有关圆-椭圆-双曲线-抛物线的详细知识点

合集下载

高中数学有关圆-椭圆-双曲线-抛物线的详细知识点

高中数学有关圆-椭圆-双曲线-抛物线的详细知识点

<一>圆的方程(x-a)^2+(y-b)^2=r^2,圆心O(a,b),半径r。

(1)圆的一般式方程:x^2+y^2+Dx+Ey+F=0此方程可用于解决两圆的位置关系:配方化为标准方程:(x+D/2)^2.+(y+E/2)^2=(D^2+E^2-4F)/4其圆心坐标:(-D/2,-E/2)半径为r=√[(D^2+E^2-4F)]/2此方程满足为圆的方程的条件是:D^2+E^2-4F>0若不满足,则不可表示为圆的方程(2)点与圆的位置关系点P(X1,Y1) 与圆(x-a)^2+(y-b) ^2=r^2的位置关系:⑴当(x1-a)^2+(y1-b) ^2>r^2时,则点P在圆外。

⑵当(x1-a)^2+(y1-b) ^2=r^2时,则点P在圆上。

⑶当(x1-a)^2+(y1-b) ^2<r^2时,则点P在圆内。

圆与直线的位置关系判断平面内,直线Ax+By+C=0与圆x^2+y^2+Dx+Ey+F=0的位置关系判断一般方法是:1.由Ax+By+C=0,可得y=(-C-Ax)/B,(其中B不等于0),代入x^2+y^2+Dx+Ey+F=0,即成为一个关于x的一元二次方程f(x)=0。

利用判别式b^2-4ac的符号可确定圆与直线的位置关系如下:如果b^2-4ac>0,则圆与直线有2交点,即圆与直线相交。

如果b^2-4ac=0,则圆与直线有1交点,即圆与直线相切。

如果b^2-4ac<0,则圆与直线有0交点,即圆与直线相离。

2.如果B=0即直线为Ax+C=0,即x=-C/A,它平行于y轴(或垂直于x 轴),将x^2+y^2+Dx+Ey+F=0化为 (x-a)^2+(y-b) ^2=r^2。

令y=b,求出此时的两个x值x1、x2,并且规定x1<x2,那么:当x=-C/A<x1或x=-C/A>x2时,直线与圆相离;当x1<x=-C/A<x2时,直线与圆相交;半径r,直径d在直角坐标系中,圆的解析式为:(x-a)^2+(y-b)^2=r^2;x^2+y^2+Dx+Ey+F=0=> (x+D/2)^2+(y+E/2)^2=(D^2+E^2-4F)/4=> 圆心坐标为(-D/2,-E/2)其实只要保证X方Y方前系数都是1就可以直接判断出圆心坐标为(-D/2,-E/2)这可以作为一个结论运用的且r=根号(圆心坐标的平方和-F)<二>椭圆的标准方程椭圆的标准方程分两种情况:当焦点在x轴时,椭圆的标准方程是:x^2/a^2+y^2/b^2=1,(a>b>0);当焦点在y轴时,椭圆的标准方程是:y^2/a^2+x^2/b^2=1,(a>b>0);其中a>0,b>0。

圆椭圆双曲线抛物线知识点汇总

圆椭圆双曲线抛物线知识点汇总

圆椭圆双曲线抛物线知识点汇总一、圆椭圆双曲线抛物线的定义1. 圆:圆是平面上到定点距离相等的所有点的集合。

圆由圆心和半径唯一确定。

2. 椭圆:椭圆是平面上到两个定点的距离之和为常数的所有点的集合。

椭圆由两个焦点和两个半轴唯一确定。

3. 双曲线:双曲线是平面上到两个定点的距离之差为常数的所有点的集合。

双曲线由两个焦点和两个实轴唯一确定。

4. 抛物线:抛物线是平面上到定点距离等于到定直线的距离的所有点的集合。

抛物线由焦点和直线唯一确定。

二、圆椭圆双曲线抛物线的方程1. 圆:圆的标准方程为(x-a)² + (y-b)² = r²,其中圆心为(a, b),半径为r。

2. 椭圆:椭圆的标准方程为x²/a² + y²/b² = 1,其中a和b分别为x轴和y轴上的半轴长。

3. 双曲线:双曲线的标准方程为x²/a² - y²/b² = 1或者y²/a² - x²/b² = 1,取决于焦点的位置。

4. 抛物线:抛物线的标准方程为y² = 4ax或者x² = 4ay,取决于抛物线开口的方向。

三、圆椭圆双曲线抛物线的性质1. 圆:圆的直径是圆上任意两点之间的最大距离,且所有直径相等。

2. 椭圆:椭圆的离心率介于0和1之间,离心率越接近0,椭圆越接近于圆。

3. 双曲线:双曲线分为两支,每一支的焦点到定点的距离之差相等。

4. 抛物线:抛物线的焦点在抛物线上方,开口方向取决于系数a的正负号。

四、圆椭圆双曲线抛物线的应用1. 圆:在几何中常常与角度和三角函数结合,用于描述正弦和余弦函数的周期性。

2. 椭圆:在天体力学中用于描述行星轨道的形状,以及通信中的极化椭圆。

3. 双曲线:在光学和电磁学中用于描述折射和反射现象。

4. 抛物线:在物理学中用于描述自由落体运动和抛物线运动。

椭圆、双曲线、抛物线知识总结

椭圆、双曲线、抛物线知识总结

一.椭圆二.双曲线四.椭圆、双曲线及抛物线的性质对比(焦点在x轴上)名称椭圆双曲线抛物线定义|PF1|+|PF2|=2a(2a>|F1F2|)||PF1|-|PF2||=2a(2a<|F1F2︱)|PF|= 点F不在直线l上,PM⊥l于M标准方程12222=+byax(a>b>0)12222=-byax(a>0,b>0)y2=2px(p>0)图象几何性质范围byax≤≤,ax≥0≥x顶点),0(),0,(ba±±)0,(a±(0,0)对称性关于x轴,y轴和原点对称关于x轴对称焦点(±c,0 ))0,2(p轴长轴长2a,短轴长2b实轴长2a,虚轴长2b准线cax2±=2px-=通径abAB22=pAB2=渐近线xaby±=...——知识就是力量,学海无涯苦作舟!——不要担心知识没有用,知识多了,路也好选择,也多选择。

比如高考,高分的同学,填报志愿的时候选择学校的范围大,而在分数线左右的就为难了,分数低的就更加不要说了。

再比如,有了知识,你也可以随时炒老板。

椭圆双曲线抛物线知识点汇总

椭圆双曲线抛物线知识点汇总

椭圆双曲线抛物线知识点汇总椭圆、双曲线、抛物线知识点汇总一、椭圆(Ellipse)1. 定义:椭圆是平面上所有到两个固定点(焦点)距离之和为常数的点的集合。

2. 标准方程:\(\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1\)其中,\(a\) 是椭圆的长半轴,\(b\) 是短半轴。

3. 性质:- 焦点:椭圆上任意一点到两个焦点的距离之和是一个大于两焦点间距离的常数,即 \(2a\)。

- 椭圆的长轴和短轴互相垂直。

- 椭圆的面积 \(A = \pi a b\)。

4. 焦点性质:- 椭圆上任意一点 \(P\) 与两个焦点 \(F_1\) 和 \(F_2\) 构成的三角形中,\(PF_1 + PF_2 = 2a\)。

5. 椭圆的离心率 \(e\):\(e = \frac{c}{a}\)其中,\(c = \sqrt{a^2 - b^2}\) 是焦点到中心的距离。

二、双曲线(Hyperbola)1. 定义:双曲线是平面上所有到两个固定点(焦点)距离之差为常数的点的集合。

2. 标准方程:\(\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1\) 为右开口双曲线;\(\frac{y^2}{b^2} - \frac{x^2}{a^2} = 1\) 为上开口双曲线。

3. 性质:- 焦点:双曲线上任意一点到两个焦点的距离之差是一个小于两焦点间距离的常数,即 \(2a\)。

- 双曲线的两个分支分别位于中心点的两侧。

- 双曲线的面积无限大。

4. 焦点性质:- 双曲线上任意一点 \(P\) 与两个焦点 \(F_1\) 和 \(F_2\) 构成的三角形中,\(PF_1 - PF_2 = 2a\)。

5. 双曲线的离心率 \(e\):\(e = \frac{c}{a}\)其中,\(c = \sqrt{a^2 + b^2}\) 是焦点到中心的距离,且 \(e > 1\)。

椭圆双曲线抛物线知识点汇总

椭圆双曲线抛物线知识点汇总

椭圆双曲线抛物线知识点汇总一、椭圆椭圆是平面内到定点 F1、F2 的距离之和等于常数(大于|F1F2|)的动点 P 的轨迹,F1、F2 称为椭圆的焦点,两焦点的距离|F1F2|称为椭圆的焦距。

1、椭圆的标准方程焦点在 x 轴上:\(\frac{x^2}{a^2} +\frac{y^2}{b^2} = 1\)(\(a > b > 0\)),其中\(a\)为长半轴长,\(b\)为短半轴长,\(c\)为半焦距,满足\(c^2 = a^2 b^2\)。

焦点在 y 轴上:\(\frac{y^2}{a^2} +\frac{x^2}{b^2} = 1\)(\(a > b > 0\))。

2、椭圆的性质范围:对于焦点在 x 轴上的椭圆,\(a \leq x \leq a\),\(b\leq y \leq b\);对于焦点在 y 轴上的椭圆,\(b \leq x \leq b\),\(a \leq y \leq a\)。

对称性:椭圆关于 x 轴、y 轴和原点对称。

顶点:焦点在 x 轴上时,顶点坐标为\((\pm a, 0)\),\((0, \pm b)\);焦点在 y 轴上时,顶点坐标为\((0, \pm a)\),\((\pm b, 0)\)。

离心率:椭圆的离心率\(e =\frac{c}{a}\)(\(0 < e <1\)),它反映了椭圆的扁平程度,\(e\)越接近0,椭圆越接近圆;\(e\)越接近 1,椭圆越扁。

3、椭圆的参数方程焦点在 x 轴上:\(\begin{cases}x = a\cos\theta \\ y =b\sin\theta\end{cases}\)(\(\theta\)为参数)焦点在 y 轴上:\(\begin{cases}x = b\cos\theta \\ y =a\sin\theta\end{cases}\)(\(\theta\)为参数)4、椭圆中的焦点三角形设 P 为椭圆上一点,F1、F2 为焦点,\(\angle F1PF2 =\theta\),则三角形 PF1F2 的面积为\(S = b^2\tan\frac{\theta}{2}\)。

高中椭圆双曲线抛物线知识点汇总

高中椭圆双曲线抛物线知识点汇总

高中椭圆双曲线抛物线知识点汇总一、椭圆的定义和基本特性1. 椭圆的定义:椭圆是平面上到两定点F1和F2的距离之和为常数2a (a>0)的点P的轨迹。

2. 椭圆的基本特性:椭圆有两条对称轴,长轴和短轴,焦点到中心的距离为c,满足c²=a²-b²,离心率e的定义为e=c/a。

3. 椭圆的标准方程:椭圆的标准方程为x²/a²+y²/b²=1(a>b>0),中心在原点,长轴与x轴平行。

二、双曲线的定义和基本特性1. 双曲线的定义:双曲线是平面上到两定点F1和F2的距离之差为常数2a的点P的轨迹。

2. 双曲线的基本特性:双曲线有两条对称轴,两个顶点,离心率e的定义为e=c/a。

3. 双曲线的标准方程:双曲线的标准方程为x²/a²-y²/b²=1(a>0,b>0),中心在原点,x²项系数为正。

三、抛物线的定义和基本特性1. 抛物线的定义:抛物线是平面上到定点F与直线l的距离相等的点P 的轨迹。

2. 抛物线的基本特性:抛物线有焦点F和直线l两个重要元素,焦点到顶点的距离为p,离心率e的定义为e=1。

3. 抛物线的标准方程:抛物线的标准方程为y²=2px(p>0),焦点在y轴上。

四、椭圆双曲线抛物线的性质比较1. 焦点、离心率和轴与方程的关系:椭圆的焦点在轴上,双曲线的焦点在中心轴的延长线上,抛物线的焦点在轴上。

2. 直线与曲线的关系:椭圆是对称轴与任意直线的交点个数有限,双曲线是对称轴与任意直线的交点有两个,抛物线是对称轴与任意直线的交点有且仅有一个。

3. 其他性质:椭圆和双曲线是封闭曲线,抛物线是开口向上或者向下的曲线。

五、高中数学中的应用1. 物理中的应用:椭圆、双曲线和抛物线在经典力学、电磁学等物理学科中有着重要的应用,比如行星轨道、抛物线运动等。

双曲线椭圆抛物线知识总结

双曲线椭圆抛物线知识总结

双曲线椭圆抛物线知识总结双曲线、椭圆和抛物线是二次曲线的三种特殊情况。

它们在数学和物理等领域中有广泛应用,下面是它们的一些基本特点和公式总结。

1. 双曲线:- 定义:双曲线是平面上一组点,使得到两个固定点的距离之差等于一个常数的点的轨迹。

- 方程:标准方程为(x/a)^2 - (y/b)^2 = 1,其中a和b为正常数。

- 焦点和准线:双曲线有两个焦点和两条准线。

焦点是曲线上的特殊点,准线是曲线上的两条无限远直线。

- 对称轴和顶点:双曲线有对称轴和顶点。

对称轴是曲线的对称中线,顶点是曲线的极值点。

- 对称性:双曲线是关于对称轴对称的,即左右对称。

2. 椭圆:- 定义:椭圆是平面上一组点,使得到两个固定点的距离之和等于一个常数的点的轨迹。

- 方程:标准方程为(x/a)^2 + (y/b)^2 = 1,其中a和b为正常数。

- 焦点和准线:椭圆有两个焦点和两条准线。

焦点是曲线上的特殊点,准线是曲线上的两条无限远直线。

- 对称轴和顶点:椭圆有对称轴和顶点。

对称轴是曲线的对称中线,顶点是曲线的极值点。

- 对称性:椭圆是关于对称轴对称的,即左右对称。

3. 抛物线:- 定义:抛物线是平面上一组点,使得到一个固定点的距离与到一条固定直线的距离相等的点的轨迹。

- 方程:标准方程为y = ax^2 + bx + c,其中a、b和c为常数,a ≠ 0。

- 焦点和准线:抛物线有一个焦点和一条准线。

焦点是曲线上的特殊点,准线是曲线上的无限远直线。

- 对称轴和顶点:抛物线有对称轴和顶点。

对称轴是曲线的对称中线,顶点是曲线的极值点。

- 对称性:抛物线是关于对称轴对称的,即左右对称。

以上是双曲线、椭圆和抛物线的基本知识总结,它们的性质和公式还有更多深入的内容,如离心率、焦距、直径等,可作为进一步学习的参考。

椭圆双曲线抛物线知识点

椭圆双曲线抛物线知识点

椭圆,双曲线,抛物线知识点- 椭圆、双曲线和抛物线是三种重要的圆锥曲线,它们在数学和实际生活中都有广泛的应用。

以下是关于这三种曲线的一些主要知识点:1.椭圆:定义:椭圆是平面上到两个固定点(焦点)的距离之和等于常数(大于两个焦点间的距离)的点的轨迹。

这个常数称为椭圆的焦距。

性质:•椭圆上的任意一点到两个焦点的距离之和是常数(2a)。

•在椭圆长轴的顶点处,短轴的半径最小。

•在短轴顶点处,长轴的半径最大。

•椭圆的离心率是数学中一个重要的概念,定义为e=c/a,其中a是半长轴,c是半短轴。

椭圆的离心率越接近1,椭圆的形状就越扁。

2.双曲线:定义:双曲线是平面上到两个固定点(焦点)的距离之差的绝对值等于常数(小于两个焦点间的距离)的点的轨迹。

这个常数称为双曲线的实轴长度。

性质:•双曲线上的任意一点到两个焦点的距离之差是常数(2a)。

•双曲线的两个分支是无限延伸的,它们不会相交。

•双曲线的离心率是数学中一个重要的概念,定义为e=c/a,其中a是半实轴长度,c是半虚轴长度。

双曲线的离心率越大,双曲线的形状就越扁。

3.抛物线:定义:抛物线是平面上到定点(焦点)和直线(准线)的距离相等的点的轨迹。

定点(焦点)和直线(准线)的距离d称为抛物线的焦距。

性质:•抛物线上的点到定点(焦点)的距离等于到直线(准线)的距离。

•抛物线的开口大小由焦距决定,焦距越大,开口越小。

•抛物线可以被认为是圆锥曲线的一种特殊形式,因为它可以看作是由一个平面切割圆锥体得到的。

在数学中,这三种曲线都有广泛的应用,包括解决各种几何问题、优化问题、微分方程等。

它们也是很多科学和工程学科的基础,如物理学、天文学、经济学等。

此外,在计算机图形学、动画制作、摄影等领域,这三种曲线也经常被用到。

在求解具体问题时,需要根据具体的问题选择合适的曲线。

例如,在解决航天工程中的轨道问题时,可能需要使用椭圆;在解决一些需要快速下降或者远离某一点的运动问题时,可能需要使用双曲线;在解决一些需要速度最大或者最小的问题时,可能需要使用抛物线。

完整版)椭圆,双曲线,抛物线知识点

完整版)椭圆,双曲线,抛物线知识点

完整版)椭圆,双曲线,抛物线知识点左老师备战考高基础复资料-椭圆椭圆是平面内与两个定点F1,F2的距离的和等于定长(定长大于两定点间的距离)的点的轨迹。

这两个定点叫焦点,两定点间距离为焦距。

椭圆的标准方程分为焦点在x轴和焦点在y轴的情况,分别为x^2/a^2+y^2/b^2=1和y^2/a^2+x^2/b^2=1,其中a>b>0.椭圆的范围为x≤a。

y≤b或y≤a。

x≤b,顶点坐标为(±a。

0)和(0.±b),对称轴为x轴和y轴,对称中心为原点O(0,0),焦点坐标为F1(c,0)和F2(-c,0)或F1(0,c)和F2(0,-c),其中c为焦距的一半,即c^2=a^2-b^2,离心率为e=c/a,离心率越大,椭圆越扁,离心率越小,椭圆越圆。

椭圆的准线为垂直于长轴且在椭圆外的直线,两准线间的距离为2b,准线方程为x=±a^2/c或y=±b^2/c。

椭圆上的点到焦点的最大(小)距离分别为a+c和a-c,椭圆的参数方程为x=acosθ。

y=bsinθ或x=bcosθ。

y=asinθ,其中θ为参数。

利用参数方程可以简便地求解椭圆上一点到直线Ax+By+C=0的距离,距离公式为d=|Ax+By+C|/√(A^2+B^2)。

注意:文章中的公式可能无法正确显示,建议查看原文。

双曲线是一种常见的曲线形式,其方程可以表示为y=±(b/x)或x=±(b/y),其中a和b为实数。

我们可以将其转化为一元二次方程,用判别式确定其位置关系。

如果二次项系数为零,则直线与渐近线平行。

另外,如果有相交弦AB,则其弦长可以表示为AB=1+k^2(x1+x2)^2-4x1x2,通径为AB=y2-y1.抛物线是另一种常见的曲线形式,其方程可以表示为y^2=2px或x^2=2py,其中p为正实数。

抛物线的焦点是其轨迹上与一定直线距离相等的点,而准线是该直线。

抛物线关于x轴对称,焦点在对称轴上,离心率为1,顶点到准线的距离等于焦点到准线的距离。

椭圆、双曲线、抛物线相关知识点的总结-教师版

椭圆、双曲线、抛物线相关知识点的总结-教师版

椭圆、双曲线、抛物线相关知识点总结一、椭圆的标准方程及其几何性质椭圆的定义:我们把平面内与两个定点F, F2的距离的和等于常数大于F1F21的点的轨迹叫做椭圆。

符号语言:|MF,| |MF2| 2a 2a 2c将定义中的常数记为2a,贝①.当2a卩人时,点的轨迹是椭圆_____________双曲线的标准方程及其几何性质双曲线的定义:我们把平面内与两个定点F, F2的距离的差的绝对值等于常数小于F”的点的轨迹叫做双曲线。

符号语言:MF t - MF22a 2a 2c将定义中的常数记为2a,贝①.当2a FE时,点的轨迹是双曲线_____________________ ②•当2a |吋2时,点的轨迹是两条射线③.当2a卩占时,点的轨迹不存在焦点位置不确定的双曲线方程可设为:mn 02 2与双曲线仔笃1共焦点的双曲线系方程可设为:a b2y1 ba kb kx22 2 2 2与双曲线笃 耸1共渐近线的双曲线系方程可设为: $ 爲a ba b三、抛物线的标准方程及其几何性质抛物线的定义:我们把平面内与一个定点 F 和一条定直线I (I 不经过点F )距离相等 的点的轨迹叫做AB x , x 2 p -2^(为弦AB 的倾斜角)sin直线与椭圆(或与双曲线、抛物线)相交于 A (x i ,y i ),B x 2,y 2,则椭圆(或双曲线、抛 物线)的弦长公式:AB x , x 2| —k 2J x , x 2 2 4%卷—k22 2 2 2与椭圆負b 2 1共焦点的椭圆系方程可设为:和冷1 k b 2标准方程2y 2px (p o )图形焦点坐标(p ,0) 2 (匕0) 2 (0月2(0,上) 2准线方程x& 2x E 2 y 舟 yi范围x 0, y R x 0, y Ry 0,x Ry 0,x R对称性 关于x 轴关于y 轴顶点坐标 (0,0)焦半径M X o ,y o|MF | X 。

高三数学知识点圆周曲线

高三数学知识点圆周曲线

高三数学知识点圆周曲线高三数学知识点圆周曲线圆周曲线是高中数学中一个重要的知识点,它在几何和代数中都有广泛的应用。

本文将从定义、性质、方程和应用四个方面来介绍和讲解圆周曲线。

一、定义圆周曲线是平面上所有到一个固定点距离之比等于一个固定实数的点的轨迹。

固定点叫做焦点,固定实数叫做离心率。

圆周曲线除了圆外,还包括椭圆、双曲线和抛物线等几种特殊情况。

这些不同的曲线有着不同的定义和性质。

二、性质1. 椭圆:椭圆有两个焦点,它的离心率大于0小于1。

椭圆的中心是椭圆的对称中心,两焦点和两焦半径之和等于长轴的长度。

椭圆的长轴是与离心率相关的,离心率越接近0,长轴越大。

2. 双曲线:双曲线有两个焦点,它的离心率大于1。

双曲线的中心是双曲线的对称中心,两焦点和两焦半径之差等于长轴的长度。

双曲线的长轴也与离心率相关,离心率越大,长轴越小。

3. 抛物线:抛物线有一个焦点,它的离心率等于1。

抛物线的焦点就是抛物线的顶点,它与抛物线的焦半径相等。

抛物线有两种类型,即开口向上和开口向下。

三、方程1. 椭圆的方程:椭圆的标准方程是(x-h)²/a² + (y-k)²/b² = 1,其中(h,k)是椭圆的中心坐标,a是长轴长度的一半,b是短轴长度的一半。

2. 双曲线的方程:双曲线的标准方程是(x-h)²/a² - (y-k)²/b² = 1,其中(h,k)是双曲线的中心坐标,a是横轴长度的一半,b是纵轴长度的一半。

3. 抛物线的方程:抛物线有两种类型的方程。

开口向上的抛物线方程是 y = a(x-h)² + k,开口向下的抛物线方程是 y = -a(x-h)² + k,其中(h,k)是抛物线的顶点坐标,a是抛物线的参数。

四、应用圆周曲线在现实生活和科学研究中有着广泛的应用。

比如,椭圆的焦点是天体椭圆轨道上太阳的位置,行星的轨迹是椭圆曲线。

圆锥曲线(椭圆、双曲线、抛物线)知识点总结

圆锥曲线(椭圆、双曲线、抛物线)知识点总结

双曲线知识点一、 双曲线的定义:1. 第一定义:到两个定点F 1与F 2的距离之差的绝对值等于定长〔<|F 1F 2|〕的点的轨迹〔21212F F a PF PF <=-〔a 为常数〕〕这两个定点叫双曲线的焦点.要注意两点:〔1〕距离之差的绝对值.〔2〕2a <|F 1F 2|.当|MF 1|-|MF 2|=2a 时,曲线仅表示焦点F 2所对应的一支; 当|MF 1|-|MF 2|=-2a 时,曲线仅表示焦点F 1所对应的一支;当2a =|F 1F 2|时,轨迹是一直线上以F 1、F 2为端点向外的两条射线;当2a >|F 1F 2|时,动点轨迹不存在.2. 第二定义:动点到一定点F 的距离与它到一条定直线l 的距离之比是常数e (e >1)时,这个动点的轨迹是双曲线这定点叫做双曲线的焦点,定直线l 叫做双曲线的准线二、双曲线的标准方程:12222=-b y a x 〔a >0,b >0〕(焦点在x 轴上);12222=-bx a y 〔a >0,b >0〕(焦点在y 轴上);1. 如果2x 项的系数是正数,那么焦点在x 轴上;如果2y 项的系数是正数,那么焦点在y 轴上. a 不一定大于b.2. 与双曲线12222=-by a x 共焦点的双曲线系方程是12222=--+k b y k a x 3. 双曲线方程也可设为:221(0)x y mn m n-=> 例题:双曲线C 和椭圆221169x y +=有相同的焦点,且过(3,4)P 点,求双曲线C 的轨迹方程。

三、点与双曲线的位置关系,直线与双曲线的位置关系: 1 点与双曲线:点00(,)P x y 在双曲线22221(0,0)x y a b a b -=>>的内部2200221x y a b ⇔->点00(,)P x y 在双曲线22221(0,0)x y a b a b -=>>的外部2200221x y a b ⇔-<点00(,)P x y 在双曲线22221(0,0)x y a b a b-=>>上220022-=1x y a b ⇔2 直线与双曲线:〔代数法〕设直线:l y kx m =+,双曲线)0,0(12222>>=-b a by a x 联立解得02)(222222222=----b a m a mkx a x k a b1) 0m =时,b bk a a-<<直线与双曲线交于两点〔左支一个点右支一个点〕;b k a ≥,bk a≤-,或k 不存在时直线与双曲线没有交点;2) 0m ≠时,k 存在时,假设0222=-k a babk ±=,直线与双曲线渐近线平行,直线与双曲线相交于一点;假设2220b a k -≠,222222222(2)4()()a mk b a k a m a b ∆=-----2222224()a b m b a k =+-0∆>时,22220m b a k +->,直线与双曲线相交于两点; 0∆<时,22220m b a k +-<,直线与双曲线相离,没有交点;0∆=时22220m b a k +-=,2222m b k a +=直线与双曲线有一个交点;假设k 不存在,a m a -<<时,直线与双曲线没有交点; m a m a ><-或直线与双曲线相交于两点; 3. 过定点的直线与双曲线的位置关系:设直线:l y kx m =+过定点00(,)P x y ,双曲线)0,0(12222>>=-b a by a x1).当点00(,)P x y 在双曲线内部时:b bk a a-<<,直线与双曲线两支各有一个交点; a bk ±=,直线与双曲线渐近线平行,直线与双曲线相交于一点;b k a >或bk a<-或k 不存在时直线与双曲线的一支有两个交点;2).当点00(,)P x y 在双曲线上时:bk a =±或2020b x k a y =,直线与双曲线只交于点00(,)P x y ;b bk a a-<<直线与双曲线交于两点〔左支一个点右支一个点〕; 2020b x k a y >〔00y ≠〕或2020b x bk a a y << 〔00y ≠〕或b k a <-或k 不存在,直线与双曲线在一支上有两个交点;当00y ≠时,bk a =±或k 不存在,直线与双曲线只交于点00(,)P x y ;b k a >或bk a <-时直线与双曲线的一支有两个交点;b bk a a-<<直线与双曲线交于两点〔左支一个点右支一个点〕; 3).当点00(,)P x y 在双曲线外部时: 当()0,0P 时,b bk a a -<<,直线与双曲线两支各有一个交点; b k a ≥或bk a≤或k 不存在,直线与双曲线没有交点;当点0m ≠时,k =时,过点00(,)P x y 的直线与双曲线相切 bk a=±时,直线与双曲线只交于一点;几何法:直线与渐近线的位置关系例:过点(0,3)P 的直线l 和双曲线22:14y C x -=,仅有一个公共点,求直线l 的方程。

高二数学选修一知识点

高二数学选修一知识点

高二数学选修一知识点高二数学选修一的知识点涵盖了椭圆、双曲线和抛物线三个部分,以下是详细介绍:一、椭圆定义:椭圆是一种平面几何图形,它的定义是固定点到平面上所有点的距离之和等于常数的点的轨迹。

这个固定点称为焦点,距离之和称为长轴长。

标准方程:对于横轴长为2a,纵轴长为2b的椭圆,其标准方程为:x^2/a^2 + y^2/b^2 = 1 (a > b > 0)。

性质:(1) 椭圆的两焦点之间的距离称为焦距,记作2c,c = sqrt(a^2 - b^2)。

(2) 椭圆上任意一点P到两焦点的距离之和等于长轴长,即PF1 + PF2 = 2a。

(3) 椭圆上任意一点P到两焦点的距离之差的绝对值等于定值,即|PF1 - PF2| = 2c。

(4) 椭圆的离心率e定义为c/a,其中c为焦距,a为横轴长。

离心率的范围是0 < e < 1。

二、双曲线定义:双曲线是一种平面几何图形,它的定义是固定点到平面上所有点的距离之差的绝对值等于常数的点的轨迹。

这个固定点称为焦点,距离之差的绝对值称为实轴长。

标准方程:对于横轴长为2a,纵轴长为2b的双曲线,其标准方程为:x^2/a^2 - y^2/b^2 = 1 (a > 0, b > 0)。

性质:(1) 双曲线的两焦点之间的距离称为焦距,记作2c,c = sqrt(a^2 + b^2)。

(2) 双曲线上任意一点P到两焦点的距离之差的绝对值等于定值,即|PF1 - PF2| = 2a。

(3) 双曲线的离心率e定义为c/a,其中c为焦距,a为横轴长。

离心率的范围是e > 1。

三、抛物线定义:抛物线是一种平面几何图形,它的定义是固定点到平面上所有点的距离等于常数的点的轨迹。

这个固定点称为焦点,距离称为准线长。

标准方程:对于横轴长为2a的抛物线,其标准方程为:y^2 = 4ax (a > 0)。

性质:(1) 抛物线的准线与焦点之间的距离为a。

椭圆双曲线抛物线知识点

椭圆双曲线抛物线知识点

椭圆双曲线抛物线知识点椭圆、双曲线和抛物线是常见的曲线形状,它们在数学和物理中有广泛的应用。

本文将介绍椭圆、双曲线和抛物线的基本定义、性质、方程和常见应用。

一、椭圆(ellipse)椭圆是一个平面上的闭合曲线,该曲线的各点到两个定点(称为焦点)的距离之和是一个常数。

椭圆有两个焦点和两个短轴,两个短轴的中点称为椭圆的中心。

椭圆的长轴是通过焦点的直线,长轴的一半称为椭圆的半长轴,短轴的一半称为椭圆的半短轴。

椭圆的数学表达式为:x^2/a^2 + y^2/b^2 = 1其中a和b分别是椭圆半长轴和半短轴的长度。

椭圆的性质:1.椭圆是轴对称的,关于x轴和y轴都有对称性。

2.椭圆的离心率0<e<1,离心率越接近0,椭圆越圆。

3.椭圆的周长可以用椭圆的长轴和半短轴的长度计算。

椭圆的应用:1.椭圆的几何性质使它在图形设计和艺术中有广泛的应用。

2.椭圆的光学性质使它在透镜和镜面的设计中有应用。

3.椭圆在天体力学中用来描述行星的轨道。

4.椭圆在密码学中用来生成加密算法的公钥和私钥。

二、双曲线(hyperbola)双曲线是一个平面上的开放曲线,该曲线的各点到两个焦点的距离之差是一个常数。

双曲线有两个焦点和两个短轴,两个短轴的中点称为双曲线的中心。

双曲线的长轴是通过焦点的直线,长轴的一半称为双曲线的半长轴,短轴的一半称为双曲线的半短轴。

双曲线的数学表达式为:x^2/a^2 - y^2/b^2 = 1其中a和b分别是双曲线半长轴和半短轴的长度。

双曲线的性质:1.双曲线有两条渐进线,它们与双曲线的轴相切。

2.双曲线是非对称的,关于x轴和y轴没有对称性。

3.双曲线的离心率e>1,离心率越大,双曲线越扁。

4.双曲线的焦点和顶点与轴的关系可以用双曲线的方程来确定。

双曲线的应用:1.在物理学中,双曲线用来描述光学中的反射和折射现象。

2.在工程学中,双曲线用于设计天线的形状,以提高信号接收和发送的效果。

3.在经济学中,双曲线用来描述供求曲线和价格变动趋势。

高考数学复习:圆锥曲线

高考数学复习:圆锥曲线

高考数学复习:圆锥曲线考点一:椭圆、双曲线、抛物线知识点1椭圆1、椭圆的定义(1)平面内与两个定点F 1,F 2的距离的和等于常数(大于|F 1F 2|)的点的轨迹叫做椭圆.这两个定点叫做椭圆的焦点,两焦点间的距离叫做椭圆的焦距.(2)集合P ={M ||MF 1|+|MF 2|=2a },|F 1F 2|=2c ,其中a ,c 为常数且a >0,c >0.①当2a >|F 1F 2|时,M 点的轨迹为椭圆;②当2a =|F 1F 2|时,M 点的轨迹为线段F 1F 2;③当2a <|F 1F 2|时,M 点的轨迹不存在.2、椭圆的标准方程和几何性质标准方程x 2a 2+y 2b 2=1(a >b >0)y 2a 2+x 2b2=1(a >b >0)图形性质范围-a ≤x ≤a -b ≤y ≤b-b ≤x ≤b -a ≤y ≤a对称性对称轴:坐标轴;对称中心:原点顶点A 1(-a,0),A 2(a,0),B 1(0,-b ),B 2(0,b )A 1(0,-a ),A 2(0,a ),B 1(-b,0),B 2(b,0)离心率e =ca,且e ∈(0,1)a ,b ,c 的关系c 2=a 2-b 23、椭圆中的几个常用结论(1)过椭圆焦点垂直于长轴的弦是最短的弦,长为2b2a ,过焦点最长弦为长轴.(2)过原点最长弦为长轴长2a ,最短弦为短轴长2b .(3)与椭圆x 2a 2+y 2b 2=1(a >b >0)有共同焦点的椭圆方程为x 2a 2+λ+y 2b 2+λ=1(λ>-b 2).(4)焦点三角形:椭圆上的点P (x 0,y 0)与两焦点F 1,F 2构成的△PF 1F 2叫做焦点三角形.若r 1=|PF 1|,r 2=|PF 2|,∠F 1PF 2=θ,△PF 1F 2的面积为S ,则在椭圆x 2a 2+y 2b2=1(a >b >0)中:①当r 1=r 2,即点P 为短轴端点时,θ最大;②S =12|PF 1||PF 2|sin θ=c |y 0|,当|y 0|=b ,即点P 为短轴端点时,S 取得最大值,最大值为bc ;③△PF 1F 2的周长为2(a +c ).知识点2双曲线1、双曲线的定义(1)平面内与两个定点F 1,F 2(|F 1F 2|=2c >0)的距离之差的绝对值为非零常数2a (2a <2c )的点的轨迹叫做双曲线.这两个定点叫做双曲线的焦点.(2)集合P ={M |||MF 1|-|MF 2||=2a },|F 1F 2|=2c ,其中a ,c 为常数且a >0,c >0.①当2a <|F 1F 2|时,M 点的轨迹是双曲线;②当2a =|F 1F 2|时,M 点的轨迹是两条射线;③当2a >|F 1F 2|时,M 点不存在.2、双曲线的标准方程和几何性质标准方程x 2a 2-y 2b 2=1(a >0,b >0)y 2a 2-x 2b 2=1(a >0,b >0)图形性质范围x ≥a 或x ≤-a ,y ∈Ry ≤-a 或y ≥a ,x ∈R对称性对称轴:坐标轴,对称中心:原点顶点A 1(-a,0),A 2(a,0)A 1(0,-a ),A 2(0,a )渐近线y =±b axy =±a bx离心率e =ca,e ∈(1,+∞)实、虚轴线段A 1A 2叫做双曲线的实轴,它的长|A 1A 2|=2a ;线段B 1B 2叫做双曲线的虚轴,它的长|B 1B 2|=2b ;a 叫做双曲线的实半轴长,b 叫做双曲线的虚半轴长a ,b ,c 的关系c 2=a 2+b 2(c >a >0,c >b >0)3、双曲线中的几个常用结论(1)双曲线的焦点到其渐近线的距离为b .(2)若P 是双曲线右支上一点,F 1,F 2分别为双曲线的左、右焦点,则|PF 1|min =a +c ,|PF 2|min =c -a .(3)同支的焦点弦中最短的为通径(过焦点且垂直于长轴的弦),其长为2b2a ,异支的弦中最短的为实轴,其长为2a .(4)设P ,A ,B 是双曲线上的三个不同的点,其中A ,B 关于原点对称,直线PA ,PB 斜率存在且不为0,则直线PA 与PB 的斜率之积为b 2a2.(5)P 是双曲线上不同于实轴两端点的任意一点,F 1,F 2分别为双曲线的左、右焦点,则,其中θ为∠F 1PF 2.(6)等轴双曲线①定义:中心在原点,以坐标轴为对称轴,实半轴长与虚半轴长相等的双曲线叫做等轴双曲线.②性质:a =b ;e =2;渐近线互相垂直;等轴双曲线上任意一点到中心的距离是它到两焦点距离的等比中项.(7)共轭双曲线①定义:若一条双曲线的实轴和虚轴分别是另一条双曲线的虚轴和实轴,那么这两条双曲线互为共轭双曲线.②性质:它们有共同的渐近线;它们的四个焦点共圆;它们的离心率的倒数的平方和等于1.知识点3抛物线1、抛物线的定义:满足以下三个条件的点的轨迹是抛物线:(1)在平面内;(2)动点到定点F 的距离与到定直线l 的距离相等;(3)定点不在定直线上.2、抛物线的标准方程与几何性质焦半径(其中P (x 0,y 0))|PF |=x 0+p 2|PF |=-x 0+p 2|PF |=y 0+p 2|PF |=-y 0+p23、抛物线中的几何常用结论(1)设AB 是过抛物线y 2=2px (p >0)焦点F 的弦.①以弦AB 为直径的圆与准线相切.②以AF 或BF 为直径的圆与y 轴相切.③通径:过焦点垂直于对称轴的弦,长等于2p ,通径是过焦点最短的弦.(2)过x 2=2py 的准线上任意一点D 作抛物线的两条切线,切点分别为A ,B ,则直线AB 【题型1圆锥曲线的定义及应用】容易忽视圆锥曲线定义的限制条件,在椭圆的定义中,对常数加了一个条件,即常数大于12F F 。

有关圆椭圆双曲线抛物线的详细知识点

有关圆椭圆双曲线抛物线的详细知识点

<一>圆的方程(x-a)^2+(y-b)^2=r^2,圆心O(a,b),半径r。

(1)圆的一般式方程:x^2+y^2+Dx+Ey+F=0此方程可用于解决两圆的位置关系:配方化为标准方程:(x+D/2)^2.+(y+E/2)^2=(D^2+E^2-4F)/4其圆心坐标:(-D/2,-E/2)半径为r=√[(D^2+E^2-4F)]/2此方程满足为圆的方程的条件是:D^2+E^2-4F>0若不满足,则不可表示为圆的方程(2)点与圆的位置关系点P(X1,Y1) 与圆(x-a)^2+(y-b) ^2=r^2的位置关系:⑴当(x1-a)^2+(y1-b) ^2>r^2时,则点P在圆外。

⑵当(x1-a)^2+(y1-b) ^2=r^2时,则点P在圆上。

⑶当(x1-a)^2+(y1-b) ^2<r^2时,则点P在圆内。

圆与直线的位置关系判断内,直线Ax+By+C=0与圆x^2+y^2+Dx+Ey+F=0的位置关系判断一般方法是:1.由Ax+By+C=0,可得y=(-C-Ax)/B,(其中B不等于0),代入x^2+y^2+Dx+Ey+F=0,即成为一个关于x的f(x)=0。

利用判别式b^2-4ac 的符号可确定圆与直线的位置关系如下:如果b^2-4ac>0,则圆与直线有2交点,即圆与直线相交。

如果b^2-4ac=0,则圆与直线有1交点,即圆与直线相切。

如果b^2-4ac<0,则圆与直线有0交点,即圆与直线相离。

2.如果B=0即直线为Ax+C=0,即x=-C/A,它平行于y轴(或垂直于x 轴),将x^2+y^2+Dx+Ey+F=0化为 (x-a)^2+(y-b) ^2=r^2。

令y=b,求出此时的两个x值x1、x2,并且规定x1<x2,那么:当x=-C/A<x1或x=-C/A>x2时,直线与圆相离;当x1<x=-C/A<x2时,直线与圆相交;半径r,直径d在中,圆的解析式为:(x-a)^2+(y-b)^2=r^2;x^2+y^2+Dx+Ey+F=0=> (x+D/2)^2+(y+E/2)^2=(D^2+E^2-4F)/4=> 圆心坐标为(-D/2,-E/2)其实只要保证X方Y方前系数都是1就可以直接判断出圆心坐标为(-D/2,-E/2)这可以作为一个结论运用的且r=(圆心坐标的平方和-F)<二>椭圆的标准方程椭圆的标准方程分两种情况:当焦点在x轴时,椭圆的标准方程是:x^2/a^2+y^2/b^2=1,(a>b>0);当焦点在y轴时,椭圆的标准方程是:y^2/a^2+x^2/b^2=1,(a>b>0);其中a>0,b>0。

椭圆双曲线抛物线知识点汇总

椭圆双曲线抛物线知识点汇总

椭圆双曲线抛物线知识点汇总一、椭圆1、定义平面内与两个定点$F_1$,$F_2$的距离之和等于常数(大于$|F_1F_2|$)的点的轨迹叫做椭圆。

这两个定点叫做椭圆的焦点,两焦点间的距离叫做椭圆的焦距。

2、标准方程(1)焦点在$x$轴上:$\frac{x^2}{a^2} +\frac{y^2}{b^2} = 1$($a > b > 0$),其中$a$为长半轴长,$b$为短半轴长,$c$为半焦距,满足$c^2 = a^2 b^2$。

(2)焦点在$y$轴上:$\frac{y^2}{a^2} +\frac{x^2}{b^2} = 1$($a > b > 0$)。

3、椭圆的性质(1)对称性:椭圆关于$x$轴、$y$轴和原点对称。

(2)范围:对于焦点在$x$轴上的椭圆,$a \leq x \leq a$,$b \leq y \leq b$;对于焦点在$y$轴上的椭圆,$b \leq x \leq b$,$a \leq y \leq a$。

(3)顶点:焦点在$x$轴上时,顶点坐标为$(\pm a, 0)$,$(0, \pm b)$;焦点在$y$轴上时,顶点坐标为$(0, \pm a)$,$(\pm b, 0)$。

(4)离心率:$e =\frac{c}{a}$($0 < e < 1$),反映了椭圆的扁平程度。

4、椭圆中的重要结论(1)过椭圆焦点的弦长:若弦过焦点$F_1$,则弦长$|AB| = 2a e(x_1 + x_2)$。

(2)椭圆上一点到焦点的距离:设椭圆上一点$P(x_0, y_0)$,两焦点为$F_1$,$F_2$,则$|PF_1| = a + ex_0$,$|PF_2| = aex_0$。

二、双曲线1、定义平面内与两个定点$F_1$,$F_2$的距离之差的绝对值等于常数(小于$|F_1F_2|$)的点的轨迹叫做双曲线。

这两个定点叫做双曲线的焦点,两焦点间的距离叫做双曲线的焦距。

2、标准方程(1)焦点在$x$轴上:$\frac{x^2}{a^2} \frac{y^2}{b^2} =1$($a > 0$,$b > 0$),其中$c^2 = a^2 + b^2$。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

<一>圆的方程(x-a)^2+(y-b)^2=r^2,圆心O(a,b),半径r。

(1)圆的一般式方程:x^2+y^2+Dx+Ey+F=0此方程可用于解决两圆的位置关系:配方化为标准方程:(x+D/2)^2.+(y+E/2)^2=(D^2+E^2-4F)/4其圆心坐标:(-D/2,-E/2)半径为r=√[(D^2+E^2-4F)]/2此方程满足为圆的方程的条件是:D^2+E^2-4F>0若不满足,则不可表示为圆的方程(2)点与圆的位置关系点P(X1,Y1) 与圆(x-a)^2+(y-b) ^2=r^2的位置关系:⑴当(x1-a)^2+(y1-b) ^2>r^2时,则点P在圆外。

⑵当(x1-a)^2+(y1-b) ^2=r^2时,则点P在圆上。

⑶当(x1-a)^2+(y1-b) ^2<r^2时,则点P在圆内。

圆与直线的位置关系判断平面内,直线Ax+By+C=0与圆x^2+y^2+Dx+Ey+F=0的位置关系判断一般方法是:1.由Ax+By+C=0,可得y=(-C-Ax)/B,(其中B不等于0),代入x^2+y^2+Dx+Ey+F=0,即成为一个关于x的一元二次方程f(x)=0。

利用判别式b^2-4ac的符号可确定圆与直线的位置关系如下:如果b^2-4ac>0,则圆与直线有2交点,即圆与直线相交。

如果b^2-4ac=0,则圆与直线有1交点,即圆与直线相切。

如果b^2-4ac<0,则圆与直线有0交点,即圆与直线相离。

2.如果B=0即直线为Ax+C=0,即x=-C/A,它平行于y轴(或垂直于x 轴),将x^2+y^2+Dx+Ey+F=0化为 (x-a)^2+(y-b) ^2=r^2。

令y=b,求出此时的两个x值x1、x2,并且规定x1<x2,那么:当x=-C/A<x1或x=-C/A>x2时,直线与圆相离;当x1<x=-C/A<x2时,直线与圆相交;半径r,直径d在直角坐标系中,圆的解析式为:(x-a)^2+(y-b)^2=r^2;x^2+y^2+Dx+Ey+F=0=> (x+D/2)^2+(y+E/2)^2=(D^2+E^2-4F)/4=> 圆心坐标为(-D/2,-E/2)其实只要保证X方Y方前系数都是1就可以直接判断出圆心坐标为(-D/2,-E/2)这可以作为一个结论运用的且r=根号(圆心坐标的平方和-F)<二>椭圆的标准方程椭圆的标准方程分两种情况:当焦点在x轴时,椭圆的标准方程是:x^2/a^2+y^2/b^2=1,(a>b>0);当焦点在y轴时,椭圆的标准方程是:y^2/a^2+x^2/b^2=1,(a>b>0);其中a>0,b>0。

a、b中较大者为椭圆长半轴长,较短者为短半轴长(椭圆有两条对称轴,对称轴被椭圆所截,有两条线段,它们的一半分别叫椭圆的长半轴和短半轴或半长轴和半短轴)当a>b时,焦点在x轴上,焦距为2*(a^2-b^2)^0.5,焦距与长、短半轴的关系:b^2=a^2-c^2,准线方程是x=a^2/c和x=-a^2/c ,c为椭圆的半焦距。

又及:如果中心在原点,但焦点的位置不明确在X轴或Y轴时,方程可设为mx^2+ny^2=1(m>0,n>0,m≠n)。

即F点在Y轴标准方程的统一形式。

椭圆的面积是πab。

椭圆可以看作圆在某方向上的拉伸,它的参数方程是:x=acosθ ,y=bsinθ标准形式的椭圆在(x0,y0)点的切线就是:xx0/a^2+yy0/b^2=1。

椭圆切线的斜率是:-by0/ax0,这个可以通过很复杂的代数计算得到。

椭圆的一般方程Ax^2+By^2+Cx+Dy+E=0(A>0,B>0,且A≠B)。

椭圆的参数方程x=acosθ ,y=bsinθ。

椭圆的极坐标方程(一个焦点在极坐标系原点,另一个在θ=0的正方向上)r=a(1-e^2)/(1-ecosθ)(e为椭圆的离心率)平面内与两定点F1、F2的距离的和等于常数2a(2a>|F1F2|)的动点P的轨迹叫做椭圆。

即:│PF1│+│PF2│=2a其中两定点F1、F2叫做椭圆的焦点,两焦点的距离│F1F2│=2c<2a叫做椭圆的焦距。

长轴长| A1A2 |=2a;短轴长 | B1B2 |=2b。

第二定义平面上到定点F的距离与到定直线的距离之比为常数e(即椭圆的离心率,e=c/a)的点的集合(定点F不在定直线上,该常数为小于1的正数)其中定点F为椭圆的焦点,定直线称为椭圆的准线(该定直线的方程是x=±a^2/c[焦点在X轴上];或者y=±a^2/c[焦点在Y轴上])。

椭圆的面积公式S=π(圆周率)×a×b(其中a,b分别是椭圆的长半轴,短半轴的长)。

或S=π(圆周率)×A×B/4(其中A,B分别是椭圆的长轴,短轴的长)。

椭圆的周长公式椭圆周长没有公式,有积分式或无限项展开式。

椭圆周长(L)的精确计算要用到积分或无穷级数的求和。

如L = ∫[0,π/2]4a * sqrt(1-(e*cost)&sup2;)dt≈2π√((a&sup2;+b&sup2;)/2)[椭圆近似周长],其中a为椭圆长半轴,e为离心率椭圆离心率的定义为椭圆上焦距与长轴的比值,(范围:大于0 小于1)椭圆的准线方程x=±a^2/c椭圆的离心率公式e=c/a(0<e<1),因为2a>2c。

离心率越大,椭圆越扁平;离心率越小,椭圆越接近于圆形。

椭圆的焦准距:椭圆的焦点与其相应准线(如焦点(c,0)与准线x=+a^2/c) 的距离为b^2/c椭圆焦半径公式焦点在x轴上:|PF1|=a+ex |PF2|=a-ex(F1,F2分别为左右焦点)椭圆过右焦点的半径r=a-ex过左焦点的半径r=a+ex焦点在y轴上:|PF1|=a-ey |PF2|=a+ey(F1,F2分别为上下焦点)椭圆的通径:过焦点的垂直于x轴(或y轴)的直线与椭圆的两交点A,B之间的距离,数值=2b^2/a椭圆的斜率公式过椭圆上x^2/a^2+y^2/b^2=1上一点(x,y)的切线斜率为-(b^2)X/(a^2)y三角形面积公式若有一三角形两个顶点在椭圆的两个焦点上,且第三个顶点在椭圆上那么若∠F1PF2=θ,则S=(b^2)tan(θ/2)。

椭圆的曲率公式K=ab/[(b^2-a^2)(cosθ)^2+a^2]^(3/2)编辑本段点、直线与椭圆的关系点与椭圆位置关系点M(x0,y0)椭圆x^2/a^2+y^2/b^2=1点在圆内:x0^2/a^2+y0^2/b^2<1点在圆上:x0^2/a^2+y0^2/b^2=1点在圆外:x0^2/a^2+y0^2/b^2>1直线与椭圆位置关系y=kx+m ①x^2/a^2+y^2/b^2=1 ②由①②可推出x^2/a^2+(kx+m)^2/b^2=1相切△=0相离△<0无交点相交△>0 可利用弦长公式:A(x1,y1)B(x2,y2)|AB|=d = √(1+k^2)[(x1+x2)^2-4x1*x2] = √(1+1/k^2)[(y1+y2)^2-4x1*x2]编辑本段椭圆参数方程的应用求解椭圆上点到定点或到定直线距离的最值时,用参数坐标可将问题转化为三角函数问题求解x=a×cosβ,y=b×sinβ a为长轴长的一半<三>双曲线双曲线双曲线(Hyperbola)是指与平面上两个定点的距离之差的绝对值为定值的点的轨迹,也可以定义为到定点与定直线的距离之比是一个大于1的常数的点之轨迹。

双曲线是圆锥曲线的一种,即圆锥面与平面的交截线。

双曲线在一定的仿射变换下,也可以看成反比例函数。

定义定义:我们把平面内与两个定点F1,F2的距离的差的绝对值等于一个常数(常数为2a)的轨迹称为双曲线。

定义1:平面内,到两个定点的距离之差的绝对值为常数(小于这两个定点间的距离[1])的点的轨迹称为双曲线。

定点叫双曲线的焦点定义2:平面内,到给定一点及一直线的距离之比为大于1的常数的点的轨迹称为双曲线。

定点叫双曲线的焦点,定直线叫双曲线的准线定义3:一平面截一圆锥面,当截面与圆锥面的母线不平行,且与圆锥面的两个圆锥都相交时,交线称为双曲线。

定义4:在平面直角坐标系中,二元二次方程f(x,y)=ax^2+bxy+cy^2+dx+ey+f=0满足以下条件时,其图像为双曲线。

1.a、b、c不都是零.2. b^2 - 4ac > 0.双曲线的标准方程1,焦点在X轴上时为:x^2/a^2 - y^2/b^2 = 12,焦点在Y 轴上时为:y^2/a^2 - x^2/b^2 = 1双曲线的简单几何性质1、轨迹上一点的取值范围:│x│≥a(焦点在x轴上)或者│y│≥a(焦点在y轴上)。

2、对称性:关于坐标轴和原点对称。

3、顶点:A(-a,0),A'(a,0)。

同时AA'叫做双曲线的实轴且│AA'│=2a.B(0,-b),B'(0,b)。

同时BB'叫做双曲线的虚轴且│BB'│=2b.F1(-c,0)F2(c,0).F1为双曲线的左焦点,F2为双曲线的右焦点且│F1F2│=2c 对实轴、虚轴、焦点有:a^2+b^2=c^24、渐近线:焦点在x轴:y=±(b/a)x.焦点在y轴:y=±(a/b)x. 圆锥曲线ρ=ep/1-ecosθ当e>1时,表示双曲线。

其中p 为焦点到准线距离,θ为弦与x轴夹角。

令1-ecosθ=0可以求出θ,这个就是渐近线的倾角。

θ=arccos(1/e)5、离心率:第一定义:e=c/a 且e∈(1,+∞).第二定义:双曲线上的一点P到定点F的距离│PF│ 与点P到定直线(相应准线)的距离d 的比等于双曲线的离心率e.d点│PF│/d线(点P到定直线(相应准线)的距离)=e6、双曲线焦半径公式(圆锥曲线上任意一点P(x,y)到焦点距离)左焦半径:r=│ex+a│右焦半径:r=│ex-a│7、等轴双曲线一双曲线的实轴与虚轴长相等即:2a=2b 且e=√2这时渐近线方程为:y=±x(无论焦点在x轴还是y轴)8、共轭双曲线双曲线S'的实轴是双曲线S的虚轴且双曲线S'的虚轴是双曲线S的实轴时,称双曲线S'与双曲线S为共轭双曲线。

几何表达:S:(x^2/a^2)-(y^2/b^2)=1 S':(y^2/b^2)-(x^2/a^2)=1特点:(1)共渐近线;与渐近线平行得线和双曲线有且只有一个交点(2)焦距相等(3)两双曲线的离心率平方后的倒数相加等于19、准线:焦点在x轴上:x=±a^2/c焦点在y轴上:y=±a^2/c10、通径长:(圆锥曲线中,过焦点并垂直于轴的弦)d=2b^2/a11、过焦点的弦长公式:d=2pe/(1-e^2cos^2θ)12、弦长公式:d = √(1+k^2)|x1-x2| = √(1+k^2)(x1-x2)^2 = √(1+1/k^2)|y1-y2| = √(1+1/k^2)(y1-y2)^2双曲线的标准公式与反比例函数X^2/a^2 - Y^2/b^2 = 1(a>0,b>0)而反比例函数的标准型是xy = c (c ≠ 0)但是反比例函数图象确实是双曲线轨迹经过旋转得到的13.双曲线内、上、外在双曲线的两侧的区域称为双曲线内,则有x^2/a^2-y^2/b^2>1;在双曲线的线上称为双曲线上,则有x^2/a^2-y^2/b^2=1;在双曲线所夹的区域称为双曲线外,则有x^2/a^2-y^2/b^2<1。

相关文档
最新文档