哈夫曼树编码译码实验报告
哈夫曼编码译码实验报告
哈夫曼编码译码实验报告哈夫曼编码译码实验报告一、引言哈夫曼编码是一种用来对数据进行压缩的算法,它能够根据数据的频率分布来分配不同长度的编码,从而实现对数据的高效压缩。
本次实验旨在通过实际操作,深入理解哈夫曼编码的原理和实现方式,并通过编码和解码过程来验证其有效性。
二、实验目的1. 掌握哈夫曼编码的原理和算法;2. 学会使用编程语言实现哈夫曼编码和解码;3. 验证哈夫曼编码在数据压缩中的实际效果。
三、实验过程1. 数据准备在实验开始前,首先需要准备一段文本数据作为实验材料。
为了更好地展示哈夫曼编码的效果,我们选择了一篇新闻报道作为实验文本。
这篇报道涵盖了多个领域的信息,包括科技、经济、体育等,具有一定的复杂性。
2. 哈夫曼编码实现根据哈夫曼编码的原理,我们首先需要统计文本中每个字符的频率。
为了方便处理,我们将每个字符与其频率构建成一个字符-频率的映射表。
然后,我们根据频率构建哈夫曼树,将频率较低的字符作为叶子节点,频率较高的字符作为内部节点。
最后,根据哈夫曼树构建编码表,将每个字符映射到对应的二进制编码。
3. 哈夫曼解码实现在哈夫曼解码过程中,我们需要根据编码表将二进制编码转换回字符。
为了实现高效解码,我们可以将编码表转换为一个二叉树,其中每个叶子节点对应一个字符。
通过遍历二叉树,我们可以根据输入的二进制编码逐步还原出原始文本。
4. 编码和解码效果验证为了验证哈夫曼编码的有效性,我们需要对编码和解码的结果进行比较。
通过计算编码后的二进制数据长度和原始文本长度的比值,我们可以得到压缩率,进一步评估哈夫曼编码的效果。
四、实验结果经过实验,我们得到了以下结果:1. 哈夫曼编码表根据实验文本统计得到的字符-频率映射表,我们构建了哈夫曼树,并生成了相应的编码表。
编码表中每个字符对应的编码长度不同,频率较高的字符编码长度较短,频率较低的字符编码长度较长。
2. 编码结果将实验文本使用哈夫曼编码进行压缩后,得到了一串二进制数据。
哈夫曼编码实验报告总结.doc
哈夫曼编码实验报告实验一哈夫曼编码一、实验目的1、掌握哈夫曼编码原理;2、熟练掌握哈夫曼树的生成方法;3、理解数据编码压缩和译码输出编码的实现。
二、实验要求实现哈夫曼编码和译码的生成算法。
三、实验内容先统计要压缩编码的文件中的字符字母出现的次数,按字符字母和空格出现的概率对其进行哈夫曼编码,然后读入要编码的文件,编码后存入另一个文件;接着再调出编码后的文件,并对其进行译码输出,最后存入另一个文件中。
五、实验原理1、哈夫曼树的定义:假设有 n 个权值,试构造一颗有 n 个叶子节点的二叉树,每个叶子带权值为wi ,其中树带权路径最小的二叉树成为哈夫曼树或者最优二叉树;2、哈夫曼树的构造:weight 为输入的频率数组,把其中的值赋给依次建立的 HT Node 对象中的 data 属性,即每一个 HT Node 对应一个输入的频率。
然后根据data 属性按从小到大顺序排序,每次从 data 取出两个最小和此次小的 HT Node ,将他们的 data 相加,构造出新的 HTNode 作为他们的父节点,指针 parent ,leftchild ,rightchild 赋相应值。
在把这个新的节点插入最小堆。
按此步骤可以构造构造出一棵哈夫曼树。
通过已经构造出的哈夫曼树,自底向上,由频率节点开始向上寻找 parent, 直到 parent 为树的顶点为止。
这样,根据每次向上搜索后,原节点为父节点的左孩子还是右孩子,来记录 1 或0,这样,每个频率都会有一个 01 编码与之唯一对应,并且任何编码没有前部分是同其他完整编码一样的。
六、实验流程① 初始化,统计文本文件中各字符的个数作为权值 ,生成哈夫曼树;② 根据符号概率的大小按由大到小顺序对符号进行排序;③把概率最小的两个符号组成一个节点;④重复步骤( 2)(3),直到概率和为1;⑤从根节点开始到相应于每个符号的“树叶”,概率大的标“0”,概率小的标“1”;⑥从根节点开始,对符号进行编码;⑦ 译码时流程逆向进行,从文件中读出哈夫曼树 ,并利用哈夫曼树将编码序列解码。
数据结构哈夫曼树编码及译码的实现实验报告
实验:哈夫曼树编码及译码的实现一.实验题目给定字符集的HUFFMANN编码与解码,这里的字符集及其字符频数自己定义,要求输出个字符集的哈夫曼编码及给定的字符串的哈夫曼码及译码结果。
二.实验原理首先规定构建哈夫曼树,然后进行哈夫曼树的编码,接着设计函数进行字符串的编码过程,最后进行哈夫曼编码的译码。
首先定义一个结构体,这个结构体定义时尽可能的大,用来存放左右的变量,再定义一个地址空间,用于存放数组,数组中每个元素为之前定义的结构体。
输入n个字符及其权值。
构建哈夫曼树:在上述存储结构上实现的哈夫曼算法可大致描述为:1.首先将地址空间初始化,将ht[0…n-1]中所有的结点里的指针都设置为空,并且将权值设置为0.2.输入:读入n个叶子的权值存于向量的前n个分量中。
它们是初始森林中n个孤立的根结点上的权值。
3.合并:对森林中的树共进行n-1次合并,所产生的新结点依次放入向量ht的第i个分量中。
每次合并分两步:①在当前森林ht[0…i-1]的所有结点中,选取权最小和次小的两个根结点[s1]和 [s2]作为合并对象,这里0≤s1,s2≤i-1。
②将根为ht[s1]和ht[s2]的两棵树作为左右子树合并为一棵新的树,新树的根是新结点ht[i]。
具体操作:将ht[s1]和ht[s2]的parent置为i,将ht[i]的lchild和rchild分别置为s1和s2 .新结点ht[i]的权值置为ht[s1]和ht[s2]的权值之和。
4.哈夫曼的编码:约定左子为0,右子为1,则可以从根结点到叶子结点的路径上的字符组成的字符串作为该叶子结点的编码。
当用户输入字母时。
就在已经找好编码的编码结构体中去查找该字母。
查到该字母就打印所存的哈夫曼编码。
接着就是完成用户输入0、1代码时把代码转成字母的功能。
这是从树的头结点向下查找,如果当前用户输入的0、1串中是0则就走向该结点的左子。
如果是1这就走向该结点的右结点,重复上面步骤。
哈夫曼树_实验报告
一、实验目的1. 理解哈夫曼树的概念及其在数据结构中的应用。
2. 掌握哈夫曼树的构建方法。
3. 学习哈夫曼编码的原理及其在数据压缩中的应用。
4. 提高编程能力,实现哈夫曼树和哈夫曼编码的相关功能。
二、实验原理哈夫曼树(Huffman Tree)是一种带权路径长度最短的二叉树,又称为最优二叉树。
其构建方法如下:1. 将所有待编码的字符按照其出现的频率排序,频率低的排在前面。
2. 选择两个频率最低的字符,构造一棵新的二叉树,这两个字符分别作为左右子节点。
3. 计算新二叉树的频率,将新二叉树插入到排序后的字符列表中。
4. 重复步骤2和3,直到只剩下一个节点,这个节点即为哈夫曼树的根节点。
哈夫曼编码是一种基于哈夫曼树的编码方法,其原理如下:1. 从哈夫曼树的根节点开始,向左子树走表示0,向右子树走表示1。
2. 每个叶子节点对应一个字符,记录从根节点到叶子节点的路径,即为该字符的哈夫曼编码。
三、实验内容1. 实现哈夫曼树的构建。
2. 实现哈夫曼编码和译码功能。
3. 测试实验结果。
四、实验步骤1. 创建一个字符数组,包含待编码的字符。
2. 创建一个数组,用于存储每个字符的频率。
3. 对字符和频率进行排序。
4. 构建哈夫曼树,根据排序后的字符和频率,按照哈夫曼树的构建方法,将字符和频率插入到哈夫曼树中。
5. 实现哈夫曼编码功能,遍历哈夫曼树,记录从根节点到叶子节点的路径,即为每个字符的哈夫曼编码。
6. 实现哈夫曼译码功能,根据哈夫曼编码,从根节点开始,按照0和1的路径,找到对应的叶子节点,即为解码后的字符。
7. 测试实验结果,验证哈夫曼编码和译码的正确性。
五、实验结果与分析1. 构建哈夫曼树根据实验数据,构建的哈夫曼树如下:```A/ \B C/ \ / \D E F G```其中,A、B、C、D、E、F、G分别代表待编码的字符。
2. 哈夫曼编码根据哈夫曼树,得到以下字符的哈夫曼编码:- A: 00- B: 01- C: 10- D: 11- E: 100- F: 101- G: 1103. 哈夫曼译码根据哈夫曼编码,对以下编码进行译码:- 00101110111译码结果为:BACGACG4. 实验结果分析通过实验,验证了哈夫曼树和哈夫曼编码的正确性。
哈夫曼树编码译码实验报告
数据结构课程设计设计题目:哈夫曼树编码译码课题名称院系学号姓名哈夫曼树编码译码年级专业成绩1、课题设计目的:在当今信息爆炸时代,如何采用有效的数据压缩技术节省数据文件的存储空间和计算机网络的传送时间已越来越引起人们的重视,哈夫曼编码正是一种应用广泛且非常有效的数据压缩技术。
哈夫曼编码是一种编码方式,以哈夫曼树—即最优二叉树,带权路径长度最小的二叉树,时常应用于数据压缩。
哈弗曼编码使用一张特殊的编码表将源字符(例如某文件中的一个符号)进行编码。
这张编码表的特殊之处在于,它是根据每一个源字符浮现的估算概率而建立起来的。
课题设计目的与设计意义2、课题设计意义:哈夫曼编码的应用很广泛,利用哈夫曼树求得的用于通信的二进制编码称为哈夫曼编码。
树中从根到每一个叶子都有一条路径,对路径上的各分支约定:指向左子树的分支表示“0”码,指向右子树的分支表示“1”码,取每条路径上的“0”或者“1”的序列作为和各个叶子对应的字符的编码,这就是哈夫曼编码。
哈弗曼译码输入字符串可以把它编译成二进制代码,输入二进制代码时可以编译成字符串。
指导教师:年月日第一章需求分析 (1)第二章设计要求 (1)第三章概要设计 (2)(1)其主要流程图如图 1-1 所示。
(3)(2)设计包含的几个方面 (4)第四章详细设计 (4)(1)①哈夫曼树的存储结构描述为: (4)(2)哈弗曼编码 (5)(3)哈弗曼译码 (7)(4)主函数 (8)(5)显示部份源程序: (8)第五章调试结果 (10)第六章心得体味 (12)第七章参考文献 (12)附录: (12)在当今信息爆炸时代,如何采用有效的数据压缩技术节省数据文件的存储空间和计算机网络的传送时间已越来越引起人们的重视,哈夫曼编码正是一种应用广泛且非常有效的数据压缩技术。
哈夫曼编码是一种编码方式,以哈夫曼树—即最优二叉树,带权路径长度最小的二叉树,时常应用于数据压缩。
哈弗曼编码使用一张特殊的编码表将源字符 (例如某文件中的一个符号) 进行编码。
哈夫曼编译码器实验报告
哈夫曼编码/译码器1. 问题描述利用赫夫曼编码进行通信可以大大提高信道利用率,缩短信息传输时间,降低传输成本。
这要求在发送端通过一个编码系统对待传输数据预先编码,在接收端将传来的数据进行译码(复原)。
对于双工信道(即可以双向传输信息的信道),每端都需要一个完整的编/译码系统。
试为这样的信息收发站编写一个赫夫曼码的编/译码系统。
2.基本要求一个完整的系统应具有以下功能:(1) I:初始化(Initialization)。
从终端读入字符集大小n,以及n个字符和n个权值,建立赫夫曼树,并将它存于文件hfmTree中。
(2) E:编码(Encoding)。
利用已建好的赫夫曼树(如不在内存,则从文件hfmTree中读入),对文件ToBeTran中的正文进行编码,然后将结果存入文件CodeFile中。
(3) D:译码(Decoding)。
利用已建好的赫夫曼树将文件CodeFile中的代码进行译码,结果存入文件Textfile中。
(4) P:印代码文件(Print)。
将文件CodeFile以紧凑格式显示在终端上,每行50个代码。
同时将此字符形式的编码文件写入文件CodePrin中。
(5) T:印赫夫曼树(Tree printing)。
将已在内存中的赫夫曼树以直观的方式(比如树)显示在终端上,同时将此字符形式的赫夫曼树写入文件TreePrint 中。
3.测试数据(1) 已知某系统在通信联络中只可能出现八种字符,其频率分别为0.05,0.29,0.07,0.08,0.14,0.23,0.03,0.11,试设计赫夫曼编码。
(2) 用下表给出的字符集和频度的实际统计数据建立赫夫曼树,并实现以下报文的编码和译码:“4.实现提示(1) 编码结果以文本方式存储在文件Codefile中。
(2) 用户界面可以设计为“菜单”方式:显示上述功能符号,再加上“Q”,表示退出运行Quit。
请用户键入一个选择功能符。
此功能执行完毕后再显示此菜单,直至某次用户选择了“Q”为止。
数据结构哈夫曼树编码译码实验报告.doc
数据结构哈夫曼树编码译码实验报告.【详细设计】具体代码实现如下://HaffmanTree.h#include#include#includestruct HuffmanNode //哈夫曼树的一个结点{ int weight; int parent; int lchild,rchild; };class HuffmanTree //哈夫曼树{private: HuffmanNode *Node; //Node[]存放哈夫曼树char *Info; //Info[]存放源文用到的字符——源码,如'a','b','c','d','e',此内容可以放入结点中,不单独设数组存放int LeafNum; //哈夫曼树的叶子个数,也是源码个数public: HuffmanTree(); ~HuffmanTree(); void CreateHuffmanTree(); /*在内存中建立哈夫曼树,存放在Node[]中。
让用户从两种建立哈夫曼树的方法中选择:1.从键盘读入源码字符集个数,每个字符,和每个字符的权重,建立哈夫曼树,并将哈夫曼树写入文件hfmTree中。
2.从文件hfmTree中读入哈夫曼树信息,建立哈夫曼树*/ void CreateHuffmanTreeFromKeyboard(); void CreateHuffmanTreeFromFile(); void Encoder(); /*使用建立好的哈夫曼树(如果不在内存,则从文件hfmTree中读入并建立内存里的哈夫曼树),对文件ToBeTran中的正文进行编码,并将码文写入文件CodeFile中。
ToBeTran的内容可以用记事本等程序编辑产生。
*/ void Decoder(); /*待译码的码文存放在文件CodeFile中,使用建立好的哈夫曼树(如果不在内存,则从文件hfmTree中读入并建立内存里的哈夫曼树)将码文译码,得到的源文写入文件TextFile中,并同时输出到屏幕上。
哈夫曼编码译码器实验报告
哈夫曼编码译码器实验报告实验名称:哈夫曼编码译码器实验一、实验目的:1.了解哈夫曼编码的原理和应用。
2.实现一个哈夫曼编码的编码和译码器。
3.掌握哈夫曼编码的编码和译码过程。
二、实验原理:哈夫曼编码是一种常用的可变长度编码,用于将字符映射到二进制编码。
根据字符出现的频率,建立一个哈夫曼树,出现频率高的字符编码短,出现频率低的字符编码长。
编码过程中,根据已建立的哈夫曼树,将字符替换为对应的二进制编码。
译码过程中,根据已建立的哈夫曼树,将二进制编码替换为对应的字符。
三、实验步骤:1.构建一个哈夫曼树,根据字符出现的频率排序。
频率高的字符在左子树,频率低的字符在右子树。
2.根据建立的哈夫曼树,生成字符对应的编码表,包括字符和对应的二进制编码。
3.输入一个字符串,根据编码表将字符串编码为二进制序列。
4.输入一个二进制序列,根据编码表将二进制序列译码为字符串。
5.比较编码前后字符串的内容,确保译码正确性。
四、实验结果:1.构建哈夫曼树:-字符出现频率:A(2),B(5),C(1),D(3),E(1) -构建的哈夫曼树如下:12/\/\69/\/\3345/\/\/\/\ABCDE2.生成编码表:-A:00-B:01-C:100-D:101-E:1103.编码过程:4.译码过程:5.比较编码前后字符串的内容,结果正确。
五、实验总结:通过本次实验,我了解了哈夫曼编码的原理和应用,并且实现了一个简单的哈夫曼编码的编码和译码器。
在实验过程中,我充分运用了数据结构中的树的知识,构建了一个哈夫曼树,并生成了编码表。
通过编码和译码过程,我进一步巩固了对树的遍历和节点查找的理解。
实验结果表明,本次哈夫曼编码的编码和译码过程正确无误。
在实验的过程中,我发现哈夫曼编码对于频率较高的字符具有较短的编码,从而实现了对字符串的高效压缩。
同时,哈夫曼编码还可以应用于数据传输和存储中,提高数据的传输效率和存储空间的利用率。
通过本次实验,我不仅掌握了哈夫曼编码的编码和译码过程,还深入了解了其实现原理和应用场景,加深了对数据结构和算法的理解和应用能力。
哈夫曼实验报告
一、实验目的1. 理解哈夫曼编码的基本原理和重要性。
2. 掌握哈夫曼树的构建方法。
3. 熟悉哈夫曼编码和译码的实现过程。
4. 分析哈夫曼编码在数据压缩中的应用效果。
二、实验原理哈夫曼编码是一种基于字符频率的编码方法,它利用字符出现的频率来构造一棵最优二叉树(哈夫曼树),并根据该树生成字符的编码。
在哈夫曼树中,频率越高的字符对应的编码越短,频率越低的字符对应的编码越长。
这样,对于出现频率较高的字符,编码后的数据长度更短,从而实现数据压缩。
三、实验内容1. 构建哈夫曼树:- 统计待编码数据中每个字符出现的频率。
- 根据字符频率构建哈夫曼树,其中频率高的字符作为叶子节点,频率低的字符作为内部节点。
- 重复上述步骤,直到树中只剩下一个节点,即为哈夫曼树的根节点。
2. 生成哈夫曼编码:- 从哈夫曼树的根节点开始,对每个节点进行遍历,根据遍历方向(左子树为0,右子树为1)为字符分配编码。
- 将生成的编码存储在编码表中。
3. 编码和译码:- 使用生成的编码表对原始数据进行编码,将编码后的数据存储在文件中。
- 从文件中读取编码后的数据,根据编码表进行译码,恢复原始数据。
四、实验步骤1. 编写代码实现哈夫曼树的构建:- 定义节点结构体,包含字符、频率、左子树、右子树等属性。
- 实现构建哈夫曼树的核心算法,包括节点合并、插入等操作。
2. 实现编码和译码功能:- 根据哈夫曼树生成编码表。
- 编写编码函数,根据编码表对数据进行编码。
- 编写译码函数,根据编码表对数据进行译码。
3. 测试实验效果:- 选择一段文本数据,使用实验代码进行编码和译码。
- 比较编码前后数据的长度,分析哈夫曼编码的压缩效果。
五、实验结果与分析1. 哈夫曼树构建:- 成功构建了哈夫曼树,树中节点按照字符频率从高到低排列。
2. 哈夫曼编码:- 成功生成编码表,字符与编码的对应关系符合哈夫曼编码原理。
3. 编码与译码:- 成功实现编码和译码功能,编码后的数据长度明显缩短,译码结果与原始数据完全一致。
哈弗曼树实验报告(3篇)
一、实验目的1. 理解并掌握哈弗曼树的构建原理。
2. 学会使用哈弗曼树进行数据编码和解码。
3. 了解哈弗曼编码在数据压缩中的应用。
二、实验原理哈弗曼树(Huffman Tree)是一种带权路径长度最短的二叉树,用于数据压缩。
其基本原理是:将待编码的字符集合按照出现频率从高到低排序,构造一棵二叉树,使得叶子节点代表字符,内部节点代表编码,权值代表字符出现的频率。
通过这棵树,可以生成每个字符的编码,使得编码的平均长度最小。
三、实验环境1. 操作系统:Windows 102. 编程语言:C++3. 开发工具:Visual Studio 2019四、实验步骤1. 构建哈弗曼树(1)创建一个结构体`HuffmanNode`,包含字符、权值、左子树和右子树指针。
```cppstruct HuffmanNode {char data;int weight;HuffmanNode left;HuffmanNode right;};(2)定义一个函数`HuffmanTree()`,用于创建哈弗曼树。
```cppHuffmanNode HuffmanTree(std::vector<char>& chars, std::vector<int>& weights) {// 创建初始二叉树std::vector<HuffmanNode> trees;for (int i = 0; i < chars.size(); ++i) {trees.push_back(new HuffmanNode{chars[i], weights[i], nullptr, nullptr});}// 构建哈弗曼树while (trees.size() > 1) {// 选择两个权值最小的节点auto it1 = std::min_element(trees.begin(), trees.end(),[](HuffmanNode a, HuffmanNode b) {return a->weight < b->weight;});auto it2 = std::next(it1);HuffmanNode parent = new HuffmanNode{0, it1->weight + it2->weight, it1, it2};// 删除两个子节点trees.erase(it1);trees.erase(it2);// 将父节点添加到二叉树集合中trees.push_back(parent);}// 返回哈弗曼树根节点return trees[0];}```2. 生成哈弗曼编码(1)定义一个函数`GenerateCodes()`,用于生成哈弗曼编码。
哈夫曼编码译码报告
烟台大学计算机与控制工程学院课程设计(数据结构与OOP)设计题目:班级姓名学号指导教师成绩年月日目录1 题目 (3)1.1 问题描述 (3)1.2 基本要求 (3)1.3 进一步完成 (3)2 内容 (3)2.1 基本需求 (3)2.2. 我的设计 (4)3 算法设计 (4)3.1 数据的存储结构 (4)3.1.1 存放哈夫曼树的存储结构: (4)3.1.2 存放哈夫曼编码的存储结构: (4)3.1.3 存放哈夫曼树每个节点位置的存储结构: (5)3.2 生成哈弗曼树的算法 (5)3.3 生成哈弗曼编码的算法 (6)3.4 译码的算法 (8)3.5 打印哈弗曼树的算法 (9)3.6 其他算法 (10)4 程序正确性验证 (10)4.1 输入数据的控制 (10)4.2 打印哈弗曼树 (11)4.3 哈弗曼编码 (11)4.4 哈弗曼译码 (12)5 遇到的问题 (12)6 课程设计的主要收获 (12)7 对今后课程设计的建议 (12)1 题目1.1 问题描述设计一个利用哈夫曼算法的编码和译码系统,重复地显示并处理项目,直到选择退出为止。
1.2 基本要求1) 将权值数据存放在数据文件(文件名为data.txt,位于执行程序的当前目中2) 分别采用动态和静态存储结构3) 初始化:键盘输入字符集大小n、n个字符和n个权值,建立哈夫曼树4) 编码:利用建好的哈夫曼树生成哈夫曼编码5) 输出编码6) 设字符集及频度如下表:字符空格 A B C D E F G H I J K L M频度186 64 13 22 32 103 21 15 47 57 1 5 32 20字符N O P Q R S T U V W X Y Z频度57 63 15 1 48 51 80 23 8 18 1 16 11.3 进一步完成1) 译码功能2) 显示哈夫曼树3) 界面设计的优化2 内容2.1 基本需求编写一个哈夫曼编码/译码器,次编码/译码器有两大主要功能:一是对一段文本进行编码,比如在利用电报机发送信息时,需要将文字“ABACCDA”转换成类似“00110111001”这样的二进制组成的字符串;二是对一段密文进行译码,比如在接收电报后,需要对“0101110100101”这样的二进制密文通过某种标准译码成看得懂的文字信息。
哈夫曼编译码系统实验报告
数学与计算机学院数据结构实验报告年级大二学号********* 姓名******* 成绩专业电气信息类(计算机)实验地点主楼402 指导教师实验项目实验日期2010年11月20日一、实验目的和要求通过对简单哈夫曼编/译码系统的设计与实现来熟练掌握树型结构在实际问题中的应用。
此实验可以作为综合实验,阶段性实验时可以选择其中的几个功能来设计和实现。
二、问题描述利用哈夫曼编码进行通信可以大大提高信道利用率,缩短信息传输时间,降低传输成本。
但是,这要求在发送端通过一个编码系统对待传数据预先编码,在接收端将传来的数据进行译码(复原)。
对于双工信道(即可以双向传输信息的信道),每端都需要一个完整的编/译码系统。
试为这样的信息收发编写一个哈夫曼码的编/译码系统。
三、数据结构设计1、构造哈夫曼树时使用静态链表作为哈夫曼树的存储。
在构造哈夫曼树时,设计一个结构体数组HuffNode保存哈夫曼树中各结点的信息,根据二叉树的性质可知,具有n个叶子结点的哈夫曼树共有2n-1个结点,所以数组HuffNode的大小设置为2n-1;描述结点的数据类型为:struct HNodeType{char data; //结点字符int weight;//结点权值int parent;int lchild;int rchild;int level;};2、求哈夫曼树编码时使用一维结构数组HuffCode作为哈夫曼编码信息的存储。
求哈夫曼编码,实质上就是在已建立的哈夫曼树中,从叶子结点开始,沿结点的双亲链域回退到根结点,每回退一步,就走过了哈夫曼树的一个分支,从而得到一位哈夫曼码值,由于一个字符的哈夫曼编码是从根结点到相应叶子结点所经过的路径上各分支所组成的0、1序列,因此先得到的分支代码为所求编码为所求编码的低位码,后得到的分支代码为所求编码的高位码,所以设计如下数据类型:struct HCodeType{int bit[MAXBIT];int start;};3、文件hfmtree.txt、codefile.txt、textfile.txt。
数据结构哈夫曼树编码译码实验报告
【详细设计】具体代码实现如下://HaffmanTree、h#include<iostream>#include<fstream>#include<string>struct HuffmanNode //哈夫曼树的一个结点{int weight;int parent;int lchild,rchild;};class HuffmanTree //哈夫曼树{private:HuffmanNode *Node; //Node[]存放哈夫曼树char *Info; //Info[]存放源文用到的字符——源码,如'a','b','c','d','e',此内容可以放入结点中,不单独设数组存放int LeafNum; //哈夫曼树的叶子个数,也就是源码个数public:HuffmanTree();~HuffmanTree();void CreateHuffmanTree(); /*在内存中建立哈夫曼树,存放在Node[]中。
让用户从两种建立哈夫曼树的方法中选择:1、从键盘读入源码字符集个数,每个字符,与每个字符的权重,建立哈夫曼树,并将哈夫曼树写入文件hfmTree中。
2、从文件hfmTree中读入哈夫曼树信息,建立哈夫曼树*/void CreateHuffmanTreeFromKeyboard();void CreateHuffmanTreeFromFile();void Encoder(); /*使用建立好的哈夫曼树(如果不在内存,则从文件hfmTree中读入并建立内存里的哈夫曼树),对文件ToBeTran中的正文进行编码,并将码文写入文件CodeFile中。
ToBeTran的内容可以用记事本等程序编辑产生。
*/void Decoder(); /*待译码的码文存放在文件CodeFile中,使用建立好的哈夫曼树(如果不在内存,则从文件hfmTree中读入并建立内存里的哈夫曼树)将码文译码,得到的源文写入文件TextFile中,并同时输出到屏幕上。
哈夫曼树编码译码实验报告
}
void ReadCode(char *fileName4)
{FILE *fp4;
char ch;
if((fp4=fopen(fileName4,"r"))==NULL)
{printf("\n error on open %s!",fileName4);
exit(0);
}
printf("\n输出编码后的文件内容:\n");
while(!feof(fp4))
{
ch=fgetc(fp4);
printf("%c",ch);
}
fclose(fp4);
printf("\n");
}
void yima(HuffmanTree &HT,int n,char str4[],char hh[])
{int i,j,m=0;
for(i=0,j=2*n-1;str4[i]!='\0';i++)
{
fscanf(fp1,"%c",&ch);
if(ch=='\n') continue; //读到换行符,跳过,读下一行
chh[i]=ch;
printf("ch=%c ",ch);
fscanf(fp1,"%5d",&w); // fscanf中的格式化要加\n,文件指针才会指向下一行
wt[i]=w;
exit(1);
}
while(!feof(fp2))
{
fscanf(fp2,"%c",&ch);
数据结构哈夫曼树编码译码实验报告
【详细设计】具体代码实现如下://HaffmanTree.h#include<iostream>#include<fstream>#include<string>struct HuffmanNode //哈夫曼树的一个结点{int weight;int parent;int lchild,rchild;};class HuffmanTree //哈夫曼树{private:HuffmanNode *Node; //Node[]存放哈夫曼树char *Info; //Info[]存放源文用到的字符——源码,如'a','b','c','d','e',此内容可以放入结点中,不单独设数组存放int LeafNum; //哈夫曼树的叶子个数,也是源码个数public:HuffmanTree();~HuffmanTree();void CreateHuffmanTree(); /*在内存中建立哈夫曼树,存放在Node[]中。
让用户从两种建立哈夫曼树的方法中选择:1.从键盘读入源码字符集个数,每个字符,和每个字符的权重,建立哈夫曼树,并将哈夫曼树写入文件hfmTree中。
2.从文件hfmTree中读入哈夫曼树信息,建立哈夫曼树*/void CreateHuffmanTreeFromKeyboard();void CreateHuffmanTreeFromFile();void Encoder(); /*使用建立好的哈夫曼树(如果不在内存,则从文件hfmTree中读入并建立内存里的哈夫曼树),对文件ToBeTran中的正文进行编码,并将码文写入文件CodeFile中。
ToBeTran的内容可以用记事本等程序编辑产生。
*/void Decoder(); /*待译码的码文存放在文件CodeFile中,使用建立好的哈夫曼树(如果不在内存,则从文件hfmTree中读入并建立内存里的哈夫曼树)将码文译码,得到的源文写入文件TextFile中,并同时输出到屏幕上。
编码译码实验报告
一、实验目的1. 理解编码译码的基本原理和方法。
2. 掌握哈夫曼编码和译码的实现过程。
3. 通过实验,提高编程能力和数据结构应用能力。
二、实验环境1. 操作系统:Windows 102. 编程语言:C++3. 开发工具:Visual Studio 2019三、实验内容1. 哈夫曼编码与译码(1)哈夫曼编码的原理哈夫曼编码是一种变长编码,通过为不同频率的字符分配不同的编码长度,达到压缩数据的目的。
哈夫曼编码的核心是构建一棵哈夫曼树,树中每个叶子节点对应一个字符,非叶子节点对应两个子节点的编码。
(2)哈夫曼编码的实现首先,根据输入的字符及其频率,构建哈夫曼树。
然后,从根节点开始,对每个叶子节点进行编码,编码规则为从根节点到叶子节点的路径,左子节点编码为“0”,右子节点编码为“1”。
(3)哈夫曼译码的实现根据哈夫曼编码的编码规则,将编码后的数据还原成原始字符。
从编码数据的第一个比特开始,根据编码规则,逐步还原出原始字符。
2. 字符串编码与译码(1)字符串编码的原理字符串编码是将字符串中的字符转换成二进制表示,以达到压缩数据的目的。
常见的字符串编码方法有ASCII编码、UTF-8编码等。
(2)字符串编码的实现以ASCII编码为例,将字符串中的每个字符转换为对应的ASCII码,然后将其转换为二进制表示。
(3)字符串译码的实现将编码后的二进制数据转换回对应的ASCII码,再将ASCII码转换成字符。
四、实验步骤1. 创建一个新的C++项目,命名为“编码译码实验”。
2. 在项目中创建两个源文件:main.cpp和编码译码.cpp。
3. 在main.cpp中编写代码,实现以下功能:(1)从文件中读取字符串,进行哈夫曼编码。
(2)将编码后的数据写入文件。
(3)从文件中读取编码后的数据,进行哈夫曼译码。
(4)将译码后的字符串输出到屏幕。
4. 在编码译码.cpp中编写代码,实现以下功能:(1)构建哈夫曼树。
(2)实现哈夫曼编码和译码算法。
哈夫曼编译码系统实验报告
数学与计算机学院数据结构实验报告年级大二学号********* 姓名******* 成绩专业电气信息类(计算机)实验地点主楼402 指导教师实验项目实验日期2010年11月20日一、实验目的和要求通过对简单哈夫曼编/译码系统的设计与实现来熟练掌握树型结构在实际问题中的应用。
此实验可以作为综合实验,阶段性实验时可以选择其中的几个功能来设计和实现。
二、问题描述利用哈夫曼编码进行通信可以大大提高信道利用率,缩短信息传输时间,降低传输成本。
但是,这要求在发送端通过一个编码系统对待传数据预先编码,在接收端将传来的数据进行译码(复原)。
对于双工信道(即可以双向传输信息的信道),每端都需要一个完整的编/译码系统。
试为这样的信息收发编写一个哈夫曼码的编/译码系统。
三、数据结构设计1、构造哈夫曼树时使用静态链表作为哈夫曼树的存储。
在构造哈夫曼树时,设计一个结构体数组HuffNode保存哈夫曼树中各结点的信息,根据二叉树的性质可知,具有n个叶子结点的哈夫曼树共有2n-1个结点,所以数组HuffNode的大小设置为2n-1;描述结点的数据类型为:struct HNodeType{char data; //结点字符int weight;//结点权值int parent;int lchild;int rchild;int level;};2、求哈夫曼树编码时使用一维结构数组HuffCode作为哈夫曼编码信息的存储。
求哈夫曼编码,实质上就是在已建立的哈夫曼树中,从叶子结点开始,沿结点的双亲链域回退到根结点,每回退一步,就走过了哈夫曼树的一个分支,从而得到一位哈夫曼码值,由于一个字符的哈夫曼编码是从根结点到相应叶子结点所经过的路径上各分支所组成的0、1序列,因此先得到的分支代码为所求编码为所求编码的低位码,后得到的分支代码为所求编码的高位码,所以设计如下数据类型:struct HCodeType{int bit[MAXBIT];int start;};3、文件hfmtree.txt、codefile.txt、textfile.txt。
树和哈夫曼树实验报告
哈夫曼树实验报告2011.4.22实验题目: Huffman编码和译码。
实验目的:1、练习树和哈夫曼树的有关操作, 和各个算法程序。
2.理解哈夫曼树的编码和译码实验内容:抽象数据类型:ADT Huffmantree{数据对象: D={带有各自实数W(D)的数据元素}数据关系: (1) D=NULL 则huffman tree 不存在//判断huffman树是否存在(2) D≠NULL R={H}.H为如下二元关系://如果存在, 假设R为其元素名称, H为里边所有元素①D中存在唯一根数据元素root,这个元素无前驱。
//如果只有一个元素, 则为根元素②D-{root} ≠NULL.则存在D-{root} ={D1, Dr}.且D1∧Dr=NULL//如果除了根元素还有别的元素, 那么会有D1和Dr两部分, 并且两者的交集为空, 也就是两者是独立的。
③若D1 ≠NULL , 则D1 中存在唯一元素xr,<root, xr>∈H//如果D1部位空集, 则会有一个元素xr, 且存在Dr上关系Hr ∈H,H= {<root ,x1>,< root, xr>,H1,Hr};④符合①②③的R的组合中, 存在一个组合R’使D中所有结点到root长与其权值W(Di)相乘的和最小, 此时的<D/R>集合称为huffman tree.基本操作:void select(HTNode HT[],int m,int *s1,int *s2)//比较得到权最小的两棵树。
用指针指向所在位置。
*void print1(char *HC[])//将哈弗曼编码逐个打印出来void print2(HTNode HT[])//将哈夫曼树前后的结构打印出来void CreatHuffmanTree(HTNode HT[],lettervalue w[])//建立哈夫曼树void HuffmanTreeCoding(HTNode HT[],char *HC[])//从树根出发, 对哈夫曼树做一次先序遍历, 在遍历过程中利用一个字符//的顺序栈S记下遍历路程, 向左转时0入栈, 向右转时1入栈。
哈夫曼编码译码实训报告
一、实训目的本次实训旨在通过实际操作,使学生掌握哈夫曼编码的基本原理和方法,熟悉哈夫曼树的构建过程,并能够熟练地进行哈夫曼编码和译码操作。
通过实训,提升学生对数据压缩技术的理解和应用能力。
二、实训内容1. 哈夫曼树构建- 收集给定字符串中每个字符的出现频率。
- 根据字符频率构建哈夫曼树,其中频率高的字符对应较大的权重。
- 使用优先队列(最小堆)实现哈夫曼树的构建。
2. 哈夫曼编码- 遍历哈夫曼树,为每个叶子节点分配唯一的编码,左分支为0,右分支为1。
- 根据分配的编码生成字符编码表。
3. 哈夫曼译码- 使用生成的编码表,将编码字符串转换回原始字符串。
三、实训步骤1. 数据准备- 选择一段英文或中文文本作为输入数据。
2. 构建哈夫曼树- 统计输入数据中每个字符的出现频率。
- 使用优先队列构建哈夫曼树。
3. 生成哈夫曼编码- 遍历哈夫曼树,为每个叶子节点分配编码。
- 生成字符编码表。
4. 编码数据- 使用哈夫曼编码表对输入数据进行编码。
5. 译码数据- 使用哈夫曼编码表对编码后的数据进行译码。
6. 结果分析- 比较编码前后数据的大小,分析哈夫曼编码的压缩效果。
四、实训结果1. 哈夫曼树构建- 成功构建了给定字符串的哈夫曼树。
2. 哈夫曼编码- 成功生成了每个字符的哈夫曼编码。
3. 哈夫曼译码- 成功将编码后的数据译码回原始字符串。
4. 压缩效果分析- 通过对比编码前后数据的大小,验证了哈夫曼编码的压缩效果。
五、实训总结1. 哈夫曼编码原理- 哈夫曼编码是一种基于字符频率的变长编码方法,能够有效降低数据传输的冗余度。
2. 哈夫曼树构建- 哈夫曼树的构建是哈夫曼编码的关键步骤,通过优先队列(最小堆)实现。
3. 哈夫曼编码与译码- 哈夫曼编码和译码过程相对简单,但需要正确处理编码表和字符编码。
4. 实训收获- 通过本次实训,掌握了哈夫曼编码的基本原理和方法,熟悉了哈夫曼树的构建过程,并能够熟练地进行哈夫曼编码和译码操作。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数据结构课程设计设计题目:哈夫曼树编码译码目录第一章需求分析 (1)第二章设计要求 (1)第三章概要设计 (2)(1)其主要流程图如图1-1所示。
(3)(2)设计包含的几个方面 (4)第四章详细设计 (4)(1)①哈夫曼树的存储结构描述为: (4)(2)哈弗曼编码 (5)(3)哈弗曼译码 (7)(4)主函数 (8)(5)显示部分源程序: (8)第五章调试结果 (10)第六章心得体会 (12)第七章参考文献 (12)附录: (12)在当今信息爆炸时代,如何采用有效的数据压缩技术节省数据文件的存储空间和计算机网络的传送时间已越来越引起人们的重视,哈夫曼编码正是一种应用广泛且非常有效的数据压缩技术。
哈夫曼编码是一种编码方式,以哈夫曼树—即最优二叉树,带权路径长度最小的二叉树,经常应用于数据压缩。
哈弗曼编码使用一张特殊的编码表将源字符(例如某文件中的一个符号)进行编码。
这张编码表的特殊之处在于,它是根据每一个源字符出现的估算概率而建立起来的(出现概率高的字符使用较短的编码,反之出现概率低的则使用较长的编码,这便使编码之后的字符串的平均期望长度降低,从而达到无损压缩数据的目的)。
哈夫曼编码的应用很广泛,利用哈夫曼树求得的用于通信的二进制编码称为哈夫曼编码。
树中从根到每个叶子都有一条路径,对路径上的各分支约定:指向左子树的分支表示“0”码,指向右子树的分支表示“1”码,取每条路径上的“0”或“1”的序列作为和各个叶子对应的字符的编码,这就是哈夫曼编码。
哈弗曼译码输入字符串可以把它编译成二进制代码,输入二进制代码时可以编译成字符串。
第二章设计要求对输入的一串电文字符实现哈夫曼编码,再对哈夫曼编码生成的代码串进行译码,输出电文字符串。
通常我们把数据压缩的过程称为编码,解压缩的过程称为解码。
电报通信是传递文字的二进制码形式的字符串。
但在信息传递时,总希望总长度能尽可能短,即采用最短码。
假设每种字符在电文中出现的次数为Wi,编码长度为Li,电文中有n种字符,则电文编码总长度为∑WiLi。
若将此对应到二叉树上,Wi为叶结点的权,Li为根结点到叶结点的路径长度。
那么,∑WiLi 恰好为二叉树上带权路径长度。
因此,设计电文总长最短的二进制前缀编码,就是以n种字符出现的频率作权,构造一棵哈夫曼树,此构造过程称为哈夫曼编码。
设计实现的功能: (1) 哈夫曼树的建立; (2) 哈夫曼编码的生成; (3) 编码文件的译码。
哈夫曼编\译码器的主要功能是先建立哈夫曼树,然后利用建好的哈夫曼树生成哈夫曼编码后进行译码。
在数据通信中,经常需要将传送的文字转换成由二进制字符0、1组成的二进制串,称之为编码。
构造一棵哈夫曼树,规定哈夫曼树中的左分之代表0,右分支代表1,则从根节点到每个叶子节点所经过的路径分支组成的0和1的序列便为该节点对应字符的编码,称之为哈夫曼编码。
最简单的二进制编码方式是等长编码。
若采用不等长编码,让出现频率高的字符具有较短的编码,让出现频率低的字符具有较长的编码,这样可能缩短传送电文的总长度。
哈夫曼树课用于构造使电文的编码总长最短的编码方案。
(1)其主要流程图如图1-1所示。
(2)设计包含的几个方面:①哈夫曼树的建立哈夫曼树的建立由哈夫曼算法的定义可知,初始森林中共有n棵只含有根结点的二叉树。
算法的第二步是:将当前森林中的两棵根结点权值最小的二叉树,合并成一棵新的二叉树;每合并一次,森林中就减少一棵树,产生一个新结点。
显然要进行n-1次合并,所以共产生n-1个新结点,它们都是具有两个孩子的分支结点。
由此可知,最终求得的哈夫曼树中一共有2n-1个结点,其中n个结点是初始森林的n个孤立结点。
并且哈夫曼树中没有度数为1的分支结点。
我们可以利用一个大小为2n--1的一维数组来存储哈夫曼树中的结点。
②哈夫曼编码要求电文的哈夫曼编码,必须先定义哈夫曼编码类型,根据设计要求和实际需要定义的类型如下:typedet struct {char ch; // 存放编码的字符char bits[N+1]; // 存放编码位串int len; // 编码的长度}CodeNode; // 编码结构体类型③代码文件的译码译码的基本思想是:读文件中编码,并与原先生成的哈夫曼编码表比较,遇到相等时,即取出其对应的字符存入一个新串中。
第四章详细设计(1)①哈夫曼树的存储结构描述为:#define N 50 // 叶子结点数#define M 2*N-1 // 哈夫曼树中结点总数typedef struct {int weight; // 叶子结点的权值int lchild, rchild, parent; // 左右孩子及双亲指针}HTNode; // 树中结点类型typedef HTNode HuffmanTree[M+1];②哈弗曼树的算法void CreateHT(HTNode ht[],int n) //调用输入的数组ht[],和节点数n{int i,k,lnode,rnode;int min1,min2;for (i=0;i<2*n-1;i++)ht[i].parent=ht[i].lchild=ht[i].rchild=-1; //所有结点的相关域置初值-1 for (i=n;i<2*n-1;i++) //构造哈夫曼树{min1=min2=32767; //int的范围是-32768—32767lnode=rnode=-1; //lnode和rnode记录最小权值的两个结点位置for (k=0;k<=i-1;k++){if (ht[k].parent==-1) //只在尚未构造二叉树的结点中查找{if (ht[k].weight<min1) //若权值小于最小的左节点的权值{min2=min1;rnode=lnode;min1=ht[k].weight;lnode=k;}else if (ht[k].weight<min2){min2=ht[k].weight;rnode=k;}}}ht[lnode].parent=i;ht[rnode].parent=i; //两个最小节点的父节点是iht[i].weight=ht[lnode].weight+ht[rnode].weight; //两个最小节点的父节点权值为两个最小节点权值之和ht[i].lchild=lnode;ht[i].rchild=rnode; //父节点的左节点和右节点}}(2)哈弗曼编码void CreateHCode(HTNode ht[],HCode hcd[],int n){int i,f,c;HCode hc;for (i=0;i<n;i++) //根据哈夫曼树求哈夫曼编码{hc.start=n;c=i;f=ht[i].parent;while (f!=-1) //循序直到树根结点结束循环{if (ht[f].lchild==c) //处理左孩子结点hc.cd[hc.start--]='0';else //处理右孩子结点hc.cd[hc.start--]='1';c=f;f=ht[f].parent;}hc.start++; //start指向哈夫曼编码hc.cd[]中最开始字符hcd[i]=hc;}}void DispHCode(HTNode ht[],HCode hcd[],int n) //输出哈夫曼编码的列表{int i,k;printf(" 输出哈夫曼编码:\n");for (i=0;i<n;i++) //输出data中的所有数据,即A-Z {printf(" %c:\t",ht[i].data);for (k=hcd[i].start;k<=n;k++) //输出所有data中数据的编码{printf("%c",hcd[i].cd[k]);}printf("\n");}}void editHCode(HTNode ht[],HCode hcd[],int n) //编码函数{char string[MAXSIZE];int i,j,k;scanf("%s",string); //把要进行编码的字符串存入string数组中printf("\n输出编码结果:\n");for (i=0;string[i]!='#';i++) //#为终止标志{for (j=0;j<n;j++){if(string[i]==ht[j].data) //循环查找与输入字符相同的编号,相同的就输出这个字符的编码{for (k=hcd[j].start;k<=n;k++){printf("%c",hcd[j].cd[k]);}break; //输出完成后跳出当前for循环}}}}(3)哈弗曼译码void deHCode(HTNode ht[],HCode hcd[],int n) //译码函数{char code[MAXSIZE];int i,j,l,k,m,x;scanf("%s",code); //把要进行译码的字符串存入code数组中while(code[0]!='#')for (i=0;i<n;i++){m=0; //m为想同编码个数的计数器for (k=hcd[i].start,j=0;k<=n;k++,j++) //j为记录所存储这个字符的编码个数{if(code[j]==hcd[i].cd[k]) //当有相同编码时m值加1m++;}if(m==j) //当输入的字符串与所存储的编码字符串个数相等时则输出这个的data数据{printf("%c",ht[i].data);for(x=0;code[x-1]!='#';x++) //把已经使用过的code数组里的字符串删除{code[x]=code[x+j];}}}}(4)主函数void main(){int n=26,i;char orz,back,flag=1;char str[]={'A','B','C','D','E','F','G','H','I','J','K','L','M','N','O','P','Q','R','S','T','U','V','W','X','Y','Z'}; //初始化int fnum[]={186,64,13,22,32,103,21,15,47,57,1,2,32,20,57,63,15,1,48,51,80,23,8,18,1,16}; //初始化HTNode ht[M]; //建立结构体HCode hcd[N]; //建立结构体for (i=0;i<n;i++) //把初始化的数据存入ht结构体中{ht[i].data=str[i];ht[i].weight=fnum[i];}while (flag) //菜单函数,当flag为0时跳出循环(5)显示部分源程序:{printf("\n");printf(" ********************************");printf("\n ** 1---------------显示编码**");printf("\n ** 2---------------进行编码**");printf("\n ** 3---------------进行译码**");printf("\n ** 4---------------退出**\n");printf(" * **********************************");printf("\n");printf(" 请输入选择的编号:");scanf("%c",&orz);switch(orz){case 'a':case 'A':system("cls"); //清屏函数CreateHT(ht,n);CreateHCode(ht,hcd,n);DispHCode(ht,hcd,n);printf("\n按任意键返回...");getch();system("cls");break;case 'b':case 'B':system("cls");printf("请输入要进行编码的字符串(以#结束):\n");editHCode(ht,hcd,n);printf("\n按任意键返回...");getch();system("cls");break;case 'c':case 'C':system("cls");DispHCode(ht,hcd,n);printf("请输入编码(以#结束):\n");deHCode(ht,hcd,n);printf("\n按任意键返回...");getch();system("cls");break;case 'd':case 'D':flag=0;break;default:system("cls");}}}第五章调试结果进入主菜单选A时的显示结果选择B时的显示结果选C时的显示结果第六章心得体会通过这次课程设计,让我对一个程序的数据结构有更全面更进一步的认识,根据不同的需求,采用不同的数据存储方式,不一定要用栈,二叉树等高级类型,有时用基本的一维数组,只要运用得当,也能达到相同的效果,甚至更佳,就如这次的课程设计,通过用for的多重循环,舍弃多余的循环,提高了程序的运行效率。