汽车排气消声器的性能分析
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
汽车排气消声器的性能分析
摘要:本文从流体性能、声学性能两个方面对汽车消声器总成的消声性能进行了分析,具有一定的理论价值和实用价值。
关键词:汽车;消声器;消声;分析
1流体性能的分析
1.1消声器模型的建立
(a)前消声器三维几何模型
(b)前消声器三维几何模型
图1消声器三维几何模型
图1是汽车消声器总成Ⅰ的三维模型,前消声器和后消声器之间用弯管连接。发动机燃烧废气经前消声器进入后消声器入口管,少部分气体由入口管小孔进入后消声器第一腔,然后从出口管流出;大部分气体则由后消声器入口管直接进入第二腔,然后经由第一腔隔板进入第一腔后再从出口管流出,后消声器第三腔是吸声材料,一般认为气体是不能通过的,只有声波可以通过。
1.2流体性能分析
流体对声学性能的影响主要体现在以下几个方面:针对阻性消声材料,气流对消声器有声衰减作用;气流速度过高也会产生再生噪声,影响消声器的插入损失;同时,流体除了影响消声器声学性能外,在本身流动过程中也会有一定的压力损失,造成发动机功率下降,所以消声器的流场分析也是消声器研究性能之一。消声器总成Ⅰ的前消声器横截面积较小,结构单元简单,流体流场的温度梯度、压力梯度变化不大,为了提高计算效率,对前消不做流体分析,以后消作为流场研究的重点,研究其温度、流速变化和压力损失。
①后消有限元模型的建立
在进行有限元计算之前,首先要进行模型网格的划分。利用UG建立消声器三维模型,导入Hypermesh进行网格划分。划分网格时,如果划分的过密则会
大大影响求解速度;如果划分过稀,将影响求解精度。因此,为了保证精度和计算速度,在穿孔管处进行网格细化,并且面网格用标准的三角形网格,以提高体网格的质量。图2为消声器总成Ⅰ后消体网格生成图,生成的网格数为90191。
图2后消声器网格图
②后消声器流体分析边界条件的施加
流场计算选用了Gambit和Fluent软件,该软件可以模拟包括流体流动、传热以及一些附加的物理化学反应。它采用的离散方法是基于有限元的有限容积法。
排气系统中气体特性,不需要考虑管壁的结构振动,建模时只建立内腔流体网格。1)流体材料;常温常压下的理想空气来代替排出的废气。声波在800K (500度左右)时的声速为674.96m/s,其中T为绝对温度。消声器内部最高流速为157m/s,小于可压缩和不可压缩气体的经验界限值0.3马赫数(0.3*674.96m/s=202.48m/s),即可认为在这些工况下,消声器内部气体的流动可以看作是不可压缩的。2)湍流模型;湍流(Turbulence),也称为紊流,是一种高度复杂的非稳态三维流动,也是一个非线性的复杂过程。本节的流场分析采用了标准的k-ε模型。
3)管壁(wall)为光滑、非渗透性的,管壁没有滑移(没有运动,没有壁面速度),即流体在壁面边界上的速度设为0。参考一般汽车消声的后消性能参数,消声器入口处流速为20m/s,其入口速度大小的设置并不影响流场速度梯度的分布,改进前后在同一个边界条件下进行仿真分析,是具有可对比性的;进气温度为800K,出口处绝对压力为101000Pa,这里加的是相对大气压的参考压力0Pa。
③消声器流场分析
消声器流场计算结果包括消声器的速度、温度和压力分布。下面分别对它们的分布特点进行阐述。
1)温度场分布
图3后消声器温度等值线图
最高温度为入口温度800K,温度较小出现在消声器尾端420K左右,其中在消声器第二腔插入管与隔板正对处,温度梯度较小,整个后消声器的平均温度在620K左右。
2)压力场分布
图4后消压力矢量分布
流场压力在消声器第一腔第二腔变化梯度并不大,主要压力损失是由插入第二腔的插入扩张结构引起,如果能减小插入管的长度,理论上应该能对压力损失有减少作用。在仿真边界下,整个消声器压力算是在400Pa左右,符合一般消声器压力损失的数量级。
3)流场速度分析
由于流场速度影响消声器的再生噪声,通过流体仿真可以做定性的分析,通过对比优化前后的速度,衡量再生噪声是否增加。
图5流速的矢量分布
流速较大的地方在消声器插入管处,其他空间流速都很低,且从入口的最大流速到出口流速,流速的变化并不算大,这也是压力损失较小的原因之一。考虑气体流动和不考虑气体流动时的消声器传递损失变化较小,一般流速对消声特性影响不大,只是使大部分频率上消声量稍有下降,频率特性上基本上没有改变。
2声学性能的分析
由于声学仿真计算的传声损失具有一定的叠加性,可近似看作各腔传声损失的线性叠加,且仿真时有限元模型网格数目大会影响计算的精度,故对前、后消单独进行仿真分析以及结构改进。本节主要从声学角度,分析其消声的频率特性形成原因,以及存在问题。
2.1声学模型的建立
①网格的划分
对消声器整个总成的声学分析采用三维有限元法,声学计算所采用的软件为SYSNOISE,在SYSNOISE中精度是由最大单元控制的,对于有限元或边界元,通常设最大频率时一个波长里至少包含了六个单元,即模型中最大的单元尺寸小于等于波长的六分之一,即
(1-1)
式中,c是声速,fmax是最大计算频率。
由最大单元划分原则可知,频率越大,单元边长越小,单元数越大,耗费的计算资源就越多,所以最高频率应根据需要合理确定。人耳可听的频率范围是20Hz到20000Hz,而人耳敏感的频率范围是1000Hz到8000Hz,又由于发动机的排气噪声主要集中在3200Hz以内,所以选取的计算频率为20Hz~3200Hz,每10Hz为一步长。因为SYSNOISE中没有前处理功能,所以在Hypermesh中对消声器声学模型进行网格划分。考虑到划分网格时,消声器内部穿孔面积会降低,这样会使得其穿孔率减小影响分析结果,故在建模时加大其孔径,以保证有限元模型的穿孔率跟实际保持一致。
②边界条件
由第三章对消声性能影响因素的分析,温度对消声性能的影响是比较大的,尾管效应以及气体流速对消声器消声性能的影响较小,根据流场分析的结果,整个后消声器入口到出口的流速变化不大,故不考虑流速以及尾管效应的影响,只考虑温度对消声器消声性能的影响,图4显示气流通过后消声器时,后消大部分地方气流的温度分布在620K左右,故不对后消声器取温度梯度来分析,直接取后消的平均温度数值为620K来计算。由于前消直接与发动机排气管连接,汽车排气的温度一般在900K到1200K之间,在声学计算时,前消声器也取平均温度数值为1000K。考虑温度影响时,一些物理参数随温度的变化可以根据公式(1-2)来计算。
(1-2)
式中,T为绝对温度,At为温度为t℃时的相应量,A20为20℃时的相应量,n为温度指数。
2.2前消声器的消声性能分析
消声器总成Ⅰ的前消有限元模型如6所示,前消声器的轴向长度为820mm,截面为圆形,直径为65mm,出、入口管(统称为内管)外管同轴,前消出、入口管上均有穿孔,穿孔率为12.35%,穿孔直径为3.5mm。由于网格划分时,有限元模型中,内管穿孔处的圆孔会变成该圆的内接四边形形状,影响其穿孔率,故在建模时,适当增加穿孔孔径,使得其穿孔率保持一致。
图6前消声器有限元模型
图6前消声器的传声损失