直流数字电流表的设计
简易数字电流表设计报告
目录摘要 2 关键词21 概述 31.1设计意义 31.2系统主要功能 32 硬件电路设计方案及描述32.1 设计方案 3 2.2 主要元器件的介绍 42. 3控制电路模块132.4 元件清单16 3数字式电流表的软件设计163.1系统程序设计总方案 163.2系统子程序设计 17 4数字式电流表的调试194.1软件调试 19 4.2显示结果及误差分析 20 5总结22附录1.电路原理图及仿真图23附录2. 程序代码24参考文献 26基于单片机的简易数字电流表设计摘要数字电流表的诞生打破了传统电子测量仪器的模式和格局。
它显示清晰直观、读数准确,采用了先进的数显技术,大大地减少了因人为因素所造成的测量误差事件。
数字电流表是建立在数字电压表的基础上,让电压表与电阻串联,其显示的是电流,数字电压表是把连续的模拟量(直流输入电压)转换成不连续、离散的数字形式,并加以显示的仪表。
数字电流表把电子技术、计算技术、自动化技术的成果与精密电测量技术密切的结合在一起,成为仪器、仪表领域中独立而完整的一个分支,数字电流表标志着电子仪器领域的一场革命,也开创了现代电子测量技术的先河。
本设计采用了以单片机为开发平台,控制系采用AT89C52单片机,A/D转换采用ADC0809。
系统除能确保实现要求的功能外,还可以方便进行8路其它A/D转换量的测量、远程测量结果传送等扩展功能。
简易数字电流测量电路由A/D转换、数据处理、显示控制等组成。
关键词:单片机 AT89C51 A/D转换ADC0809数据处理1 .概述1.1设计意义通过课程设计,掌握电子设计的一般步骤和方法,锻炼分析问题解决问题的能力,学会如何查找所需资料,同时复习以前所学知识并加深记忆,为毕业设计打好基础,也为以后工作作准备。
通过对选题的分析设计,学习数字电流表的工作原理、组成和特性;掌握数字电流表的校准方法和使用方法;1.2系统主要功能A、利用AD转换芯片和精密电阻测量0~20mA电流B、系统工作符合一般数字电流表要求2 硬件电路设计方案及描述2.1 数字式电流表系统硬件设计硬件电路设计主要包括:AT89S51单片机系统,A/D转换电路,显示电路。
毕业论文---智能直流数字电压表的设计
毕业论文(设计)智能直流数字电压表的设计院部名称:机电工程学院专业班级:电气自动化技术学生姓名:闫永胜学号: 2009061134指导教师:董卫军2011、12、19目录摘要 (3)1 引言 (3)1.1 研究背景及意义 (3)1.2单片机简介 (4)1.3单片机的应用领域及发展趋势 (4)第一章设计任务书 (5)第二章设计内容 (6)2.1 设计要求 (6)2.1.1功能要求 (6)2.1.2项目技术性能指标 (6)第三章系统原理及基本框图 (7)方案论证 (7)3.1 电源电路设计 (8)3.2 输入电路设计 (8)3.2.1 电路简介 (8)3.3 转换电路设计 (10)3.3.1 AT89C51单片机 (10)3.3.3 AT89C51主要特性: (10)3.3.4 ICL7135芯片简介 (10)3.3.5 转换器ICL7135 (10)3.3.6 ICL7135的引脚功能及主要特性 (11)3.3.7性能: (12)3.3.8据输出方式及数字部分 (13)3.3.9 对应参数整定 (13)3.4 电压表显示电路 (15)3.4.1电路简介 (15)3.5 I/O口分配 (15)第四章软件设计 (16)4.1 时钟频率的确定 (16)4.2 监控程序设计 (17)4.3序流程图: (18)第五章程序及元件清单 (21)5.1程序 (21)5.2元器件清单 (26)结束语 (27)参考文献 (27)附:电路原理图 (28)摘要数字电压表的诞生打破了传统电子测量仪器的模式和格局。
它显示清晰直观、读数准确,采用了先进的数显技术,大大地减少了因人为因素所造成的测量误差事件。
数字电压表是把连续的模拟量转换成不连续、离散的数字形式,并加以显示的仪表。
数字电压表把电子技术、计算技术、自动化技术的成果与精密电测量技术密切的结合在一起,成为仪器、仪表领域中独立而完整的一个分支,数字电压表标志着电子仪器领域的一场革命,也开创了现代电子测量技术的先河。
简易电流表的设计
简易电流表设计人员:指导老师:摘要:直流电流表测量,通过AD转换,对电流采样,把模拟量转换成数字量,然后通过电片机的控制把电流值通过LCD对进行显示。
该系统能够精确测量的直流电流值范围为10mA~1A,分辨力分为10mA 和1A两档。
这个系统由采样电路,AD转换电路和显示电路三部分组成.关键字:AD转换器采样数字量电流引言:随着微电子技术的迅速发展和超大规模集成电路的出现,特别是单片机的出现,正引起测量,控制仪表领域新的技术革命。
所以采用单片机设计的数字式测量仪表已经迎合拉社会的要求和发展。
这次设计的是以单片机直流数字电流表,使用简单,读数方便,使用的范围愈来愈宽,关于这样的设计是有意义的。
目录1方案论证与比较 (4)1.1采样方法方案论证.......... 错误!未定义书签。
1.2处理器的选择方案论证......... 错误!未定义书签。
1.3周期性判别与测量方法方案论证…… 错误!未定义书签。
2系统设计 (5)2.1总体设计 (5)2.2单元电路设计 (5)2.2.1前级阻抗匹配和放大电路设计 (5)2.2.2AD转换及控制模块电路设计 (6)2.2.3功率谱测量单元电路设计 (6)3软件设计 (7)4系统测试 (8)5 结论 (9)参考文献: (9)附1:元器件明细表: (9)附2:仪器设备清单 (9)附3:电路图图纸 (10)附4:程序清单 (11)1 方案论证与比较1.1采样方法比较与选择方案一:固定放大倍数,使用多个采样电阻采样。
方案二、固定采样电阻,使用多个电阻放大不同倍数。
分析:采样电阻应该尽量的小,无论是怎么安排电流表的分辨力,都把改变采样电阻,以免影响整个采样电路和结果,所以选择方案二。
1.2AD转换方法比较与选择本次制作采用ADC0809 ADC0809是8路模拟中的分时采集,片内有8路模拟选通开关,以及形影的通道地址锁存用译码电路,其转换时间为100us左右。
1.3显示部分比较与选择方案一:采用八位共阳极led数码管进行显示。
直流数字电压电流表
课题设计三位半直流数字电压电流表系别专业班姓名学号2012~ 2013学年第一学期摘要随着科学技术的发展,数字电压、电流表的种类越来越多,功能越来越丰富,当然应用的领域也越来越广泛,给人们的工作和生活带来许多方便。
本文主要介绍的是基于ICL7107数字电压、电流表的设计的设计,ICL7107是目前广泛应用于数字测量系统是一种集三位半转换器段驱动器位驱动器于一体的大规模集成电路,ICL7107是目前广泛应用于数字测量系统的一种31/2位A/D转换器,能够直接驱动共阳极数字显示器,够成数字电压表,外接电阻即可构成数字电流表,此电路简洁完整,稍加改造就可以够成其他电路,如数字电子秤、数字温度计的等专门传感器的测量工具。
ICL7107是目前广泛应用于数字测量系统是一种集三位半转换器段驱动器、位驱动器于一体的大规模集成电路,主要用于对不同电压的测量和许多工程上的应用,调频接口电路,它采用的是双积分原理完成A/D 转换,全部转换电路用CMOS大规模集成电路设计。
应用了ICL7107芯片数码管显示器等,芯片第一脚是供电,正确电压时DC5V,连接好电源把所需要测量的物品连接在表的两个端口,从而可以在显示器上看到所需要的结果。
在软件设计上,主要编写了实现计数频率的调节和单片机功能的相关程序,最后把软件设计和硬件设计结合到一起,然后进行调试。
本文阐述了硬件设计中具体的硬件结构和功能和软件设计中具体写入的程序还有相应的调试过程。
关键词:ICL7107芯片、数字电压表、数字电流表、小数点的自动切换目录第一章 ICL7107简介及其功能、特点 (1)第2章基于ICL7107实现的数字电压表 (2)第3章基于ICL7107实现的数字电流表 (3)第4章数字电压电流表中小数点的自动切换 (4)第5章附录 (4)第一章ICL7107简介及其功能、特点1. ICL7107简介ICL7107是高性能,低功耗的三位半A/D转换器电路。
数字电流表的设计
二 数字电流表的设计(选做实验)【实验目的】1、掌握数字电流表的工作原理、组成和特性;2、掌握数字电流表的校准方法和使用方法;3、掌握分流电路的连接和计算;4、了解过压过流保护电路的功用。
【实验仪器】1、DM-I 数字万用表设计性实验仪一台2、三位半或四位半数字万用表一台【实验原理】一、直流电流测量电路测量电流的原理是:根据欧姆定律,用合适的取样电阻把待测电流转换为相应的电压,再进行测量。
如图1,由于r R ,取样电阻R 上的电压降为i i U RI =,即被测电流/i i I U R =,若数字表头的电压量程为0U ,欲使电流挡量程为0I ,则该挡的取样电阻(也称分流电阻)为00/R U I =,如0200U mV =,则0200I mA =挡的分流电阻为1R =Ω。
iI 图2 多量程分流器电路iU iI 图1 电流测多量程分流器原理电路见图2。
图2中的分流器在实际使用中有一个缺点,就是当换挡开关接触不良时,被测电路的电压可能使数字表头过载,所以,实际数字万用表的直流电流挡电路为图3所示。
图3中各挡分流电阻的阻值是这样计算的: 先计算最大电流挡的分流电阻5R :)(1.022.0505Ω===m I U R 再计算下一挡的4R :)(9.01.02.02.05404Ω=-=-=R I U R m 依次可计算出32R R 、和1R ,请同学们自己练习。
图3中的FUSE 是2A 保险丝管,电流过大时会快速熔断,起过流保护得作用。
两只反向连接且与分流电阻并联的二极管D 1、D 2为塑封硅整流二极管,它们起双向限幅过压保护作用。
正常测量时,输入电压小于硅二极管的正向导通压降,二极管截止,对测量毫无影响。
一旦输入电压大于0.7V ,二极管立即导通,两端电压被限制住(小于0.7V ),保护仪表不被损坏。
用2A 挡测量时,若发现电流大于1A 时,应不使测量时间超过20秒,以避免大电流引起的较高温升影响测量精度,甚至损坏仪表。
最新直流数字电压表毕业论文设计39166
学号:2008060343毕业设计(论文) 题目:简易直流数字电压表的设计系(部):电子工程系专业:电子信息工程技术班级:08电子工程303学生姓名:卓东平指导教师:** *起止时间:2010年09月13日至2010年12月18日海南软件职业技术学院目录摘要 (1)绪论 (2)1 总体设计思路 (3)1.1总体电路构成 (3)1.2单元电路设计 (4)2 系统硬件电路 (4)2.1硬件电路 (4)2.2 A/D转换器 (7)2.3 电压表显示电路 (9)2.4 选择器件 (10)2.5 总体电路 (10)3 系统软件设计 (11)3.2系统程序 (13)4 调试与性能分析 (16)4.1加入仿真辅助信号 (16)4.2加载程序 (16)结束语 (20)致谢 (21)参考文献 (22)版权声明 (23)数字电压表(Digital Voltmeter)简称DVM,它是采用数字化测量技术,把连续的模拟量(直流输入电压)转换成不连续、离散的数字形式并加以显示的仪表.传统的指针式电压表功能单一、精度低,不能满足现代测量的需求,采用单片机的数字电压表,它的精度高、抗干扰能力强。
可扩展性强、集成方便,还可与PC进行实时通信。
目前,有各种单片A/D转换器构成的数字电压表,以被广泛用于电子及电工测量、工业自动化仪表、自动测试系统等智能测量领域,与此同时,也能把电量及非电量测量技术提高到崭新水平。
该系列产品是一种高精度的安装式仪表.本设计为简易直流数字电压表, A/D转换器部分采用普通元器件构成模拟部分,利用MCS-51单片机借助软件实现数字显示功能,自动校零、LED显示等功能时采用AT89C51单片机编程实现直流电压表量程的自动转换。
关键词: AT89C51, A/D转换,电压测量尽管单片机不断向纵深发展,但目前乃至今后若干年,8位机仍旧是实际应用中的主导产品。
MCS-51系列是目前8位单片机的主流机型,在实时控制、智能化仪表等方面应用最广。
直流数字电流表的设计
第一章设计任务及可行性分析1.1总体结构1.1.1数字电流表的组成图2.2 数字电流表的组成框图数字直流电流表的核心是A/D转换器。
按系统功能实现要求,决定控制系统采用AT89C51单片机,A/D转换采用ADC0809。
系统除能确保实现要求的功能外,还可以方便地进行8路其他A/D转换量的测量和远程测量结果传送等扩展功能。
数字电流表系统设计方案框图如图 2.3所示。
AT89C51P0P2P1ADC08094位LED显示上电复位串口通信电源电路图2.3 数字电流表系统设计方案框图1.2所需元器件清单表3.1所需元器件材料表器件类型器件名数值数量单片机AT89S511A/D转换器ADC08091数码管TSEG-MP*4-C1C-BLUE开关按键开关 1电容C1、C2 33uF 2电解电容C3 10uF 1电阻R1 1K 2排阻RP1 200 1变阻器RV1 1K 1晶振X1 1MHz 1第二章达到的技术指标1、可以测量0-5V的8路输入电压值;2、测量结果可在四位LED数码管上轮流显示后单路选择显示;3、测量最小分辨率为0.019A;4、测量误差约为+0.0AV;第三章数字式电流表的硬件设计3.1主要元器件的介绍3.1.1单片机AT89S51AT89S51是美国ATMEL公司生产的低功耗、高性能CMOS 8位单片机。
图4.2和4.3分别为其实物图和内部总体结构图。
AT89S51的引脚AT89S51芯片为40引脚双列直插式封装,其引脚排列如图4.2所示。
图4.2 AT89S51的引脚图(1)VCC:电源电压;(2)GND:接地;(3)P0口:P0口是一组8位漏极开路双向I/O口,每位引脚可驱动8个TTL 逻辑门路。
(4)P1口:P1口是一个内部提供上拉电阻的8位双向I/O口,P1口的输出缓冲器可驱动4个TTL逻辑门电路。
有第二功能,如表4.1所示。
表4.1 P1口的第二功能端口引脚第二功能P1.5 MOSI(用于ISP编程)P1.6 MISO(用于ISP编程)P1.7 SCK(用于ISP编程)(5)P2口:P2口是一个内部提供上拉电阻的8位双向I/O口,P2口的输出缓冲器可驱动4个TTL逻辑门电路。
数字电表原理及万用表设计
DH6505A数字电表原理及万用表设计(实验指导书)实验DH6505A数字电表原理及万用表设计使用说明书数字电表以它显示直观、准确度高、分辨率强、功能完善、性能稳定、体积小易于携带等特点在科学研究、工业现场和生产生活中得到了广泛应用。
数字电表工作原理简单,完全可以让同学们理解并利用这一工具来设计对电流、电压、电阻、压力、温度等物理量的测量,从而提高大家的动手能力和解决问题能力。
[实验目的]1、了解数字电表的基本原理及常用双积分模数转换芯片外围参数的选取原则、电表的校准原则以及测量误差来源。
2、了解万用表的特性、组成和工作原理。
3、掌握分压、分流电路的原理以及设计对电压、电流和电阻的多量程测量。
4、了解交流电压、三极管和二极管相关参数的测量。
5、通过数字电表原理的学习,能够在传感器设计中灵活应用数字电表。
[实验仪器]1、D H6505A数字电表原理及万用表设计实验仪。
2、四位半通用数字万用表。
(自备)3、示波器。
(自备)4、Z X25a电阻箱。
(自备)[实验原理]一、数字电表原理常见的物理量都是幅值大小连续变化的所谓模拟量,指针式仪表可以直接对模拟电压和电流进行显示。
而对数字式仪表,需要把模拟电信号(通常是电压信号)转换成数字信号,再进行显示和处理。
数字信号与模拟信号不同,其幅值大小是不连续的,就是说数字信号的大小只能是某些分立的数值,所以需要进行量化处理。
若最小量化单位为.■:,则数字信号的大小是■ ■:的整数倍,该整数可以用二进制码表示。
设.:=0.1 mV,我们把被测电压U与厶比较,看U 是厶的多少倍,并把结果四舍五入取为整数N (二进制)。
一般情况下,N > 1000即可满足测量精度要求(量化误差w 1/1000=0.1%)。
所以,最常见的数字表头的最大示数为1999, 被称为三位半(3 1/2)数字表。
如:U是厶(0.1 mV)的1861倍,即N=1861,显示结果为186.1(mV)。
一款3位半直流数字电压电流表的设计与制作
一款3位半直流数字电压电流表的设计与制作作者:汤德荣刘苏英来源:《赤峰学院学报·自然科学版》 2014年第5期汤德荣,刘苏英(安徽机电职业技术学院,安徽芜湖 241000)摘要:本文所阐述的3位半直流数字电压电流表表头单独设计,主芯片使用ICL7107,其他部分采用分压分流电阻及直键开关的巧妙组合实现.采用纯硬件电路设计,具有性能稳定、测量准确、使用方便等优点,是很多实验实训装置所普遍选用的一款电压电流表.关键词:表头;直键;电压电流表中图分类号:TM933.22 文献标识码:A 文章编号:1673-260X(2014)03-0070-02直流数字电压电流表是一位电子爱好者学习和工作所必须使用的工具之一,也是很多教学仪器上所必须加载的仪表之一.因而要求它一定要性能稳定、测量准确、使用方便.本款直流数字电压电流表就具备这些特点,它在我院使用中每年要面对成百上千的学生,使用9年,一次不坏,仍然精确.可见这款数字电压电流表的设计有多么的成熟、完美.该3位半直流数字电压电流表主要有表头、主电路和电源电路三部分组成.表头部分主要由A/D转换器ICL7107进行A/D转换,用4位共阳极数码管进行显示.主电路部分主要由高精度的固定电阻和微调电阻来进行分压分流,并负责测量电流时把电流转换为电压,电压电流切换和量程切换由直键开关来控制.电源主要由变压器变压、二极管整流、电容滤波和三端稳压器稳压四部分组成.整个电路设计严谨,容易制作.1 电路原理分析1.1 表头电路表头电路原理如图1所示.ICL7107是一块双积分型A/D转换器,能直接驱动共阳极数码管显示器,通过内部的模拟开关实现自动调零和自动极性显示,应用非常广泛.ICL7107最大显示值为±1999,最小分辨率为0.1mV.采用士5V双电源供电.第36、35脚为基准电压(Uref),通常有100mV和1V/0.8V两种基准,对100mV基准:R1=11.3 KΩ,R2=953Ω,R3=47KΩ,W1=100Ω,C1=0.47μF,对1V/0.8V基准:R1=3.6KΩ/10KΩ,R2=19.1KΩ,R3=470KΩ,W1=2KΩ,对1V/0.8V基准:R1=3.6KΩ/10KΩ,R2=19.1 KΩ,R3=470KΩ,W1=2KΩ,C1=0.047μF,图中稳压管使用LM385,稳压值为1.25V;第31、30脚为待转换的模拟电压(Uin),要求在直流2V以下;第37脚为测试端,当其短接到V+时,表头显示‘—1888’,可用于对线路及数码管好坏的检查;第27、28、29脚分别接数值为0.22μF、47KΩ、0.47μF的阻容元件构成阻容网络,这三个元件属于芯片工作的积分网络,不能使用磁片电容.第33、34脚接0.1μF基准电容,该电容也不能使用磁片电容.第38、39、40是芯片时钟振荡器的引出端,外接阻容元件构成振荡器,第38脚至第40脚电容量的选择可根据公式Fosl=0.45/RC来确定,该电容也不能使用磁片电容,本电路选择R=110KΩ,C=100pF,若此处不正常,表头会显示‘1666’.这部分电路中的基准电容(Cref)、积分网络所用电(CINT)在满足电容值的前提下要求不漏电,此处电容不好通常表现为显示线性不好(CINT)或跳字.转换结果显示数值为(Uin/Uref)*1000,其中最高位负责千位的显示,只能显示0和1两位数字,其余三位都能从0显示到9.它们对应的笔画可直接接ICL7107对应输出引脚上,公共端阳极经30Ω限流电阻接+5V电源上.芯片不驱动小数点,常将三个小数点对应的发光二极管负极(数码管h段)和公共端(430Ω电阻一端)引出做成插座,点亮小数点则只需将公共端与某一个小数点对应的发光二极管负极短接即可点亮.具体小数点切换电路在直流数字电压电流表电路中,主要靠开关控制.1.2 电压电流板主板电路电压电流表主板电路如图2所示.图2中电源部分主要产生两路电源:一路是±5V电源,为整个电压电流表电路供电;一路是+5V电源,为表头电路供电,这一路电源虽然放在电压电流表电路中,却跟整个电压电流表电路没有关系,只是为表头供电.所以在接线时,千万不能把两路电源的“地”端GND1和GND2直接连在一起.图2中电压部分和电流部分主要采用电阻和电位器组成分压电路,再结合一些开关进行电压表和电流表的量程扩展和选择.图2中控制部分主要是利用直键开关进行电压和电流之间的切换及不同量程的切换.主要包括直键开关、集成运放ICL7650、继电器、二极管和一些阻容元件.其中ICL7650是第四代斩波稳零运放,当测量电流且选择2mA量程时,继电器线圈得电,常开开关闭合,ICL7650的反相输入端接通电路中的A点,可以通过调节A点电位的高低,使测量更准确.其他时候ICL7650的反相输入端悬空,运放作为跟随器用.二级管VD9主要起保护作用,发光二极管D1和D2分别是测量电压和电流的指示灯,当直键K1弹起,测量电压,D1亮,当直键K1被按下,测量电流,D2亮.另外图中还有七个插座,其中J3接电源变压器,J4是±5V直流电源输出端,J5是+5V 直流电源输出端,J2有表头电源引出端、运放输出端(接表头输入)、3个小数点端和1个小数点公共端8个端子,用排线接表头电路上对应的插座J8,J1是电压电流输入端,引出接被测电压和电流,J6 是电压电流表主板电路部分电源,在±5V直流电源调试好之后,用排线把J6和J4连接起来,J7表头电源插座,在+5V直流电源调试好之后,用排线把J7和J5连接起来.2 电路制作2.1 3位半数字电压表头的装配与调试(按照测量=±199.9mV来说明)(1)确保ICL7107芯片没有装反,各元件没有装错.(2)测量时注意接地引脚:芯片的电源地是21脚,模拟地是32脚,信号地是30脚,基准地是35脚.(3)测量关键点电压:芯片第1脚是正电源引脚,正确电压是5V.第26引脚是负电源引脚,正确电压数值是负值.第36脚是基准电压,正确数值是100mV.(4)将第37脚短接到V+,看表头是否显示‘—1888’,检查线路及数码管的好坏.(5)如果表头只显示‘1666’,检查第38、39、40脚上的振荡元件.(6)芯片的第31引脚是信号输入引脚,可以输入±199.9mV的电压.在一开始,可以把它接地,造成“0”信号输入,以方便测试.(7)如果电路连接和电压数值都是正常的,也没有“短路”或者“开路”故障,那么,电路就应该可以正常工作了.调出非常准确的50mV,100mV,190mV三个电压,依次输入到ICL7107的第31脚和30脚之间,数码管应显示50.0,100.0, 190.0,允许有2-3个字的误差.如果差别太大,可以微调一下36脚的电压.(8)检查比例读数:把31脚与36脚短接,数码管应显示100.0,通常在99.7-100.3之间,越接近100.0越好.2.2 直流数字电压电流表主板电路的装配与调试(1)装调电源电路.(2)装配其他部分电路,完毕后用万用表初步检查电路通断,尤其是直键开关的通断.2.3 综合调试将主板电路和表头电路对接起来,尤其注意连接排线不能接反.调出多组电压值,使其分布在电压表的四个量程中,检查调试电压表电路;调出多组电流值,使其分布在电流表的四个量程中,检查调试电流表电路.在每次测量时,用数字万用表同步测量一遍,把自制电压电流表测量结果和数字万用表测量结果进行比较,看结果是否相同.至此,一块3位半直流数字电压电流表就制作完成了,该表表头使用ICL7107芯片,单独设计,其他部分采用分压分流电阻及直键开关的巧妙组合实现,采用纯硬件电路设计.具有多重保护电路,按200mV/2mA、2V/20mA、20V/200 mA、200V/2A分档,测量准确度高,性能稳定、使用方便,应用及其广泛.参考文献:〔1〕刘苏英.数字电子技术基础.北京:机械工业出版社,2013.。
交直流数字电流表设计
1.本课题所涉及的问题及应用现状综述研究问题:设计一个电流测量模块,可对直流或交流的电流大小进行测量,测量范围为0-10A,测量结果可显示或以标准接口方式输出。
主要技术指标:供电电压:220V (+_10%)测量范围:0—10A设计拟采用电流耦合器,把大电流转变为小电流,然后再对其采样。
控制器可采用其它AT89C52单片机或其它高级处理器。
国内外发展状况:85C1电流表经过多年来的发展,在国内已经形成完整成熟的产业链,上下游厂家近万家。
对85C1的生产和发展提供了良好的氛围。
据目前统计来看国内生产厂家有近千家,大都完成了技术改造。
由单一走向全面。
CS5460A是美国Crystal公司推出的一款用于测量电压、电流、功率、能量的集成芯片,该芯片的主要特点是精度高、性能强、成本低且无需微控制器也可独立运行,它是CS5460的增强版。
C8051F310是美国Silicon Labs公司推出的一款具有8051内核的高性能单片机,它的运行速度为普通8051单片机的12倍,主要特点是高速率、低功耗、外围器件少、可靠性高。
现代工业仪器仪表的发展,不但取决于产品技术水平,而且涉及工程应用技术。
近年来,不少测控设备生产企业以及火电、石化、冶金等应用部门的科技型企业和工程公司在应用软件开发和系统集成技术等方面有了相当进展,通过承担国外控制系统和产品的工程应用,掌握了一批大型工程和装置的自控应用技术。
但随着国外现场总线、SOLUTION、MIV、EPC等技术和工程总成方式的发展,我国自控系统及现场仪表进入大型工程的困难将进一步增加。
与国外相比有如下差距:差距一:产品可靠性差。
现代工业仪器仪表的总体特征是高可靠性、高性能、高适用性,我国企业的大部分产品与国外产品的差距也正是在这方面。
例如,我国自行研发的分散型控制系统(DCS)和电磁流量计,这些产品的基本性能和功能已接近国际水平,但在可靠性和工程应用能力等方面尚有一定差距。
数字电流表课程设计
摘要电学参量测量技术涉及范围广,特别是电压、电流表广泛适用于学校、工业、科研、国防等各种领域,供实验室和工业现场测试用。
随着电子技术的发展,在数字化、智能化、科技化为主的今天,数字化电流表已成为电流表设计的主要方向,在当前电流测量系统心中占有非常重要的位置。
本设计主要采用A T89C52芯片和ADC0808芯片来完成一个直流数字电流表的设计.有10A、1A、100mA三档量程的切换,该量程切换是通过按键来完成的。
测量的结果通过一个4位一体的8段数码管进行显示。
此电流表有三个部分组成:A/D转换模块、数据处理模块、显示模块。
A/D转换主要由ADC0808来完成,它负责把采集到的模拟量转换为相应的数字量,再传到数据处理,进行标度变换,最后处理好的数据送数码管显示.关键词:数字电流表AT89C52 A/D转换LED显示正文一、系统硬件设计1.1硬件设计框图1.2 数字电流表的工作原理用单片机及其扩展的外部电路先做成一个理想电压表[3],图1中用G表示。
由于通常所说的电流表是指灵敏电流计其量程太小,不能直接测量电流,仅用于检测有无电流和电流的方向,所以要想得到一个有多量程或量程较大的电流表需要将一个理想电压表改装而成。
本设计是用一个内阻视为无穷大的电压表并联分流电阻而成的数字电流表。
待测电流I随搬动开关K的位置而流过R1或R2,因而本电流表的两个量程就取决于G的满量程电压和R1、R2的阻值,记G的满量程电压为Ug,根据欧姆定律Ug=RgIg,若Ug和Rg已知则Ig就是电流表的满量程电流。
图1.2.1数字电流表的基本原理1.3 防反接保护、过流保护电路用二极管作为防反接保护,如果电流反向因为二极管的作用所以电路就不会导通。
用熔断器做过流保护,一但输入的电流大于设定的值后熔断器就会自动断开。
电路如图2所示:图1.3.1过流、防反电路1.4 量程选择及量程显示方案一、采用纯硬件搭建技术,利用元器件组成量程转换电路。
数字式直流电流表的设计
摘要直流数字电流表的诞生打破了传统电子测量仪器的模式和格局。
它显示清晰直观、读数准确,采用了先进的数显技术,大大地减少了因人为因素所造成的测量误差事件。
数字电流表是建立在数字电压表的基础上,让电压表与电阻串联,其显示的是电流,数字电压表是把连续的模拟量(直流输入电压)转换成不连续、离散的数字形式,并加以显示的仪表。
数字电流表把电子技术、计算技术、自动化技术的成果与精密电测量技术密切的结合在一起,成为仪器、仪表领域中独立而完整的一个分支,数字电流表标志着电子仪器领域的一场革命,也开创了现代电子测量技术的先河。
本设计采用了以单片机为开发平台,控制系采用AT89C52单片机,A/D转换采用ADC0809。
系统除能确保实现要求的功能外,还可以方便进行8路其它A/D转换量的测量、远程测量结果传送等扩展功能。
简易数字电流测量电路由A/D转换、数据处理、显示控制等组成。
目录第一章引言错误!未定义书签。
1.1引言错误!未定义书签。
1.2课题研究的现状和发展趋势错误!未定义书签。
1.3智能仪表目前发展状况1第二章设计任务及可行性分析32.1系统设计要求32.2系统设计思路32.3总体结构32.3.1数字电流表的组成32.3.2电路设计42.3.310倍放大器电路42.3.4A/D转换电路52.3.5电桥输入电路62.3.6测量电路6第三章元器件的选择83.1单片机的选择83.2A/D转换器的选择93.3LED显示电路的选择93.4所需元器件清单10第四章数字式电流表的软件设计114.1系统程序设计总方案11 4.2系统子程序设计114.2.1初始化程序114.2.2A/D转换子程序114.2.3显示子程序124.3系统程序代码13第五章数字式电流表的调试14 5.1软件调试165.2显示结果及误差分析165.2.1显示结果165.2.2误差分析17第六章结论19参考文献20第一章引言1.1 引言传统的指针式刻度电流表功能单一,精度低,容易引起视差和视觉疲劳,因而不能满足数字化时代的需求。
直流电流表设计
摘要本次设计的毕业题目是直流电流表,它是以单片机8051为核心,主要由将输入的模拟量转换为数字量的A/D转换器ADC0809,译码器7447,三个数码管显示器LED构成。
早期测量所使用的仪表都是机械模拟式的,模拟式仪表必须借助于指针和刻度盘进行读数,在读数过程中不可避免的会引入人为的测量误差。
直流电流表则采用先进的数显技术,使测量结果一目了然,只要仪表不发生跳读现象,测量结果就是唯一的。
本论文第一章为概述,对整个设计有个大体的了解;第二﹑三﹑四章主要介绍直流电流表的硬件结构;第五章介绍软件部分,主要的流程图﹑程序清单并附有原理图。
关键词:单片机 A/D转换器译码器数码显示管AbstractThis design graduation topic is the DC ammeter, measured the scope DC voltage is0~51V, the precision is 0.1. It will be take the monolithic integrated circuit 8051 as the core, mainly by the simulation quantity which inputs transforms into digital quantity A/D switch ADC0809, the decoder 7447, three digital tube monitor LED constitution. The early survey uses the measuring appliance all is the mechanical analogy -like, the simulation type measuring appliance must draw support in the indicator and the calibrated dial carries on the reading, inevitable can introduce the artificial measuring error in the reading process. The DC ammeter uses the advanced number to reveal the technology, causes the measurement result to be clear, so long as the measuring appliance does not occur skips the phenomenon, the measurement result is only.The present paper first chapter is an introduction, has the cardinal principle understanding to the entire design; Second, three, four chapter of main introduction numeral voltmeter hardware construction; The fifth chapter introduction software, mainly has the flow chart, the procedure detailed list and attaches the schematic diagram. Keyword:MCS-51 ADC0809 7447 LED目录摘要 (i)Abstract (ii)第一章绪论 (1)第一节单片机的应用简介 (1)第二节设计目的及要求 (2)一设计目的 (2)二具体要求 (3)第二章 MCS-51单片机的硬件结构 (4)第一节单片机概述、应用及发展 (4)一单片机的简介 (4)二单片机的发展状况 (5)三单片机的应用领域 (7)四单片机的发展趋势 (8)第二节 MCS—51单片机的内部结构 (9)第三节 MCS—51的引脚及描述 (10)一 8051的基本特性 (10)二 8051引脚图及芯片引脚说明 (11)第四节输出/输入端口 (12)一 P0口 (12)二 P1口 (13)三 P2口 (14)四P3口 (15)第三章模拟/数字转换器 (17)第一节数字直流电流表 (17)一数字直流电流表的特点 (17)二数字仪表的发展趋势 (19)第二节 A/D转换器 (20)一 A/D转换器的工作原理 (20)二 A/D转换的参数 (22)三 A/D转换的外围电路 (23)第三节ADC0809引脚及使用说明 (24)一ADC0809芯片管脚图及引脚说明 (24)二 ADC0809对输入模拟量要求 (25)三功能说明 (26)第四章译码显示部分 (28)第一节 LED显示器及接口 (28)一七段LED显示器 (28)二七段LED显示器工作原理 (29)第二节 7447译码器的简介 (30)一功能说明及引脚图 (30)二功能说明 (31)第五章数字直流电流表的软件设计 (32)一程序流程图 (32)二程序清单 (32)三数字直流电流表的原理图 (35)结束语 (36)参考文献 (37)致谢 (38)第一章绪论我的毕业设计的题目是数字直流电流表。
电工多量程直流电压表电流表的设计
电工多量程直流电压表电流表的设计电工技术项目教程电工多量程直流电压表电流表的设计【项目内容】电路模型和电路中的物理量电路中常用元器件的认识;电源和负载基尔霍夫定律及应用。
电压源、电流源及等效变换戴维南定理多量程直流电压表、电流表电路的设计。
【项目知识目标】了解电路的组成,电路模型的概念理解电路中的物理量的意义,电流、电压的正方向和参考正方向的概念; 掌握电路中电位的计算方法、电功率的计算理解电阻串联电路的等效变换及分压公式,电阻并联电路的等效变换及分流公式,较熟练地进行一般电阻混联电路的等效变换掌握基尔霍夫电流和电压定律,掌握支路电流法,能较熟练地利用支路电流法求解较复杂的电路;理解电压源和电流源的特性,掌握两种电源模型的等效变换的方法理解戴维�1�7�1�7定理,掌握用戴维南定理求解电路的方法能分析实际的直流电路。
电工技术项目教程任务2.1 认识电路〖任务描述〗在人们的生活实践、生产实践及其他各类活动中,已普遍地使用电能,可以说人们已离不开电能的使用。
电路是传输或转换电能不可缺少的"载体"。
本任务学习电路的组成及作用、理想电路元件及电路模型;电路中的物理量;电阻器、电容器、电感器的参数,电流与电压的关系;简单直流电路的连接及测试。
〖任务目标〗了解电路的组成,电路模型的概念,电阻器、电容器、电感器的作用;理解电路中的物理量的意义,电流、电压的正方向和参考正方向的概念;掌握电路中电位、电功率的计算方法,电阻、电容、电感的电流与电压的关系;掌学习安装简单直流照明电路;学会使用稳压电源、直流电压表、电流表的使用方法。
电工技�1�7�1�7项目教程1.电路的组成及作用2.理想电路元件及电路模型3.电路中的物理量例2.1 如图2.3所示电路,已知试求分别以A点、B点为参考点时,各点的电位V A 、V B 、V C 、V D 及U CD 。
解以A 点为参考点时V A =0V(零电位点的电位为零) V B =-I 3 R 3=10×6=60(V) V C =I 1 R 1 =4×20=80(V) V D =I 2 R 2 =6×5=30(V) U CD =V C -V D =8030=50(V) 以B点为参考点时V B =0V V A =I 3 R 3 =10×6=60(V) V C =E 1 =140(V) V D =E 2 =90(V) U CD =V C -VD =14090=50(V) S R L R oE 图2.2 电路模型图2.3 例2.1图E 2E 1 R 1 R 2 R 3 A B I 1 I 2 I 3 C D 电工技术项目教程例2.2 图2.6所示为某电路的部分电路,已知E=4V, R=1Ω,求(1)当Uab= 6V,I=(2)当Uab=1V,I=bI图2.6 例2.2图ERa 解(1)设定电路中物理量的参考方向如图2.6所示�1�7�1�7 (A) I>0表明电流的实际方向与参考方向一致。
直流数字电流表设计
唐山学院测控系统原理课程设计题目直流数字电流表设计系 (部) 机电工程系班级姓名学号指导教师2014 年 03 月 02 日至 03 月 13 日共两周2014年 03 月 13 日测控系统原理课程设计任务书课程设计成绩评定表目录摘要 (2)1.硬件设计 (3)1.1 数字电流表的工作原理 (3)1.2过流、防反接保护 (3)1.3 放大器 (4)1.4 A/D转换 (4)1.5量程选择及量程的显示 (6)1.6 LED显示 (6)2.软件设计 (6)2.1系统的组成框图 (6)2.2软件流程图 (7)2.3硬件图 (8)3.总结 (9)4.参考文献 (10)附录一元器件清单 (11)附录二程序代码 (12)附录三设计仿真结果 (18)摘要本设计主要采用AT89C52单片机和ADC0808芯片来完成一个直流数字电流表的设计.有10A、1A、100mA三个量程可选,该量程切换是通过按键来完成的.测量的结果通过一个4位一体的8段数码管显示.该电流表有三个部分组成:A/D转换模块、数据处理模块、显示模块.A/D转换主要由ADC0808来完成,它负责把采集到的模拟量转换为相应的数字量,再传到数据处理,进行标度变换,最后把处理好的数据用数码管显示。
关键词数字电流表,AT89C52,A/D转换1.系统的工作原理1.1数字电流表的工作原理用单片机及其扩展的外部电路先做成一个理想电压表,如图1中用G表示。
由于通常所说的电流表是指灵敏电流计,其量程太小,不能直接测量电流,所以要想得到一个有多量程或量程较大的电流表需要将一个理想电压表改装而成。
本设计是用一个内阻视为无穷大的电压表并联分流电阻而成的数字电流表。
待测电流I随搬动开关K的位置而流过R1或R2,因而本电流表的两个量程就取决于G的满量程电压和R1、R2的阻值,记G的满量程电压为Ug,根据欧姆定律Ug=RgIg,若Ug和Rg已知则Ig就是电流表的满量程电流。
1.2 过流、防反接保护用熔断器做过流保护,二极管做防反接保护。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章设计任务及可行性分析1.1总体结构1.1.1数字电流表的组成图2.2 数字电流表的组成框图数字直流电流表的核心是A/D转换器。
按系统功能实现要求,决定控制系统采用AT89C51单片机,A/D转换采用ADC0809。
系统除能确保实现要求的功能外,还可以方便地进行8路其他A/D转换量的测量和远程测量结果传送等扩展功能。
数字电流表系统设计方案框图如图 2.3所示。
AT89C51P0P2P1ADC08094位LED显示上电复位串口通信电源电路图2.3 数字电流表系统设计方案框图1.2所需元器件清单表3.1所需元器件材料表第二章达到的技术指标1、可以测量0-5V的8路输入电压值;2、测量结果可在四位LED数码管上轮流显示后单路选择显示;3、测量最小分辨率为0.019A;4、测量误差约为+0.0AV;第三章数字式电流表的硬件设计3.1主要元器件的介绍3.1.1单片机AT89S51AT89S51是美国ATMEL公司生产的低功耗、高性能CMOS 8位单片机。
图4.2和4.3分别为其实物图和内部总体结构图。
AT89S51的引脚AT89S51芯片为40引脚双列直插式封装,其引脚排列如图4.2所示。
图4.2 AT89S51的引脚图(1)VCC:电源电压;(2)GND:接地;(3)P0口:P0口是一组8位漏极开路双向I/O口,每位引脚可驱动8个TTL 逻辑门路。
(4)P1口:P1口是一个内部提供上拉电阻的8位双向I/O口,P1口的输出缓冲器可驱动4个TTL逻辑门电路。
有第二功能,如表4.1所示。
表4.1 P1口的第二功能口,P2口的输出缓冲器可驱动4个TTL逻辑门电路。
(6)P3口:P3口是一个内部提供上拉电阻的8位双向I/O口,P3口的输出缓冲器可驱动4个TTL逻辑门电路。
P3口除了一般I/O线的功能外,还具有更为重要的第二功能,如表4.2所示。
P3口同时为FLASH编程和编程校验接收一些控制信号表4.2 P3口的第二功能平时间。
(8) ALE//RPOG:当访问外部存储器时,地址锁存允许的输出电平用于锁存地址的地位字节。
在FLASH编程期间,此引脚用于输入编程脉冲。
(9)/PSEN:外部程序存储器的选通信号。
在由外部程序存储器取指期间,每个机器周期两次/PSEN有效。
但在访问外部数据存储器时,这两次有效的信号将不出现。
(10)/EA/VPP:当保持低电平时,则在此期间外部程序存储器(0000H-FFFFH),不管是否有内部程序存储器。
注意加密方式1时,/EA将内部锁定为RESET;当/EA 端保持高电平时,此间内部程序存储器。
在FLASH编程期间,此引脚也用于施加12V编程电源(VPP)。
·定时器0和定时器1:AT89S51的定时器0和定时器1 的工作方式与AT89C51 相同。
定时和计数功能由特殊功能寄存器TMOD的控制位C/T进行选择,这两个定时/计数器有4种操作模式,通过TMOD的M1和M0选择。
其中模式0、1和2都相同,模式3不同。
·定时器2:定时器2 是一个16 位定时/计数器。
它既可当定时器使用,也可作为外部事件计数器使用,其工作方式由特殊功能寄存器T2CON的C/T2 位选择。
定时器2 有三种工作方式:捕获方式,自动重装载(向上或向下计数)方式和波特率发生器方式,工作方式由T2CON 的控制位来选择。
定时器2 由两个8 位寄存器TH2 和TL2 组成,在定时器工作方式中,每个机器周期TL2 寄存器的值加1,由于一个机器周期由12 个振荡时钟构成,因此,计数速率为振荡频率的1/12。
在计数工作方式时,当T2 引脚上外部输入信号产生由1 至0 的下降沿时,寄存器的值加1,在这种工作方式下,每个机器周期的5SP2 期间,对外部输入进行采样。
若在第一个机器周期中采到的值为1,而在下一个机器周期中采到的值为0,则在紧跟着的下一个周期的S3P1 期间寄存器加1。
由于识别1 至0 的跳变需要2 个机器周期(24 个振荡周期),因此,最高计数速率为振荡频率的1/24。
为确保采样的正确性,要求输入的电平在变化前至少保持一个完整周期的时间,以保证输入信号至少被采样一次。
·可编程时钟输出:定时器2 可通过编程从P1.0 输出一个占空比为50%的时钟信号。
P1.0 引脚除了是一个标准的I/O 口外,还可以通过编程使其作为定时/计数器2 的外部时钟输入和输出占空比50%的时钟脉冲。
当时钟振荡频率为16MHz 时,输出时钟频率范围为61Hz—4MHz。
·UART:AT89S51的工作方式与AT89C51工作方式相同。
串口为全双工结构,表示可以同时发送和接收,它还具有接收缓冲,在第一个字节从寄存器读出之前,可以开始接收第二个字节。
(但是如果第二个字节接收完毕时第一个字节仍未读出,其中一个字节将会丢失)。
串口的发送和接收寄存器都是通过SFR SBUF进行访问的。
写入SBUF的数据装入发送寄存器,对SBUF的读操作是对物理上分开的接收寄存器进行访问。
该串口有4种操作模式(模式0、模式1、模式2和模式3),在这4种模式中,发送过程是以任意一条写SBUF作为目标寄存器的指令开始的,模式0时接收通过设置R0=0及REN=1初始化,其他模式下如若REN=1则通过起始位初始化。
·中断:AT89S51共有6 个中断向量:两个外中断(INT0 和INT1),3 个定时器中断(定时器0、1、2)和串行口中断。
这些中断源可通过分别设置专用寄存器IE 的置位或清0 来控制每一个中断的允许或禁止。
IE 也有一个总禁止位EA,它能控制所有中断的允许或禁止。
定时器2 的中断是由T2CON 中的TF2 和EXF2 逻辑或产生的,当转向中断服务程序时,这些标志位不能被硬件清除,事实上,服务程序需确定是TF2 或EXF2 产生中断,而由软件清除中断标志位。
定时器0 和定时器1 的标志位TF0 和TF1 在定时器溢出那个机器周期的S5P2 状态置位,而会在下一个机器周期才查询到该中断标志。
然而,定时器2 的标志位TF2 在定时器溢出的那个机器周期的S2P2 状态置位,并在同一个机器周期内查询到该标志。
·时钟振荡器:AT89S51中有一个用于构成内部振荡器的高增益反相放大器,引脚XTAL1 和XTAL2 分别是该放大器的输入端和输出端。
这个放大器与作为反馈元件的片外石英晶体或陶瓷谐振器一起构成自激振荡器,振荡电路。
外接石英晶体(或陶瓷谐振器)及电容C1、C2 接在放大器的反馈回路中构成并联振荡电路。
对外接电容C1、C2 虽然没有十分严格的要求,但电容容量的大小会轻微影响振荡频率的高低、振荡器工作的稳定性、起振的难易程序及温度稳定性,如果使用石英晶体,我们推荐电容使用30pF±10pF,而如使用陶瓷谐振器建议选择40pF±10F。
用户也可以采用外部时钟。
采用外部时钟的电路。
这种情况下,外部时钟脉冲接到XTAL1 端,即内部时钟发生器的输入端,XTAL2 则悬空。
由于外部时钟信号是通过一个2 分频触发器后作为内部时钟信号的,所以对外部时钟信号的占空比没有特殊要求,但最小高电平持续时间和最大的低电平持续时间应符合产品技术条件的要求。
·Flash存储器的编程:AT89S51单片机内部有8k字节的Flash PEROM,这个Flash 存储阵列出厂时已处于擦除状态(即所有存储单元的内容均为FFH),用户随时可对其进行编程。
编程接口可接收高电压(+12V)或低电压(Vcc)的允许编程信号。
低电压编程模式适合于用户在线编程系统,而高电压编程模式可与通用EPROM 编程器兼容。
·数据查询:AT89S51 单片机用Data Palling 表示一个写周期结束为特征,在一个写周期中,如需读取最后写入的一个字节,则读出的数据的最高位(P0.7)是原来写入字节最高位的反码。
写周期完成后,所输出的数据是有效的数据,即可进入下一个字节的写周期,写周期开始后,Data Palling 可能随时有效。
·Ready/Busy:字节编程的进度可通过“RDY/BSY 输出信号监测,编程期间,ALE 变为高电平“H”后,P3.4(RDY/BSY)端电平被拉低,表示正在编程状态(忙状态)。
编程完成后,P3.4 变为高电平表示准备就绪状态。
·程序校验:如果加密位LB1、LB2 没有进行编程,则代码数据可通过地址和数据线读回原编写的数据,采用如图12的电路。
加密位不可直接校验,加密位的校验可通过对存储器的校验和写入状态来验证。
·芯片擦除:利用控制信号的正确组合并保持ALE/PROG 引脚10mS 的低电平脉冲宽度即可将PEROM 阵列(4k字节)和三个加密位整片擦除,代码阵列在片擦除操作中将任何非空单元写入“1”,这步骤需再编程之前进行。
3.1.2A/D转换芯片ADC0809ADC0809是典型的8位8通道逐次逼近式A/D转换器,其实物如图1-3所示。
它可以和微型计算机直接接口。
ADC0809转换器的系列芯片是ADC0808,可以相互替换。
3.1.3ADC0809内部逻辑结构图4.3 ADC0809的内部逻辑结构图ADC0809的内部逻辑结构如图4.7所示。
图中多路模拟开关可选通8路模拟通道,允许8路模拟量分时输入,并共用一个A/D转换器进行转换。
地址锁存与译码电路完成对A、B、C三个地址位进行锁存与译码,如表4.3所示。
表4.3 ADC0809通道选择表C(ADDC) B(ADDB) A(ADDA) 选择的通道0 0 0 IN00 0 1 IN10 1 0 IN20 1 1 IN31 0 0 IN41 0 1 IN51 1 0 IN61 1 1 IN73.1.4ADC0809的引脚ADC0809芯片为28引脚双列直插式芯片,其主要功能:(1)IN0~IN7:8路模拟量输入通道。
(2)A、B、C:模拟通道地址线。
这3根地址线用于对8路模拟通道的选择,其译码关系如表4.3所示。
其中,A为低地址,C为高地址,引脚图中为ADDA,ADDB 和ADDC。
(3)ALE:地址锁存允许信号。
对应ALE上跳沿,A、B、C地址状态送入地址锁存器中。
(4)START:转换启动信号。
START上升沿时,复位ADC0809;START下降沿时启动芯片,开始进行A/D转换;在A/D转换期间,START应保持低电平。
本信号有时简写为ST。
(5)D7~D0:数据输出线。
为三态缓冲输出形式,可以和单片机的数据线直接相连。
D0为最低位,D7为最高。
(6)OE:输出允许信号。
用于控制三态输出锁存器向单片机输出转换得到的数据。
OE=0,输出数据线呈高阻;OE=1,输出转换得到的数据。