纳米材料电化学生物传感器10
基于纳米材料的生物传感器设计和应用
基于纳米材料的生物传感器设计和应用纳米材料是近年来备受关注的材料,具有很多优异的性质,如高比表面积、优异的化学和物理性质等。
随着生物技术的发展,纳米材料在生物传感器的设计和应用中也逐渐得到了广泛的应用。
本文将从纳米材料的种类、生物传感器的设计和应用角度,探讨基于纳米材料的生物传感器的发展趋势和前景。
第一部分:纳米材料的种类纳米材料按来源分为天然和人工合成两类。
天然纳米材料包括酶、蛋白质、基因等,其优点在于生物相容性好、成本低廉。
人工合成纳米材料可按形态分为纳米颗粒、纳米管、纳米线、纳米表面等。
其中,金属纳米颗粒是最常用的人工合成纳米材料之一,由于其表面等离子共振吸收敏感于局域表面等离子共振效应,因此金属纳米颗粒在生物传感器中应用非常广泛。
第二部分:生物传感器的设计生物传感器是一种能够感测、转换、传输和记录生物或化学信息的装置。
生物传感器包括biosensor和lab-on-a-chip。
由于其小巧、快速、精准的特性,生物传感器逐渐广泛应用于疾病诊断、药物研发、食品安全等领域,成为细胞分析和检测的主要手段。
在设计生物传感器时,要考虑到传感器的灵敏度、特异性、选择性和稳定性。
基于纳米材料的生物传感器具有非常高的灵敏度和选择性,这是纳米颗粒具有的优异性质所致。
此外,基于纳米材料的生物传感器还可以借助表面修饰和功能化来实现不同生物分子或化学物质的检测,从而实现高效、快速的分析和检测。
第三部分:生物传感器的应用基于纳米材料的生物传感器在分子分析和检测方面应用广泛。
通过表面修饰和功能化,生物传感器能够检测到蛋白质、基因、药物、细胞等生物分子,可应用于生物体内环境监测、医用诊断、新药研发等方面。
同时,在食品安全领域,基于纳米材料的生物传感器也被广泛应用于快速检测食品中的有害添加剂、毒素和细菌等。
另一方面,生物传感器也可以应用于环境监测领域。
常见的应用例子有检测污染物浓度、环境微生物变化等。
利用基于纳米材料的生物传感器,可以实现环境监测的快速、高效、经济的手段。
电化学生物传感器技术发展趋势
电化学生物传感器技术发展趋势引言:电化学生物传感器是一种基于电化学方法来检测生物分子的传感器技术。
其具有高灵敏度、快速响应、简单操作等特点,在医疗、食品安全、环境监测等领域有着广泛的应用前景。
本文将讨论电化学生物传感器技术的发展趋势,包括纳米材料的应用、智能化和便携化的发展以及生物分子的检测范围的扩大。
一、纳米材料的应用纳米材料具备较大的比表面积、特殊的光电性质和化学性质,对电化学生物传感器的性能具有重要的影响。
纳米材料可以用作传感器的载体,实现对生物分子的高灵敏度和快速响应。
常见的纳米材料包括金纳米颗粒、碳纳米管和二维材料等。
未来,可望进一步开发新型纳米材料,并通过纳米技术提高其制备工艺,以增强电化学生物传感器的性能。
二、智能化和便携化的发展随着物联网、云计算等技术的发展,智能化和便携化成为电化学生物传感器技术的发展趋势。
智能化的电化学生物传感器能够实现数据的自动采集、分析和存储,减少了人工操作的复杂性。
便携化的电化学生物传感器可以方便地携带和使用,实现在任何时间和地点进行生物分子的检测。
未来,可预期更多智能化和便携化的电化学生物传感器问世,为人们提供更加便捷和实用的检测手段。
三、生物分子的检测范围的扩大随着生物科学的发展和人们对健康的关注度增加,人们对生物分子的检测需求越来越多样化。
电化学生物传感器技术的发展将扩大生物分子的检测范围。
目前电化学生物传感器已经应用于检测蛋白质、DNA、细胞等生物分子,未来有望扩大到检测更复杂的生物分子,如药物、代谢产物等。
此外,电化学生物传感器也有望应用于早期癌症的诊断和治疗监测等领域。
结论:电化学生物传感器技术作为一种高灵敏度、快速响应、简单操作的生物分子检测技术,具有广泛的应用前景。
未来的发展趋势将集中在纳米材料的应用、智能化和便携化的发展以及生物分子检测范围的扩大。
通过不断地研究创新和技术进步,电化学生物传感器技术有望为人们提供更加高效和精确的生物分子检测手段,为医疗、食品安全、环境监测等领域带来更大的便利和贡献。
纳米材料与生物传感器
生物传感器在食品安全检测中的应用
生物传感器用于检测食品中的有害物质,如农药残留和重金属。 生物传感器能够快速检测食品中的病原微生物,如细菌和病毒。 生物传感器可用于监测食品的品质和新鲜度,例如检测肉类和乳制品中的细菌和化学物质。 生物传感器在食品安全检测中具有高灵敏度和特异性,能够提供准确的检测结果。
加强生物传感器在 临床诊断和治疗领 域的研究和应用
推动产学研用一体 化,促进纳米材料 与生物传感器技术 的产业化发展
THANK YOU
汇报人:XX
纳米材料的特性
添加标题 添加标题 添加标题 添加标题
小尺寸效应:随着尺寸的减小,纳米材料的物理、化学和机械性能发生 变化。
表面效应:纳米材料表面原子数相对增多,导致表面原子配位不足,具 有很高的化学活性。
量子尺寸效应:当粒子尺寸达到纳米量级时,某些材料的能级发生分裂, 产生明显的量子尺寸效应。
宏观量子隧道效应:微观粒子具有贯穿势垒的能力称为隧道效应,宏观 尺度下表现出的隧道效应称为宏观量子隧道效应。
纳米材料的应用领域
生物医学:用于药 物输送、疾病诊断 和治疗
环境监测:检测空 气、水中的污染物
能源领域:太阳能 电池、燃料电池等
电子工业:制造更 小、更快、更高效 的电子设备
生物传感器简介
生物传感器的定义
生物传感器是一种利用生物分子识 别元件来检测生物分子或生物标志 物的装置
生物传感器广泛应用于医学诊断、 环境监测、食品检测等领域
生物传感器在其他领域的应用
生物传感器在环境监测中的应用
生物传感器可以检测水体中的有害物质,如重金属、农药和工业废水等。 生物传感器可用于监测空气质量,包括PM2.5、甲醛等有害气体。 生物传感器可用于土壤污染物的检测,如农药残留和重金属等。 生物传感器在环境监测中的应用还包括对放射性物质的检测和监测。
纳米技术在生物传感器中的应用
纳米技术在生物传感器中的应用在当今科技飞速发展的时代,纳米技术已经成为了众多领域的研究热点,其中生物传感器领域也不例外。
纳米技术的引入为生物传感器的性能提升和应用拓展带来了前所未有的机遇。
纳米技术,简单来说,就是在纳米尺度(1 100 纳米)上对物质进行研究和操作的技术。
在这个极小的尺度下,物质会展现出与宏观状态下截然不同的物理、化学和生物学特性。
而生物传感器,则是一种能够对生物分子、细胞、组织等生物物质进行检测和分析的装置。
纳米技术在生物传感器中的应用,首先体现在其能够显著提高传感器的灵敏度。
传统的生物传感器在检测低浓度的生物标志物时,往往面临着准确性和可靠性不足的问题。
而纳米材料,如纳米金颗粒、碳纳米管等,具有巨大的比表面积和优异的电学、光学性能,能够极大地增加生物分子的吸附量和反应活性位点,从而显著提高检测信号的强度。
例如,基于纳米金颗粒的免疫传感器,可以实现对癌症标志物的超灵敏检测,检测限甚至可以达到飞摩尔(femtomolar)级别。
其次,纳米技术有助于提高生物传感器的选择性。
生物体系非常复杂,存在着大量相似的生物分子。
如何准确地检测特定的目标分子,一直是生物传感器面临的挑战之一。
通过对纳米材料进行表面修饰,使其能够特异性地识别和结合目标分子,可以有效地排除干扰物质的影响,提高传感器的选择性。
比如,利用功能化的碳纳米管,可以实现对特定 DNA 序列的高选择性检测。
再者,纳米技术为生物传感器的微型化和集成化提供了可能。
随着医疗技术的不断进步,对便携式、即时检测(Pointofcare Testing,POCT)设备的需求日益增长。
纳米材料的小尺寸和良好的加工性能,使得可以在微小的芯片上集成多个传感器单元,实现对多种生物指标的同时检测。
这种微型化和集成化的生物传感器不仅体积小、便于携带,而且能够快速给出检测结果,为疾病的早期诊断和实时监测提供了有力的工具。
此外,纳米技术还可以改善生物传感器的稳定性和重复性。
功能性纳米材料在生物传感器中的应用研究
功能性纳米材料在生物传感器中的应用研究引言:随着科学技术的发展,纳米技术在各个领域的应用日益广泛。
其中,功能性纳米材料在生物传感器领域中的应用逐渐受到关注。
功能性纳米材料具有超小的尺寸和独特的物理、化学特性,使其成为生物传感器的理想材料。
本文将介绍功能性纳米材料在生物传感器中的应用,并讨论其在生物医学、环境监测和食品安全等领域的潜在应用。
一、功能性纳米材料的种类功能性纳米材料包括纳米颗粒、纳米管、纳米线、纳米片等。
它们可以根据不同的性质和形状被应用于生物传感器中。
例如,金属纳米颗粒具有良好的光学性质和电化学性质,可以用于生物分析和荧光标记;碳纳米管具有良好的导电性和生物相容性,可用于电化学传感器;纳米线可以用于传统电化学传感器的增强灵敏度等。
二、功能性纳米材料在生物传感器中的应用1. 生物分析和诊断功能性纳米材料在生物传感器中的应用为生物分析和诊断提供了新的方法和手段。
例如,功能性纳米颗粒可以用于DNA、RNA和蛋白质的检测。
通过与特定的生物分子结合,功能性纳米颗粒可以在传感器中产生特定的信号,并用于检测目标分子的存在和浓度。
此外,功能性纳米材料还可以用于生物标记和细胞成像,为疾病的早期诊断提供了可能。
2. 生物传感器的灵敏度和选择性的提高纳米材料的独特特性使其能够提高生物传感器的灵敏度和选择性。
功能性纳米材料可以通过表面改性、功能化等方法,与生物分子相互作用,从而增强传感器对目标分子的检测能力。
此外,纳米材料还可以通过增加传感器的表面积和导电性,提高传感器的灵敏度和响应速度,使其能够快速准确地检测微量的生物分子。
3. 生物传感器的稳定性和耐久性的提高功能性纳米材料还可以提高生物传感器的稳定性和耐久性。
传统的生物传感器通常容易受到环境条件的影响,而功能性纳米材料可以通过增强传感器的稳定性和抗干扰能力,使其能够在复杂的生物样品中稳定工作。
此外,纳米材料还可以提高传感器的耐久性,延长传感器的使用寿命。
基于新型纳米材料的电化学发光生物传感器及其应用
基于新型纳米材料的电化学发光生物传感器及其应用电化学发光生物传感器基于生物分子与纳米材料之间的相互作用,实现对生物分子的灵敏、特异性检测。
与传统的荧光、吸收光谱等检测方法相比,其灵敏度更高、稳定性更强、反应时间更短,因此在临床诊断、环境监测、食品安全等领域具有广泛的应用前景。
近年来,随着纳米科技的发展,新型纳米材料如金纳米粒子、碳纳米管、量子点等被广泛应用于电化学发光生物传感器中,从而进一步提高了传感器的灵敏度和选择性。
例如,将金纳米粒子修饰在电极表面,可以增强电化学信号,并且可以通过表面修饰不同功能分子,实现对特定生物分子的检测。
另外,新型纳米材料还能够扩展电化学发光生物传感器的应用范围。
例如,利用碳纳米管制备的电极可以实现对葡萄糖、尿酸等小分子的检测,量子点修饰的电极则可用于检测DNA、蛋白质、细胞等生物大分子。
此外,在生物医学领域,电化学发光生物传感器也可以用于癌症、病毒等疾病的早期检测与诊断。
总之,基于新型纳米材料的电化学发光生物传感器具有广泛的应用前景,有望成为未来生物检测和诊断的重要工具。
电化学技术在生物传感器中的应用
电化学技术在生物传感器中的应用生物传感器是一种能够感测生物分子反应的器件,它具备快速、灵敏和稳定的特性,能够在生物医学、生物分析、生物制药、环境监测等领域得到广泛应用。
传感器技术的发展为化学和生物过程的研究提供了很多便利,目前传感器技术也成为近年来兴起的新兴领域。
其中电化学技术在生物传感器中的应用越来越受到人们的重视。
下面将探讨电化学技术在生物传感器中的应用。
一、概述电化学传感器是一类以电化学方法测量试样品中物质浓度的传感器。
根据其在测量过程中是否需要运用电解反应或者化学反应,电化学传感器又可以分为电化学氧化还原传感器、化学反应传感器以及电解反应传感器等。
而在生物传感器中,电化学氧化还原传感器应用最为广泛。
二、应用1. 应用于医学领域在医学领域中,电化学技术可对细胞代谢、中医药物疗效等进行快速检测。
糖尿病患者每日必须多次检测血糖水平,而使用便携式的电化学血糖监测器,不仅能够快速、方便地检测血糖水平,而且使用成本较低,使得越来越多的人可以接受这种监测方式。
在医药研发领域,电化学生物传感器可以应用于药物合成、结构鉴定以及生物转化等过程的研究。
2. 应用于环境监测电化学技术在环境监测方面的应用非常普遍,例如有害物质的检测、水质分析、空气质量监测等。
在污染源远在现场时采集水、空气数据,电化学生物传感器有着很重要的作用,尤其是在灾难发生后的快速响应过程中起到了至关重要的作用。
3. 应用于食品安全食品安全问题一度是我们的社会关注的焦点,但是不容易发现有毒有害物质,这时候便需要精准的检测手段。
电化学生物传感器的可控性、快速性以及灵敏性使之成为食品安全领域检测技术的首选。
三、研究进展1. 电化学纳米生物传感器纳米材料因其小尺寸、大比表面积和特殊的化学、物理、电学性质而成为生物传感器的重要研究对象,尤其是金属纳米颗粒,在生物传感器中表现出了其独特的优势。
因此,电化学纳米生物传感器已经成为近年来研究的热点,该类传感器不仅能提高传感器的灵敏度,而且可以大大提高传感器的稳定性和寿命。
基于新型纳米复合材料电化学生物传感器的构建及其分析应用
在电化学生物传感器制备过程中,石墨烯纳米复合材料的应用主要依赖于其 高导电性和高比表面积。由于石墨烯具有很高的电导率,它可以为传感器提供优 良的电性能,从而提高传感器的灵敏度和响应速度。同时,石墨烯纳米复合材料 的大比表面积可
以提供更多的反应位点,从而提高传感器的检测限。
四、优点与应用前景
石墨烯纳米复合材料在电化学生物传感器中的应用具有许多优点。首先,由 于石墨烯的高导电性和高比表面积,使得制备的传感器具有很高的灵敏度和响应 速度。其次,石墨烯纳米复合材料与其它材料的复合可以产生协同效应,进一步 提高传感器的性
一、引言
石墨烯是一种由碳原子组成的二维材料,由于其独特的物理和化学性质,如 高导电性、高比表面积和出色的化学稳定性,它在许多领域都展示了巨大的应用 潜力。特别是近年来,石墨烯纳米复合材料在电化学生物传感器领域的应用越来 越受到。
电化学生物传感器是一种用于检测生物分子或细胞的高灵敏度分析工具,而 石墨烯纳米复合材料的应用则使得这些传感器的性能得到了显著提升。
基于新型纳米复合材料电化学 生物传感器的构建及其分析应
用
目录
01 一、新型纳米复合材 料在电化学生物传感 器中的应用
二、新型纳米复合材
02 料电化学生物传感器 的构建方法
03 三、应用案例
04 四、结论
05 参考内容
随着科学技术的发展,电化学生物传感器在各个领域的应用越来越广泛,尤 其在医疗诊断、环境监测、食品安全等方面具有至关重要的作用。近年来,新型 纳米复合材料的出现为电化学生物传感器的构建及其分析应用带来了革命性的突 破。
三、应用案例
下面以检测肿瘤标志物为例,介绍一种基于新型纳米复合材料的电化学生物 传感器的构建及其分析应用。
纳米材料电化学生物传感器10
传感器的药物筛选检测性能及对照实验
图11. 光致电化学细胞传感器用于体外药物筛选的性能研究。
小结
1 基于光致电化学同时检测活细胞表面的多种
凋亡指示因子构建了一种NIR光控制的超灵 敏体外药物筛选技术。
2
所构建的方法克服了现有的光致电化学多目
标物检测技术中较差的生物相容性及实用性。
3
所构建的方法克服了现有标准的基于荧光检 测的体外药物筛选方法中荧光标记探针难以
CdS QDs的光电流 信号响应
SiO2@MB的光电流 信号响应
纳米材料的荧光光谱表征
CdS QDs的荧光光谱
SiO2@MB的荧光光谱
传感器修饰过程及目标物循环反应表征
传感器修饰过程的循环 传感器修饰过程的
伏安法表征
阻抗表征
目标物循环反 应表征
传感器的分析检测性能及选择性能研究
对照实验
图3. (A)不同浓度22Rv1及MB231癌细胞的明场,暗场及混合成像图。传感器孵育22Rv1细 胞(B)及MB231细胞(C)总RNA提取物后的光电流响应情况。(D)传感器对22Rvl, MB231, A549, MCF-7及HeLa细胞中总RNA提取物的光电流信号响应。
电化学生物传感器工作原理
目标物 识别原件 感受器 工作站
信号输出
优点:具有响应快速、选择性高、灵敏度好、操作简单、成本 低廉等显著优点
电化学生物传感器发展前景
实用性 高灵敏
新型电化学 生物传感器
高通量
电化学生物 传感器
光致电化学生物传感器
优点:由于其激发光源源与检测光电流相互分离的特点而具有 低背景信号,灵敏度高、准确性好、稳定性高的特点。
传感器的选择性及稳定性
纳米电化学生物传感器重点
收稿:2008年3月, 收修改稿:2008年8月 *深圳大学科研启动基金项目(No. 200818 资助**通讯联系人 e 2mail:yang hp@. cn纳米电化学生物传感器*杨海朋**陈仕国李春辉陈东成戈早川(深圳大学材料学院深圳市特种功能材料重点实验室深圳518060摘要纳米电化学生物传感器是将纳米材料作为一种新型的生物传感介质, 与特异性分子识别物质如酶、抗原P 抗体、D NA 等相结合, 并以电化学信号为检测信号的分析器件。
本文简要介绍了生物传感器的分类和纳米材料在电化学生物传感器中的应用及其优势, 综述了近年来各类纳米电化学生物传感器在生物检测方面的研究进展, 包括纳米颗粒生物传感器, 纳米管、纳米棒、纳米纤维与纳米线生物传感器, 以及纳米片与纳米阵列生物传感器等。
关键词生物传感器电化学传感器纳米材料生物活性物质固定化中图分类号:O65711; TP21213 文献标识码:A 文章编号:10052281X(2009 0120210207Nanomaterials Based Electrochemical BiosensorsY ang Haipeng**Chen Shiguo Li Chunhui Chen Dongche ng Ge Zaochuan (Shenzhen Key Laboratory of Special Functional M aterials, College of Materials Science and Engineering,Shenzhen University, Shenzhen 518060, ChinaAbstract Biosensors w hich utilize immobilized bioac tive compounds (such as enz ymes, antigen, antibody, D N A, etc. f or the c onversion of the target analytes into electroc he mically detectable products is one of the most widely used detection methods and have become an area of wide ranging research activity. The advances in biocompatible nano technology make it possible to develop ne w biosensors. A variety of biosensors with high sensitivity and excellent reproducibility based on nano technology have been reported in recent years. In this paper, the development of the researches on nano amperometric biosensors, one of the most important branches of biosensors, is revie wed. Nanoscale architectures here involve nano 2particles, nano 2wires and nano 2rods, nano 2sheet, nano 2array, and carbon nanotube, etc. Remarkable sensitivity and stability have been achieved by coupling immobilized bioactive compounds and these nanomaterials.Key words biosensors; electroche mistry sensors; nanomaterials; bioactive compounds; immobiliz ationContents1 Introduction to biosensors2 Nanomaterials based electrochemical biosensors 2. 1 Challenges and developments of biosensors 2. 2 Introduction of nanomaterials2. 3 Nanomaterials based electrochemical biosensors 2.3. 1 Nano particles based electrochemical biosensors2. 3. 2 Nanowires and nanorods based electrochemical biosensors2. 3. 3 Carbon nanomaterials basedelectrochemicalbiosensors2. 3. 4 Nano array based electrochemical biosensors 2. 3. 5 Nanosheets based electrochemical biosensors 3 Concluding remarks第21卷第1期2009年1月化学进展PRO G RESS I N C HE M IST RYVol. 21No. 1 Jan. , 20091 生物传感器概述生物传感器通常由生物识别元件(bioreceptor 和信号转换器件(transducer 两个部分组成:生物识别单元具有专一的选择性, 可以获得极其高的灵敏度; 而信号转换器通常是一个独立的化学或物理敏感元件, 可采用电化学、光学、热学、压电等多种不同原理工作。
纳米材料在传感器中的应用
纳米材料在传感器中的应用纳米科技的迅速发展使得纳米材料在各个领域的应用越来越广泛。
其中,纳米材料在传感器技术中的应用尤为引人注目。
传感器是一种可以检测和测量各种物理量、化学量或生物量的设备或系统。
通过纳米材料的引入,传感器的灵敏度和可靠性得以大幅提升,为各个行业的科学研究和工业生产带来巨大的改变。
一、纳米材料在气体传感器中的应用气体传感器是一种能够检测和测量环境中气体浓度的装置。
纳米材料在气体传感器中的应用主要体现在两个方面:一是提高传感器的灵敏度,二是增加传感器的选择性。
纳米材料的特殊结构和体积效应使得其表面积相比于传统材料更大,因此与气体分子发生相互作用的机会更多,从而提高了传感器的灵敏度。
例如,氧化锌纳米粒子在气体传感器中常被用来检测一氧化碳。
由于其高比表面积和优异的氧化还原性能,它能够对一氧化碳分子产生很强的吸附作用,并进行电化学反应,从而实现对一氧化碳的高灵敏度检测。
另一方面,纳米材料可以通过调控其表面结构和成分,以增加传感器对特定气体的选择性。
例如,针对不同的有毒气体,可以使用不同的纳米材料来制备传感器。
这些纳米材料能够与特定气体发生化学反应,并产生明显的电信号变化。
这种选择性传感器的开发对于环境保护和工业安全具有重要意义。
二、纳米材料在生物传感器中的应用生物传感器是一种能够检测和测量生物分子、细胞或生物体功能的装置。
纳米材料在生物传感器中的应用也具有巨大的潜力。
首先,纳米材料的高比表面积和生物兼容性使得其在生物传感器的信号增强方面具有明显优势。
以金纳米颗粒为例,其表面附有特定的生物分子,能够与生物样品中的靶分子结合形成纳米颗粒-靶分子复合物,进而增加传感器对靶分子的检测灵敏度和准确性。
其次,纳米材料还可以被用于制备基于光学、电化学或电子传导的生物传感器。
例如,纳米线阵列可以用于制造光纤传感器,其特殊的电子能带结构和光学特性能够实现对生物分子的高灵敏度测量。
此外,纳米材料还可以用于制备柔性生物传感器,使其能够与生物体接触更紧密、更舒适。
电化学生物传感器的原理与应用技巧
电化学生物传感器的原理与应用技巧随着科技的不断进步和人们对健康的关注度增加,生物传感器作为一种高灵敏度、高选择性的检测技术,得到了广泛的应用。
其中,电化学生物传感器以其简单、快速、灵敏的特点,成为研究和应用领域中备受关注的技术。
本文将介绍电化学生物传感器的原理和应用技巧,希望能为相关领域的研究者和工程师提供一些参考。
一、电化学生物传感器的原理电化学生物传感器是利用生物分子与电极表面之间的相互作用,通过测量电化学信号来检测和分析生物分子的一种技术。
其原理主要包括两个方面:生物分子识别和电化学信号转换。
生物分子识别是电化学生物传感器的核心。
通过特定的生物分子与待测分子的识别和结合,实现对待测分子的检测。
常用的生物分子包括酶、抗体、核酸等。
这些生物分子通过与待测分子的相互作用,产生特定的信号变化,从而实现对待测分子的检测和分析。
电化学信号转换是将生物分子的识别过程转化为电化学信号的变化。
常用的电化学信号转换方式包括电流、电压和电阻等。
通过将生物分子与电极表面进行相互作用,改变电极表面的电化学性质,从而引起电流、电压或电阻的变化。
这种变化可以通过电化学方法进行测量和分析,从而实现对待测分子的检测。
二、电化学生物传感器的应用技巧1. 选择合适的生物分子:在设计电化学生物传感器时,选择合适的生物分子非常重要。
生物分子应具有高度的选择性和灵敏度,能够与待测分子发生特异性的相互作用。
同时,生物分子的稳定性和可重复性也需要考虑,以确保传感器的稳定性和可靠性。
2. 优化电极表面性质:电极表面的性质对电化学生物传感器的性能有着重要影响。
通过优化电极表面的结构和化学性质,可以增强生物分子与电极表面的相互作用,提高传感器的灵敏度和选择性。
常用的方法包括修饰电极表面的化学修饰和纳米材料修饰等。
3. 选择合适的检测方法:电化学生物传感器常用的检测方法包括循环伏安法、恒定电位法和阻抗谱法等。
选择合适的检测方法可以提高传感器的灵敏度和检测范围。
纳米材料在生物传感器中的应用
纳米材料在生物传感器中的应用在当今科技迅速发展的时代,生物传感器作为一种能够快速、准确检测生物分子和生物过程的工具,正发挥着日益重要的作用。
而纳米材料的出现,为生物传感器的性能提升带来了前所未有的机遇。
纳米材料凭借其独特的物理、化学和生物学特性,已经成为生物传感器领域的研究热点和重要组成部分。
纳米材料之所以在生物传感器中备受关注,主要是因为它们具有一些突出的特性。
首先,纳米材料具有巨大的比表面积。
这意味着在相同的体积下,纳米材料能够提供更多的反应位点,从而大大提高了生物分子的吸附和反应效率。
例如,纳米金颗粒的比表面积比普通金颗粒大得多,能够更有效地结合生物分子,如蛋白质和核酸。
其次,纳米材料的电学和光学性质也十分独特。
一些纳米材料,如碳纳米管和量子点,具有良好的导电性和荧光特性。
这些特性可以被巧妙地利用来实现生物分子的检测。
例如,当生物分子与量子点结合时,其荧光强度会发生变化,通过检测这种变化就可以实现对生物分子的定量分析。
再者,纳米材料的生物相容性也是其在生物传感器中应用的一个重要优势。
许多纳米材料对生物组织和细胞的毒性较低,能够在生物体内稳定存在而不引起明显的不良反应。
这使得它们可以直接用于体内生物传感器的构建,实现实时、原位的生物检测。
在众多的纳米材料中,纳米金颗粒在生物传感器中的应用尤为广泛。
纳米金颗粒具有良好的稳定性、生物相容性和独特的光学性质。
基于纳米金颗粒的比色生物传感器就是一个典型的应用例子。
当纳米金颗粒在溶液中分散时,溶液呈现红色;而当它们聚集时,溶液颜色会变为蓝色。
利用这一特性,可以通过检测溶液颜色的变化来判断生物分子之间的相互作用。
例如,在检测 DNA 时,可以设计特定的 DNA 探针与目标 DNA 结合,导致纳米金颗粒的聚集,从而实现对目标 DNA的可视化检测。
碳纳米管也是一种备受瞩目的纳米材料。
由于其出色的导电性,碳纳米管可以作为电极材料用于构建电化学生物传感器。
将生物分子,如酶或抗体,固定在碳纳米管表面,可以显著提高传感器的灵敏度和选择性。
纳米电化学生物传感器
纳米电化学生物传感器一、本文概述本文旨在深入探讨纳米电化学生物传感器的基本原理、最新进展以及应用前景。
纳米电化学生物传感器结合了纳米技术、电化学分析和生物识别等多个领域的知识,通过纳米材料独特的物理化学性质以及生物分子的高特异性识别能力,实现了对生物分子、离子、小分子等目标分析物的超灵敏、高选择性检测。
文章首先简要介绍纳米电化学生物传感器的基本概念和分类,然后重点论述其设计原理、制备方法以及性能优化策略。
接着,综述纳米电化学生物传感器在生物医学、环境监测、食品安全等领域的应用实例和最新研究成果。
对纳米电化学生物传感器面临的挑战和未来的发展趋势进行展望,以期为推动该领域的研究与应用提供参考和借鉴。
二、纳米电化学生物传感器的基本原理纳米电化学生物传感器是一种结合了纳米技术、电化学技术和生物识别技术的先进传感器。
其基本原理主要基于纳米材料优异的电学、光学和化学性质,以及生物分子特异性识别的能力,通过电化学转换实现对生物分子的高灵敏、高选择性检测。
纳米材料作为传感器的核心部分,具有大的比表面积、高电导率、良好的生物相容性等特性。
这些特性使得纳米材料在生物传感器中能够提供良好的电子传递通道,增强生物分子与电极之间的电子交换效率,从而提高传感器的灵敏度和响应速度。
生物识别分子,如酶、抗体、核酸等,通过化学键合或自组装等方式固定在纳米材料表面,形成生物识别层。
这些生物识别分子能够特异性地识别目标生物分子,如蛋白质、DNA、细胞等,实现生物分子的捕获和识别。
当目标生物分子与生物识别层发生特异性结合时,会引起纳米材料表面电荷、电位或电导率等电化学性质的变化。
这些变化通过电化学工作站等检测设备进行监测和测量,从而实现对目标生物分子的定性和定量检测。
纳米电化学生物传感器的基本原理涉及纳米材料、电化学和生物识别等多个领域的知识,是一个多学科交叉的研究领域。
随着纳米技术和生物技术的不断发展,纳米电化学生物传感器在生物医学、环境监测、食品安全等领域的应用前景将越来越广阔。
纳米技术在生物传感器中的新研究
纳米技术在生物传感器中的新研究在当今科技飞速发展的时代,纳米技术犹如一颗璀璨的明星,在众多领域展现出了令人瞩目的潜力。
其中,纳米技术在生物传感器领域的应用更是引发了一场深刻的变革。
生物传感器作为一种能够感知生物体内外物质变化并将其转化为可测量信号的装置,对于疾病诊断、环境监测、食品安全等方面具有至关重要的意义。
而纳米技术的引入,为生物传感器的性能提升和功能拓展带来了全新的机遇。
纳米技术,顾名思义,是指在纳米尺度(1 100 纳米)上对物质进行研究和操纵的技术。
在这个尺度下,物质会展现出许多独特的物理、化学和生物学性质。
例如,纳米材料具有巨大的比表面积,能够提供更多的活性位点,从而增强与生物分子的相互作用;纳米粒子的量子限域效应使得其光学、电学等性能发生显著变化,为生物传感器的信号转换和检测提供了新的途径。
在生物传感器中,纳米材料被广泛用作传感元件。
其中,金纳米粒子、碳纳米管、量子点等是最为常见的纳米材料。
金纳米粒子具有良好的生物相容性、独特的光学性质和易于表面修饰等优点。
通过在金纳米粒子表面修饰特定的生物分子,如抗体、核酸等,可以实现对目标分析物的高特异性识别。
当目标分析物与修饰后的金纳米粒子结合时,会引起粒子的聚集或分散,从而导致溶液颜色的变化或光学信号的改变,实现对目标物的检测。
碳纳米管具有优异的电学性能和机械强度,其可以作为电极材料构建电化学生物传感器。
将生物分子固定在碳纳米管表面,能够有效地促进电子传递,提高传感器的灵敏度和响应速度。
此外,碳纳米管还可以用于构建场效应晶体管生物传感器,通过检测生物分子与碳纳米管之间的电荷转移来实现对目标物的检测。
量子点是一种尺寸在纳米级的半导体晶体,具有荧光强度高、稳定性好、发射光谱可调等优点。
将量子点与生物分子结合,可以构建荧光生物传感器。
在检测过程中,量子点的荧光强度或发射波长会随着目标分析物的浓度变化而发生改变,从而实现对目标物的定量检测。
除了作为传感元件,纳米技术还可以用于改进生物传感器的信号放大策略。
电化学纳米生物传感器的研发与应用
电化学纳米生物传感器的研发与应用第一章:绪论随着生物技术的不断发展以及生物分子的快速检测需求的增加,电化学纳米生物传感器成为了一种很有前途的分析技术。
电化学纳米生物传感器利用了电化学技术中的一些基本原理,通过组合电化学方法和生物分子检测的特殊能力,能够提供高灵敏度、高选择性、便携式、实时和非侵入性等优点。
本文主要介绍电化学纳米生物传感器的研发与应用,包括测量生物分子和细胞的电化学特性,纳米制备技术和传感器构建方法等方面。
第二章:电化学纳米生物传感器的原理电化学纳米生物传感器是基于电化学原理和生物分子识别的技术。
与传统的化学传感器相比,纳米生物传感器具有更好的灵敏性和选择性。
它的工作机理主要包括三个部分:信号转换、生物分子识别和放大。
首先,传感器的信号转换部分包括了表面电化学反应、电流测量和Rhodamine B或者其他探针的发光测量等技术。
其次,生物分子识别部分是将具有高选择性的生物分子连接传感器表面,通过生物识别元件与靶分子发生特殊反应来实现特定分子的检测。
最后,放大部分可以通过扩散过程、电极制备和电极表面修饰等方式将生物分子与电化学信号联系在一起,从而实现信号放大和传感器的灵敏度提升。
第三章:电化学纳米生物传感器的制备方法电化学纳米生物传感器的制备方法是传感器性能的重要因素。
它的制备方法可以分为纳米制备和传感器构建两个方面。
在纳米制备方面,常用的方法有溶剂热法、水热法、超声波辅助溶剂热法、辛醇震荡还原法等。
在传感器构建方面,最常用的方法包括吸附法、共价辅助法和电极反应上提法等。
其中,共价辅助法是通过共价键结合将生物分子与电极表面相连,以达到高灵敏度和高选择性的检测。
第四章:电化学纳米生物传感器的应用电化学纳米生物传感器的应用范围非常广泛,可以用于环境检测、医疗诊断、药物研究等方面。
例如,在水中污染检测方面,电化学纳米生物传感器可以依据目标污染物的电化学特性,如电位、电子转移率、轨道能量等,实现对目标污染物的高灵敏度、高精度、快速准确检测。
纳米生物传感器
纳米生物传感器在长时间运行中可能面临稳定性问题,如灵敏度下降、 误差增大等,需要进一步提高其可靠性和稳定性。
生产成本
目前纳米生物传感器的制造成本较高,限制了其在某些领域的应用和 推广。
法规与伦理问题
随着纳米生物传感器技术的不断发展,相关的法规和伦理问题也逐渐 浮现,需要引起重视并制定相应的规范和标准。
实现纳米生物传感器的微型化和集成化, 可以提高其实用性和便携性。
纳米生物传感器的分类
01
02
03
根据工作原理
可分为电化学生物传感器、 光学生物传感器、压电生 物传感器等。
根据敏感元件
可分为酶生物传感器、免 疫生物传感器、组织生物 传感器等。
根据应用领域
可分为环境监测用生物传 感器、食品安全检测用生 物传感器、医学诊断用生 物传感器等。
信号放大
采用酶或其他催化物质, 将生物传感器信号放大,
提高检测灵敏度。
抗干扰设计
通过降低背景信号、排除交 叉反应等方法,降低生物传
感器检测中的干扰因素。
微型化和集成化
将生物传感器微型化并与 其他微电子器件集成,实 现便携式和实时监测。
04
纳米生物传感器的应用实例
在环境监测领域的应用
空气质量监测
纳米生物传感器能够快速检测空 气中的有害气体和颗粒物,如二 氧化氮、一氧化碳、PM2.5等, 为环境保护和公共安全提供实时
农业科技
用于监测植物生长状况、土壤 环境等,有助于提高农业产量
和可持续发展。
纳米生物传感器的发展历程与趋势
发展历程
自20世纪70年代以来,纳米生物传感器经历了从传统生物传感器到现代纳米生物传感器的演变,技术不断创新和 发展。
《电化学生物传感器》课件
在医疗诊断中的应用
血糖监测
糖尿病患者可使用电化学 生物传感器方便地监测血 糖水平,调整治疗方案。
疾病诊断
通过检测生物标志物,电 化学生物传感器有助于早 期诊断癌症、传染病等疾 病。
药物浓度监测
在药物治疗过程中,实时 监测药物浓度有助于确保 治疗效果并防止药物过量 。
在食品检测中的应用
农药残留检测
生物科学研究
在药物筛选、基因表达分析等领域发挥重要作用,促进生物科学研 究的发展。
电化学生物传感器的实验操
05
作与演示
实验操作流程
实验准备
确保实验室环境干净整洁 ,避免干扰实验结果。
准备实验器材和试剂,包 括电化学工作站、电极、 电解质溶液等。
实验操作流程
实验操作步骤
1
2
按照实验指导书搭建实验装置,连接电化学工作 站与电极。
生物传感器具有高灵敏度、高选择性、快速响应等特点,广泛应用于环境监测、食品安全、医疗诊断等 领域。
生物传感器的重要性
01 生物传感器在环境监测中能够快速、准确地检测 出污染物,为环境保护提供有力支持。
02 在食品安全领域,生物传感器能够检测出食品中 的有害物质,保障消费者的健康。
02 在医疗诊断中,生物传感器能够实现无创、快速 、准确的检测,提高医疗质量和效率。
3
加入电解质溶液,记录电化学信号的变化。
实验操作流程
根据实验需要,调整实验参数,如扫描速度、扫 描范围等。 在实验过程中,保持恒温,避免外界干扰。
数据采集与分析
实验操作流程
01 使用电化学工作站采集数据,记录电化学信号随
时间的变化。
02
对采集的数据进行整理、分析和处理,提取有用 的信息。
新型功能纳米材料在电化学生物传感器中的研究与应用
新型功能纳米材料在电化学生物传感器中的研究与应用一、内容简述随着科技的不断进步,纳米技术作为其中的重要组成部分,在众多科学领域中都显示出了其独特的优势和潜力。
特别是功能纳米材料,在电化学生物传感领域中,由于其独特的物理化学性质和巨大的比表面积,为生物传感提供了新的发展方向和可能性。
功能纳米材料在电化学生物传感器中的应用,主要得益于纳米材料的独特结构和优异性能。
纳米颗粒具有很高的比表面积和活性位点数量,可以增强生物分子的吸附和反应;纳米结构具有优良的电导性和优异的渗透性,有助于提高传感器的灵敏度和稳定性。
在电化学生物传感器的研究与应用中,研究者们通过深入探索纳米材料的合成方法、表面修饰技术以及与生物分子的结合方式等,成功开发出了一系列具有高灵敏度、高选择性、实时监测和高稳定性等优点的新型电化学生物传感器。
这些成果为疾病诊断、环境监测和生物医学研究等领域提供了强有力的技术支持和保障。
目前对于功能纳米材料在电化学生物传感器中的应用仍存在一些挑战和问题,如纳米材料的生物相容性、稳定性和规模化生产等问题需要进一步研究和解决。
未来的研究将致力于开发新型的功能纳米材料,优化传感器的制备工艺,并探索其在实际应用中的推广价值,以推动电化学生物传感技术的更快发展和广泛应用。
1. 纳米材料的概念及重要性随着科学技术的不断发展,人们对于材料的性能要求越来越高。
在这个背景下,纳米材料作为一种独具优势和特色的材料,备受关注。
纳米材料是指具有尺寸在1100nm范围内的材料,由于其特殊的量子尺寸效应、表面等离子共振效应以及宏观量子隧道效应等,使得纳米材料在各个领域展现出许多优异的性能,成为推动科学和技术创新的关键因素。
在电化学生物传感器中,纳米材料的独特性质对提高传感器的灵敏度、稳定性、选择性和恢复性等方面具有重要作用。
本文将对纳米材料的概念及重要性进行简要介绍,并探讨其在电化学生物传感器中的应用及研究进展。
纳米材料具有量子尺寸效应,使其能够有效调控物质的电子结构和表面性质。
电化学生物传感器技术的最新进展
电化学生物传感器技术的最新进展近年来,随着科学技术的不断发展和人民生活水平的提高,人们对健康管理和快速检测技术的需求也越来越强烈。
电化学生物传感器技术应运而生,因其具有灵敏度高、可重复性好、成本低等特点,被广泛应用于生物、医药、环境等领域。
本文将从电化学生物传感器技术的基本原理、发展历程、最新进展等方面进行探讨,希望能给读者带来一些启示和帮助。
电化学生物传感器技术的基本原理电化学生物传感器技术是将生物分子与电化学传感技术相结合,通过电化学效应对生物分子进行检测的一种生物传感器技术。
电化学生物传感器主要由三部分组成:生物分子识别层、传感器转换层和电化学信号检测层。
其中,生物分子识别层是通过生物分子对目标物质的选择性识别实现的,传感器转换层是将生物分子的特异性转换为可测量的电化学信号,电化学信号检测层则是利用电化学技术对电化学信号进行检测和分析。
基本上,电化学生物传感器的工作原理可以分为两种类型:基于生物触媒的电化学生物传感器和基于免疫反应的电化学生物传感器。
基于生物触媒的电化学生物传感器通过对酶或生物触媒的选择性识别实现对目标分子的检测。
例如,葡萄糖生物传感器是最早开发的一类基于生物触媒的电化学生物传感器,它可以通过酶催化产生的电化学信号与葡萄糖浓度正相关的特性,实现对血糖浓度的监测。
基于免疫反应的电化学生物传感器则是通过对特异的免疫反应进行选择性识别,实现对目标分子的检测。
例如,生物传感器可以利用抗体与抗原之间的互作用进行选择性识别,实现对病原体、癌细胞等的检测。
电化学生物传感器技术的发展历程电化学生物传感技术最早可以追溯到20世纪50年代的葡萄糖生物传感器。
随着时间的推移,电化学生物传感器技术不断得到改进和发展,进一步扩展了其应用范围。
目前,电化学生物传感器已经应用于多种领域,例如医学、食品安全、环境监测等。
最近几年,电化学生物传感器领域出现了一些新的进展,具体包括以下几方面:1. 纳米材料的应用纳米材料具有良好的化学稳定性、特异性、生物相容性等特点,对电化学生物传感器技术的发展有着很大的促进作用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
传感器的选择性研究
小 结
L- 半胱氨酸作为催化底物介导的卟啉锰电催 化反应具有更为稳定的电催化放大效率及催 化活性 采用树枝状DNA-Au@Pt NPs纳米结构同时 固载催化剂卟啉锰及电化学物质硫堇,使 得信号进一步放大 进一步对卟啉锰电催化L-半胱氨酸反应的机 理进行了探讨
1
2
3
主要研究内容
感器的制备过程
电化学适体传感器的构建步骤示意图及催化原理示意图
卟啉锰催化放大反应机理
L-半胱氨酸介导的卟啉锰电催化放大反应的机理
纳米材料的表征
nano-C60
Au@Pt NPs
传感器修饰过程表征
CV表征
EIS表征
传感器信号放大性能比较
传感器对凝血酶的响应性能
传感器对不同浓度凝血 酶的响应信号 传感器响应信号与凝血酶 浓度的线性关系
小 结
首次采用功能型纳米囊同时包裹供体-受体型 光电活性材料及其相应的信号增强材料构建 自增强型光致电化学生物传感。
与传统分子间光电子传递型光电材料相比, 本研究所提出的分子内自增强型纳米囊材料 的光电信号提高了约300倍。 构建的自增强型光致电化学传感器具有显著 提高的光电转换效率,简单的制备方式,优 良的稳定性以及无需加入其它电子供体、受 体或敏化剂的简单的操作步骤。
酶联免疫法 放射免疫法
识别体系的高选择性
电化学生物传感器工作原理
目标物 识别原件 感受器 工作站 信号输出
优点:具有响应快速、选择性高、灵敏度好、操作简单、成本 低廉等显著优点
电化学生物传感器发展前景
新型电化学 生物传感器 实用性
高通量
高灵敏
电化学生物 传感器
光致电化学生物传感器
优点:由于其激发光源源与检测光电流相互分离的特点而具有 低背景信号,灵敏度高、准确性好、稳定性高的特点。
实验条件优化
PTB7-Th:nano-C60
循环反应1时间
循环反应2时间
不同光电活性材料信号对比
供体材料, 受体材料
供-受体材料 (PTB7-Th)
PTB7-Th, nano-C60
PCP纳米囊
传感器对目标物microRNA-141的响应性能
传感器对不同浓度目标 物的响应信号
传感器响应信号与目标物 浓度的线性关系
二、基于供-受体型光电活性材料及其信号增强剂复合纳 米囊材料的自增强型超灵敏光致电化学生物传感器
制备了同时大量包裹供-受体型光电活性材料及其
信号增强材料C60纳米颗粒的纳米囊光电材料,结合滚 环扩增技术及目标物循环放大策略,构建自增强型光
致电化学生物传感器。构建的自增强型光致电化学生
物传感器具有显著提高的光电转换效率,优良的稳定 性以及检测过程中无需加入其它电子供体、受体或敏
光致电化学生物传感器
复合光电 材料
光电活性 材料
有机光电 材料
无机光电 材料
光致电化学生物传感器
方法学研究
新型光电 活性材料
光电转 换机理 发展 方向
配套仪器
仿生催 化界面 研究
论文设计思路 新的检测技术
结合功能型光电材料及核酸放 大技术,发展自增强、比率型、 多组分分析型光致电化学生物 传感器,并用于临床医学中疾 病标志物的检测
对照实验
对照实验检测原理示意图
对照实验PAGE表征
药物刺激下MB231细胞的激光共聚焦成像图
对照实验
PEC传感器
激光共聚焦法
图 2.(A)传感器孵育不同浓度姜黄素作用下 MB231细胞中总RNA提取液的信号;(B) 信号大小与药物浓度的关系图 ; ( C )激光共聚焦法检测不同浓度姜黄素作用下 MB231细胞中总RNA提取液后的响应信号 ;(D)信号大小与加入药物浓度的关系图。
答辩提纲
PAGE OF CONTENT
1
绪论
2
论文设计思路
3
主要研究内容
4
总结展望
现状及问题
临床诊断 环境监测 食品安全
高效、灵敏的生物分子 定量分析检测技术
电化学生物传感器
目前常用的生物分析检测方法
灵敏度低;操作 繁琐、耗时长; 有害性强等 免疫组化法
电化学生物传感器
电化学生物传感器很好地结合了电 化学转换装置的高灵敏度以及生物
1
2 3
主要研究内容
三、基于目标物-核酸转换-放大策略及电子隧穿距离调 控策略构建通用型比率法光致电化学生物传感器
设计了一种基于目标物-核酸转换-放大策略及电子隧穿 距离调控策略的通用型比率法光致电化学生物传感器。该方 法克服了现有的比率型光致电化学分析方法中目标物对光电 材料的高度依赖性,具有良好的通用性,可以广泛应用于多 种类型目标物的比率法检测。
传感器的选择性及稳定性
传感器的选择性研究 传感器的稳定性研究
传感器对不同细胞中microRNA-141的分析性能研究
图1. (A)传感器孵育microRNA-141高表达细胞(MB231及22Rv1细胞)的总RNA提取 液后的响应信号及(B)信号与细胞数对数值间的线性关系;(C)传感器孵育 microRNA-141 低 表 达 细 胞 ( A549 , MCF-7 及 HeLa 细 胞 ) 及 高 表 达 细 胞 ( MB231 及 22Rv1细胞)的总RNA提取液后的响应信号
新的反应体系
结合新型模拟酶催化反 应与功能型纳米材料, 设计新颖的电化学信号 放大技术,构建超灵敏 新型电化 电化学生物传感器
学生物传 感器
高 灵 敏
高 通 量
低 背 景
高 实 用 性
主要研究内容
一、 基于树枝状DNA-Au@Pt纳米结构和卟啉锰电催 化放大技术的超灵敏电化学适体传感器
传统的卟啉锰电催化放大体系中广泛使用的催化底
物H2O2稳定性较差,我们发现L-半胱氨酸可以作为卟啉
锰电催化反应的催化底物,实现稳定的信号放大。本文 采用自组装树枝状 DNA-Au@Pt 纳米结构同时固载电活
性物质硫堇和卟啉锰,将组装的复合纳米材料与凝血酶
适体链偶联,作为目标物凝血酶的信号探针,用于构建 凝血酶电化学适体传感器。
Biosensors and Bioelectronics, 2016, 81, 423-430. (IF=7.78)
化剂的简单的操作步骤。
Analytical Chemistry, 2016, 88, 8698-8705. (IF=6.32)
传感器的制备过程
纳米材料的表征
nano-C60 PTB7-Th
PCP纳米囊
SiO2 NPs
目标物循环反应及传感器修饰过程表征
酶辅助目标物双循环放大 反应的凝胶电泳表征
传感器修饰过程的循环 伏安法表征