系25线性常系数递推关系253式是有理式且分子的次数低于分母的次数有分项表示即
G( x) a0 a1 x a2 x , 称函数G(x)是序列a0 , a1 , a2 , 的母函数
§2.1
母函数
例如
如若已知序列 a0 , a1 , a2 ,, 则对应的母函 数G(x)便可根据定义给出。反之,如若以求得 序列的母函数G(x),则该序列也随之确定。 序列 a0 , a1 , a2 ,, 可记为 {an }。
2 3 2
§2.2
递推关系
整理得
x x (1 2 x) H ( x) x 1 x 1 x
这两种做法得到的结果是一样的。即:
2
x H ( x) (1 x)(1 2 x)
§2.2
组合数学 教学大纲
![组合数学 教学大纲](https://img.taocdn.com/s3/m/b6347d16ff00bed5b9f31dfe.png)
《组合数学》课程教学大纲课程名称:组合数学英文名称:Combinatorial Mathematics 课程代码: ZS1051001课程类别: 专业选修学分: 3 学时: 48开课单位: 理学院适用专业: 数学与应用数学(师范教育方向)制订人:审核人:审定人:一、课程性质与目的(一)课程的性质组合数学是高等师范院校数学与应用数学专业的专业选修课。
组合数学起源于古代的数学游戏和美学消遣,它以无穷的魅力激发人们的聪明才智和数学兴趣。
组合数学的离散性及其算法与计算机的结合已在现代科学技术中发挥出极为重要的作用。
它的一个重要组成部分——试验设计有着重大的应用价值,它的数学原理就是组合设计。
用组合设计的方法解决实际应用中的试验设计问题在西方发达国家已经得到了广泛的重视,并投入了大量的人力物力进行相关的研究与产品的开发。
所以说,组合数学是一门提高思维分析能力和自我构造算法本领的课程。
(二)课程的目的通过本课程的学习要求学生理解组合数学的基本概念与基本原理,掌握组合理论的基本方法和技巧,提高学生综合应用排列与组合、代数与编码、优化与规划的能力,为深入研究组合数学打好基础。
二、与相关课程的联系与分工本课程是数学与应用数学专业的专业选修课,它以数学分析、高等代数、概率论为基础,培养学生逻辑推理能力,科学计算能力,解决实际问题的能力,对离散问题的分析能力,为编程与编码作准备。
组合数学不仅在计算机软件科学技术中有着重要的应用价值,在企业管理,交通规划,战争指挥,金融分析,电子工程、数字通讯等诸多领域中也具有广泛而重要的应用。
三、教学内容及要求第一章排列与组合【教学要求】掌握加法法则与乘法法则,会利用排列与组合解决具体的实际问题。
【教学重点】加法法则与乘法法则;一一对应;排列与组合;组合意义的灵活运用;【教学难点】排列的生成算法;允许重复的组合与不相邻的组合;【教学内容】第一节加法法则与乘法法则第二节一一对应第三节排列与组合一、排列与组合的模型二、排列与组合问题的举例第四节圆周排列第五节排列的生成算法一、序数法二、字典序法三、换位法第六节允许重复的组合与不相邻的组合一、允许重复的组合二、不相邻的组合三、线性方程的整数解的个数问题四、组合的生成第七节组合意义的解释第八节应用举例第九节Stirling公式*一、Wallis公式*二、Stirling公式的证明第二章递推关系与母函数【教学要求】会利用递推关系与母函数解决实际问题。
组合数学C2_3_LHRR
![组合数学C2_3_LHRR](https://img.taocdn.com/s3/m/bf9a302accbff121dd36834e.png)
中 x n 的系数是
A1 A2
n 1
n 2
A1 n (cos i sin ) n A2 n (cos i sin ) n A1 n (cos n i sin n ) A2 n (cos n i sin n ) ( A1 A2 ) cos n i ( A1 A2 ) sin n
• Fibonacci数列
F0 = 0, F1 = 1 , Fn = Fn - 1 + Fn – 2
Linear Homogeneous Recurrence Relation with constant co-eቤተ መጻሕፍቲ ባይዱficients
定义 如果序列an 满足
C(m) = m2-m-1=(m-)(m-)
拉普拉斯 1812年
似函数,非函数,是映射
伯努利
1705年前
欧拉
递推关系 a n C1a n 1 C 2 a n 2 C k a n k 0,
C ( x ) x k C1 x k 1 C k 1 x C k
整数拆分
1764年前
n n n 母函数G(x)为桥梁 a n l1a1 l 2 a 2 l k a k
a 2 b2
§2.5 线性常系数递推关系 (3)特征多项式 C x 有共轭复根 设 1 , 2 是C x 的一对共轭复根。
A1 A2 1 1 x 1 2 x
1 cos i sin , 2 1 (cos i sin )
C ( x ) x k C1 x k 1 C k 1 x C k
1)特征多项式无重根,k个不同的实数解
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1 1 x 2
n 1x n
n 0
sfsf
16
2.1母函数
例 从n双互不相同的袜子(每双袜子中的两只相同)中取出r只, 要求没有任何两只是成对的,共有多少种不同的取法?
解:生成函数为: G( x ) (1 x )
sfsf
13
2.1母函数
例 求不定方程k1+k2+k3+k4=20的解数。其中, 限制k1可取0,2,4; k2可取1,3,5; k3可取6,7;k4可取8,9。 G(x)=(1+x2+x4)(x+x3+x5)(x6+x7)(x8+x9)
= (1+x2+x4) (1+x2+x4)x(1+x)x6(1+x)x8
例 确定苹果、香蕉、橘子和梨的n-组合的个数,其中在每个n组合中要求:苹果的个数必须是偶数,香蕉的个数必须是5的倍 数,橘子的个数最多4个,梨的个数为0或1个。 解:生成函数为:
G( x) (1 x 2 x 4 ....)(x 0 x 5 ....)(1 x x 2 x 3 x 4 )(1 x)
sfsf
12
2.1母函数
例 求不定方程k1+k2+k3+k4=20的解数。其中, 限制k1可取0,2,4; k2可取1,3,5; k3可取6,7;k4可取8,9。
解:设不定方程k1+k2+k3+k4=k的解组数目为ck,本例中m=4, k=20。 注意到对ki(i=1,2,3,4)的限制,序列{ck}对应的生成函数为: G(x)=(1+x2+x4)(x+x3+x5)(x6+x7)(x8+x9)
母函数及其应用
sfsf
1
排列组合问题
sfsf
2
2.1母函数
定义2.1.1 对于数列{an},称无穷级数
G x an x n
n 0
为该数列的(普通型)母函数,简称普母函数或母函数。同时称 {an}为G(x)的生成数列。 例 有限数列C(n,r),r=0,1,2, …,n的普母函数是
n
sfsf
4
2.1母函数
sfs数
sfsf
7
2.1母函数
sfsf
8
2.1母函数
sfsf
9
2.1母函数
sfsf
10
2.1母函数
例 设有2个红球,1个黑球,1个白球,问 (1)共有多少种不同的选取方法,试加以枚举? (2)若每次从中任取3个,有多少种不同的取法? 解:设想用x,y,z分别代表红、黑、白三种球,两个红球的取 法与x0,x1,x2对应起来,即红球的可能取法与1+x+x2中x的 各次幂一一对应,亦即x0=1表示不取,x表示取1个红球,x2表 示取两个。对其它球,依此类推。则母函数 G(x,y,z) =(1+x+x2) (1+y) (1+z) =1+(x+y+z)+(x2+xy+xz+yz)+(x2y+x2z+xyz)+( x2yz) 若令x=y=z=1,就得所有不同的选取方案总数为 G(1,1,1) =1+3+4+3+1=12
g ( x) (1 x x ....)( 1 x x ...)
3 6 4 8
(1 x 2 x 4 ....)( 1 x 5 x10 ...) 1 1 1 1 3 2 4 5 1 x 1 x 1 x 1 x
sfsf
15
2.1母函数
sfsf 11
2.1母函数
例 设有2个红球,1个黑球,1个白球,问 (1)共有多少种不同的选取方法,试加以枚举? (2)若每次从中任取3个,有多少种不同的取法? 解:若只考虑每次取3个的方案数,而不需枚举,则令y=x,z =x,便有 G(x) = (1+x+x2) (1+x) (1+x) = 1+3x+4 x2+3 x3+ x4 由x3的系数即得所求方案数为3。
n
r C n , r x n 0
例 从n双互不相同的五指袜子中取出r只,要求没有任何两只是 成对的,共有多少种不同的取法?
r r C n , r 2 x 解:生成函数为: G( x ) (1 2 x)
n
n 0
sfsf
17
2.1母函数
例 某班有甲乙丙三个小组,人数分别为5,6,9。把5本相同的 书分给甲、乙、丙3个小组,再发到个人手上,每人最多发一本。 考虑将分给某组的某本书发给该组的同学A与将其发给同学B被 认为是不同的分法(每个同学最多一本),而且甲、乙两组最 少1本,甲组最多5本,乙组最多6本,丙组最少2本,最多9本, 问有多少种不同的分配方案? 解:
= (1+x2+x4)2(1+x)2x15 = (1 +x +x2 +x3 +x4 +x5)2x15 只需要多项式(1 +x +x2 +x3 +x4 +x5)2展开式中x5的系数就等于x20 的系数,由多项式定理:C20=6.
sfsf
14
2.1母函数
例 求不定方程3k1+4k2+2k3+5k4=n的非负整数解的个数。
5 6 9 4 5 6 9 5 6 9 5 6 9 5 1 1 2 x 1 1 3 1 2 2 2 1 2 x 5 6 9 20 5 6 9 x
0 1 2 2 n n Cn Cn x Cn x Cn x 1 x n
sfsf
3
2.1母函数
例 无限数列{1,1,…,1,…}的普母函数是
1 x x x
2
2
n
1 1 x
例 无限数列{1,2,…,n,…}的普母函数是
1 1 2 x 3 x (n 1) x 2 (1 x )
sfsf
18
2.1母函数
5 5 i 6 6 i 9 9 i G( x ) x x i x i i i 1 i 1 i 2