集合的含义及其表示一 新课标 人教版 必修一
完整版)人教版高一数学必修一集合知识点以及习题
完整版)人教版高一数学必修一集合知识点以及习题高一数学必修第一章集合1.集合的概念集合是指一定范围内、确定的、可区别的事物,将其作为一个整体来看待,就叫做集合,简称集。
其中的各事物叫作集合的元素或简称元。
集合的元素具有三个特性:确定性、互异性和无序性。
确定性指元素是明确的,如世界上最高的山。
互异性指元素是不同的,如由HAPPY的字母组成的集合{H,A,P,Y}。
无序性指元素的排列顺序不影响集合的本质,如{a,b,c}和{a,c,b}是同一个集合。
集合可以用大括号{…}表示,如{我校的篮球队员}、{太平洋,大西洋,印度洋,北冰洋}。
集合也可以用拉丁字母表示,如A={我校的篮球队员},B={1,2,3,4,5}。
集合的表示方法有列举法和描述法。
常用的数集及其记法有:非负整数集(即自然数集)记作N,正整数集记作N*或N+,整数集记作Z,有理数集记作Q,实数集记作R。
2.集合间的关系集合间有包含关系和相等关系。
包含关系又称为“子集”,表示一个集合的所有元素都属于另一个集合。
如果集合A的所有元素都属于集合B,则称A是B的子集,记作A⊆B。
如果A和B是同一集合,则称A是B的子集,记作A⊆B。
反之,如果集合A不包含于集合B,或集合B不包含于集合A,则记作A⊈B或B⊈A。
相等关系表示两个集合的元素完全相同,记作A=B。
真子集是指如果A⊆B,且A≠B,则集合A是集合B的真子集,记作A⊂B(或B⊃A)。
如果XXX且B⊆C,则A⊆C。
如果XXX且B⊆A,则A=B。
空集是不含任何元素的集合,记为Φ。
规定空集是任何集合的子集,空集是任何非空集合的真子集。
3.集合的运算集合的运算包括交集、并集和补集。
交集是由所有属于A 且属于B的元素所组成的集合,记作A∩B。
并集是由所有属于集合A或属于集合B的元素所组成的集合,记作A∪B。
补集是由S中所有不属于A的元素所组成的集合,记作A的补集。
如果S是一个集合,A是S的一个子集,则A的补集为由S中所有不属于A的元素组成的集合。
高中数学新课标人教A版必修一:1.1.1.1集合的含义与表示
典例精讲:题型一:集合的概念
例1:(1)下列对象能组成集合的是( C )
A.中央电视台著名节目主持人 “著名”无明确标准
B.我市跑得快的汽车
“快”的标准不确定
C.上海市所有的中学生
D.香港的高楼
“高”的标准不确定
(2)以方程x2−5x+6=0和方程x2−x−2=0的解为元素的集合共有 3 个元素.
简称
非负整数集 (或自然数集)
正整数集 整数集 有理数集 实数集
记法
N
N*或N+ Z Q R
探究点4 元素与集合的关系
元素与集合的关系 (1)属于:如果a是集合A的元素,就说a属于集合A,记作a∈A. (2)不属于:如果a不是集合A的元素,就说a不属于集合A,记作aA.
典例精讲:题型二:元素与集合的关系问题
x2−5x+6=0⇒ x=2,3 x2−x−2=0 ⇒ x=2,−1
重复元素只可算1个
探究点3 集合的表示、常用数集
集合与元素的表示 通常用大写拉丁字母A,B,C,…表示集合, 用小写拉丁字母a,b,c,…表示集合中的元素.
探究点3 集合的表示、常用数集
常用数集
常用数集
全体非负整数的集合
所有正整数的集合 全体整数的集合 全体有理数的集合 全体实数的集合
第一Байду номын сангаас 集合与函数概念
§1.1.1 集合的含义与表示
第一课时 集合的含义
学习目标
1.通过实例理解集合的有关概念. 2.初步理解集合中元素的三个特性. 3.体会元素与集合的属于关系. 4.了解常用数集及其专用符号,学会用集合语言表示有关数学对象.
引入
“集合”是日常生活中的一个常用词,现代汉语解释为:许多 的人或物聚在一起.
高中数学人教版必修课件集合的含义及表示(共23张PPT)
例2.用描述法分别表示:
(1)抛物线 y x2 上的点.
{(x, y) | y x2}
(2)抛物线 y x2 上点的横坐标. {x | y x2}
(3)抛物线 y x2 上点的纵坐标. {y | y x2}
3.2 一般集合的表示
⑶ 韦恩图法:就是用一条封闭的曲线的 内部来表示集合的方法. 图1-1表示任意一个集合A; 图1-2表示集合{1,2,3,4,5}.
号语言。
如:{x| x是直角三角形}
{x|x-7<3}
例1.请用描述法表示下列集合:
(1)由 x2 x 2 0 的解组成集合.
{x | x2 x 2 0} {x | x 2或x 1} ={2,1}
(2)1,1 2,源自1 3,1 4
,
={x |
x
1 n
,
n
Z
}
(3)
方程组
3x 2y 2x 3y
2 27
的解集.
3x 2y 2
={(x,
y)
|
2x
3y
} 27
对于描述法的集合, 1.对于限定性条件的文字描述和符号描 述须能进行适当转换 2.限定性描述部分可以做等价替换 3.在一些限定性描述一样的集合中,一 定要弄清集合的元素是什么,才能顺利化 简
1 __ Z; 0 __ Z; -3 __ Z 0.5 __ Z ; 2 __ Z
1 __ Q ; 0 __ Q ; -3 __ Q
0.5 __ Q ; 2 __ Q
1 __ R ; 0 __ R; -3 __ R
0.5 __ R; 2 __ R
高中教育数学人教版必修1(微课)集合的含义与表示——文档
学习要点一、集合的相关概念(1) ______________________________ 元素•①定义:指的是 _____________________ . ②表示:用小写的 表示•(2) ______________________________ 集合.①含义:指的是 _________________________________ 组成的总体•②表示.:用大写的 ___________________________ 表示.(3) 集合中元素与集合的关系: (4)集合中元素的三个特性,如表一所示:确定性「任何「牛对象是或不是某个隼含的C-------- 元两者必居英一'不能欖枝两可\ ___________________________________________________________________ r ___________ J 互异性对干二不给定的第台•它的任意两爪〔元素都是不同的 __________________________ 」陌中的毛素;&示有先后顺序的药 去虽性由日上府和「加J 组成的两个集合是同 L 一个集合 」要点1:集合是整体,但整体未必是集合集合是原始不定义的概念,一般地,在数学中,我们把所有的研究对象集在一起,叫构成了集合。
实际上,从上述描述性的定义可以看出,集合就是一个整体。
例:判断下列哪些能构成集合(1 )高一(9)班所有的近视眼的同学构成集合。
(2)所有的平行四边形构成集合。
错解:(1)( 2)都能构成集合。
剖析:(1)(2)都是整体。
(1)很多同学认为戴眼镜就是近视眼的标准,眼睛度数多少度为近视眼无法说清,近视眼就是模棱两可的,是不可以衡量的。
所以不能构成集合。
(2)平行四边形是确 定的,因为平行四边形是指在平面内,对边平行且相等的四边形。
因此,可以构成集合。
正解:(1)不能构成集合,(2)能构成集合。
点评:集合有其特殊性:(1)构成集合的对象必须是 确定的”,其中确定是指构成集合的对象不是模棱两 可的,是可以衡量的。
高一必修一集合概念知识点
高一必修一集合概念知识点在高一必修一的数学课程中,集合是一个非常重要的概念。
通过学习集合的相关知识点,可以帮助我们更好地理解和运用数学。
本文将围绕高一必修一集合概念知识点展开,包括集合的定义、表示方法、基本运算以及集合的特性等方面。
一、集合的定义集合是由一些确定的事物,即元素,组成的整体。
通常用大写字母A、B、C等表示集合,用小写字母a、b、c等表示集合中的元素。
例如,集合A = {1, 2, 3, 4, 5}表示由整数1、2、3、4、5组成的集合。
二、集合的表示方法1. 列举法:集合中的元素一一列举出来,并用花括号{}括起来。
例如,集合A = {1, 2, 3, 4, 5}。
2. 描述法:通过描述集合中元素的特点或性质来表示集合。
例如,集合B = {x | x是自然数,1 ≤ x ≤ 5},表示由自然数1、2、3、4、5组成的集合。
三、基本运算1. 并集:两个集合A和B的并集,记作A∪B,表示包含A和B中所有元素的集合。
例如,A = {1, 2, 3},B = {2, 3, 4},则A∪B = {1, 2, 3, 4}。
2. 交集:两个集合A和B的交集,记作A∩B,表示包含同时属于A和B的元素的集合。
例如,A = {1, 2, 3},B = {2, 3, 4},则A∩B = {2, 3}。
3. 差集:两个集合A和B的差集,记作A-B,表示属于A但不属于B的元素组成的集合。
例如,A = {1, 2, 3},B = {2, 3, 4},则A-B = {1}。
四、集合的特性1. 子集:如果集合A的所有元素都属于集合B,即A中的任意元素也是B中的元素,则称A是B的子集,记作A⊆B。
例如,A = {1, 2},B = {1, 2, 3},则A⊆B。
2. 空集:不包含任何元素的集合称为空集,记作Φ或{}。
3. 全集:包含所有可能元素的集合称为全集,通常用符号U表示。
4. 补集:对于给定集合A,全集U中除去A中的元素,所得的集合称为A的补集,记作A'。
人教版高一数学必修一1.1.1《集合的含义与表示》课件ppt
一、引入
在生活中,有许多事物给我们以集体的印 象,比如,你的家庭;你所在的班级;山东 省的所有城市,等等,你还能举出一些这样 的例子吗?
仙居中学2012届新高一的全体同学; 仙居中学2012届高一(7)班全体女同学。
蓝蓝的天空中,一群鸟在欢快的飞翔
茫茫的草原上,一群羊在悠闲的走动
清清的湖水里,一群鱼在自由地游动;
思考3:高一19班的全体同学组成一个集合,调整座位 后这个集合有没有变化?由此说明什么?
集合中的元素是没有顺序的
总结出集合的三大性质: ①确定性; ②互异性; ③无序性。
(1)确定性:按照明确的判断标准给定一个元素 或者在这个集合里,或者不在,不 能模棱两可。
(2)互异性:集合中的元素没有重复。
(3)无序性:集合中的元素没有一定的顺序(通 常用正常的顺序写出)
高中必修一:Chap 1
1.1.1 集合的含义与表示
思考问题: (1)上面这些图画都给我们什么样的印象?
动物生活在一起——有群居的特点。
(2)初中时,我们有学习到与“集合”有关的 内容吗?
自然数的集合、有理数的集合、不等式x-7≤3 的解的集合、到定点的距离等于定长的点的集合 (即球面)、到定直线的距离等于定长的点的集 合(即圆柱面)
-----
二、集合的概念
1、集合的概念
一般地,把研究的对象称为元素(element);通 常用小写拉丁字母a,b,c,…,表示;把一些 元素组成的总体叫做集合(set), 简称集; 通常用大 写拉丁字母A,B,C,…,表示.
练习1、请指出下列集合中的元素:
(1)“young”中的字母构成一个集合,该集合的元 素是 y,o,u,n,g五个字母
记பைடு நூலகம்.
人教版高中数学新教材必修第一册课件:1.1 集合的含义与表示
素. 如:应把集合{1,2,2}改写成 {1,2}
(3)无序性:集合中的元素是平等的,没有先后顺序,因
此判定两个集合是否一样,仅需比较它们的元素是否一 样,不需考查排列顺序是否一样.
如:集合{1,2,3}和{1,3,2}表示同一集合。
注:集合的相等:构成两个集合的元素完全一样
(3)x+ y∈A,xy∈A
课下作业
复习巩固 注意规范
小结课堂知识点
概念:符号:分类:表示法:
课本P5习题1.1 1 ,2(书上完成)
3, 4(作业本) (讲要求) P34 第1题和第2题,明天上课提问.
●集合理论是由德国数学家康托尔发现的,他创 造的集合论是近代许多数学分支的基础.
学习新知
2、集合中元素的特性
(1)确定性:对于一个给定的集合,任何一个元素是不
是这个集合的元素就确定了。
思考:“我国的小河流”、“比较大的数”、“高一所有胖的同 学”等能组成集合吗?
(2)互异性:对于一个给定的集合中,任何两个元素都
集合的分类:(1)有限集 (2)无限集
当堂达标
练习巩固 提高能力
1. 用符号“∈”或“ ”填空
(1) 3.14 Q (2) Q
(3) 0 N+ (5) 2 3 Q
(4) (-2)0 N+ (6) 2 3 R
练习:课本P5第2题.
学习新知
5、集合的常用表示方法:
5、集合的常用表示方法:
求实数 x 的值
0
学习新知
5、集合的常用表示方法:
(1)你能用自然语言描述集合{0,3,6,9}吗?
(2)不等式x-7<3的解集不能用列举法表示,想 想它的元素有怎样的特征?
人教版必修一1.1.1集合的表示与含义课件
写在大括号的方法.
③不等式x-3>2的解集; ④抛物线y=x2上的点集; ⑤方程x2+x +1=0的解集合.
描述法:用确定条件表示某些对 象是否属于这个集合的方法.
⑶ 图示法(Venn图)
我们常常画一条封闭的曲线,用 它的内部表示一个集合.
例如,图1-1表示任意一个集合A;
3.集合元素的性质:
(1)确定性:集合中的元素必须 是确定的.
如果a是集合A的元素,就说a
属于集合A,记作a ∈ A;
如果a不是集合A的元素,就 说a不属于集合A,记作a A.
(2)互异性:集合中的元素必须 是互不相同的.
(3)无序性:集合中的元素是无 先后顺序的. 集合中的任何两个 元素都可以交换位置.
c
a,b, c
含有n个元素集合的子集个数
a,b a, b
c a, c ,b, c a, b, c
集合增加一个元素,子集个数变成本来的2倍
含有n个元素集合的子集个数
4.重要数集:
(1) N: 自然数集(含0) 即非负整数集
(2) N+: 正整数集(不含0) (3) Z:整数集 (4) Q:有理数集 (5) R:实数集
练习
1. 用符号“∈”或“ ”填 空
(1) 3.14 Q (2)
Q
(3) 0 (5)
N+ (4) (-2)0 N+
Q (6)
R
2.写出集合的元素,并用符号表 示下列集合: ①方程x2- 9=0的解的集合; ②大于0且小于10的奇数的集合;
视察下列对象:
(1) 2,4,6,8,10,12; (2)我校的篮球队员; (3)满足x-3>2 的实数; (4)我国古代四大发明; (5)抛物线y=x2上的点.
人教版高中必修一 111 《集合的含义与表示》 课件
新知探索
例题讲解
例1、用列举法表示下列集合: (1)小于10的所有自然数组成的集合; (2)方程x²=x的所有实数根组成的集合; (3 ) 小于100的所有奇数.
注意:由于元素具有无序性, 集合A还有其它列举方法哦,
动手试一试吧!
【解析】(1)设小于10的所有自然数组成的集合为A,那么 A={0,1,2,3,4,5,6,7,8,9}.
为__-_1_. (3)若A= {x²+x-6=0},则3___∉_____A.
巩固练习
3、判断下列说法是否正确:
(1) {x2,3x+2,5x3-x}即{5x3-x,x2,3x+2} .
(2) 若4x=3,则 x N. (3) 若x Q,则 x R .
(4)若X∈N,则x∈N+.
( √) (√ ) (×) (× )
巩固练习
4、已知集合A={x | ax2+4x+4=0,x∈R,a∈R}只有一个元素, 求a的值和这个元素.
解析:当a=0时,x=-1; 当a≠ 0 时,由于集合只有一个元素,所以 =0,则x=-2.
拓展应用
5、设A是由满足不等式x<6的自然数组成的集合,a∈A且3a∈A,求a的值.
解析:因为a∈A且3a∈A, a<6,
合是不么定义呢的?那概你么念能,,举集数一合学些的家有很含难关义回集是答合什。 一的天例,子他吗看到?牧民正在向羊圈里赶羊,
等到牧民把羊全赶进羊圈并关好门,数学家 突然灵机一动,兴奋地告诉牧民:“这就是 集合”。
新知探索
探究1 集合的含义
观察下面例子,它们有什么共同特征? (1)1~20以内的所有偶数; (2)我国古代四大发明 (3)所有的长方形; (4)到直线的距离等于定长d的所有的点; (5)方程x²+3x-2=0的所有实数根; (6)我国从2001~2018年的15年内所发射的所有卫星。
人教版数学必修1 1.1.1 集合的含义与表示 (共17张PPT)
概念认识
知识点1:元素与集合的概念及关系 (3)元素与集合的关系
若a在集合A中,就说a属于集合A,记作a∈A;
若a不在集合A中,就说a不属于集合A,记作a A
.
讨论2对不等式的解集是怎么定义的? 含有未知数的不等式的所有解就组成了这个不等式 的解的集合,简称这个不等式的解集。
2.初中几何中对圆是如何定义的呢? 到一定点的距离等于定长的点的集合就构成了圆。
讨论3 1.你能举出一些集合的例子吗?
合作探究
知识点2:常用数集的意义及表示:
自然数
正整数
N
+
整数
有理数
实数
讨论3 1. 集合元素有什么性质特征?
练习
思考
1.“高个子的同学”、“我国的小河流”能构成集合吗?
【提示】“高个子”是一个含糊不清的概念,具有相对性, 多高才算高?同样地,“小河流”的“小”具体指什么, 是流量还是长度?它们都没有明确的标准,也就是说,它 们都是一些不能够确定的对象.因此,它们都不能构成集 合.
试分别用列举法和描述法 表示下列集合:
(1)方程 x2 -20 的所有实数根组成的集合;
(2)由大于10小于20的所有整数组成的集合.
知识点5:集合的分类 有限集:含有限个元素的集合 无限集:含无限个元素的集合 空集:不含有任何元素的集合
φ
1.集合与元素的概念及关系; 2.常用数集及有关符号: 3.集合元素的性质:确定性;互异性;无序性; 4.集合的表示方法: 5.集合的分类:
练习
例2 用描述法表示下列集合:
(1)小于10的所有有理数组成的集合; (2)所有偶数组成的集合.
解:(1)小于10的所有有理数组成的集合用描述法可 表示为 {xQx10}; (2)偶数是能被2整除的数,可以写成x=2n(n∈Z)的形 式,因此,偶数的集合用描述法可表示为
高一数学人教版课件:集合含义与表示
高一数学人教版课件:集合含义与表示
问:解决这类问题的关键 是什么?
答:将集合的所有元素都 求出来
高一数学人教版课件:集合含义与表示
思考
(1)你能用自然语言描述集合{2,4,6,8}吗? (2)你能用列举法表示不等式x-7<3的解集
吗?
高一数学人教版课件:集合含义与表示
同的,即集合中的元素不能相同。
无序性:集合中的元素是无先后顺序的,即
集合里的任何两个元素可以交换位置。
高一数学人教版课件:集合含义与表示
思考:
判断以下元素的全体是否组成集合,并说明理由:
(1)大于3小于11的偶数 (2)漂亮的衣服 (3)我国的小河流 (4)小于2006的实数 (5)和2006非常接近的实数。
性描述出来,如﹛自然数﹜
高一数学人教版课件:集合含义与表示
例1.请用描述法表示下列集合:
(4)由适合 x2x20的所有解组成集合.
(5){1/3,1/2,3/5,2/3,5/7}.
(6)方程组
3x 2 x
2 3
y y
2 的解集. 27
高一数学人教版课件:集合含义与表示
例2.用描述法分别表示:
(1)抛物线 x 2 y 上的点. (2)抛物线 x 2 y 上点的横坐标. (3)抛物线 x 2 y 上点的纵坐标.
高一数学人教版课件:集合含义与表示
再问:解决这类问题的关 键是什么?
答:找出集合所含元素的 共同特征以及元素的取值 范围。
高一数学人教版课件:集合含义与表示
三、集合的分类
有限集——含有有限个元素的集合。 无限集——含有无限个元素的集合。
思考:上面几个例子的共同特征是什么?
人教版高中数学必修一第一章知识点
第一章集合与函数概念〖1.1〗集合【1.1.1】集合的含义与表示(1)集合的概念集合中的元素具有确定性、互异性和无序性.(2)常用数集及其记法N表示自然数集,N或N表示正整数集,Z表示整数集,Q表示有理数集,R表示实数集.(3)集合与元素间的关系对象a与集合M的关系是aM,或者aM,两者必居其一.(4)集合的表示法①自然语言法:用文字叙述的形式来描述集合.②列举法:把集合中的元素一一列举出来,写在大括号内表示集合.③描述法:{x|x具有的性质},其中x为集合的代表元素.④图示法:用数轴或韦恩图来表示集合.(5)集合的分类①含有有限个元素的集合叫做有限集.②含有无限个元素的集合叫做无限集.③不含有任何元素的集合叫做空集().【1.1.2】集合间的基本关系(6)子集、真子集、集合相等名称记号意义性质示意图AB(1)AA子集B (或A)A中的任一元素都属于B(2)A(3)若AB且BC,则AC(4)若AB且BA,则ABA(B)BA或真子集AB(或BA)AB,且B中至少有一元素不属于AA(A为非空子集)(1)(2)若AB且BC,则ACBA集合相等AB A中的任一元素都属于B,B中的任一元素都属于A(1)AB(2)BAA(B)n个子集,它有2n1个真子集,它有2n1个非空子集,(7)已知集合A有n(n1)个元素,则它有2n它有22非空真子集. (8)交集、并集、补集1【1.1.3】集合的基本运算名称记号意义性质示意图AB 交集{x|x A,且(1)AAA(2)AAB(3)ABAxB}ABBAB 并集{x|x A,或(1)AAA(2)AAAB(3)ABAxB}ABB1A(e U A)2()AeAUU补集e U A{x|xU,且xA} 痧U(A B)(U A)(?U B)痧U(AB)(U A)(?U B)【补充知识】含绝对值的不等式与一元二次不等式的解法(1)含绝对值的不等式的解法不等式解集|x|a(a0){x|axa}|x|a(a0)x|xa或xa}把axb看成一个整体,化成|x|a,|axb|c,|axb|c(c0)|x|a(a0)型不等式来求解(2)一元二次不等式的解法判别式24bac000二次函数2(0)yaxbxcaO的图象一元二次方程20(0)axbxcax1,22bb4ac2abxx122a无实根(其中x1x2)的根20(0) axbxca的解集b{x|xx或xx2}{x|x}12aR 220(0)axbxca的解集{x|xxx}12〖1.2〗函数及其表示【1.2.1】函数的概念(1)函数的概念①设A、B是两个非空的数集,如果按照某种对应法则f,对于集合A中任何一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么这样的对应(包括集合A,B以及A到B的对应法则f)叫做集合A到B的一个函数,记作f:AB.②函数的三要素:定义域、值域和对应法则.③只有定义域相同,且对应法则也相同的两个函数才是同一函数.(2)区间的概念及表示法①设a,b是两个实数,且ab,满足a xb的实数x的集合叫做闭区间,记做[a,b];满足axb的实数x的集合叫做开区间,记做(a,b);满足a xb,或axb的实数x的集合叫做半开半闭区间,分别记做[a,b),(a,b];满足x a,xa,xb,xb的实数x的集合分别记做[a,),(a,),(,b],(,b).注意:对于集合{x|axb}与区间(a,b),前者a可以大于或等于b,而后者必须ab.(3)求函数的定义域时,一般遵循以下原则:①f(x)是整式时,定义域是全体实数.②f(x)是分式函数时,定义域是使分母不为零的一切实数.③f(x)是偶次根式时,定义域是使被开方式为非负值时的实数的集合.④对数函数的真数大于零,当对数或指数函数的底数中含变量时,底数须大于零且不等于1.⑤ytanx中,()xkkZ.2⑥零(负)指数幂的底数不能为零.⑦若f(x)是由有限个基本初等函数的四则运算而合成的函数时,则其定义域一般是各基本初等函数的定义域的交集.⑧对于求复合函数定义域问题,一般步骤是:若已知f(x)的定义域为[a,b],其复合函数f[g(x)]的定义域应由不等式ag(x)b解出.⑨对于含字母参数的函数,求其定义域,根据问题具体情况需对字母参数进行分类讨论.⑩由实际问题确定的函数,其定义域除使函数有意义外,还要符合问题的实际意义.(4)求函数的值域或最值求函数最值的常用方法和求函数值域的方法基本上是相同的.事实上,如果在函数的值域中存在一个最小(大)数,这个数就是函数的最小(大)值.因此求函数的最值与值域,其实质是相同的,只是提问的角度不同.求函数值域与最值的常用方法:①观察法:对于比较简单的函数,我们可以通过观察直接得到值域或最值.②配方法:将函数解析式化成含有自变量的平方式与常数的和,然后根据变量的取值范围确定函数的值域或最值.③判别式法:若函数yf(x)可以化成一个系数含有y的关于x的二次方程2a(y)xb(y)xc(y)0,则在a(y)0时,由于x,y为实数,故必须有byaycy,从而确定函数的值域或最值.2()4()()0④不等式法:利用基本不等式确定函数的值域或最值.⑤换元法:通过变量代换达到化繁为简、化难为易的目的,三角代换可将代数函数的最值问题转化为三角函数的最值问题.⑥反函数法:利用函数和它的反函数的定义域与值域的互逆关系确定函数的值域或最值.⑦数形结合法:利用函数图象或几何方法确定函数的值域或最值.⑧函数的单调性法.【1.2.2】函数的表示法(5)函数的表示方法表示函数的方法,常用的有解析法、列表法、图象法三种.解析法:就是用数学表达式表示两个变量之间的对应关系.列表法:就是列出表格来表示两个变量之间的对应关系.图象法:就是用图象表示两个变量之间的对应关系.(6)映射的概念①设A、B是两个集合,如果按照某种对应法则f,对于集合A中任何一个元素,在集合B中都有唯一的元素和它对应,那么这样的对应(包括集合A,B以及A到B的对应法则f)叫做集合A到B的映射,记作f:AB.②给定一个集合A到集合B的映射,且aA,bB.如果元素a和元素b对应,那么我们把元素b叫做元素a的象,元素a叫做元素b的原象.〖1.3〗函数的基本性质 【1.3.1】单调性与最大(小)值(1)函数的单调性①定义及判定方法 函数的定义图象判定方法性质 如果对于属于定义域I 内某(1)利用定义个区间上的任意两个自变量 的值x2,当x . 1、x 1.<.x .2.时,都y y=f(X) f(x)2(2)利用已知函数的 单调性有f .(x ...).<.f(.x ...).,那么就说 12 f(x)在这个区间上是增函数. ...f(x)1(3)利用函数图象(在 某个区间图o x 1x 2x 象上升为增)函数的(4)利用复合函数 单调性(1)利用定义如果对于属于定义域I 内某yy=f(X)(2)利用已知函数的个区间上的任意两个自变量 11、x .<.x .的值x2,当x .2.时,都 有f .(x ..12.).,那么就说f(x) 1f(x) 2单调性 (3)利用函数图象(在 某个区间图f(x)在这个区间上是减函数. ...o xx 12x象下降为减)(4)利用复合函数②在公共定义域内,两个增函数的和是增函数,两个减函数的和是减函数,增函数减去一个减函数为 增函数,减函数减去一个增函数为减函数.③对于复合函数yf[g(x)],令ug(x),若yf(u)为增,ug(x)为增,则yf[g(x)]为增;若yf(u)为减,ug(x)为减,则y f[g(x)]为增;若yf(u)为 增,ug(x)为减,则y f[g(x)]为减;若yf(u)为减,ug(x)为增,则yyf[g(x)]为减.a(2)打“√”函数()(0)fxxax的图象与性质 f(x)分别在(,a ]、[a ,)上为增函数,分别在ox[a,0)、(0,a]上为减函数.(3)最大(小)值定义①一般地,设函数yf(x)的定义域为I,如果存在实数M满足:(1)对于任意的xI,都有f(x)M;(2)存在x I,使得f(x0)M.那么,我们称M是函数f(x)的最大值,记作0f max(x)M.5②一般地,设函数yf(x)的定义域为I,如果存在实数m满足:(1)对于任意的xI,都有f(x)m;(2)存在x0I,使得f(x0)m.那么,我们称m是函数f(x)的最小值,记作f max(x)m.【1.3.2】奇偶性(4)函数的奇偶性①定义及判定方法函数的定义图象判定方法性质如果对于函数f(x)定义域内(1)利用定义(要先任意一个x,都有.f(.-.x..)=.-.判断定义域是否关于f(x)....,那么函数f(x)叫做奇.函.原点对称)数..(2)利用图象(图象关于原点对称)函数的奇偶性如果对于函数f(x)定义域内(1)利用定义(要先任意一个x,都有f(-.x..)=.f.(x.)..,..判断定义域是否关于那么函数f(x)叫做偶.函.数..原点对称)(2)利用图象(图象关于y轴对称)②若函数f(x)为奇函数,且在x0处有定义,则f(0)0.③奇函数在y轴两侧相对称的区间增减性相同,偶函数在y轴两侧相对称的区间增减性相反.④在公共定义域内,两个偶函数(或奇函数)的和(或差)仍是偶函数(或奇函数),两个偶函数(或奇函数)的积(或商)是偶函数,一个偶函数与一个奇函数的积(或商)是奇函数.〖补充知识〗函数的图象(1)作图利用描点法作图:①确定函数的定义域;②化解函数解析式;③讨论函数的性质(奇偶性、单调性);④画出函数的图象.利用基本函数图象的变换作图:要准确记忆一次函数、二次函数、反比例函数、指数函数、对数函数、幂函数、三角函数等各种基本初等函数的图象.①平移变换yfxyfxh()h0,h()左移个单位右移|个单位h0,h|yfxyfxk()kk()0,上移个单位下移|个单位k0,k|变换②伸缩01,伸yf(x)yf(x)1,缩6yfxyAfx()0A1,缩()A1,伸③对称变换x轴yf(x)y轴yf(x)yf(x)yf(x)原点直线1yxyf(x)yf(x)yf(x)yf(x)去掉轴左边图象yyf(x)yf(|x|)保留y轴右边图象,并作其关于y轴对称图象保留轴上方图象yfxyfx()x|()|将轴下方图象翻折上去x(2)识图对于给定函数的图象,要能从图象的左右、上下分别范围、变化趋势、对称性等方面研究函数的定义域、值域、单调性、奇偶性,注意图象与函数解析式中参数的关系.(3)用图函数图象形象地显示了函数的性质,为研究数量关系问题提供了“形”的直观性,它是探求解题途径,获得问题结果的重要工具.要重视数形结合解题的思想方法.7。
人教版新课标高一数学必修一 第一章 集合与函数的概念 1..1 集合 集合的概念与集合的表示 教案及课后习题
1:集合的概念与集合的表示 集合 概 念 把研究对象的总体称为集合,把研究对象统称为元素。
元素的性质(1)确定性;(2)互异性;(3)无序性表 示 方 法 列 举 法 ①元素不重复 ②元素无顺序 ③元素间用“,”隔开 描 述 法 ①写清楚集合中元素的代号,如{x ∈R|x>0},不能写成{x>2}; ②说明该集合中元素的性质; ③所有描述的内容都写在大括号内。
元素与集合的关系 一般地,用大写拉丁字母如A 、B 、C 表示集合,用小写拉丁字母a 、b 、c 表示集合中的元素,如果a 是集合A 中的元素就说a 属于集合A ,记作a ∈A ;如果a 不是集合A 的元素,就说a 不属于A ,记作a ∉A 。
常用数集及其记法 N 为零和正整数组成的集合,即自然数集,N *或N +为正整数组成的集合;Z 为整数组成的集合;Q 为有理数组成的集合,R 为实数组成的集合。
【典例精析】例题1 判断下列命题是否正确,并说明理由。
(1){R}=R ;(2)方程组⎩⎨⎧+==12x y x y 的解集为{x=1,y=2}; (3){x|y=x 2-1}={y|y=x 2-1}={(x ,y )|y=x 2-1};(4)平面内线段MN 的垂直平分线可表示为{P|PM=PN}。
思路导航:以上几种命题都是同学们在初学过程中极易出错的几种典型类型。
处理此类问题的关键在于要正确而深刻地理解集合的表示方法。
答案:(1){R}=R 是不正确的,R 通常为R={x|x 为实数},即R 本身可表示为全体实数的集合,而{R}则表示含有一个字母R 的集合,它不能为实数的集合。
(2)方程组⎩⎨⎧+==12x y x y 的解集为{x=1,y=2}是不对的,因为解集的元素是有序实数对(x ,y ),正确答案应为{(x ,y )|⎩⎨⎧==21y x }={(1,2)}。
(3){x|y=x 2-1}={y|y=x 2-1}={(x ,y )|y=x 2-1}是不正确的。
人教版高一数学必修1知识点归纳
5、若函数y=f(x)满足f(x+a)= (a>0),则f(x)为周期函数且2a是它的一个周期。
6、 ,则 是以 为周期的周期函数.
7、 ,则 是以 为周期的周期函数.
8、若函数y=f(x)的图像关于直线x=a,x=b(b>a)都对称,则f(x)为周期函数且2(b-a)是它的一个周期。
13、若函数y=f(x)满足f(x)=f(x-a)+f(x+a)(a>0),则f(x)为周期函数,6a是它的一个周期。
14、若奇函数y=f(x)满足f(x+T)=f(x)(x∈R,T≠0), 则f( )=0.
函数的轴对称:
定理1:如果函数 满足 ,则函数 的图象关于直线 对称.
推论1:如果函数 满足 ,则函数 的图象关于直线 对称.
(2)一元二次不
(其中
无实根
的解集
或
的解集
【1.2.1】函数的概念
(1)函数的概念
①设 、 是两个非空的数集,如果按照某种对应法则 ,对于集合 中任何一个数 ,在集合 中都有唯一确定的数 和它对应,那么这样的对应(包括集合 , 以及 到 的对应法则 )叫做集合 到 的一个函数,记作 .
注意:对于集合 与区间 ,前者 可以大于或等于 ,而后者必须
.
(3)求函数的定义域时,一般遵循以下原则:
① 是整式时,定义域是全体实数.
② 是分式函数时,定义域是使分母不为零的一切实数.
③ 是偶次根式时,定义域是使被开方式为非负值时的实数的集合.
④对数函数的真数大于零,当对数或指数函数的底数中含变量时,底数须大于零且不等于1.
新课标 人教版数学 必修一 第一章 1.1集合
第一章集合集合的概念及其表示(一)一、教学目标:1、初步理解集合的含义,了解集合元素的性质。
2、知道常用数集及其记法。
3.了解“属于”关系的意义。
4.了解有限集、无限集、空集的意义。
重点:集合概念的形成。
难点:理解集合的元素的性质。
二、知识梳理1、元素与集合的概念:由一些数、一些点、一些图形、一些整式、一些物体、一些人组成的.我们说,每一组对象的全体形成一个集合,或者说,某些指定的对象集在一起就成为一个_____,也简称____。
集合中的每个对象叫做这个集合的_______。
.2、集合与元素的表示方法(1)集合通常用大写的英文字母表示,如A、B、C、P、Q……(2)元素通常用小写的英文字母表示,如a、b、c、p、q……3、元素与集合的关系(1)属于:如果a是集合A的元素,就说a___ A,记作a___A。
(2)不属于:如果a不是集合A的元素,就说a____ A,记作a____ A。
4、空集一般地,我们把不含任何元素的集合叫做__________,记作________。
φ与{0}、0的区别与联系。
注意:5、集合中元素的特性(1)确定性:按照明确的判断标准给定一个元素或者在这个集合里,或者不在,不能模棱两可(2)互异性:集合中的元素没有重复(3)无序性:集合中的元素没有一定的顺序(通常用正常的顺序写出)6、集合的分类集合可以根据它含有的元素的个数分为两类:有限集:______________________________。
无限集:______________________________。
7、常用数集及表示符号自然数集:________________________,记作_______。
正整数集:_________________________,记作_______。
整数集:___________________________,记作_______。
有理数集:__________________________,记作________。
人教A版高中数学必修一人教新课标A集合的含义与表示课件
C.{x|x=2n+1,n∈N} D.{x|x=n+2,n∈N}
解析:集合A表示所有的正奇数,故C正确.
答案:C
• 4.下面三个集合: • ①{x|y=x2+1}; • ②{y|y=x2+1}; • ③{(x,y)|y=x2+1}. • 它们各自的含义是什么?它们是不是相同的集 合?
练习、用符号或填空:
(1) -3 Z; (2)3.14 Q;
(3)
1 3
Q; (4)0
N;
(5) 3 (7)1
5a (2){a | 2a N*},{2a | a N*}是否是相等集合?
2.集合{1,2},{2,1}{(1,2)},{(2,1)}是否 相同?
• 3.集合{x|x>1}与集合{y|y>1}是否相等? • 答:虽然两个集合的代表元素不同,但实质上 它们均表示大于1的所有实数,故是相等集合.
1.1.1 集合的含义与表示
• 自学课本P2—P3 回答以下问题:
• (1)什么叫做集合?什么叫做元素?并举 例说明。
• (2)集合中的元素具有哪些特征?
• (3)什么叫做集合相等?
① 1~20 以内所有的质数; ② 到定点的距离等于定长的所有点; ③ 所有的锐角三角形;
④ 3x 2 , 5y3 x , x2 y2 ; ⑤方程 x-3=0 的所有实数根; ⑥不等式 x-2>0 的所有解; ⑦白象高中高一重点班全体学生; ⑧白象高中高一段成绩较好的全体学生. ⑨地球上的小河流. ⑩数字 1,2,3,4,5,4,3,2,1
Q;
(6)
1 2
N+; (8)
R; Q。
1.集合{x|1≤x≤6,x∈N}中元素的个数为 ( )
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
集合的含义及其表示
一. 教学目的:(1)初步理解集合的概念,知道常用数集及其记法;
(2)初步了解“属于”关系的意义;
(3)初步了解有限集、无限集、空集的意义;
教学重点:集合的含义与表示方法;
教学难点:运用集合的两种常用表示方法——列举法与描述法,正确表示一些简单的集合。
教学过程:
一.问题引入:
我家有爸爸、妈妈和我; 我来自燕山中学;
省溧中高一(1)班; 我国的直辖市。
分析、归纳上述各个实例的共同特征,归纳出集合的含义。
二.建构数学:
1. 集合的意义:一般地,一定范围内某些确定的、不同的对象的全体构成一个集合(set )。
集合常用大写的拉丁字母来表示,如集合A 、集合B 。
集合中的每一个对象称为该集合的元素(element ),简称元。
集合的元素常用小写的拉丁字母来表示。
指出下列对象是否构成集合,如果是,指出该集合的元素。
(1)我国的直辖市; (2)省溧中高一(1)班全体学生;(3)较大的数
(4)young 中的字母; (5)大于100的数; (6)小于0的正数。
2.关于集合的元素的特征
(1)确定性:设A 是一个给定的集合,x 是某一个具体对象,则或者是A 的元素,或者不是A 的元素,两种情况必有一种且只有一种成立。
(2)互异性:一个给定集合中的元素,指属于这个集合的互不相同的个体(对象),因此,同一集合中不应重复出现同一元素。
(3)无序性:一般不考虑元素之间的顺序,但在表示数列之类的特殊集合时,通常按照习惯的由小到大的数轴顺序书写。
3.集合元素与集合的关系用“属于”和“不属于”表示;
(1)如果a 是集合A 的元素,就说a 属于A ,记作a ∈A
(2)如果a 不是集合A 的元素,就说a 不属于A ,记作a ∉A
4.有限集、无限集和空集的概念:
5.常用数集的记法:非负整数集(或自然数集),记作N ,整数集,记作Z ,有理数集,记作Q ,实数集,记作R ,正整数集,记作*N 或N +。
6.集合的表示方法:集合的表示方法,常用的有列举法和描述法
(1)列举法:把集合中的元素一一列举出来,写在大括号内。
如:{1,2,3,4,5},{x 2,3x+2,5y 3-x ,x 2+y 2},…;各元素之间用逗号分开。
(2)描述法:把集合中的所有元素都具有的性质(满足的条件)表示出来,写成{|()}x p x 的形式。
(3)韦恩(Venn )图示意
7.两个集合相等:如果两个集合所含的元素完全相同,则称这两个集合相等。
三.数学运用:
1.例题:
例1. 用列举法和描述法表示方程2230x x --=的解集。
答案:列举法:{1,3}-描述法:2{|23,}x x x x x R =--∈
例2.下列各式中错误的是 ( )
(1){奇数}={|21,}x x k k Z =-∈ (2){|*,||5}{1,2,3,4}x x N x ∈<=
(3)1{(,)|}2x y x y xy +=⎧⎨
=-⎩ {(2,1),(1,2)}=-- (4)33N --∈ 答案:(4)
例2. 求不等式235x ->的解集
答案:{|4,}x x x R >∈
例3. 求方程2210x x ++=的所有实数解的集合。
答案:∅
例5.已知2{2,,},{2,2,}M a b N a b ==,且M N =,求,a b 的值
答案:0,1a b ==或11,42a b =
= 2.练习:
(1)请学生各举一例有限集、无限集、空集。
(2)P 7练习3
(3)用列举法表示下列集合:
① {|x x 是15的正约数} ②{(,)|{1,2},{1,2}}x y x y ∈∈
③{(,)|2,24}x y x y x y +=-= ④ {|(1),}n x x n N =-∈
*⑤{(,)|3216,,}x y x y x N y N +=∈∈
答案:①{1,3,5,15}②{(1,1),(1,2),(2,1),(2,2)}③82{(,)}33
-④{1,1}-⑤{(2,5),(4,2)}
(4)用描述法表示下列集合:
①{1,4,7,10,13}; ②{2,4,6,8,10}-----
答案:①{|13,1,2,3,4}x x k k =+=②{|2,1,2,3,4,5}x x k k =-=
四.回顾小结:
1.集合的有关概念
2.集合的表示方法
3.常用数集的记法
五.课外作业:
课本P 7 1、2、4、5 P 17 1、2。