散热风扇风机选型计算

合集下载

风机选型计算公式

风机选型计算公式

风机选型计算公式1.风量计算公式:风量(Q)=A×v其中,A为风机的进口面积或出口面积,v为风速。

2.静压计算公式:静压(SP)=ρ×v²/2其中,ρ为空气密度,v为风速。

3.风机功率计算公式:功率(P)=Q×SP/367其中,Q为风量,SP为静压。

公式中的367是一个系数,以确保功率以合适的单位输出(通常以kW为单位)。

4.风机效率计算公式:效率(η)=(Q×SP)/(6350×P)其中,Q为风量,SP为静压,P为功率。

公式中的6350是一个系数,以确保效率以百分比形式输出。

5.风机类型选择:风机类型的选择需要考虑多个因素,包括所处环境、工艺特点和需求等。

以下是一些常见的风机类型及其适用范围:-离心风机:适用于需要较高风量和静压的场合,例如通风、排气和送风系统。

-轴流风机:适用于需要大风量、较低静压和较小噪声的场合,例如长距离输送空气、冷却和通风系统。

-混流风机:适用于风量和静压介于离心风机和轴流风机之间的场合,例如楼宇通风和空调系统。

6.风机选型注意事项:在进行风机选型计算时,需注意以下几点:-考虑系统的总阻力:需要综合分析系统中管道、风管和过滤器等元件对风机的影响,确保所选风机能满足系统的总阻力要求。

-考虑安全系数:通常情况下,选型时需要考虑一定的过量能力,以应对可能的负荷波动和未来的系统扩展需求。

-考虑风机的运行特性:包括风机的起动过程、运行稳定性和控制方式等。

以上是风机选型计算公式和相关内容的简要介绍。

实际应用中,还需根据具体要求和工况情况,结合相应的风机选型手册和标准,进行详细的计算和选型。

科学家告诉你散热风扇的风量计算公式

科学家告诉你散热风扇的风量计算公式

科学家告诉你散热风扇的风量计算公式详细介绍以下:编辑一、先需务必掌握一些己知标准:1、1卡相当于1g重0℃的水使其溫度升高1℃需要的发热量。

2、1瓦特的输出功率工作中一秒钟相当于1焦耳。

3、1卡相当于焦尔4、气体的均匀(10mmAq)定压比热(Cp)=(Kcal/Kg℃)5、标准状况气体:溫度20℃、大气压力760mmHg、环境湿度65%的湿冷气体为规范气体,这是企业体即气体的净重(别称比净重)为1200g/M*36、CMM、CFM全是指每分所排出来气体容积,前面一种企业为立方/每分;后面一种企业为立方米英呎/每钟。

1CMM=。

二、公式计算测算1、获知:散热风扇总排出来发热量(H)=定压比热(Cp)×净重(W)×器皿容许升温(△Tc)由于:净重W=企业中间(每秒钟)容积乘于相对密度也即:净重W=(CMM/60)×D也即:净重W=(CMM/60)·1200g/M*3也即:净重W=(Q/60)×1200g/M*3因此:总发热量(H)=(Q/60)·1200g/M*3·△Tc2、家用电器发热量(H)=(P[输出功率]t[秒])/3、由一、二获知:(Q/60)·1200g/M*3·△T c=(P·t)/解答:Q=(P×60)/1200···△Tc解得:Q=△T c………………………………………………(CMM)解得:Q=·35.3P/△T c=P/△T c…………………………(CFM)4、计算华氏度数(温度差每1摄氏温度相当于华氏温度)为:Q=·P/△Tf=P/△Tf………………………(CMM)Q=·P/△Tf=3.16P/△Tf…………………………(CFM)三、案例例一:有一电脑上耗费输出功率150瓦,散热风扇耗费5瓦,当夏天平均气温噶30℃,设CPU容许工作中60℃,所需散热风扇风量。

散热器选型-散热面积理论计算及风扇选择

散热器选型-散热面积理论计算及风扇选择

散热器选型-散热面积理论计算及风扇选择散热器选型,散热面积理论计算及风扇选择。

散热器选择的计算方法一,各热参数定义:Rja———总热阻,℃/W;Rjc———器件的内热阻,℃/W;Rcs———器件与散热器界面间的界面热阻,℃/W;Rsa———散热器热阻,℃/W;Tj———发热源器件内结温度,℃;Tc———发热源器件表面壳温度,℃;Ts———散热器温度,℃;Ta———环境温度,℃;Pc———器件使用功率,W;ΔTsa ———散热器温升,℃;二,散热器选择:Rsa =(Tj-Ta)/Pc - Rjc -Rcs式中:Rsa(散热器热阻)是选择散热器的主要依据。

Tj 和Rjc 是发热源器件提供的参数,Pc 是设计要求的参数,Rcs 可从热设计专业书籍中查表,或采用Rcs=截面接触材料厚度/(接触面积X接触材料导热系数)。

(1)计算总热阻Rja:Rja= (Tjmax-Ta)/Pc (2)计算散热器热阻Rsa 或温升ΔTsa:Rsa = Rja-Rtj-RtcΔTsa=Rsa×Pc(3)确定散热器按照散热器的工作条件(自然冷却或强迫风冷),根据Rsa 或ΔTsa 和Pc 选择散热器,查所选散热器的散热曲线(Rsa 曲线或ΔTsa 线),曲线上查出的值小于计算值时,就找到了合适的热阻散热器及其对应的风速,根据风速流经散热器截面核算流量及根据散热器流阻曲线上风速对应的阻力压降,选择满足流量和压力工作点的风扇。

散热器热阻曲线~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 三,散热器尺寸设计:对于散热器,当无法找到热阻曲线或温升曲线时,可以按以下方法确定:按上述公式求出散热器温升ΔTsa,然后计算散热器的综合换热系数α:α=7.2ψ1ψ2ψ3{√√ [(Tf-Ta)/20]}式中:ψ1———描写散热器L/b 对α的影响,(L 为散热器的长度,b 为两肋片的间距);ψ2———描写散热器h/b 对α的影响,(h 为散热器肋片的高度);ψ3———描写散热器宽度尺寸W 增加时对α的影响;√√ [(Tf-Ta)/20]———描写散热器表面最高温度对周围环境的温升对α的影响;以上参数可以查表得到。

关于电箱散热风扇的选择

关于电箱散热风扇的选择

关于电箱散热风扇的选择1.根据经验公式:电箱总功率的3%会转化为热量2.设定△t:△t=t1-t2t1:电箱内元器件的最高工作温度(60℃)t2:电箱外面的温度(30℃)△t =60-30=30℃即电箱内的温升不能超过30℃3.电风扇的选择:根据经验公式:电风扇的流量Q=0.05P/△t单位:(CMM)立方米/每分钟4.例:(1) 电箱总功率=100W△t =60-30=30℃发热量(H)100KWX3%=3KWQ=0.05P/△t=0.05X3000/30=5立方米/每分钟(2)选风扇:风量为300立方米/每小时5.关于公式Q=0.05P/△t 的推导:式:⑴.1卡 = 1g重0℃的水使温度上升1℃的热量。

⑵.1瓦特的功率工作1秒钟 = 1焦耳⑶.1卡 = 4.2焦耳⑷.空气的定压(10mmAq)比热(CP)=0.24(Kcal/kg℃)⑸. 标准状态空气:温度20℃,大气压760mm/Hg,湿度65%的潮湿空气为标准空气,此时,单位体积的重量(又称比重量)为1200g/m^3⑹.CMM 指每分钟排除的空气体积,单位为立方米/每分钟。

式⑺风扇总排出热量(H)=比热(CP)x重量(W)x容器允许温升(△t)∵重量(W)= 代入式⑹=(CMM/60)x D 即单位之间(每秒)体积x密度= 代入式⑸= (Q/60)x1200g/m^3∴总热量(H)=0.24(Q/60) x1200g/m^3 x △t ---式⑻又总热量(H)= 电器热量(H)=【P(功率) x t(秒)】/4.2代入式⑻0.24(Q/60) )x1200g/m^3 x △t =P/4.2(Q/60)x1200x△t =P/4.2x0.24Q=Px60/1200x△t=0.05P/△t林绍国19/Oct-2011。

设备散热器风扇的选型和设计计算

设备散热器风扇的选型和设计计算

设备散热器风扇的选型和设计计算一、了解设备散热需求首先,需要准确了解设备的散热需求。

散热需求取决于设备的功率消耗、温度要求和工作环境等因素。

通常,功率消耗越高、温度要求越低、工作环境越苛刻,散热需求就越大。

二、计算散热功率在了解设备散热需求后,需要计算所需的散热功率。

散热功率的计算可以使用下述公式:Q=P×(T2-T1)/η其中,Q为散热功率(单位为瓦特),P为功率消耗(单位为瓦特),T2为设备工作温度(单位为摄氏度),T1为环境温度(单位为摄氏度),η为设备的热效率。

三、确定散热器类型根据散热功率和设备系统的特点,选择合适的散热器类型。

常见的散热器类型包括散热片(fin heat sink)、板式散热器(plate heat sink)、液冷散热器(liquid cooling heat sink)等。

四、计算散热器尺寸根据散热功率和散热器类型,计算散热器的尺寸。

散热器尺寸的计算可以使用估算法或者CFD模拟仿真方法。

估算法通常是基于实验数据和经验公式,而CFD模拟仿真方法可以提供更精确的结果。

五、选择合适的风扇根据散热器尺寸和散热需求,选择合适的风扇。

风扇的选型要考虑风量、风压、噪音、寿命等因素。

一般而言,风量和风压越大,散热效果越好,但噪音也会增加。

六、确定风扇位置和安装方式风扇的位置和安装方式对散热效果有重要影响。

一般而言,风扇应尽可能靠近散热表面并与之紧密结合,以提高热量传递效率。

此外,还需要保证风扇的气流方向和设备散热方向一致。

七、进行散热系统热流仿真分析为了验证散热系统的设计效果,可以进行热流仿真分析。

通过仿真分析,可以获得散热器各部位的温度分布和热流路径,从而优化设计。

以上是设备散热器的选型和设计计算的一般原理和步骤。

在实际应用中,还需要根据具体设备的要求和限制进行合理调整和优化。

此外,还需要注意散热系统的维护和保养,以确保其长期稳定工作。

风扇、电缆及开关选型计算公式

风扇、电缆及开关选型计算公式

风扇、电缆及开关选型计算公式1. 风扇选型计算公式风扇选型是为了确定所需的风量和适当的型号。

以下是常用的风扇选型公式:a. 风量计算风量(Q)的计算公式如下:Q = A * V * n其中,Q:风量(m³/h)A:风口面积(m²)V:风速(m/s)n:单位时间内的换气次数b. 功率计算功率(P)的计算公式如下:P = Q * Δp / η其中,P:功率(W)Q:风量(m³/h)Δp:风压(Pa)η:风机效率2. 电缆选型计算公式电缆选型是为了确定所需的电缆截面积。

以下是常用的电缆选型公式:a. 电流容量计算电流容量(I)的计算公式如下:I = K * S * λ其中,I:电流容量(A)K:电缆导体材料的导电能力系数S:电缆截面积(mm²)λ:电缆散热系数b. 电压降计算电压降(Vd)的计算公式如下:Vd = I * L * Ï• / (1000 * S)其中,Vd:电压降(V)I:电流容量(A)L:电缆长度(m)Ï•:电缆电阻率(ohm·mm²/m)S:电缆截面积(mm²)3. 开关选型计算公式开关选型是为了确定所需的开关容量。

以下是常用的开关选型公式:a. 容量计算容量(C)的计算公式如下:C = U * I * η / 1000其中,C:容量(kVA)U:电压(V)I:电流(A)η:功率因数参考资料- 提供具体参数和标准的风扇、电缆及开关选型手册。

- 确认公式的正确性,确保选型计算的准确性。

散热器选型散热面积理论计算及风扇选择

散热器选型散热面积理论计算及风扇选择

散热器选型散热面积理论计算及风扇选择散热器的选型主要涉及两个关键因素:散热面积和风扇选择。

为了确保计算准确,我们需要先了解散热器的工作原理和散热器的设计参数。

散热器的工作原理是通过扩大散热面积和促进空气流动来降低设备内部的温度。

散热面积越大,散热效果越好。

因此,散热面积的计算是选型的重要部分。

散热面积的计算需要考虑以下几个因素:1.设备的功耗:设备功耗越大,所需的散热面积也越大。

2.设备的温度限制:不同设备有不同的温度限制,一般来说,设备的温度限制越低,所需的散热面积越大。

3.散热器的材料和结构:散热器的材料和结构也会影响散热面积的计算。

通常,散热器由铝、铜等金属制成,具有一定的散热效果。

4.环境温度:散热器运行的环境温度也会影响散热效果,通常情况下,环境温度越高,所需的散热面积也越大。

在开始散热面积的计算之前,我们需要确认设备的功耗和温度限制。

然后,我们可以根据以下公式计算散热面积:散热面积=(设备功耗*热阻系数)/(设备温度限制-环境温度)其中,热阻系数是散热器材料和结构的参数,反映了散热器的散热效果。

热阻系数可以通过厂商提供的数据手册或实验来确定。

在确定散热面积之后,我们可以开始选择适合的风扇。

风扇的选择主要需要考虑以下几个因素:1.风扇的风量:风量是风扇的一个重要参数,表示单位时间内风扇能够吹过的空气体积。

风量越大,风扇的散热效果越好。

2.风扇的噪音:风扇的噪音也是选择的一个重要因素,特别是对于需要安静环境的设备。

一般来说,风扇噪音越低越好。

3.风扇的电源和控制方式:不同的设备可能对风扇的电源和控制方式有不同的要求。

需要根据实际情况选择合适的风扇电源和控制方式。

4.风扇的尺寸和安装方式:风扇的尺寸和安装方式也需要与散热器相匹配,确保能够有效地进行散热。

在选择风扇之前,我们需要根据散热面积和设备功耗计算所需的风量。

通常情况下,风量可以通过下面的公式计算:风量=散热面积*设备功耗*风量系数其中,风量系数是根据散热器和风扇的特性确定的参数。

(整理)设计散热系统时风扇选型的计算.

(整理)设计散热系统时风扇选型的计算.

足够的冷空气与散热片进行热交换,也会造成散热效果不好。

一般铝质鳍片的散热片要求风扇的风压足够大,而铜质鳍片的散热片则要求风扇的风量足够大;鳍片较密的散热片相比鳍片较疏的散热片,需要更大风压的风扇,否则空气在鳍片间流动不畅,散热效果会大打折扣。

所以说不同的散热器,厂商会根据需要配合适当风量、风压的风扇,而并不是单一追求大风量或者高风压的风扇。

无论 Intel 还是 AMD 的CPU 都已经到了与散热器不可分割、甚至丝毫也不能马虎的程度。

CPU 的风扇和散热片可以说是目前最实效、最方便、最常用的 CPU 降温的方法,因此选购一款好的 CPU 散热器是十分必要的。

根据空气散热三要素的原理,热源物体表面的面积、空气流动速度以及热源物体与外界的温差是影响散热速度的最重要因素,其实所有 CPU 散热器的设计也都是围绕更好地解决这三个问题而进行的。

下面就为大家介绍一些有关 CPU 散热器的性能参数,希望能对大家有所帮助。

风扇功率风扇功率是影响风扇散热效果的一个很重要的条件,功率越大通常风扇的风力也越强劲,散热的效果也越好。

而风扇的功率与转速又是直接联系在一起的,也就是说风扇的转速越高,风扇也就越强劲有力。

目前一般电脑市场上出售的都是直流 12V 的,功率则从 0.x 瓦到 2.x 瓦不等,购买时需要根据你的 CPU 发热量来选择,理论上是功率略大一些的更好一些,不过,也不能片面地强调高功率,如果功率过大可能会加重计算机电源的工作负荷,从而对整体稳定性产生负面影响。

风扇口径该性能参数对风扇的出风量也有直接的影响。

在允许的范围之内,风扇的口径越大出风量也就越大,风力作用面也就越大。

通常在主机箱内预留位置是安装 8cm×8cm 的轴流风扇。

对于该指标,笔者认为应选择的风扇口径一定要与自己计算机中的机箱结构相协调,保证风扇不影响计算机其他设备的正常工作,以及保证计算机机箱中有足够的自由空间来方便拆卸其他配件。

设备散热器、风扇的选型和设计计算

设备散热器、风扇的选型和设计计算

设备散热器、风扇的选型和设计计算散热、吸热,还是绝热重要?________________________________________在这儿之前,有一个很重要的问题要问各位,您知道什么是"热"吗?在您选择一项产品之前.您得先知道您用钞票换得手中的宝贝要解决的是什么物理现象,千万别当了冤大头!"热(He at)"是能量吗?严格来说它不算是能量,应该说是一种传递能量的形式.就好象作功一样.微观来看,就是区域分子受到外界能量冲击后,由能量高的分子传递至能量低的区域分子(就像是一种扩散效应),必须将能量转嫁释放出来.所以能量的传递,就是热.而大自然界最根本的热产生方式,就是剧烈的摩擦(所谓摩擦生热如是说!).从电子(量子力学)学的角度而言,当电子束滑过电子信道时,会因为与导线(trace)剧烈摩擦而产生热,它形成一股阻力,阻止电子流到达另一端(就像汽车煞车的效果是一样的).我们统称作"废热". 所以当CPU的速度越高,表示它的I/O(Inp ut/Output)数越高,线路布局越复杂.就好比一块同样面积的土地上.您不断的增加道路面积;不断的膨胀车流量,下场是道路越来越窄,而车子越来越多,不踩煞车,能不出车祸吗?当然热量越来越高.信不信,冷飕飕的冬天,关在房里打计算机,你会爱死它,又有得杀时间,又暖和!只是不巧,炎炎夏日又悄悄的接近了……"传热(Heat Transfer)":既然说热是一种传递能量的形式.那就不能不谈传递的方法了.总的来说整个大自然界能量传递的方式被我们聪明的老祖先(请记住.热力学Thermal Dynami c是古典力学的一种!)概分为三种,接下来我用最浅显易懂的方式分别介绍这门神功的三大基本奥义让各位知道:1.)热传导(Conduction)物质本身或当物质与物质接触时,能量传递的最基本形式(这里所说的物质包括气体,液体,与固体).当然气体与液体(我们统称为流体)本身因为结构不似固体紧密.我们又有另外一个专有名词来形容它,叫做热扩散(Diffusion).若诸位看官真有兴趣的话,不妨把下面的公式熟记,对以后您专业素养的养成,抑或是将来更深入的技术,探讨彼此的沟通都非常有帮助(这可是入门的第一招式,千万别放弃您当专业消费者的权益了!).另外,为了避免您一开始走火入魔,请容我先将所有的单位(Unit)都拿掉.Q = K*A*ΔT/ΔL其中Q为热量;就是热传导所能带走的热量.K为材料的热传导系数值(Conductivity);请记住,它代表材料的热传导特性,就像是出生证明一样.若是纯铜,就是396.4;若是纯铝,就是240;而我们都是人,所以我们的皮肤是0.38,记住! 数值越高,代表传热越好.(详细的材料表我将于日后择篇幅再补述!)A代表传热的面积(或是两物体的接触面积.)ΔT代表两端的温度差;ΔL则是两端的距离.让我们来看一下图标,更加深您的印象!热传导后温度分布铜材的导热系数高,经过热传导后,温度在铜材中分布就非常均匀,相反的,木材的导热系数偏低,于是相同的传导距离,木材的温度分布就明显的不均匀(温度颜色衰减的非常快;表示热量传导性不良.)从上述的第一招式我们可以知道.热传导的热传量.跟传导系数,接触面积成正比关系(越大,则传热越好!)而跟厚度(距离)成反比.好,有了这个观念,现在让我们把焦点转到散热片身上,当散热片与热源接触,我们需要的是"吸热",能够大量的把热吸走,越多越好.各位可以到市面上看看最近有一些散热片的底部会加一块铜板不是吗?或甚至干脆用铜当散热片底板.就是因为它的热导系数比铝多出将进一倍(当然还有其它技术原因,容我先卖个关子).嘿,嘿,聪明的读者,您一定也发现了一个问题,散热片的底部厚度好象越来越厚耶!如果照我说的话,那不是传热效果越差了吗?如果您会问这个问题?先恭喜您!您已经有本事报名英雄大会了.这牵涉到另外一门有趣的课题.因篇幅关系,这一次我并不打算放进来.请诸位海涵!2.)热对流(Convection)流动的流体(气体或液体)与固体表面接触,造成流体从固体表面将热带走的热传递方式.这一招是三招里面最为博大精深的一招,老祖先依其流体驱动的方式将之转换折成貌和神离的两招,分别是A.)自然对流(Natural Convection):流体运动是来自于温度差.温度高的流体密度较低,较轻会向上运动.相反的,温度低的流体则向下运动.所以是流体受热之后产生驱动力.(这里各位要牢记一件事,只要温差,沿着重力场方向的流体就会开始运动,带走热量!)B.)强制对流(Force Convection) :顾名思义,流体受外在的强制驱动力如风扇驱动而产生运动.驱动力往那儿吹,流体就往那儿跑,与重力场无关.不是很了解对吧!百闻不如一见,脱掉你宝贝计算机的灰白色夹克.您应该会看到如下图所示的精采内脏.如此清楚了吗?芯片组散热片不加风扇,利用的是自然对流将热量带走,表示热量不高(一般来说介于3瓦~8瓦).至于CPU则因为热量较高(尤其是桌上型计算机,至少都在30瓦以上),自然对流的散热量不足以带走废热,因此得利用到风扇驱动.至于更详细的各种芯片封装(package)制程,规格资料与散热量的关系(别忘了CPU也是一种封装,只是档次较高!),还有自然对流及强制对流在散热片设计上的考量差异性,我会在往后的篇幅中以专题的方式撰写.让各位不但对电子散热有所了解,更知道整条电子链的运作模式.看看它的公式吧!为什么说它最博大精深是有原因的.到了这儿,请千万小心,步步都是富贵险中求.殊不知多少江湖英豪;名门侠女都曾栽在这块看似山青湖静,实则风阴涛涌的领域(包括笔者都曾差点儿翻不了身).一则是从此开始.您才真正进入"散热"的大堂.一则是这里又多了一门至深至幻的学问叫做流体力学(Fluid Dynamic).我想试问各位一生中有多少次机会看到风扇是怎么吸空气;又是怎么把空气吹出来的?我们换个角度想,要让流体产生运动,一个必要的因素是什么?知其然,更要知其所以然,道行高的您或许已开始发出会心的一笑,还不了解的看官也别担心, 这运功炼气可是半点儿急不得.渐纳慢吐,气通任督灌丹田,才是习知之道.Q = H*A*ΔTQ 为热对流所带走的热量.H 为热对流系数值(Hest Transfer Coefficient).这里是笔者及数字高人讨论过后,一致公认散热领域内最虚无飘渺的一个参数了.它既不是材质特性,更不是什么散热标准.说穿了还真有点儿好笑.这是老祖先想破了头还是一无所知的情况下,直接写下的脚注.不信吗? 敢问诸位高手,只听过H是随着流体状态;流场形式;固体表面形状的影响而改变的"常数"值(例如:垂直方向的平板流H=10~20,最多是个H与速度的几次方成正比关系),从没看过哪一个方程式是可以解出H值的.(道道地地,不折不扣的"经验值"!!)A 代表热对流发生时的"有效"接触面积.这里我要再一次强调.表面积大只是好看,有效表面积也大那才够实在.至于什么是"有效",将来我会举一些活生生的实例给各位看,到时候可别合不拢嘴.散热片的变化无穷,主要在于它的鳍片设计,一个设计良好的鳍片.会内外兼顾,不但跟空气的接触表面积大,而且大的很实在.否则花那种冤望钱,不如自己做一块铜块盖上去不就好了吗?当然金属量产的加工制程上有一定的限制,不同的制造工艺各有其优缺点,有时设计者不得不作一些妥协与让步.ΔT代表固体表面与区域流体(Local Ambient)的温度差.这里就更惊险了.散热片的设计,一个不小心就会跌入这个要命的陷阱里,它跟上面的所谓"有效"接触面积还真有那么一点关系,我留一点儿空间先不说穿,让各位也想一想.为什么我说到了这儿才算真正开始处理散热问题.因为不论自然对流或强制对流,靠流体把热带走是现下最经济实惠的方式.殊不知地球大气运行时的妙用无穷,我们换一个角度想,能量守恒定律,或许您也能参详一二.周围尽是用不完的空气,不拿它来出出气,怎么说也是暴敛天物,您说是吗?下一次我们再谈另一个能量传递的方式(它也是"散热"的一员,只是平时韬光养晦,深藏不露,但发起威来,套句广告词~"凡人无法档").而且角色变化多端,非常有个性,也是笔者最喜欢的一个,请容我在此先搁笔.咱们下次再谈!散热,吸热,还是绝热重要?接下来介绍的,可又是散热的一名角儿.只是它的名气没"热对流"来的大,一般说来在主动式散热片(Active Cooler)的散热比例上占的份量也有限,所以大伙儿常忽略它.可是它在实际生活中扮演的角色可丰富了.您加热时绝对有它,散热时它也有份,当要绝热时,更不能没有它,更夸张的是,少了它,地球的生态环境瞬间就会失衡,看下去吧,向您郑重介绍……3.)热辐射(Radiation)若说上一招"热对流"是谓博大精深,那这一招可就真算得上是"清风拂山岗;明月照大江"的太极绝学了.待我解释完,您就知道我开头所述句句真言,绝无诳语.别看它又清风,又明月的.真发起来,那可是招招重手,决不留情.(您以为炎炎夏日太阳的热情是靠热传导或热对流招呼到您身上的吗?再举个更生活的例子,没用过也看过灯管式电暖气吧?再告诉您一个小秘密,笔者求学时就曾经利用180瓦的工地用卤素大灯两个煮三人份的火锅,不盖你,这些都得拜热辐射所赐!)这说完它加热的好处,我留一点篇幅稍后再解释它与散热,绝热的关系.让我们先把焦点转回它的原理上.有人曾问笔者,热辐射是不是放射性的a,b,g辐射波,您说呢?那可是对任何生物都会造成伤害性的辐射线耶!不要怀疑,虽不中亦不远矣,它们还真有血源关系呢,这一部份因为是笔者最喜欢的一种散热方式,也是当今能参透这门绝学的人少之又少(包括笔者也不是),是以笔者不得不一吐为快,交代清楚,以免让各位越看越模糊,热辐射是一种可以在没有任何介质(空气)的情况下,不需要靠接触,就能够达成热交换的传递方式.一种我戏称为"热数字讯号"(T hermal Digital Signal)的波的形式达成热交换.既然是波,那就会有波长,有频率,而所谓波的能量,就是频率乘上一个叫做普郎特的常数(Planck's Constant ),既然跟频率有关,那好,频率的大小依次是Gamma 射线,X射线,紫外线,可见光,红外线,微波…而热辐射能量就介于紫外线与红外线之间,所以还算排行老三呢,但光是如此就让你在7月中午的太阳下站不住五分钟了吧!其实您还得感谢地球上有大气层,空气和水分子,这些介质帮我们吸收掉了不少能量呢!好,咱们再回到主题,既然不需要介质,那就得靠物体与物体表面的热吸收性与放射性来决定热交换量的多寡.我们统称为物体表面的热辐射系数(Emissivity),其值介于0~1之间,是属于物体的表面特性,有一点儿像热传导系数(Conductivity) 都属于材料特性.(其实吸收性(率)与放射性(率)是一样的,我稍后解释.严格来说,物体表面的热辐射特性有三种,分别是吸收率,反射率和穿透率.这三者加起来的值和为1,像是玻璃,它的能量穿透性很强,所以相对的吸收性与反射性便较弱).让我们看一下它的公式吧Q =e˙s˙F˙Δ(T4)Q 为物体表面热幅热的热交换量.我在这儿强调是热交换量而不是带走的热量.因为公式本身牵涉到两个表面在进行辐射热交换,当假设其中一个表面不存在时,则存在的表面便假设是与某一有限远的固定大气温度进行热交换.e 物体表面的热辐射系数(Emissivity),其值介于0~1之间,是属于物体的表面材料特性,这一部分当物质为金属且表面拋光如镜时,热辐射系数只有约0.02 ~0.05而已,而当金属表面一但作处理后(如表面阳极处理成各种颜色亦或喷漆,则热辐射系数值立刻提升至0.5以上,如下图所示当散热片表面处理成绿色后,热辐射系数值立刻由0.03提升至0.82.处理前处理后而塑料或非金属类的热辐射系数值大部份超过0.5以上,s是波次曼常数5.67*10-8 ,只是一个常数.F是里面最玄的一个,洋文叫做Exchange View Factor,中文应该说成是辐射热交换的视角关系,它其实是一个函数,一个跟两个表面所呈角度,面积,及热辐射系数有关的函数.非常复杂,笔者在此不敢再写下去,以免各位看官承受不住.Δ(T4)最后这个算是最好说的,但也最容易被一般刚入江湖的年轻人弄错的.它正确的写法如笔者框红线所示,是(Ta4- Tb4)而不是(Ta- Tb) 4,.这其中Ta是表面a的温度而Tb是表面b 的温度。

风扇选型计算方法

风扇选型计算方法

如何选择正确的风扇或鼓风扇所有需要使用风扇散热的电机与电子产品的设计工程师,必须决定一个特定系统散热所需的风量,而所需的风量取决于了解系统的耗电量及是否能带走足够的热量,以预防系统过热的情形发生。

事实显示,系统的使用年限会由于冷却系统的不足而降低,所以设计工程师也应该明白,系统的销售量与价格,可能因为系统的使用年限不符使用者的预期而下降。

欲选择正确的通风组件,必须考虑下列目标:最好的空气流动效率最小的适合尺寸最小的噪音最小的耗电量最大的可靠度与使用寿命合理的总成本以下三个选择正确散热扇或鼓风扇的重要步骤,可帮你达成上述几个目标。

步骤一:总冷却需求首先必须了解三个关键因素以得到总冷却需求:必须转换的热量 (即温差DT)抵消转换热量的瓦特数 (W)移除热量所需的风量 (CFM)总冷却需求对于有效地运作系统甚为重要。

有效率的系统运作必须提供理想的运作条件,使所有系统内的组件均能发挥最大的功能与最长的使用年限。

下列几个方式,可用来选择一般用的风扇马达:1.算出设备内部产生的热量。

2.决定设备内部所能允许的温度上升范围。

3.从方程式计算所需的风量。

4.估计设备用的系统阻抗。

5.根据目录的特性曲线或规格书来选择所需的风扇。

如果已知系统设备内部散热量与允许的总温度上升量,可得到冷却设备所需的风量。

以下为基本的热转换方程式:H = Cp×W×△T其中H = 热转换量Cp = 空气比热△T = 设备内上升的温度W = 流动空气重量我们已知W = CFM×D其中 D = 空气密度经由代换后,我们得到:再由转换因子(conversion factors)与代入海平面空气的比热与密度,可得到以下的散热方程式:CFM = 3160×千瓦/△℉然后得到下列方程式:其中Q:冷却所需的风量P:设备内部散热量 (即设备消耗的电功率)Tf:允许内部温升 (华氏)Tc:允许内部温升 (摄氏)DT = DT1与DT2之温差温升与所需风量之换算表0.51 1.52 2.53 3.54 4.55KWhDT DT℃ ℉50 9018 35 53 70 88 105 123 141 158 17645 8120 39 59 78 98 117 137 156 176 19540 7222 44 66 88 110 132 154 176 195 22035 6325 50 75 100 125 151 176 201 226 25130 5429 59 88 117 146 176 205 234 264 29325 4535 75 105 141 176 211 246 281 316 35120 3644 88 132 176 220 264 308 351 396 43915 2759 117 176 234 293 351 410 469 527 58610 1888 176 264 351 439 527 615 704 791 8795 9176 351 527 704 879 1055 1230 1406 1582 1758 例一:设备内部消耗电功率为500瓦,温差为华氏20度,下列为其计算结果:或例二:设备内部消耗电功率为500瓦,温差为摄氏10度:或步骤二:全部系统阻抗/系统特性曲线空气流动时,气流在其流动路径会遇上系统内部零件的阻扰,其阻抗会限制空气自由流通。

风机选型的计算公式

风机选型的计算公式

风机选型的计算公式 Final revision by standardization team on December 10, 2020.风机选型的计算公式1、标准状态:指风机的进口处空气的压力P=101325Pa,温度t=20℃,相对湿度φ=50%的气体状态。

2、指定状态:指风机特指的进气状况。

其中包括当地大气压力或当地的海拔高度,进口气体的压力、进口气体的温度以及进口气体的成份和体积百分比浓度。

3、风机流量及流量系数流量:是指单位时间内流过风机进口处的气体容积。

用Q表示,通常单位:m3/h或m3/min。

流量系数:φ=Q/(900πD22×U2)式中:φ:流量系数 Q:流量,m3/hD2:叶轮直径,mU2:叶轮外缘线速度,m/s(u2=πD2n/60)4、风机全压及全压系数:风机全压:风机出口截面上的总压与进口截面上的总压之差。

用PtF表示,常用单位:Pa全压系数:ψt=KpPtF/ρU22式中, ψt:全压系数 Kp:压缩性修正系数 PtF:风机全压,Pa ρ:风机进口气体密度,Kg/m^3 u2:叶轮外缘线速度,m/s5、风机动压:风机出口截面上气体的动能所表征的压力,用Pd表示。

常用单位:Pa6、风机静压:风机的全压减去风机的动压,用Pj表示。

常用单位:Pa7、风机全压、静压、动压间的关系:风机的全压(PtF)=风机的静压(Pj)+风机的动压(Pd)8、风机进口处气体的密度:气体的密度是指单位容积气体的质量,用ρ表示,常用单位:Kg/m39、风机进口处气体的密度计算式:ρ=P/RT式中:P:进口处绝对压力,Pa R:气体常数,J/Kg·K。

与气体的种类及气体的组成成份有关。

T:进口气体的开氏温度,K。

与摄氏温度之间的关系:T=273+t10、标准状态与指定状态主要参数间换算:流量:ρQ=ρ0Q0全压:PtF/ρ= PtF0/ρ0内功率:Ni/ρ= Ni0/ρ0注:式中带底标“0”的为标准状态下的参数,不带底标的为指定状态下的参数。

散热器选型散热面积理论计算及风扇选择

散热器选型散热面积理论计算及风扇选择

散热器选型散热面积理论计算及风扇选择散热器的目的是将设备产生的热量有效地传递到周围环境中去。

选择适当的散热器需要考虑到散热器的材料、面积和设计等因素。

首先,计算散热面积的理论值需要知道设备的功耗和散热器的材料热导率。

功耗是设备在运行时产生的热量,以单位为瓦(W)表示。

热导率是材料传导热量的能力,以单位为瓦特尔(W/m·K)表示。

常见散热器材料的热导率如下:铜:400W/m·K铝:200W/m·K钢铁:50W/m·K塑料:0.2W/m·K根据设备的功耗和材料的热导率,可以计算散热器的表面积。

散热面积理论值(A)=设备功耗/(散热器材料热导率×温度差)其中,功耗以瓦特(W)为单位,热导率以瓦特尔(W/m·K)为单位,温度差以摄氏度(℃)为单位。

例如,如果我们有一个设备的功耗是100W,使用铝散热器,温度差为50℃,那么散热面积的理论值为:A=100/(200×50)=0.010m2接下来,选择合适的散热器。

散热器的选择需要考虑到散热器表面积、设计和材料等因素。

散热器的表面积应大于等于散热面积的理论值。

同时,散热器的设计也影响了散热效果。

常见的散热器设计包括:片状散热器、塔式散热器和液冷散热器等。

不同的设计适用于不同的场景,需要根据具体的需求进行选择。

此外,散热器的材料也是选择散热器时需要考虑的重要因素。

铜和铝是常用的散热器材料,铜具有更高的热导率,但价格较高;铝的热导率较低,但价格较便宜。

根据具体的需求和预算,选择适合的材料。

最后,选择适当的风扇。

风扇的作用是强制空气流过散热器,帮助散热。

选择适当的风扇需要考虑到风扇的风量和噪音产生。

风量是风扇单位时间内产生的气流量,以立方米每小时(m3/h)表示。

通常情况下,风扇的风量应大于散热器需要的风量,以确保足够的气流流过散热器。

此外,风扇的噪音也需要考虑。

噪音是以分贝(dB)为单位表示的。

散热器选型,散热面积理论计算及风扇选择

散热器选型,散热面积理论计算及风扇选择

散热器选型,散热面积理论计算及风扇选择。

散热器选择的计算方法一,各热参数定义:Rja———总热阻,℃/W;Rjc———器件的内热阻,℃/W;Rcs———器件与散热器界面间的界面热阻,℃/W;Rsa———散热器热阻,℃/W;Tj———发热源器件内结温度,℃;Tc———发热源器件表面壳温度,℃;Ts———散热器温度,℃;Ta———环境温度,℃;Pc———器件使用功率,W;ΔTsa ———散热器温升,℃;二,散热器选择:Rsa =(Tj-Ta)/Pc - Rjc -Rcs式中:Rsa(散热器热阻)是选择散热器的主要依据。

Tj 和Rjc 是发热源器件提供的参数,Pc 是设计要求的参数,Rcs 可从热设计专业书籍中查表,或采用Rcs=截面接触材料厚度/(接触面积X接触材料导热系数)。

(1)计算总热阻Rja:Rja= (Tjmax-Ta)/Pc(2)计算散热器热阻Rsa 或温升ΔTsa:Rsa = Rja-Rtj-RtcΔTsa=Rsa×Pc(3)确定散热器按照散热器的工作条件(自然冷却或强迫风冷),根据Rsa 或ΔTsa 和Pc 选择散热器,查所选散热器的散热曲线(Rsa 曲线或ΔTsa 线),曲线上查出的值小于计算值时,就找到了合适的热阻散热器及其对应的风速,根据风速流经散热器截面核算流量及根据散热器流阻曲线上风速对应的阻力压降,选择满足流量和压力工作点的风扇。

散热器热阻曲线~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~三,散热器尺寸设计:对于散热器,当无法找到热阻曲线或温升曲线时,可以按以下方法确定:按上述公式求出散热器温升ΔTsa,然后计算散热器的综合换热系数α:α=7.2ψ1ψ2ψ3{√√ [(Tf-Ta)/20]}式中:ψ1———描写散热器L/b 对α的影响,(L 为散热器的长度,b 为两肋片的间距);ψ2———描写散热器h/b 对α的影响,(h 为散热器肋片的高度);ψ3———描写散热器宽度尺寸W 增加时对α的影响;√√ [(Tf-Ta)/20]———描写散热器表面最高温度对周围环境的温升对α的影响;以上参数可以查表得到。

风扇选型计算公式(实用)

风扇选型计算公式(实用)

风扇选型计算公式(实用)引言本文档旨在介绍风扇选型计算公式的实用方法。

通过合适的计算公式,我们可以精确地选择适合特定需求的风扇,并满足所需的风量和风压。

计算公式以下是常用的风扇选型计算公式:1. 风压(P):- 计算公式:P = ρ * V<sup>2</sup> / 2- 其中,P为风压(帕斯卡),ρ为空气密度(千克/立方米),V为风速(米/秒)。

2. 风量(Q):- 计算公式:Q = A * V- 其中,Q为风量(立方米/秒),A为散热表面积(平方米),V为风速(米/秒)。

3. 功率(Power):- 计算公式:Power = Q * ρ * H / 3600- 其中,Power为功率(千瓦),Q为风量(立方米/秒),ρ为空气密度(千克/立方米),H为风机总压力(帕斯卡)。

使用方法使用上述计算公式的步骤如下:1. 确定需要的风压或风量的数值。

2. 确定空气密度(千克/立方米)的数值,一般可根据环境条件或相关标准进行查询。

3. 根据所需的风压或风量的数值,使用相应公式计算。

4. 如果需要计算功率,还需确定风机总压力(帕斯卡)的数值。

注意事项在使用风扇选型计算公式时,需要注意以下事项:- 确保所使用的单位是一致的,如风速单位为米/秒、风压单位为帕斯卡、风量单位为立方米/秒。

- 计算过程中需使用准确的数值,以保证计算结果的准确性。

- 对于特定的应用场景,可能还需要考虑其他因素,如噪音水平、功耗等。

结论通过使用风扇选型计算公式,我们可以对所需风压、风量和功率进行准确计算,以选择合适的风扇满足需求。

在实际应用中,根据具体情况和要求,可能需要结合其他因素进行综合考虑。

设计散热系统时风扇选型的计算

设计散热系统时风扇选型的计算

足够的冷空气与散热片进行热交换,也会造成散热效果不好。

一般铝质鳍片的散热片要求风扇的风压足够大,而铜质鳍片的散热片则要求风扇的风量足够大;鳍片较密的散热片相比鳍片较疏的散热片,需要更大风压的风扇,否则空气在鳍片间流动不畅,散热效果会大打折扣。

所以说不同的散热器,厂商会根据需要配合适当风量、风压的风扇,而并不是单一追求大风量或者高风压的风扇。

无论 Intel 还是 AMD 的CPU 都已经到了与散热器不可分割、甚至丝毫也不能马虎的程度。

CPU 的风扇和散热片可以说是目前最实效、最方便、最常用的 CPU 降温的方法,因此选购一款好的 CPU 散热器是十分必要的。

根据空气散热三要素的原理,热源物体表面的面积、空气流动速度以及热源物体与外界的温差是影响散热速度的最重要因素,其实所有 CPU 散热器的设计也都是围绕更好地解决这三个问题而进行的。

下面就为大家介绍一些有关 CPU 散热器的性能参数,希望能对大家有所帮助。

风扇功率风扇功率是影响风扇散热效果的一个很重要的条件,功率越大通常风扇的风力也越强劲,散热的效果也越好。

而风扇的功率与转速又是直接联系在一起的,也就是说风扇的转速越高,风扇也就越强劲有力。

目前一般电脑市场上出售的都是直流 12V 的,功率则从 0.x 瓦到 2.x 瓦不等,购买时需要根据你的 CPU 发热量来选择,理论上是功率略大一些的更好一些,不过,也不能片面地强调高功率,如果功率过大可能会加重计算机电源的工作负荷,从而对整体稳定性产生负面影响。

风扇口径该性能参数对风扇的出风量也有直接的影响。

在允许的范围之内,风扇的口径越大出风量也就越大,风力作用面也就越大。

通常在主机箱内预留位置是安装 8cm×8cm 的轴流风扇。

对于该指标,笔者认为应选择的风扇口径一定要与自己计算机中的机箱结构相协调,保证风扇不影响计算机其他设备的正常工作,以及保证计算机机箱中有足够的自由空间来方便拆卸其他配件。

设计散热系统时风扇选型地计算

设计散热系统时风扇选型地计算

设计散热系统时风扇选型地计算⾜够的冷空⽓与散热⽚进⾏热交换,也会造成散热效果不好。

⼀般铝质鳍⽚的散热⽚要求风扇的风压⾜够⼤,⽽铜质鳍⽚的散热⽚则要求风扇的风量⾜够⼤;鳍⽚较密的散热⽚相⽐鳍⽚较疏的散热⽚,需要更⼤风压的风扇,否则空⽓在鳍⽚间流动不畅,散热效果会⼤打折扣。

所以说不同的散热器,⼚商会根据需要配合适当风量、风压的风扇,⽽并不是单⼀追求⼤风量或者⾼风压的风扇。

⽆论 Intel 还是 AMD 的CPU 都已经到了与散热器不可分割、甚⾄丝毫也不能马虎的程度。

CPU 的风扇和散热⽚可以说是⽬前最实效、最⽅便、最常⽤的 CPU 降温的⽅法,因此选购⼀款好的 CPU 散热器是⼗分必要的。

根据空⽓散热三要素的原理,热源物体表⾯的⾯积、空⽓流动速度以及热源物体与外界的温差是影响散热速度的最重要因素,其实所有 CPU 散热器的设计也都是围绕更好地解决这三个问题⽽进⾏的。

下⾯就为⼤家介绍⼀些有关 CPU 散热器的性能参数,希望能对⼤家有所帮助。

风扇功率风扇功率是影响风扇散热效果的⼀个很重要的条件,功率越⼤通常风扇的风⼒也越强劲,散热的效果也越好。

⽽风扇的功率与转速⼜是直接联系在⼀起的,也就是说风扇的转速越⾼,风扇也就越强劲有⼒。

⽬前⼀般电脑市场上出售的都是直流 12V 的,功率则从 0.x ⽡到 2.x ⽡不等,购买时需要根据你的 CPU 发热量来选择,理论上是功率略⼤⼀些的更好⼀些,不过,也不能⽚⾯地强调⾼功率,如果功率过⼤可能会加重计算机电源的⼯作负荷,从⽽对整体稳定性产⽣负⾯影响。

风扇⼝径该性能参数对风扇的出风量也有直接的影响。

在允许的范围之内,风扇的⼝径越⼤出风量也就越⼤,风⼒作⽤⾯也就越⼤。

通常在主机箱内预留位置是安装 8cm×8cm 的轴流风扇。

对于该指标,笔者认为应选择的风扇⼝径⼀定要与⾃⼰计算机中的机箱结构相协调,保证风扇不影响计算机其他设备的正常⼯作,以及保证计算机机箱中有⾜够的⾃由空间来⽅便拆卸其他配件。

设计散热系统时风扇选型的计算

设计散热系统时风扇选型的计算

设计散热系统时风扇选型的计算散热系统在电子设备、汽车引擎等领域起着非常重要的作用。

在设计散热系统时,选择合适的风扇是至关重要的一步。

本文将介绍风扇选型的基本原则和计算方法。

首先,进行风扇选型之前,需要明确散热系统的热量负荷。

热量负荷是指需要散热的设备所产生的热量。

可以通过测量设备表面的温度差和设备功率来确定热量负荷。

通常,热量负荷可以表示为以下公式:Q=Cpxmx(T2-T1)其中,Q是热量负荷(单位为瓦特),Cp是设备的热容量(单位为焦耳/千克摄氏度),m是设备的质量(单位为千克),T2是设备的最高温度(单位为摄氏度),T1是环境温度(单位为摄氏度)。

在得到热量负荷后,可以计算所需的风扇流量。

流量是指风扇每分钟能够排出的空气体积。

流量可以通过以下公式计算:Qf=Q/(ρxΔTx60)其中,Qf是风扇流量(单位为立方米/分钟),Q是热量负荷(单位为瓦特),ρ是空气密度(单位为千克/立方米),ΔT是设备最高温度和环境温度的温差(单位为摄氏度)。

在得到风扇流量后,可以选择适当的风扇。

风扇的选择应根据所需的风压和风量进行。

风压是指风扇产生的静态压力,可以通过以下公式计算:P=ρxQfxVf其中,P是风压(单位为帕斯卡),ρ是空气密度(单位为千克/立方米),Qf是风扇流量(单位为立方米/分钟),Vf是风扇转速(单位为转/分钟)。

风扇的风压和流量特性通常在其性能曲线图中给出。

根据实际需要,在性能曲线图上找到满足所需风压和风量的点。

此外,还需要考虑一些其他因素,如噪音和功耗。

风扇的噪音和功耗也应该在风扇选型时进行评估,以确保其不会对整个系统造成负面影响。

总结起来,进行风扇选型时,需要先确定热量负荷,然后根据热量负荷计算所需的风扇流量,并选择满足所需风压和风量的风扇。

此外,还需要考虑风扇的噪音和功耗等其他因素。

通过合理的风扇选型,可以保证散热系统的稳定性和高效性。

风机散热排风量计算公式

风机散热排风量计算公式

风机散热排风量计算公式在工业生产和建筑领域,散热排风是非常重要的工作。

风机是常用的散热排风设备之一,它通过产生气流来排出热气和污浊空气,以保持室内空气清新和温度适宜。

而要确定风机散热排风量,就需要使用相应的计算公式。

风机散热排风量的计算公式主要基于风机的性能参数和工作条件来确定。

在实际应用中,我们可以使用以下的计算公式来确定风机的散热排风量:Q = A v n。

其中,Q代表散热排风量,单位为m³/h;A代表风机的截面积,单位为m²;v 代表风速,单位为m/s;n代表风机的转速,单位为r/min。

在使用这个公式时,我们需要对每个参数进行详细的计算和测量。

首先是风机的截面积A,它可以通过测量风机的进风口或排风口的面积来确定。

然后是风速v,它可以通过测量风机的出风口处的风速来确定。

最后是风机的转速n,它可以通过测量风机的电机转速来确定。

在确定了这些参数之后,我们就可以使用公式来计算风机的散热排风量了。

当然,在实际应用中,我们还需要考虑到一些其他因素,比如风机的效率、排风管道的阻力等等。

这些因素都会对最终的散热排风量产生影响,因此在实际应用中需要进行综合考虑和计算。

除了使用这个简单的公式来计算散热排风量之外,我们还可以通过一些专业的软件来进行计算。

这些软件通常会考虑到更多的因素,比如风机的性能曲线、排风管道的布局等等,因此在一些复杂的情况下,使用这些软件可能会更加准确和方便。

在实际应用中,确定风机的散热排风量是非常重要的。

一个合适的散热排风量可以保证室内空气的清新和温度的适宜,从而提高工作效率和员工的舒适度。

而一个不合适的散热排风量则可能会导致室内空气的污浊和温度的过高或过低,从而影响工作和生产。

因此,在实际应用中,我们需要根据具体的工作条件和要求来确定风机的散热排风量。

通过合理的计算和选择,我们可以确保风机的散热排风量达到最佳的效果,从而提高工作环境的舒适度和生产效率。

总之,风机散热排风量的计算公式是非常重要的工具,它可以帮助我们确定风机的散热排风量,从而保证室内空气的清新和温度的适宜。

设备散热器风扇的选型和设计计算

设备散热器风扇的选型和设计计算

设备散热器风扇的选型和设计计算
一.散热器风扇的选型
1.冷却需求
在设计散热器风扇之前,必须首先明确设备下冷却需求以确定合适的
散热器风扇。

根据设备的不同,其冷却需求也就不同,常见的冷却需求包括:吹出气流量需求、冷却负荷需求及冷却热率需求等。

2.电气参数
在选择散热器风扇时,要考虑的电气参数有:电压、电流、频率、电
动机效率、转速、工作环境温度、噪声等。

3.外形特性
外形特性是指散热器的尺寸、外观以及安装方式等。

根据设备的空间
尺寸和外形,可确定散热器的尺寸和安装方式,以满足设备的外形要求。

4.性能特性
性能特性是指电气和机械性能及外形参数。

电气性能主要包括转子有
效电阻、绝缘电阻、反噪比等,而机械性能主要包括轴承类型、轴承寿命、振动、噪声及行程等。

二.散热器风扇的设计计算
1.风量计算
风量是指风机在满载条件下,单位时间(或者单位理论转速)所能吹
出的空气的热量质量。

在风机设计中,应确定风机的满载风量,以满足设
备的即时冷却需求。

2.功率计算。

散热器如何选型及计算

散热器如何选型及计算

散热器如何选型及计算散热器的选型和计算对于电子设备的正常工作和寿命有着重要的影响。

下面将通过以下几个方面来详细介绍如何选型和计算散热器。

1.热量产生量的计算:首先,需要计算电子设备产生的热量。

可以通过以下公式来计算:Q=P*t其中,Q表示热量(单位为焦耳J),P表示功率(单位为瓦特W),t表示时间(单位为秒s)。

通常情况下,可以根据设备的额定功率来计算。

2.散热器的热阻计算:散热器的热阻(单位为摄氏度/W)表示散热器对热量的传导能力。

热阻越小,散热能力越强。

通过以下公式来计算:R=(Tj-Ta)/P其中,R表示散热器的热阻,Tj表示芯片的最高温度(单位为摄氏度℃),Ta表示环境温度(单位为摄氏度℃),P表示功率。

3.散热器的尺寸和形状:散热器的选择应根据设备的尺寸和形状来确定。

尺寸和形状不仅应能适应设备的安装空间和外观要求,还应兼顾散热效果。

通常来说,散热器的表面积越大,散热能力越强。

同时,散热器的形状也会影响散热效果,如片状、鳍片状、风扇式等。

4.散热器材料的选择:散热器的材料也会影响散热效果。

常见的材料包括铝合金、铜、铜/铝复合材料等。

铜的导热性能较好,但成本较高;铝合金成本较低,但导热性能相对较差。

选择材料时需要综合考虑造价和散热效果。

5.辅助散热措施:散热器常常需要与风扇、散热片等辅助措施配合使用,以增强散热效果。

风扇的选择应注意风量、转速和噪音等因素;散热片的选择应考虑散热面积和形状。

同时,也可以采用其他辅助散热措施,如热管、热界面材料等。

6.测试和验证:在选型和计算完成后,还需要进行测试和验证,以确保散热器的散热效果符合要求。

可以通过测量芯片温度和散热器表面温度来评估散热效果,并根据需求进行调整。

综上所述,选型和计算散热器需要考虑热量产生量、热阻、尺寸和形状、材料选择、辅助散热措施等因素,同时还需要进行测试和验证。

只有在综合考虑了这些因素并进行了合理的计算和选型后,才能选择到适合设备需求的散热器。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档