主要电力设备故障图像特征及识别方法研究改
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
摘要
摘要内容
伴随着我国电网规模的日益加大,各类变电设备的运作状态是促使其安全高效运行的最为主要的因素之一。对于各类变电设备的在线状态监测系统的推广越来越发普及。研究基于图像特征的电力设备自动故障识别具有重要意义。
本文对各类主要电力设备,研究各类变电设备故障识别分类及相应故障的图像特征,以及基于红外与紫外图像特征的故障识别方法。对于紫外放电成像技术图像的处理与特征提取,本文从紫外成像技术的基本原理出发,在讲解紫外放电图片特性的基础上,对紫外放电图像使用灰度化预处理,以及应用中值滤波等方法对图像进行降噪。并通过canny算子边缘检测计算紫外光斑面积判断是否发生放电故障。针对红外故障图像,本文在红外成像原理的基础上,对红外图像进行超像素分割及HSV空间颜色提取,对应用卷积神经网络对红外故障图像故障区域检测进行理论上的研究。
关键词:红外成像紫外成像图像处理
ABSTRACT
With the increasing scale of China's power grid, the operation of various types of substation equipment is one of the most important factors to promote the safe and efficient operation. The popularization of the on-line condition monitoring system for all kinds of transformer equipment is becoming more and more popular. Research on image feature based automatic fault recognition of power equipment is of great significance.
In this paper, various types of main power equipment, the study of various types of substation equipment fault identification and classification of image features, as well as infrared and ultraviolet image features based on fault identification method. For ultraviolet discharge imaging technique to image processing and feature extraction, this paper from the basic principle of UV imaging technology of on the explanation of the ultraviolet discharge picture characteristics based and discharge on the UV image using grayscale preprocessing and application of median filtering method of image in noise reduction. And through the Canny operator edge detection to determine whether the area of the UV spot to determine whether the discharge fault. Aiming at the
fault infrared image, this paper on the basis of the principle of infrared imaging, the infrared image were super pixel segmentation and HSV color space extraction, the convolutional neural network is applied to fault section detection of infrared fault image of theoretical research.
KEY WORDS:
目录
第一章
1.1课题背景
伴随着我国国民经济水平的前进与发展,全国各地对电力的需求不断增长,推动我国电网规模不断加大、同时向超高压、大容量和智能化的路线前进。但也对各类电力设备的安全性及可靠性提出更为克刻的要求。由于一旦电力设备和部件产生故障或缺陷,极易导致“链式反应”,致使整个电力系统不能正常工作,从而引发重大的经济损失,而存在隐患的设备故障和缺陷还会造成灾难性事故和人员伤亡,更是从源头波及社会方方面面造成恶劣影响。故障识别与诊断技术给电力单位带来显著的生产利益,其经济意义集中表现在减少维修消耗和避免突发事故这两点上。
而且,研究表明,电气设备故障产生最直接最重要的原因是其绝缘性能发生劣化。电气设备尤其是高压电气设备长期处于高电压、强场强运行条件下,同时承受户外风雨侵袭,不可避免会使得绝缘性能发生劣化。伴随时间的日益推移,当劣化产生一定影响时,就会发生电力设备放电这种现象。若没有及时找到电气设备放电的原因,对故障部件进行维修和更换,放任放电故障发展,结果极有可能导致设备击穿、闪络等现象,致使故障更为严重,波及范围也大大增加。所以必须对电力设备的前期局部放电展开深入研究,对电力设备的绝缘能力特别是其外绝缘能力进行预先评价,保障电力设备安全高效运转,从而提高整体系统的可靠及稳定性。每当电力设备放电时,放电部位会放出波长240致80nm的紫外辐射,对此信号进行有效的监测,将大大的有益于早期检测到放电现象。而且电力设备,凡是其外部发生放电,均可得到其放电紫外图像,这导致紫外放电成像技术在电力设备在线状态监测特别是电力设备外绝缘监测方面的应用领域更加广泛。
1.2国内外研究现状
1.2.1红外热像仪成像技术在电力系统的应用
对变压器的红外成像在线状态监测系统在电力系统的普遍应用是电力企业对于追求信息化的必经之路,它不但可以代替人为测温,更是达到实时在线监测变压器的发热情况,避免和降低故障发生,保障了变压器的可靠运行,确保了电