(word完整版)2018第一轮复习放缩法技巧全总结,推荐文档
2018第一轮复习 放缩法技巧全总结(2)讲解学习
对应练习:解不等式(1)232532≥-+-x x x ; (2)0)4)(23()7()12(632>----x x x x题型1:简单的无理不等式的解法例1:解下列不等式(1)21x -> (2)2x +<题型2:指数、对数不等式例1:若2log 13a<,则a 的取值范围是( )A .1a >B .320<<aC .132<<aD .320<<a 或1a > 练习:1、不等式2x x432>-的解集是_____________。
2、不等式12log (2)0x +≥的解集是_____________。
3、设()f x = 1232,2,log (1),2,x e x x x -⎧<⎪⎨-≥⎪⎩ 则不等式()2f x >的解集为( ) A .(1,2)(3,)⋃+∞ B.)+∞C.(1,2))⋃+∞ D .(1,2)题型3:不等式恒成立问题例1:若关于x 的不等式2122x x mx -+>的解集是{|02}x x <<,则m 的值是_____________。
练习:一元二次不等式220ax bx ++>的解集是11(,)23-,则a b +的值是( ) A .10 B . 10- C. 14 D .14-例2:已知不等式2(1)0x a x a -++<,(1)若不等式的解集为(1,3),则实数a 的值是_____________。
(2)若不等式在(1,3)上有解,则实数a 的取值范围是_____________。
(3)若不等式在(1,3)上恒成立,则实数a 的取值范围是_____________。
例3:若一元二次不等式042≤+-a x ax 的解集是R 则a 的取值范围是_____________。
练习:1、已知关于x 的不等式()()012422≥-++-x a x a 的解集为空集,求a 的取值范围。
第一轮复习放缩法技巧全总结
放缩法在数列不等式中的应用数列不等式是高考大纲在知识点交汇处命题精神的重要体现,在高考试题中占有重要地位,在近几年的高考试题中,多个省份都有所考查,甚至作为压轴题。
而数列不等式的求解常常用到放缩法,笔者在教学过程中发现学生在用放缩法处理此类问题时,普遍感到困难,找不到解题思路。
现就放缩法在数列不等式求解过程中常见的几种应用类型总结如下。
1. 直接放缩,消项求解例1在数列{}{},n n a b 中,112,4a b ==,且1,,n n n a b a +成等差数列,11,,n n n b a b ++成等比数列. *N n ∈,(Ⅰ)求234,,a a a 及234,,b b b ,由此猜测{}{},n n a b 的通项公式,并证明你的结论; (Ⅱ)证明:1122111512n n a b a b a b +++<+++L . 分析:(Ⅰ)数学归纳法。
(Ⅱ)本小题的分母可化为不相同的两因式的乘积,可将其放缩为等差型两项之积,通过裂项求和。
(Ⅰ)略解2(1)(1)n n a n n b n =+=+,. (Ⅱ)11115612a b =<+.n ≥2时,由(Ⅰ)知(1)(21)2(1)n n a b n n n n +=++>+. 故112211111111622334(1)n n a b a b a b n n ⎛⎫+++<++++ ⎪+++⨯⨯+⎝⎭ (111111562216412)n ⎛⎫=+-<+= ⎪+⎝⎭,综上,原不等式成立. 点评: 数列和式不等式中,若数列的通项为分式型,可考虑对其分母进行放缩,构造等差型因式之积。
再用裂项的方法求解。
另外,熟悉一些常用的放缩方法, 如:),,2,1(11121n k n k n n Λ=+≤+≤,n n n n n n n n n 111)1(11)1(11112--=-≤<+=+- 例2设数列{}n a 满足*,1,1311N c c ca a a n n ∈-+==+其中c 为实数(Ⅰ)证明:[0,1]n a ∈对任意*n N ∈成立的充分必要条件是[0,1]c ∈; (Ⅱ)设103c <<,证明:1*1(3),n n a c n N -≥-∈; 分析:(Ⅰ)数学归纳法证明(Ⅱ)结论可变形为1)3(1-≤-n n c a ,即不等式右边为一等比数列通项形式,化归思路为对 n a -1用放缩法构造等比型递推数列,即)1(3)1)(1(112111-----≤++-=-n n n n n a c a a a c a解:(Ⅰ)解略。
放缩法技巧全总结
放缩法技巧全总结放缩法是一种在求解数学问题时经常使用的技巧之一、它主要是通过对问题进行放大或缩小,从而转换为更简单或更熟悉的形式来解决。
放缩法可以用于各种数学领域,如代数、几何和计算等。
在本文中,我将总结一些常用的放缩法技巧。
一、代数放缩法1.替换变量:通过替换变量,将原始问题转化为更容易求解的问题。
例如,可以通过令一些变量等于另一个变量的一些表达式来简化问题。
2.提取公因式:将多项式中的公因式提取出来,可以简化计算过程。
3.移项:将方程中的项移动到一边,可以使问题更加清晰。
4.分式放缩:对于有分式形式的问题,可以通过放缩分母或分子来简化问题。
二、几何放缩法1.类比三角形:如果一个问题中涉及到一个复杂的三角形,可以通过找到类似形状但更简单的三角形来放缩问题。
2.重心放缩:对于一个几何体,可以通过移动几何体的重心来简化问题。
例如,在求解三角形面积时,可以通过将三角形平移到一个更简单的位置来计算。
3.缩放比例:通过按比例缩放一个几何体,可以简化问题。
例如,求解复杂图形的面积时,可以将图形按比例缩小到一个更易计算的大小。
三、计算放缩法1.近似计算:当遇到一个复杂的数学计算时,可以通过近似计算来简化问题。
例如,可以使用泰勒级数近似一个函数的值。
2.递归放缩:将一个复杂的计算问题分解为多个简单的计算问题,并将得到的结果组合起来。
例如,在求解一个复杂的积分时,可以将其拆分为多个简单的积分来计算。
3.迭代放缩:通过迭代计算的方式,逐步接近问题的解。
例如,在求解方程的根时,可以逐步逼近根的值。
四、实例分析以以下问题为例,展示放缩法在实际问题的应用。
假设有一个需要排队购买电影票的场景,共有n个人等待购票,每个人需要等待的时间为ti,求解n个人等待时间的平均值。
使用放缩法求解该问题的步骤如下:1. 将n个人的等待时间求和得到总的等待时间sum。
2. 将总的等待时间sum除以n,得到平均等待时间average。
通过放缩法求解,可以将原始问题转化为简单的求和和除法操作,从而简化了计算过程。
放缩法技巧全总结(尖子生解决高考数学最后一题之瓶颈之精华)
高考数学备考之放缩技巧证明数列型不等式,因其思维跨度大、构造性强,需要有较高的放缩技巧而充满思考性和挑战性,能全面而综合地考查学生的潜能与后继学习能力,因而成为高考压轴题及各级各类竞赛试题命题的极好素材。
这类问题的求解策略往往是:通过多角度观察所给数列通项的结构,深入剖析其特征,抓住其规律进行恰当地放缩;其放缩技巧主要有以下几种: 一、裂项放缩 例1.(1)求∑=-nk k 12142的值; (2)求证:35112<∑=nk k. 解析:(1)因为121121)12)(12(21422+--=+-=-n n n n n ,所以122121114212+=+-=-∑=n n n k n k (2)因为⎪⎭⎫ ⎝⎛+--=-=-<12112121444111222n n n n n ,所以35321121121513121112=+<⎪⎭⎫ ⎝⎛+--++-+<∑=n n k nk 奇巧积累:(1)⎪⎭⎫ ⎝⎛+--=-<=1211212144441222n n n n n (2))1(1)1(1)1()1(21211+--=-+=+n n n n n n n C C n n (3))2(111)1(1!11)!(!!11≥--=-<<⋅-=⋅=+r r r r r r n r n r n nC T r rr n r (4)25)1(123112111)11(<-++⨯+⨯++<+n n nn (5)nn nn 21121)12(21--=- (6)n n n -+<+221(7))1(21)1(2--<<-+n n nn n (8) n n n n n n n 2)32(12)12(1213211221⋅+-⋅+=⋅⎪⎭⎫⎝⎛+-+-(9)⎪⎭⎫ ⎝⎛++-+=+++⎪⎭⎫ ⎝⎛+-+=-+k n n k k n n n k k n k n k 11111)1(1,11111)1(1 (10)!)1(1!1!)1(+-=+n n n n (11)21212121222)1212(21-++=-++=--+<n n n n n n n(11) )2(121121)12)(12(2)22)(12(2)12)(12(2)12(21112≥---=--=--<--=----n n n n n n n n n n n n n n (12) 111)1(1)1(1)1)(1(11123--+⋅⎪⎪⎭⎫ ⎝⎛+--=+-<⋅=n n n n n n n n n n n n11112111111+--<-++⋅⎪⎭⎫ ⎝⎛+--=n n n n n n n(13) 3212132122)12(332)13(2221nn n n n n n n n <-⇒>-⇒>-⇒>⋅-=⋅=+(14) !)2(1!)1(1)!2()!1(!2+-+=+++++k k k k k k (15) )2(1)1(1≥--<+n n n n n(15) 111)11)((1122222222<++++=+++--=-+-+j i j i j i j i j i j i j i例2.(1)求证:)2()12(2167)12(151311222≥-->-++++n n n (2)求证:nn412141361161412-<++++(3)求证:1122642)12(531642531423121-+<⋅⋅⋅⋅-⋅⋅⋅⋅++⋅⋅⋅⋅+⋅⋅+n nn(4) 求证:)112(2131211)11(2-+<++++<-+n nn解析:(1)因为⎪⎭⎫⎝⎛+--=+->-12112121)12)(12(1)12(12n n n n n ,所以)12131(211)12131(211)12(112--+>+-+>-∑=n n i ni (2))111(41)1211(414136116141222n nn -+<+++=++++(3)先运用分式放缩法证明出1212642)12(531+<⋅⋅⋅⋅-⋅⋅⋅⋅n nn ,再结合nn n -+<+221进行裂项,最后就可以得到答案 (4)首先nn n n n++=-+>12)1(21,所以容易经过裂项得到 nn 131211)11(2++++<-+再证21212121222)1212(21-++=-++=--+<n n n n n n n而由均值不等式知道这是显然成立的,所以)112(2131211-+<++++n n例3.求证:35191411)12)(1(62<++++≤++n n n n解析:一方面:因为⎪⎭⎫ ⎝⎛+--=-=-<12112121444111222n n n n n ,所以35321121121513121112=+<⎪⎭⎫ ⎝⎛+--++-+<∑=n n knk 另一方面:1111)1(143132111914112+=+-=+++⨯+⨯+>++++n n n n n n 当3≥n 时,)12)(1(61++>+n n n n n ,当1=n 时,2191411)12)(1(6n n n n ++++=++ ,当2=n 时,2191411)12)(1(6nn n n ++++<++ ,所以综上有35191411)12)(1(62<++++≤++n n n n例 4.(2008年全国一卷) 设函数()ln f x x x x =-.数列{}n a 满足101a<<.1()n n a f a +=.设1(1)b a ∈,,整数11ln a b k a b-≥.证明:1k a b +>.解析:由数学归纳法可以证明{}n a 是递增数列,故存在正整数k m ≤,使b a m ≥,则b a a k k ≥>+1,否则若)(k m b a m ≤<,则由101<<≤<b a a m 知0ln ln ln 11<<≤b a a a a a m m m ,∑=+-=-=km m m k k k k a a a a a a a111ln ln ,因为)ln (ln 11b a k a a km m m <∑=,于是b a b a b a k a a k =-+≥+>+)(|ln |11111例5.已知m m m m m n S x N m n ++++=->∈+ 321,1,,,求证: 1)1()1(11-+<+<++m n m n S m n .解析:首先可以证明:nx x n +≥+1)1(∑=++++++++--=-++---+--=nk m m m m m m m m k k n n n n n 111111111])1([01)2()1()1( 所以要证1)1()1(11-+<+<++m n m n S m n 只要证:∑∑∑=+++++++++==++-+=-++--+-+=-+<+<--nk m m m m m m m m m n k m n k m m k k n n n n n k m k k 111111111111111])1[(2)1()1(1)1()1(])1([故只要证∑∑∑=++==++-+<+<--nk m m n k m n k m m k k k m k k 1111111])1[()1(])1([,即等价于m m m m m k k k m k k -+<+<--+++111)1()1()1(,即等价于11)11(11,)11(11++-<+-+<++m m kk m k k m而正是成立的,所以原命题成立.例6.已知n n n a 24-=,nn na a a T +++= 212,求证:23321<++++n T T T T .解析:)21(2)14(3421)21(241)41(4)222(444421321n nn n n n nT -+-=-----=+++-++++=所以123)2(22232234232323422234342)21(2)14(3422111111+⋅-⋅⋅=+⋅-⋅=-+=-+-=-+-=++++++n n nn n n n n n n n n n n nn T⎪⎭⎫ ⎝⎛---=--⋅⋅=+12112123)12)(122(2231n n nn n从而231211217131311231321<⎪⎭⎫ ⎝⎛---++-+-=+++++n nn T T T T 例7.已知11=x ,⎩⎨⎧∈=-∈-==),2(1),12(Z k k n n Z k k n n xn,求证: *))(11(21114122454432N n n x x x x x x n n ∈-+>++⋅+⋅+证明:nnn n n n x x n n 222141141)12)(12(11424244122=⋅=>-=+-=+,因为12++<n n n ,所以)1(2122214122n n n n nx x n n -+=++>>+所以*))(11(21114122454432N n n x x x x x x n n ∈-+>++⋅+⋅+二、函数放缩例8.求证:)(665333ln 44ln 33ln 22ln *N n n n nn∈+-<++++ . 解析:先构造函数有xxx x x 11ln 1ln -≤⇒-≤,从而)313121(1333ln 44ln 33ln 22ln n n n n+++--<++++因为⎪⎭⎫ ⎝⎛++++++⎪⎭⎫ ⎝⎛++++++⎪⎭⎫ ⎝⎛+=+++n n n n 31121219181716151413121313121 6533323279189936365111n n n n n =⎪⎪⎭⎫ ⎝⎛+⋅++⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛++>--- 所以6653651333ln 44ln 33ln 22ln +-=--<++++n n n n nn例9.求证:(1))2()1(212ln 33ln 22ln ,22≥+--<+++≥n n n n n n ααααααα 解析:构造函数xx x f ln )(=,得到22ln ln nn n n≤αα,再进行裂项)1(1111ln 222+-<-≤n n nn n ,求和后可以得到答案函数构造形式: 1ln -≤x x ,)2(1ln ≥-≤αααn n例10.求证:nn n 1211)1ln(113121+++<+<++++解析:提示:2ln 1ln 1ln 1211ln )1ln(++-++=⋅⋅-⋅+=+ n nn n n n n n n 函数构造形式:x x x x 11ln ,ln -><当然本题的证明还可以运用积分放缩 如图,取函数xx f 1)(=,首先:⎰-<nin ABCFx S1,从而,)ln(ln |ln 11i n n x x i nn in nin --==<⋅--⎰取1=i 有,)1ln(ln 1--<n n n,所以有2ln 21<,2ln 3ln 31-<,…,)1ln(ln 1--<n n n,n n n ln )1ln(11-+<+,相加后可以得到: )1ln(113121+<++++n n 另一方面⎰->ni n ABDExS 1,从而有)ln(ln |ln 11i n n x x i i n n i n ni n --==>⋅---⎰ 取1=i 有,)1ln(ln 11-->-n n n , 所以有nn 1211)1ln(+++<+ ,所以综上有nn n 1211)1ln(113121+++<+<++++ 例11.求证:e n <+⋅⋅++)!11()!311)(!211( 和e n<+⋅⋅++)311()8111)(911(2 .解析:构造函数后即可证明例12.求证:32)]1(1[)321()211(->++⋅⋅⨯+⋅⨯+n e n n解析:1)1(32]1)1(ln[++->++n n n n ,叠加之后就可以得到答案函数构造形式:)0(13)1ln(1)0(132)1ln(>+>++⇔>+->+x x x x x x x (加强命题)FE D C BA n-inyxO例13.证明:)1*,(4)1(1ln 54ln 43ln 32ln >∈-<+++++n N n n n n n解析:构造函数)1(1)1()1ln()(>+---=x x x x f ,求导,可以得到: 12111)('--=--=x x x x f ,令0)('>x f 有21<<x ,令0)('<x f 有2>x ,所以0)2()(=≤f x f ,所以2)1ln(-≤-x x ,令12+=n x 有,1ln 22-≤n n所以211ln -≤+n n n,所以)1*,(4)1(1ln 54ln 43ln 32ln >∈-<+++++n N n n n n n例14. 已知112111,(1).2n n n a a a n n +==+++证明2n a e <. 解析:nn n n n a n n a n n a )21)1(11(21))1(11(1+++<+++=+,然后两边取自然对数,可以得到nn n a n n aln )21)1(11ln(ln 1++++<+ 然后运用x x <+)1ln(和裂项可以得到答案) 放缩思路:⇒+++≤+n n n a n n a)2111(21⇒++++≤+n n n a n n a ln )2111ln(ln 21nn n n a 211ln 2+++≤。
放缩法技巧全总结
放缩法技巧全总结介绍放缩法也称为二分法,是一种常用的数值计算方法,常用于求解数值问题的近似解。
它的基本思想是通过不断缩小问题范围,逐步逼近问题的解。
本文将总结放缩法的相关技巧,帮助读者更好地理解和应用该方法。
放缩法的基本原理放缩法是一种迭代算法,它的基本原理可以概括为以下几个步骤: 1. 确定问题的上下界限:放缩法需要确定问题的解的上下界限,以便在迭代过程中进行范围缩小。
2. 缩小问题的范围:通过逐步缩小问题的范围,来逼近问题的解,直到满足终止条件。
3. 更新界限:根据当前迭代的结果,更新问题的上下界限,以便下一轮迭代时使用。
放缩法的常用技巧折半查找折半查找是放缩法中的一种常用技巧,它用于在一个有序数组中查找指定的元素。
其基本思想是通过比较中间元素与目标元素的大小来确定目标元素在左半部分还是右半部分,从而缩小问题的范围。
折半查找的伪代码如下:function binarySearch(arr, target):left = 0right = arr.length - 1while (left <= right):mid = left + (right - left) / 2if arr[mid] == target:return midelse if arr[mid] < target:left = mid + 1else:right = mid - 1return -1二分法求解方程放缩法还可以用于求解方程的近似解。
其基本思想是通过不断二分问题的解空间,逐步逼近方程的解。
具体的步骤如下: 1. 确定方程的上下界限:根据方程的特性,确定问题的解的上下界限,以便在迭代过程中进行范围缩小。
2. 缩小解空间:通过不断缩小解空间,逐步逼近方程的解。
3. 更新界限:根据当前迭代的结果,更新问题的上下界限,以便下一轮迭代时使用。
4. 终止条件:当问题的解满足终止条件时,停止迭代,得到近似解。
放缩法技巧全总结
放缩法技巧全总结放缩法(Scaling)是一种常用的数学技巧,用于将数学问题转化为更简单、更易解决的形式。
这种技巧广泛应用于数学竞赛和问题求解中。
以下是放缩法的几个常见技巧和应用总结。
1.强化不等关系:放缩法的核心思想是通过比较大小来改变问题的形式。
如果已知a>b,那么可以通过加减乘除等操作将问题转化为a的形式,从而简化计算过程。
例如,要求证明a+2b>0,可以通过乘法得到2a+4b>0,进一步可得3a+6b>0。
这样可以将问题转化为证明3a+6b>0的形式,而这个不等式更容易证明。
2. 运用恒等变形:放缩法还可以通过变换等式或不等式的形式来简化问题。
常用的恒等变形包括平方恒等式(a+b)^2=a^2+2ab+b^2和倒数恒等式1/(ab)=(1/a)(1/b)等。
应用这些恒等变形,可以将问题转化为更简单的形式,进而解决问题。
3.递推放缩:递推放缩是一种通过递推关系来简化问题的方法。
通过找到问题的递推关系,可以将问题规模进行放缩,从而降低问题的复杂度。
例如,要求证明一些等式成立,可以通过将等式两边代入等式左边或右边的形式,利用递推关系将问题简化。
4.红蓝染色:红蓝染色是一种通过对元素染色来放缩问题的方法。
通过给问题中的元素染色,可以将问题转化为简化的形式,从而解决问题。
例如,在一个n×n的方格中,要求选择一些相互不在同一行、同一列的方格,并使这些方格能够覆盖所有的行和列。
可以将行和列分别染成红色和蓝色,问题转化为在红色和蓝色方格中选择不同行和列的方格并覆盖所有的红色和蓝色方格的问题。
5.数学归纳法:数学归纳法是一种通过递推关系来证明数学性质的方法。
通过对问题进行归纳假设,可以按照递推步骤逐步证明问题的性质。
例如,要证明对于任意正整数n,都有n(n+1)(n+2)能被6整除,可以通过数学归纳法来证明:当n=1时,1×2×3=6能被6整除;假设当n=k时成立,即k(k+1)(k+2)能被6整除;则当n=k+1时,(k+1)(k+2)(k+3)=(k(k+1)(k+2))+(k+1)(k+2)也能被6整除,即对于任意正整数n都有n(n+1)(n+2)能被6整除。
放缩法技巧全总结[借鉴]
放缩法技巧全总结[借鉴] 放缩法是一种常用的数学求解方法,可以用来求解各种问题,包括优化问题、最大最小值问题等。
在放缩法中,通过对问题进行适当的放大或缩小,可以使问题的求解变得更加简单和直观。
下面是关于放缩法的一些技巧总结:1. 利用函数的性质进行放缩。
对于一个函数,我们可以利用它的性质来进行放缩。
例如,对于一个凸函数,我们可以使用切线来对函数进行放缩,从而得到函数的上界或下界。
同样,对于一个凹函数,我们可以使用切线来对函数进行放缩,从而得到函数的下界或上界。
2. 利用不等式进行放缩。
对于一个复杂的式子,我们可以通过引入合适的不等式来进行放缩。
例如,对于一个多项式,我们可以使用齐次不等式或者柯西不等式等来对它进行放缩。
同样,对于一个分式,我们可以使用分子分母的关系来进行放缩。
3. 利用对称性进行放缩。
对于一个具有对称性的问题,我们可以利用对称性来进行放缩。
例如,对于一个几何问题,如果我们发现问题具有镜像对称性或旋转对称性,我们可以将问题放缩到一个更简单的情况进行求解。
4. 利用局部极值进行放缩。
对于一个函数,我们可以通过求解它的一阶导数或二阶导数来找到它的极值点,并利用极值点对函数进行放缩。
例如,对于一个凸函数,它的极小值点就是函数的下界;对于一个凹函数,它的极大值点就是函数的上界。
5. 利用特殊点进行放缩。
对于一个函数,我们可以通过找到它的特殊点来进行放缩。
例如,对于一个分式,我们可以找到它的极值点或者零点来进行放缩。
同样,对于一个多项式,我们可以找到它的根或者切点来进行放缩。
6. 利用数学恒等式进行放缩。
对于一个复杂的式子,我们可以通过使用数学恒等式来进行放缩。
例如,对于一个三角函数,我们可以使用三角恒等式来对它进行放缩。
同样,对于一个指数函数,我们可以使用指数恒等式来对它进行放缩。
7. 利用数学变换进行放缩。
对于一个复杂的式子,我们可以通过使用数学变换来进行放缩。
例如,对于一个指数函数,我们可以使用对数变换来对它进行放缩。
放缩法技巧全总结
放缩法技巧全总结放缩法是数学问题解决中常用的一种方法,它通过缩小问题的范围或改变问题的形式来简化解决过程。
在数学建模、优化问题以及算法设计中,放缩法经常被应用于求解复杂的问题。
本文将对放缩法的原理、应用以及常见的技巧进行全面总结。
1. 放缩法的原理及基本思想放缩法的基本思想是通过限制问题的变量范围或者构造合适的上下界,从而将原问题转化为一个可以更容易解决的子问题。
主要包括以下步骤:首先,确定问题的数学模型和目标函数。
根据问题的特点,选择合适的变量和约束条件,明确问题的求解目标。
其次,根据问题的特点,通过观察和分析将问题进行简化。
可以通过限制变量范围、引入新的限制条件或者改变问题的形式等方式进行问题的放缩。
然后,进行放缩求解。
根据问题的特点,选择合适的求解方法和算法来求解放缩后的子问题。
最后,将子问题的解进行扩展和还原,得到原问题的解。
2. 放缩法的应用领域放缩法是一种通用的方法,可以应用于多个领域,如数学建模、优化问题以及算法设计等。
以下列举几个应用场景:2.1 数学建模放缩法在数学建模中经常用于减少问题的复杂性,简化模型的求解过程。
通过放缩变量的范围,可以缩小求解空间,提高求解效率。
2.2 优化问题放缩法在优化问题中的应用非常广泛。
通过引入适当的上下界限制,可以将原问题转化为一个更容易求解的子问题。
例如,在整数规划中,可以通过放缩法来将问题转化为一个线性规划问题,然后使用线性规划算法求解。
2.3 算法设计在算法设计中,放缩法可以用于改进算法的时间复杂度和空间复杂度。
通过限制算法中的某些变量范围,可以减少算法的搜索空间,提高算法的效率。
3. 放缩法的常见技巧3.1 二分搜索二分搜索是放缩法中常用的技巧之一。
通过确定问题的上下界,不断将问题的搜索空间缩小一半,直到找到满足条件的解。
二分搜索可以应用于各种离散问题,如查找有序数组中的元素、搜索图中的路径等。
3.2 引入辅助变量引入辅助变量是放缩法中常用的技巧之一。
高考数学_压轴题_放缩法技巧全总结
高考数学备考之 放缩技巧证明数列型不等式,因其思维跨度大、构造性强,需要有较高的放缩技巧而充满思考性和挑战性,能全面而综合地考查学生的潜能与后继学习能力,因而成为高考压轴题及各级各类竞赛试题命题的极好素材。
这类问题的求解策略往往是:通过多角度观察所给数列通项的结构,深入剖析其特征,抓住其规律进行恰当地放缩;其放缩技巧主要有以下几种:一、裂项放缩例1.(1)求∑=-n k k 12142的值; (2)求证:35112<∑=nk k .解析:(1)因为121121)12)(12(21422+--=+-=-n n n n n ,所以122121114212+=+-=-∑=n n n k n k (2)因为⎪⎭⎫ ⎝⎛+--=-=-<12112121444111222n n n n n ,所以35321121121513121112=+<⎪⎭⎫ ⎝⎛+--++-+<∑=n n k nk 技巧积累:(1)⎪⎭⎫ ⎝⎛+--=-<=1211212144441222n n n n n (2))1(1)1(1)1()1(21211+--=-+=+n n n n n n n C C n n(3))2(111)1(1!11)!(!!11≥--=-<<⋅-=⋅=+r r r r r r n r n r n nC Tr rrn r (4)25)1(123112111)11(<-++⨯+⨯++<+n n nn(5)nn nn 21121)12(21--=- (6)n n n -+<+221(7))1(21)1(2--<<-+n n nn n (8) nn n n n n n 2)32(12)12(1213211221⋅+-⋅+=⋅⎪⎭⎫ ⎝⎛+-+-(9)⎪⎭⎫ ⎝⎛++-+=+++⎪⎭⎫ ⎝⎛+-+=-+k n n k k n n n k k n k n k 11111)1(1,11111)1(1 (10) !)1(1!1!)1(+-=+n n n n (11)21212121222)1212(21-++=-++=--+<n n n n n n n(11) )2(121121)12)(12(2)22)(12(2)12)(12(2)12(21112≥---=--=--<--=----n n n n n n n n n n n n n n(12) 111)1(1)1(1)1)(1(11123--+⋅⎪⎪⎭⎫ ⎝⎛+--=+-<⋅=n n n n n n n n n n n n11112111111+--<-++⋅⎪⎭⎫ ⎝⎛+--=n n n n n n n(13) 3212132122)12(332)13(2221nn n nnnnnn <-⇒>-⇒>-⇒>⋅-=⋅=+(14)!)2(1!)1(1)!2()!1(!2+-+=+++++k k k k k k (15))2(1)1(1≥--<+n n n n n (15) 111)11)((1122222222<++++=+++--=-+-+j i j i j i j i j i ji j i例2.(1)求证:)2()12(2167)12(151311222≥-->-++++n n n (2)求证:nn412141361161412-<++++ (3)求证:1122642)12(531642531423121-+<⋅⋅⋅⋅-⋅⋅⋅⋅++⋅⋅⋅⋅+⋅⋅+n nn(4) 求证:)112(2131211)11(2-+<++++<-+n nn解析:(1)因为⎪⎭⎫ ⎝⎛+--=+->-12112121)12)(12(1)12(12n n n n n ,所以 )12131(211)12131(211)12(112--+>+-+>-∑=n n i ni (2))111(41)1211(414136116141222nnn-+<+++=++++(3)先运用分式放缩法证明出1212642)12(531+<⋅⋅⋅⋅-⋅⋅⋅⋅n nn ,再结合nn n -+<+221进行裂项,最后就可以得到答案(4)首先nn n n n++=-+>12)1(21,所以容易经过裂项得到nn 131211)11(2++++<-+再证21212121222)1212(21-++=-++=--+<n n n n n n n而由均值不等式知道这是显然成立的,所以)112(2131211-+<++++n n例3.求证:35191411)12)(1(62<++++≤++n n n n解析: 一方面: 因为⎪⎭⎫ ⎝⎛+--=-=-<1211212144411222n n n n n ,所以35321121121513121112=+<⎪⎭⎫ ⎝⎛+--++-+<∑=n n knk 另一方面: 1111)1(143132111914112+=+-=+++⨯+⨯+>++++n n n n n n当3≥n 时,)12)(1(61++>+n n n n n ,当1=n 时,2191411)12)(1(6n n n n ++++=++ ,当2=n 时,2191411)12)(1(6nn n n ++++<++ ,所以综上有35191411)12)(1(62<++++≤++n n n n例4.(2008年全国一卷)设函数()ln f x x x x =-.数列{}n a 满足101a <<.1()n n a f a +=. 设1(1)b a ∈,,整数11ln a b k a b-≥.证明:1k a b +>.解析: 由数学归纳法可以证明{}n a 是递增数列, 故 若存在正整数k m ≤, 使b a m ≥, 则b a a k k ≥>+1,若)(k m b a m ≤<,则由101<<≤<b a a m 知0ln ln ln 11<<≤b a a a a a m m m ,∑=+-=-=k m m m k k k k a a a a a a a 111ln ln ,因为)ln (ln 11b a k a akm m m<∑=,于是b a b a b a k a a k =-+≥+>+)(|ln |11111例5.已知m m m m m n S x N m n ++++=->∈+ 321,1,,,求证: 1)1()1(11-+<+<++m n m n S m n .解析:首先可以证明:nx x n +≥+1)1(∑=++++++++--=-++---+--=n k m m m m m m m m k k n n n n n 111111111])1([01)2()1()1( 所以要证1)1()1(11-+<+<++m n m n S m n 只要证:∑∑∑=+++++++++==++-+=-++--+-+=-+<+<--nk m m m m m m m m m n k m n k m m k k n n n n n k m k k 111111111111111])1[(2)1()1(1)1()1(])1([故只要证∑∑∑=++==++-+<+<--nk m m n k m nk m m k k k m k k1111111])1[()1(])1([,即等价于m m m m m k k k m k k -+<+<--+++111)1()1()1(,即等价于11)11(11,)11(11++-<+-+<++m m kkm kkm 而正是成立的,所以原命题成立.例6.已知n n n a 24-=,nnna a a T +++=212,求证:23321<++++nT T T T .解析:)21(2)14(3421)21(241)41(4)222(444421321n n nn n n nT -+-=-----=+++-++++=所以123)2(22232234232323422234342)21(2)14(3422111111+⋅-⋅⋅=+⋅-⋅=-+=-+-=-+-=++++++n n nn n n n n n n n n n n nn T⎪⎭⎫ ⎝⎛---=--⋅⋅=+12112123)12)(122(2231n n n n n 从而231211217131311231321<⎪⎭⎫ ⎝⎛---++-+-=+++++n n nT T T T例7.已知11=x ,⎩⎨⎧∈=-∈-==),2(1),12(Z k k n n Z k k n n x n,求证:*))(11(21114122454432N n n x x x x x x n n ∈-+>++⋅+⋅+证明:nn n n n n x x n n 222141141)12)(12(11424244122=⋅=>-=+-=+,因为12++<n n n ,所以)1(2122214122n n n n n x x n n -+=++>>+所以*))(11(21114122454432N n n x x x x x x n n ∈-+>++⋅+⋅+二、函数放缩例8.求证:)(665333ln 44ln 33ln 22ln *N n n n nn∈+-<++++ .解析:先构造函数有xxx x x 11ln 1ln -≤⇒-≤,从而)313121(1333ln 44ln 33ln 22ln n n nn+++--<++++ cause ⎪⎭⎫ ⎝⎛++++++⎪⎭⎫ ⎝⎛++++++⎪⎭⎫ ⎝⎛+=+++n n n n 31121219181716151413121313121 6533323279189936365111n nn n n =⎪⎪⎭⎫ ⎝⎛+⋅++⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛++>---所以6535133ln 4ln 3ln 2ln +-=--<++++n n n n nn例10.当然本题的证明还可以运用积分放缩如图,取函数xx f 1)(=,首先:⎰-<nin ABCFx S1,从而,)ln(ln |ln 11i n n x xi nn i n nin --==<⋅--⎰取1=i 有,)1ln(ln 1--<n n n,所以有2ln 21<,2ln 3ln 31-<,…,)1ln(ln 1--<n n n,n n n ln )1ln(11-+<+,相加后可以得到: )1ln(113121+<++++n n 另一方面⎰->ni n ABDExS 1,从而有)ln(ln |ln 11i n n x x i in n i n nin --==>⋅---⎰取1=i 有,)1ln(ln 11-->-n n n , 所以有nn 1211)1ln(+++<+ ,所以综上有nn n 1211)1ln(113121+++<+<++++例11.求证:e n <+⋅⋅++)!11()!311)(!211( 和e n <+⋅⋅++)311()8111)(911(2 .解析:构造函数后即可证明 例12.求证:32)]1(1[)321()211(->++⋅⋅⨯+⋅⨯+n e n n 解析:1)1(32]1)1(ln[++->++n n n n ,叠加之后就可以得到答案例13.证明:)1*,(4)1(1ln 54ln 43ln 32ln >∈-<+++++n N n n n n n 解析:构造函数)1(1)1()1ln()(>+---=x x x x f ,求导,可以得到:12111)('--=--=x x x x f ,令0)('>x f 有21<<x ,令0)('<x f 有2>x ,所以0)2()(=≤f x f ,所以2)1ln(-≤-x x ,令12+=n x 有,1ln 22-≤n n 所以211ln -≤+n n n,所以)1*,(4)1(1ln 54ln 43ln 32ln >∈-<+++++n N n n n n n 例14. 已知112111,(1).2n n n aa a n n +==+++证明2n a e <. 解析:nn n n n a n n a n n a )21)1(11(21))1(11(1+++<+++=+, 然后两边取自然对数,可以得到nn n a n n aln )21)1(11ln(ln 1++++<+ 然后运用x x <+)1ln(和裂项可以得到答案) 放缩思路:⇒+++≤+n nn a nn a )2111(21⇒++++≤+n nn a nn a ln )2111ln(ln 21nn n n a 211ln 2+++≤。
十种放缩法技巧全总结
十种放缩法技巧全总结
【十种放缩法技巧全总结】
一、放缩法的思考
1.了解放缩法的基础:放缩法是一种常用的解决问题的方法,它强调的是将比较复杂的问题分解成一些更小的问题,这样更容易解决。
2.了解放缩法的原理:放缩法是将一个较大的问题,通过对它的不同部分进行放缩,以此得到不同等级的解决方案,解决各个不同等级的问题。
3.放缩法的优势:放缩法的优点在于可以更好的解决复杂的问题,而且更加容易理解。
二、十种常见的放缩法技巧
1.分解技巧:将复杂的问题分解成一些相互关联、解决全部问题的独立子问题。
2.聚焦技巧:将系统分解成独立的子系统,以便能够更准确地对其中的子系统进行放缩。
3.抽象技巧:通过简单而省时的思考方法,把复杂的细节和系统建模分解成更加简单的抽象系统,这样可以更快更准确地得出答案。
4.递推技巧:通过由小到大的逐步放缩,从上一步得出的结论作为下一步的起点,然后在逐渐放宽的范围内放缩,最终达到目标解决方案。
5.搜索技巧:在一定的范围内,搜索出所有可行的解决方案,然后根据需要对所有方案进行比较和选择。
6.综合技巧:综合应用现有的多种技术技巧,对复杂的放缩问题进行综合的攻关,以高效地解决问题。
7.逐步分解技巧:有些复杂的问题,由于它们的大小,不能一次性完成,而要按照固定的步骤,逐步将问题分解,从而得出最终解决方案。
8.反推技巧:将最终的解决方案一步一步反推出来,以此来求得一个合适的近似解。
9.自发技巧:通过随机或偶然的技术,探索出可能比较好的解决方案,可以帮助我们达到较好的目标。
10.对比技巧:就是将多种解决方案进行比较,从而得出最终的解决方案。
(完整word版)高考数学数列不等式证明题放缩法十种办法技巧总结,推荐文档
1.均值不等式法例1 设.)1(3221+++⋅+⋅=n n S n Λ求证.2)1(2)1(2+<<+n S n n n 例2 已知函数bxa x f 211)(⋅+=,若54)1(=f ,且)(x f 在[0,1]上的最小值为21,求证:.2121)()2()1(1-+>++++n n n f f f Λ 例3 求证),1(221321N n n n C C C Cn n nnnn∈>⋅>++++-Λ.例4 已知222121n a a a +++=L ,222121n x x x +++=L ,求证:n n x a x a x a +++Λ2211≤1.例5 求证例6 例7 例8 }{n a 满足:1a 再如: 例9 设nnn n 3. 部分放缩例10 设++=a n a 21111,23a aa n ++≥L ,求证:.2<n a 例11 设数列{}n a 满足()++∈+-=N n na a a n n n 121,当31≥a 时证明对所有,1≥n 有:2)(+≥n a i n ; 21111111)(21≤++++++n a a a ii Λ.4 . 添减项放缩例12 设N n n∈>,1,求证)2)(1(832(++<n n n.例13 设数列}{na 满足).,2,1(1,211Λ=+==+n a a a a nn n 证明12+>n a n 对一切正整数n 成立;5 利用单调性放缩: 构造函数例14 已知函数223)(x ax x f -=的最大值不大于61,又当]21,41[∈x 时.81)(≥x f(Ⅰ)求a 的值;(Ⅱ)设*+∈=<<N n a f a a n n ),(,21011,证明.11+<n a n 例15(I 例16 例17 设 例18 设例19 例20 (1例21 (Ⅰ)写出数列}{n a 的前3项321,,a a a ; (Ⅱ)求数列}{n a 的通项公式;(Ⅲ)证明:对任意的整数4>m ,有8711154<+++m a a a Λ. 9. 借助数学归纳法例22(Ⅰ)设函数)10( )1(log )1(log )(22<<--+=x x x x x x f ,求)(x f 的最小值; (Ⅱ)设正数n p p p p 2321,,,,Λ满足12321=++++n p p p p Λ,求证:10. 构造辅助函数法例23 已知()f x = 2ln 243x x +-,数列{}n a 满足()()*11 2 ,0211N n a f a n an ∈=<<-++(1)求()f x 在⎥⎦⎤⎢⎣⎡-021,上的最大值和最小值; (2)证明:102n a -<<; (3)判断n a 与1()n a n N *+∈的大小,并说明理由.例24 已知数列{}n a 的首项135a =,1321n n n a a a +=+,12n =L,,.(Ⅰ)求{}n a 的通项公式; (Ⅱ)证明:对任意的0x>,21121(1)3n na x xx ⎛⎫-- ⎪++⎝⎭≥,12n =L ,,;21+<k 则411()11(0)141422x x x xf x x ==->-≠++•1(1)()(122f f n ⇒++>-⨯L 211(1)(1)2222n +-++-⨯⨯L 例3 简析 不等式左边123nnn n n C C C C ++++L =12222112-++++=-n n Λn n n 122221-⋅⋅⋅⋅⋅>Λ=212-⋅n n ,故原结论成立.例4 【解析】使用均值不等式即可:所以有22222211221122222n n n n a x a x a x a x a x a x ++++++≤+++L L其实,上述证明完全可以改述成求n n x a x a x a +++Λ2211的最大值。
高考数学放缩法技巧全总结(非常精辟-尖子生解决高考数学最后一题之瓶颈之精华!!)
3n
1 1(
1
23
1 3n )
因为 1 1
23
1 11
3n
23
11 1111 45 6789
1
1
1
2n 2 n 1
3n
5 33 6 69
99 18 27
3n 1
3n 1
5n
2 3n 1 3 n
6
所以 ln 2 ln 3 ln 4 2 34
ln 3n
n
3
3n
5n 1
3n
5n 6
6
6
例 9.求证 :(1)
4 n (21 22
2n ) 4(1 4 n ) 2(1 2 n ) 4 ( 4n 1) 2 (1 2 n )
14
12
3
所以
Tn
2n
4 (4n 1) 2 (1 2n ) 3
2n
4n 1
4 2
2n 1
33
2n 4n 1 2
33
2n 1
3 2n 4 n 1 3 2n 1 2
3
2n
2 2 ( 2n ) 2 3 2 n 1
1 4 x 4 x5
1 4 x2 nx2 n 1
2 ( n 1 1)(n N *)
二、函数放缩
例 8.求证: ln 2 ln 3 ln 4 2 34
ln 3n
3n
5n
6 (n
N*) .
3n
6
解析 :先构造函数有 ln x x 1 ln x 1 1 , 从而 ln 2 ln 3 ln 4
x
x
23 4
ln 3n 3n
21 2n 1
1 ,所以 n 1
2n 1
放缩法技巧全总结
放缩技巧一、裂项放缩 例1.(1)求∑=-nk k 12142的值; (2)求证:35112<∑=nk k . 解析:(1)因为121121)12)(12(21422+--=+-=-n n n n n ,所以122121114212+=+-=-∑=n nn k nk (2)因为⎪⎭⎫ ⎝⎛+--=-=-<12112121444111222n n n n n, 所以35321121121513121112=+<⎪⎭⎫ ⎝⎛+--++-+<∑=n n k nk技巧积累:(1)⎪⎭⎫ ⎝⎛+--=-<=1211212144441222n n n n n (2))1(1)1(1)1()1(21211+--=-+=+n n n n n n n C C n n(3))2(111)1(1!11)!(!!11≥--=-<<⋅-=⋅=+r rr r r r n r n r n n C T r r r nr (4)1111(1)1132132(1)n n n n +<+++++<⨯⨯-(5)n n nn 21121)12(21--=- (6)n n n -+<+221(7))1(21)1(2--<<-+n n nn n(8) n n n n n n n 2)32(12)12(1213211221⋅+-⋅+=⋅⎪⎭⎫ ⎝⎛+-+-(9)⎪⎭⎫⎝⎛++-+=+++⎪⎭⎫ ⎝⎛+-+=-+k n n k k n n n k k n k n k 11111)1(1,11111)1(1 (10) !)1(1!1!)1(+-=+n n n n(11)21212121222)1212(21-++=-++=--+<n n n n n n n(12) )2(121121)12)(12(2)22)(12(2)12)(12(2)12(21112≥---=--=--<--=----n nn n n n n n n n n n n n (13)111)1(1)1(1)1)(1(11123--+⋅⎪⎪⎭⎫ ⎝⎛+--=+-<⋅=n n n n n n n n n nn n11112111111+--<-++⋅⎪⎭⎫⎝⎛+--=n n n n n n n(14) 3212132122)12(332)13(2221nn n nnnnnn <-⇒>-⇒>-⇒>⋅-=⋅=+(15) !)2(1!)1(1)!2()!1(!2+-+=+++++k k k k k k(16))2(1)1(1≥--<+n n n n n (17)111)11)((1122222222<++++=+++--=-+-+j i j i j i j i j i j i j i例2.(1)求证:)2()12(2167)12(151311222≥-->-++++n n n (2)求证:n n412141361161412-<++++(3)求证:1122642)12(531642531423121-+<⋅⋅⋅⋅-⋅⋅⋅⋅++⋅⋅⋅⋅+⋅⋅+n nn (4) 求证:)112(2131211)11(2-+<++++<-+n nn解析:(1)因为⎪⎭⎫⎝⎛+--=+->-12112121)12)(12(1)12(12n n n n n ,所以 )12131(211)12131(211)12(112--+>+-+>-∑=n n i n i(2))111(41)1211(414136116141222n nn -+<+++=++++ (3)先运用分式放缩法证明出1212642)12(531+<⋅⋅⋅⋅-⋅⋅⋅⋅n nn ,再结合nn n -+<+221进行裂项,最后就可以得到答案(4)首先nn n n n++=-+>12)1(21,所以容易经过裂项得到nn 131211)11(2++++<-+再证21212121222)1212(21-++=-++=--+<n n n n n n n而由均值不等式知道这是显然成立的, 所以)112(2131211-+<++++n n例3.求证:35191411)12)(1(62<++++≤++n n n n解析: 一方面: 因为⎪⎭⎫ ⎝⎛+--=-=-<12112121444111222n n n n n ,所以35321121121513121112=+<⎪⎭⎫ ⎝⎛+--++-+<∑=n n knk 另一方面: 1111)1(143132111914112+=+-=+++⨯+⨯+>++++n n n n n n当3≥n 时,)12)(1(61++>+n n nn n ,当1=n 时,2191411)12)(1(6nn n n ++++=++ ,当2=n 时,2191411)12)(1(6nn n n ++++<++ ,所以综上有35191411)12)(1(62<++++≤++n n n n例4.(2008年全国一卷)设函数()ln f x x x x =-.数列{}na 满足101a <<.1()n n a f a +=.设1(1)b a ∈,,整数11ln a b k a b-≥.证明:1k a b +>. 解析: 由数学归纳法可以证明{}na 是递增数列, 故 若存在正整数k m ≤, 使b a m ≥, 则b a a k k ≥>+1,若)(k m b a m≤<,则由101<<≤<b a a m 知0ln ln ln 11<<≤b a a a a a m m m ,∑=+-=-=km m m k k k k a a a a a a a 111ln ln ,因为)ln (ln 11b a k a a km m m <∑=,于是b a b a b a k a ak =-+≥+>+)(|ln |11111例5.已知m m m m m n S x N m n ++++=->∈+ 321,1,,,求证: 1)1()1(11-+<+<++m nm n S m n .解析:首先可以证明:nx x n+≥+1)1(∑=++++++++--=-++---+--=n k m m m m m m m m k k n n n nn111111111])1([01)2()1()1( 所以要证1)1()1(11-+<+<++m nm n S m n 只要证:∑∑∑=+++++++++==++-+=-++--+-+=-+<+<--n k m m m m m m m m m nk m nk m m k k n n n n n k m k k 111111111111111])1[(2)1()1(1)1()1(])1([故只要证∑∑∑=++==++-+<+<--nk m m n k m n k m m k k k m k k1111111])1[()1(])1([,即等价于m m m m m k k k m k k -+<+<--+++111)1()1()1(, 即等价于11)11(11,)11(11++-<+-+<++m m kk m kkm 而正是成立的,所以原命题成立.例6.已知nnn a 24-=,nn n a a a T +++=212,求证:23321<++++nT T T T . 解析:)21(2)14(3421)21(241)41(4)222(444421321n nn n n n nT -+-=-----=+++-++++=所以123)2(22232234232323422234342)21(2)14(3221111+⋅-⋅⋅=+⋅-⋅=-+=-+-=-+-=++++n n nn n n n n n n n nnn T⎪⎭⎫⎝⎛---=--⋅⋅=+12112123)12)(122(2231n n nn n从而231211217131311231321<⎪⎭⎫ ⎝⎛---++-+-=+++++n nnT T T T 例7.已知11=x ,⎩⎨⎧∈=-∈-==),2(1),12(Z k k n n Z k k n n x n ,求证:*))(11(21114122454432N n n x x x x x x n n ∈-+>++⋅+⋅+证明: nnnn n n x x n n 222141141)12)(12(11424244122=⋅=>-=+-=+,因为 12++<n n n ,所以)1(2122214122n n n n nx x n n -+=++>>+所以*))(11(21114122454432N n n x x x x x x n n ∈-+>++⋅+⋅+二、函数放缩 例8.求证:)(665333ln 44ln 33ln 22ln *N n n n n n∈+-<++++ .解析:先构造函数有xxx x x 11ln 1ln -≤⇒-≤,从而)313121(1333ln 44ln 33ln 22ln n n n n+++--<++++ ⎪⎭⎫ ⎝⎛++++++⎪⎭⎫ ⎝⎛++++++⎪⎭⎫ ⎝⎛+=+++n n n n 31121219181716151413121313121 6533323279189936365111n n n n n =⎪⎪⎭⎫ ⎝⎛+⋅++⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛++>--- 所以6653651333ln 44ln 33ln 22ln +-=--<++++n n n n nn例9.求证:(1))2()1(212ln 33ln 22ln ,22≥+--<+++≥n n n n nn ααααααα解析:构造函数xx x f ln )(=,得到22ln ln nn n n≤αα,再进行裂项)1(1111ln 222+-<-≤n n nnn ,求和后可以得到答案例10.另一方面⎰->ni n ABDExS 1,从而有)ln(ln |ln 11i n n x x i i n n i n nin --==>⋅---⎰ 取1=i 有,)1ln(ln 11-->-n n n , 所以有nn 1211)1ln(+++<+ ,所以综上有nn n 1211)1ln(113121+++<+<++++例11.求证:e n <+⋅⋅++)!11()!311)(!211( 和e n <+⋅⋅++)311()8111)(911(2 .解析:构造函数后即可证明例12.求证:32)]1(1[)321()211(->++⋅⋅⨯+⋅⨯+n e n n 解析:1)1(32]1)1(ln[++->++n n n n ,叠加之后就可以得到答案函数构造形例13.证明:)1*,(4)1(1ln 54ln 43ln 32ln >∈-<+++++n N n n n n n 解析:构造函数)1(1)1()1ln()(>+---=x x x x f ,求导,可以得到: 12111)('--=--=x xx x f ,令0)('>x f 有21<<x ,令0)('<x f 有2>x , 所以0)2()(=≤f x f ,所以2)1ln(-≤-x x ,令12+=n x 有,1ln 22-≤n n所以211ln -≤+n n n,所以)1*,(4)1(1ln 54ln 43ln 32ln >∈-<+++++n N n n n n n例14. 已知112111,(1).2n n n a a a n n +==+++证明2n a e <解析: n n n n n a n n a n n a )21)1(11(21))1(11(1+++<+++=+,然后两边取自然对数,可以得到n n n a n n a ln )21)1(11ln(ln 1++++<+ 然后运用x x <+)1ln(和裂项可以得到答案) 放缩思路:⇒+++≤+n n n a n n a)2111(21⇒++++≤+n n n a n n a ln )2111ln(ln 21n n n n a 211ln 2+++≤。
(完整版)2018第一轮复习放缩法技巧全总结,推荐文档
放缩法在数列不等式中的应用数列不等式是高考大纲在知识点交汇处命题精神的重要体现,在高考试题中占有重要地位,在近几年的高考试题中,多个省份都有所考查,甚至作为压轴题。
而数列不等式的求解常常用到放缩法,笔者在教学过程中发现学生在用放缩法处理此类问题时,普遍感到困难,找不到解题思路。
现就放缩法在数列不等式求解过程中常见的几种应用类型总结如下。
1.直接放缩,消项求解例1在数列中,,且成等差数列,成等比数列. {}{},n n a b 112,4a b ==1,,n n n a b a +11,,n n n b a b ++,*N n ∈(Ⅰ)求及,由此猜测的通项公式,并证明你的结论;234,,a a a 234,,b b b {}{},n n a b (Ⅱ)证明:.1122111512n n a b a b a b +++<+++ 分析:(Ⅰ)数学归纳法。
(Ⅱ)本小题的分母可化为不相同的两因式的乘积,可将其放缩为等差型两项之积,通过裂项求和。
(Ⅰ)略解.2(1)(1)n n a n n b n =+=+,(Ⅱ).n ≥2时,由(Ⅰ)知.11115612a b =<+(1)(21)2(1)n n a b n n n n +=++>+故112211111111622334(1)n n a b a b a b n n ⎛⎫+++<++++ ⎪+++⨯⨯+⎝⎭……111111116223341n n ⎛⎫=+-+-++- ⎪+⎝⎭…,综上,原不等式成立. 111111562216412n ⎛⎫=+-<+= ⎪+⎝⎭点评: 数列和式不等式中,若数列的通项为分式型,可考虑对其分母进行放缩,构造等差型因式之积。
再用裂项的方法求解。
另外,熟悉一些常用的放缩方法,如:,),,2,1(11121n k n k n n =+≤+≤nn n n n n n n n 111)1(11)1(11112--=-≤<+=+-例2设数列满足其中为实数{}n a *,1,1311N c c ca a a n n ∈-+==+c (Ⅰ)证明:对任意成立的充分必要条件是;[0,1]n a ∈*n N ∈[0,1]c ∈(Ⅱ)设,证明:;103c <<1*1(3),n n a c n N -≥-∈分析:(Ⅰ)数学归纳法证明(Ⅱ)结论可变形为,即不等式右边为一等比1)3(1-≤-n n c a 数列通项形式,化归思路为对 用放缩法构造等比型递推数列,n a -1即)1(3)1)(1(112111-----≤++-=-n n n n n a c a a a c a 解:(Ⅰ)解略。
2018-2019-高考第一轮复习的技巧-范文word版 (5页)
本文部分内容来自网络整理,本司不为其真实性负责,如有异议或侵权请及时联系,本司将立即删除!== 本文为word格式,下载后可方便编辑和修改! ==高考第一轮复习的技巧一、高考数学第一轮复习的注意5大问题数学一直是分数梯度最为明显的学科。
如何缩小与高分同学之间的差距,在复习备考时,应在以下几个方面着重注意:1、拓实基础,强化通性通法高考对基础知识的考查既全面又突出重点。
抓基础就是要重视对教材的复习,尤其是要重视概念、公式、法则、定理的形成过程,运用时注意条件和结论的限制范围,理解教材中例题的典型作用,对教材中的练习题,不但要会做,还要深刻理解在解决问题时题目所体现的数学思维方法。
2、认真阅读考试说明,减少无用功在平时练习或进行模拟考试时,要注意培养考试心境,养成良好的习惯。
首先认真对考试说明进行领会,并要按要求去做,对照说明后的题例,体会说明对知识点是如何考查的,了解说明对每个知识的要求,千万不要对知识的要求进行拔高训练。
3、抓住重点内容,注重能力培养高中数学主体内容是支撑整个高中数学最重要的部分,也是进入大学必须掌握的内容,这些内容都是每年必考且重点考的。
象关于函数(含三角函数)、平面向量、直线和圆锥曲线、线面关系、数列、概率、导数等,把它们作为复习中的重中之重来处理,要一个一个专题去落实,要通过对这些专题的复习向其他知识点辐射。
4、关心教育动态,注意题型变化由于新增内容是当前社会生活和生产中应用比较广泛的内容,而与大学接轨内容则是进入大学后必须具备的知识,因此它们都是高考必考的内容,因此一定要把诸如概率与统计、导数及其应用、推理与证明、算法初步与框图的基本要求有目的的进行复习与训练。
一定要用新的教学理念进行高三数学教学与复习,5、细心审题、耐心答题,规范准确,减少失误计算能力、逻辑推理能力是考试大纲中明确规定的两种培养的能力。
可以说是学好数学的两种最基本能力,在数学试卷中的考查无处不在。
并且在每年的阅卷中因为这两种能力不好而造成的失分占有相当的比例。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
放缩法在数列不等式中的应用
数列不等式是高考大纲在知识点交汇处命题精神的重要体现,在高考试题中占有重要 地
位,在近几年的高考试题中,多个省份都有所考查,甚至作为压轴题。
而数列不等式的求 解常常用到放缩法,笔者在教学过程中发现学生在用放缩法处理此类问题时, 普遍感到困难, 找不到解题思路。
现就放缩法在数列不等式求解过程中常见的几种应用类型总结如下。
1. 直接放缩,消项求解
例1在数列a n , b n 中,印2,b 1 4 ,且a n .b n .3n 1成等差数列,b n ,a ni ,b n!成等比数列 n N*.
(I)求a 2.a 3.a 4及b 2.b 3.b 4,由此猜测a n , b n 的通项公式.并证明你的结论;
分析:(I)数学归纳法。
(n)本小题的分母可化为不相同的两因式的乘积, 可将其放缩为等差型两项之积,通 过裂
项求和。
(I) 略解 a n
n(n 1), b n (n 1)2
.
(n)
1
1
5
—.n 》2时,
由( I)知 a n b n (n 1)(2n 1)
2(n 1)n .
a 1
b 1 6 12
故
1
1
... 1 1
1
1 1 ...
1
a 1
b 1
a 2
b 2 a n b n
6 2 2 3 3 4
n(n 1)
1 1 1 1 1 1 ... 1 1
6 2 2 3 3 4 n n 1
1 1 1
1
1 1 5
1 1
2 综 宗
上, 原不等式成立.
6 2 2
n 1 6 4 12
点评:数列和式不等式中,若数列的通项为分式型, 因式之积。
再用裂项的方法求解。
另外,熟悉一些常用的放缩方法,
1 a
2 b 2
a n
b n 12
可考虑对其分母进行放缩,构造等差型 如:
2n
1 n(n 1)
1 1 1 1 2
n n(n 1) n 1 n
1.2.
(I)证明:3n [0,1]对任意n N *成立的充分必要条件是c [0,1]; (U)设 0 c 1,证明:3n 1 (3c)n1,n N *;
3
分析:(I)数学归纳法证明(U)结论可变形为 1 3n (3c) n 1,即不等式右边为一等比数 列通项形式,化归思路为对 1 a n 用放缩法构造等比型递推数列,
n 1
*
••• a n 1 (3 c) (n N)
点评:直接对多项式放大后,得到的是等比型递推数列,再逐项递推得到结论。
通过放缩得 到等比型递推数列是求解数列不等式的另一个重要的类型。
2. 利用基本不等式放缩
a n 1 ; (n) S n n 2; (m) 「
3 分析:(I)在a n 0的条件下,a n a n 1的等价形式为a n 2 a n 12,要证a n 2 a n 12,只需证
2 2
a n1 a n 1 a n1 0,即证a n 1,可用数学归纳法证明
(n)由 a n 1 a n 1 a n 1累加及a n 1可得
(m)和式通项的分母由 1 a n 累乘得到的,条件中可有a k 1(1 a k 1) 1 a,得到,但
解:(I)解略。
(n)设 0 c 1, 3
当n 1时, a 1 0,结论成立,当n 2时,
.・
3
.
a
n
ca n 1
1
c,.・.1 a n
2 c(1 a n 1)(1 a n 1 a n 1
)
0 c
,由 3
(1)知 a n 1
[0,1],所以 1 a n 1 a n 1
3 且 1 a n 1 0
二 1 a n 3c(1
a
n 1
)
即 1 a n c(1 a n 1 )(1 a n 1
(3c)n1(1 aj (3c)n 1
例2设数列a n 满足31
1,a n 1 ca n 1 c,c N*其中c 为实数
2
a n 1 )
3c(1 a n 1)
2
••• 1 a n 3c(1 a n 1) (3c) (1 a . 2) L
例3已知数列a n , a n
0, a 1 2 2 ?
0,a n 1 a n 1
1 a n (n N ?),记 S n 印 a 2
a
n
,
1 1 a 1
1
(1 aM a ?)
1
(1 a 1 )(1 a ?)
(1 a n )
求证:当n N ?时,(I) a n (1 a k 1
)
1 a k 2
a k 1
的分子分母次数不同,可用基本不等式将其化为等比型递推数列
(I)解略 (U)解略
(川)证明:由a k 1 a k 1 1 a k 》2a k ,得
1
故当 n > 3 时,T n 1 1 - L
2
点评:本题第三问,基本不等式的应用使构造等比型递推数列成为可能,在公比 q 1时,等
比数列的前n 项和趋向于定值,即前n 项和有界,这为数列和式范围的证明提供了思路。
3. 利用数列的单调性放缩
k
例4数列{a n }为非负实数列,且满足:a k 2a k 1 a k 2 0, a i 1,k 1,2,
i 1
、、 2
求证:0 a k a k 1
2
(k 1,2,
)•
k
分析:有时数列不等式的证明可以在数列单调性的前提下进行放缩。
证明:若有某个a k a k 1,则a k 1 a k a k 1 a k 2 a k 2,从而从a k 起,数列{a n }单调递增,
k
和S n a 1 a 2 a n 会随n 的增大而趋向于无穷,与
a i 1, k 1,2,矛盾,所以{a n }是
i 1
单调递减的数列,即a k a k 1 0,令b n a k a k 1, k 1,2,
a
k 1
a
k 1 2a
k
(k 2,3,L , n
所以
1
(1 a 3)(1 a 4)L (1 a n )
a n
于是(1 a 2)(1 a 3)L (1 a n )
产話石長夬(n
' 3)
,
2n2
3,又因为T 1 T 2 T 3,所以T n 3 .
即b k b k 1,k 1,2,由于 1 a1 a? a k 由a k2a k 1 a k 2 0得a k a k 1 a k 1 a k 2,
b12a2a3a k
b12b23a3a k
b12a23b3a k
bi2b23b3kb k
(1 2 3k)b k
k(k
1)b
2k
本题考虑了数列{a n },{b n }的单调性,然后利用放缩法进行证明。
只要证—1—
1丄 1 a 2
4. 放缩法在数学归纳法的应用
数列不等式是与自然数有关的命题,数学归纳法是证明与自然数有关的命题的重要方法。
应用数学归纳法证明时,通常要利用放缩法对条件进行适当的转化, 才能实现由n k 时成立 到n k 1时也成立的过渡。
举例略。
综合以上分析,我们发现,在数列不等式的求解过程中,通过放缩法的应用,主要使数 列不等式转化为以下两种类型:
(1) 可直接裂项的形式,再求和证明求解。
(等差型)
(2) 等比型递推数列,|q 1时,数列前n 项和有界。
(等比型)
数列不等式是一类综合性较强的问题,我们可以利用上述思路对数列不等式进行分析、 求解。
在解题过程中要充分挖掘题设条件信息,把条件合理的转化、加强、放缩,同时结合 问题的结构、形式等特征,使条件与结论建立联系,从而使解题思路通畅。
其中合理、适当 的放缩是能否顺利解题的关键。
故b k
2 2 k(k 1) k 2
点评: 又如, 例3的第三问也可用单调性证明:
a n
a n 1,及 a n
0,
(1 aj(1
J ________ a 2) (1 a n ) _ 1
(1
a 2)n 1 '
T n
1 1 a 1
1 1 a 2
(1 a 2)2
(1 1 \ n 1
a n )
(T J -)n
1 a
2 1 1 -
1 a
2 1
—,要证T n
3,
1 ——
1 a 2
a 2
1
1
所以问题得证。