苏教版数学高二-数学苏教版选修2-1《 椭圆的几何性质(1)》 教案

合集下载

高中数学苏教版选修2-1课件: 2.2.2 椭圆的几何性质 课件1

高中数学苏教版选修2-1课件: 2.2.2 椭圆的几何性质 课件1

B
D
F1 O F2 C A x
设椭圆方程为 x2 a2

y2 b2
1(a
b
0) .
由题意知 AC=439,BD=2384,F2C= F2D=6371.
a-c=OA-OF2= F2A=439+6371=6810,
a+c=OB-OF2= F2B=2384+6371=8755,
解得 a=7782.5,c=972.5.
需要构造一个“稳定”的量来表示偏心率,最后发现
(aቤተ መጻሕፍቲ ባይዱ(a

c) c)

(a (a

c) c)

c a
的值和椭圆大小无关却能很好地刻画椭圆的扁平程度,因此,大家就
c 选择了 a 表示离心率。
例 2.我国发射的第一颗人造卫星的运行轨道是以地球的
中心(简称“地心”) F2 为焦点的椭
y
圆.已知它的近地点 A (离地面最近
离心率跟天文学家有关,并且在天文学中广泛应用。
16世纪时天文学家发现太阳系的八大行星
都是绕着以太阳为焦点的椭圆形轨道运行,
这些轨道偏离太阳的程度称为“偏心率”,
a+c
A1
其中在近日点处离太阳最近,偏离距离为a-c,
P
a-c
F2
A2
在远日点处离太阳最远,偏离距离为a+c,这两
个值不仅和运行轨道的扁平程度有关,还受轨道大小的影响,人们
所以 b a2 c2 (a c)(a c) 7722.
因此,卫星运行的轨道方程是
x2 77832

y2 77222
1.
标准 方程
图形

高中数学新苏教版精品教案《苏教版高中数学选修2-1 2.2.2 椭圆的几何性质》

高中数学新苏教版精品教案《苏教版高中数学选修2-1 2.2.2 椭圆的几何性质》

椭 圆-----解答题方法突破【教学目标】学会合理选择参数(坐标、斜率等)表示动态几何对象和几何量,探究、证明动态图形中的不变性质,体会“设而不求”、“整体代换”在简化运算中的作用. 一、基础练习1 已知PQ 是过椭圆22:21C x y +=中心的任一弦,A 是椭圆C 上异于P Q 、的任意一点.若AP AQ 、 斜率分别为12k k 、 ,则12k k ⋅=______________.2_______二、典型例题例1 已知椭圆C :22221(0)x y a b a b +=>>的离心率为2,(),0A a ,()0,B b ,()0,0O ,△OAB 的面积为1(1)求椭圆C 的方程;(2)设,直线AN BM ⋅xOy 22221(0)x y a b a b +=>>222A (2,2)D -l ,P Q ,AP AQ xOy 2222:1(0)x y C a b a b +=>>23433x =(0,2)-l 12,k k C l l 12k k ⋅e C 2222:1(0)x y a b a b +=>>(1)e ,()20,C AB MN 、C M N 、O AB (,0),(22)E m m -<<AB MN 、AM BN 、,N ,求 错误! 的值;(3)记直线与轴的交点为xoy 12,F F 22221(0)x y a b a b+=>>B (0,)b 2BF A A x C 1FC C 41(,)3322BF =1FC AB ⊥e PQ 22:21C x y +=A C P Q 、AP AQ 、12k k 、12k k ⋅1273622=+y x :NF AB 1422221(0)x y a b a b +=>>F A ,P 222by x =+PAPF AOxyF PAOxyF PA OxyF P512-22221(0)x y a b a b +=>>32(),0A a ()0,B b ()0,0O ,直线为定值 NDBAFOxyxy O NB EAMMN O y xA B POA BPT MNMN O y xA B P分析:(重点在参数的选择上)(1)2214+=x y (2)法一设点()00,P x y ,定值为4法二:设点(),0M m ,()0,N n ,则解方程组:2211244⎧+=⎪⎪⎪+=⎨⎪⎪+=⎪⎩pp p pp p x y mx y n x y 参数方程。

高中数学2.2 椭圆 教案2 苏教版选修2—1

高中数学2.2 椭圆 教案2 苏教版选修2—1

《椭圆》导学椭圆是我们生活中常见的一种曲线,如汽车油罐的横截面、太阳系中九大行星及其卫星运动的轨道、部分彗星的轨道等等都是椭圆形。

研究椭圆的方程及其几何性质,可以帮助我们解决一些实际问题。

椭圆是解析几何的重要内容,是高考常考的知识点之一。

知识要点梳理1、椭圆的定义:平面内与两个定点F1、F2的距离的和等于常数(大于│F1F2│)的点的轨迹叫做椭圆。

这两个定点叫做椭圆的焦点,两焦点的距离叫做椭圆的焦距。

问题一:对于椭园的定义我们应理解哪些内容:(1)椭圆的定义是据椭圆常见、常用的作图方法而得到的,它反映了椭圆的本质属性,是建立标准方程和解决有关问题的根本依据,必须要深刻理解。

建议初学的读者,利用课本中椭圆的画法,边画边体会、理解椭圆的定义。

(2)在定义中要抓住关键字词:“两个定点”、“距离的和”、“常数”,弄清它们的确切含义。

特别注意这个常数应大于两定点的距离(│F1F2│=2c),即2a>2c。

当2a=2c时,点的轨迹是两定点确定的线段F1F2;当2a<2c时,点的轨迹不存在。

(3)要注意利用椭圆的定义解题。

与椭圆有关的一些问题,若根据题设条件,利用椭圆的定义来解,往往起到其它方法所不及的作用。

2、如何联系椭圆的标准方程理解几何性质?请读者利用类比的方法,将椭圆的两种标准方程、图形、及几何性质列一张表,然后,思考表中哪些是相同的?哪些是不同的?为什么?再认真阅读下面的说明。

对标准方程及几何性质的几点说明:(1)牢记参数关系:2220,,,,a b a b c a b c>>=+中最大。

(2)在两种标准方程表示的椭圆的几何性质中,凡是与坐标无关的性质(椭圆本身固有的性质)都是相同的。

如长轴、短轴的长,焦距,离心率,椭圆的形状、大小等都是相同的。

凡是与坐标有关的性质(由于坐标系选取的不同而得到的特殊性质)都是不同的。

如焦点的坐标,顶点的坐标,标准方程,准线方程,椭圆的位置等都是不同的。

记忆时,将焦点在x 轴上方程、坐标中的x换成y,y换成x即可。

2_2椭圆的概念及简单几何性质复习教案(苏教版选修2-1)

2_2椭圆的概念及简单几何性质复习教案(苏教版选修2-1)

课题: 椭圆的概念及简单几何性质复习(一) 、教学目标:(1)知识与技能:熟练掌握椭圆的概念、范围、对称性、顶点,掌握c b a ,,几何意义以及c b a ,,的相互关系,学习利用方程研究曲线性质的方法。

(2)过程与方法:通过图形尝试知识的回顾,使学生经历知识回顾的过程,以自主探究为主,通过自身体验数学知识回顾的历程,培养学生观察、分析、逻辑推理、理性思维的水平。

(3)情感、态度与价值观:通过自主探究、交流合作使学生亲自体验研究的艰辛,从中体味合作与成功的快乐,由此激发其更加积极主动的学习精神和探索勇气;通过多媒体展示,让学生体会椭圆方程结构的和谐美和椭圆曲线的对称美,培养学生的审美习惯和良好的思维品质。

教学重点、难点:重点:掌握椭圆标准方程及椭圆的几何性质的简单应用;注重学生在探究椭圆相关知识回顾过程中思维的过程体现,如思维角度和思维方法。

难点:椭圆概念及几何性质的简单应用。

通过本节课的教学力求使一个平淡的知识回顾过程成为一个生动而有价值的学生主动交流合作、大胆探究的过程应是教学的难点。

教学策略:本节课采用创设问题情景——学生自主探究——师生共同辨析研讨——归纳总结组成的“四环节”探究式学习方式,并在教学过程中根据实际情况即时地调整教学方案。

学法指导:通过创设问题情景、学生自主探究、展示学生的研究过程来激励学生的探索勇气。

根据学生的认知情况和学生的情感发展来调整整个学习活动的梯度与层次,逐步形成敢于发现、敢于质疑的科学态度。

教学媒体选择与应用:使用实物投影及多媒体辅助教学。

借助实物投影展示学生的解题思维及解题过程,突出学生的思维角度与思维理解,遵循学生的认知规律,提升学生的思维层次。

教学过程:一、创设问题情景,学生自主探究:问题:观察下图,你能说出我们学过椭圆的哪些知识?知识点归纳1.定义:①平面内一个动点到两个定点F 1、F 2的距离之和等于常数(大于|F 1F 2|),这个动点的轨迹叫椭圆(这两个定点叫焦点). 数学符号形式:___________________②点M 与一个定点的距离和它到一条定直线的距离的比是常数e (0<e<1),则P 点的轨迹是椭圆数学符号形式:___________________ 2.椭圆参数的几何意义,如图所示: (1)|PF 1|+|PF 2|=____,|PM 2|+|PM 1|=_____,||||11PM PF =||||22PM PF =________;(2)=11F A 22_____A F =,=21F A 21____A F =;1__________PF ≤≤3.标准方程:椭圆标准方程的两种形式:______________和____________)0(>>b a 其中2______c =椭圆12222=+by a x )0(>>b a 的焦点坐标是________,准线方程是__________,离心率是_______, 范围:______________,长轴长=_____,短轴长=______,焦距=______ , 焦半径:1_________________PF =,2___________PF =. 二、小试牛刀:1.已知椭圆上2212516x y +=一点M。

高中数学新苏教版精品教案《苏教版高中数学选修2-1 2.2.2 椭圆的几何性质》0

高中数学新苏教版精品教案《苏教版高中数学选修2-1 2.2.2 椭圆的几何性质》0

2.2.2椭圆的几何性质----江苏省江阴长泾中学 沈书龙【教学目标】(1)通过对椭圆标准方程的讨论,让学生掌握椭圆的几何性质,并能正确作出图形. (2)让学生感受运用方程研究曲线几何性质的思想方法. (3)学生能运用椭圆的方程和几何性质处理一些简单的实际问题.【教学重点】探究椭圆的几何性质;理解椭圆基本量e c b a ,,,的几何意义.【教学难点】理解椭圆离心率的几何意义.【教学过程】 一、问题情境热爱生活的同学会发现生活中有很多椭圆形的物件,它们都给我们以美的感觉,但是图形有大小之分,也有扁圆之别,那么 “想画出这些椭圆的图形吗?”是随便画一下,还是有章可循?二、学生活动探究(一)问题1、比如:给你一个方程1162522=+y x ,你能否根据这个方程画出它对应的图形,而且大小适合,具有美感?提示:①怎么画?②大小怎么确定?③怎样体现图形的美感。

问题2、怎么样取点?取0=x ,对应4±=y ,取1=x ,不好算,对应y 两个值,取1-=x ,也如此,取5=x ,对应0=y ,取6=x ?说明方程中x 有范围,怎么从方程中得到?研究方程得到范围获得结论:椭圆应该限制在这样四条直线4,5±=±=y x 之间,也就是椭圆应该在这个矩形框内由四个点,加上范围,我们在要求不太精确的前提下,可以画出椭圆图形 探究(二)问题1、由上述我们画的椭圆,请同学们观测一下,椭圆图形的美吗?美在哪里?得到:椭圆关于y x ,轴对称的,除了轴对称外,还有其他的对称吗?怎么从方程的角度加以说明呢?当),(y x P 在椭圆上时,它关于x 轴的对称点),('y x P -,也在椭圆上,即在椭圆方程中把y 改成y -,方程并不改变,即得到椭圆是关于x 轴对称的获得结论:椭圆是轴对称图形,也是中心对称图形。

x 轴和y 轴是它的对称轴,坐标原点是它的对称中心,对称中心也叫椭圆的中心---刚才我们通过对椭圆的方程的研究得到椭圆的范围,对称性,这些称为椭圆的几何性质,对于一般的椭圆方程,又具有怎么样的几何性质呢?这个就是我们今天要研究的椭圆的几何性质----揭示课题我们把1162522=+y x 中的16,25换成22,b a ,首先它的范围怎么样? a x a ≤≤-,b y b ≤≤-,另外,对称性有没有变?还是关于x ,y 轴,原点对称获得结论:1、范围:椭圆位于这样四条直线b y a x ±=±=,所围成的矩形内2、对称性:椭圆是关于坐标轴、原点对称的探究(三)问题1、刚才在画椭圆12222=+by a x 的图形中取到四个特殊的点,即令0=y ,得a x ±=,0=x ,得b y ±=,分别是)0,(1a A -,)0,(2a A ,),0(1b B ,),0(2b B -,这些是椭圆与两坐标轴的交点,而这两个坐标轴正好是对称轴,所以它们也是椭圆与对称轴的四个交点。

苏教版高中数学选修2-1 第2章 2.2 2.2.2 椭圆的几何性质学案

苏教版高中数学选修2-1 第2章 2.2 2.2.2 椭圆的几何性质学案

2.2.2椭圆的几何性质1.椭圆的简单几何性质(1)定义:焦距与长轴长的比ca叫做椭圆的离心率.(2)范围:e =ca ∈(0,1). (3)作用:当椭圆的离心率越接近于1时,则椭圆越扁; 当椭圆的离心率越接近于0时,则椭圆越接近于圆. 思考:(1)离心率e 能否用ba 表示? (2)离心率相同的椭圆是同一个椭圆吗?[提示] (1)e 2=c 2a 2=a 2-b 2a 2=1-⎝ ⎛⎭⎪⎫b a 2,所以e =1-⎝ ⎛⎭⎪⎫b a 2. (2)不是.离心率相同的椭圆焦距与长轴的长的比值相同.1.椭圆6x 2+y 2=6的长轴的端点坐标是( ) A .(-1,0),(1,0) B .(-6,0),(6,0) C .(-6,0),(6,0)D .(0,-6),(0,6)D [椭圆方程可化为x 2+y 26=1,则长轴的端点坐标为(0,±6).] 2.椭圆25x 2+9y 2=225的长轴长、短轴长、离心率依次是( ) A .5,3,0.8 B .10,6,0.8 C .5,3,0.6D .10,6,0.6B [椭圆方程可化为x 29+y 225=1,则a =5,b =3,c =25-9=4,e =c a =45,故B.]3.椭圆x 2a 2+y 24=1(a >2)的离心率e =22,则实数a 的值为________. 22 [因为a >2,所以e =a 2-4a =22,解得a =2 2.]4.椭圆x 24+y 2=1被过右焦点且垂直于x 轴的直线所截得的弦长为________. 1 [右焦点为(3,0),把x =3代入得34+y 2=1,解得y =±12,所以过焦点且垂直于x 轴的直线所截得的弦长为12×2=1.]【例 (2)求椭圆81x 2+y 2=81的长轴和短轴的长及其焦点和顶点坐标,离心率. [思路探究] 分清椭圆的焦点所在的轴,确定a ,b 后研究性质.(1)22 [把椭圆2x 2+3y 2=12化为标准方程,得x 26+y 24=1,易知a 2=6,b 2=4,∴c 2=a 2-b 2=2,∴c =2,故2c =2 2.](2)[解] 椭圆的方程可化为 x 2+y 281=1,∴a =9,b =1,∴c =81-1=80=45,∴椭圆的长轴长和短轴长分别为18,2. ∵椭圆的焦点在y 轴上,故其焦点坐标为F 1(0,-45),F 2(0,45), 顶点坐标为A 1(0,-9),A 2(0,9), B 1(-1,0),B 2(1,0),e =c a =459.研究椭圆几何性质的方法求椭圆的几何性质时,应把椭圆化为标准方程,注意分清楚焦点的位置,这样便于直观地写出a ,b 的数值,进而求出c ,求出椭圆的长轴和短轴的长、离心率、焦点和顶点的坐标等几何性质.1.已知椭圆x 2+(m +3)y 2=m (m >0)的离心率e =32,求m 的值及椭圆的长轴和短轴的长,焦点坐标,顶点坐标.[解] 椭圆方程可化为x 2m +y 2m m +3=1(m >0),因为m -m m +3=m (m +2)m +3>0,所以m >m m +3,所以焦点在x 轴上,即a 2=m ,b 2=m m +3,c =a 2-b 2=m (m +2)m +3. 由e =32,得e =ca =m +2m +3=32,所以m =1. 所以椭圆的标准方程为x 2+y 214=1.所以a =1,b =12,c =32,所以椭圆的长轴长为2,短轴长为1;两焦点坐标分别为F 1⎝ ⎛⎭⎪⎫-32,0,F 2⎝ ⎛⎭⎪⎫32,0;四个顶点坐标分别为A 1(-1,0),A 2(1,0),B 1⎝ ⎛⎭⎪⎫0,-12,B 2⎝ ⎛⎭⎪⎫0,12.(1)中心在原点,焦点在坐标轴上,长轴长是6,离心率是23;(2)中心在原点,焦点在坐标轴上,在x 轴上的一个焦点与短轴的两个端点的连线互相垂直,且焦距为6.[思路探究] 确定焦点位置→设标准方程→求出a 2,b 2→ 写出标准方程[解] (1)设椭圆方程为x 2a 2+y 2b 2=1(a >b >0)或y 2a 2+x 2b 2=1(a >b >0).由已知得2a =6,∴a =3.又e =c a =23,∴c =2. ∴b 2=a 2-c 2=9-4=5.∴椭圆的标准方程为x 29+y 25=1或y 29+x 25=1. (2)由题意知焦点在x 轴上,故可设椭圆的标准方程为x 2a 2+y 2b 2=1(a >b >0),且两焦点为F ′(-3,0),F (3,0). 如图所示,△A 1F A 2为等腰直角三角形,OF 为斜边A 1A 2的中线,且|OF |=c ,|A 1A 2|=2b ,∴c =b =3,∴a 2=b 2+c 2=18.∴椭圆的标准方程为x 218+y 29=1.由椭圆的几何性质求方程的方法步骤1.利用椭圆的几何性质求标准方程通常采用待定系数法.2.根据已知条件求椭圆的标准方程的思路是“选标准,定参数”,即先明确焦点的位置或分类讨论.一般步骤是:①求出a 2,b 2的值;②确定焦点所在的坐标轴;③写出标准方程.2.已知椭圆C 以坐标轴为对称轴,长轴长是短轴长的5倍,且经过点A (5,0),求该椭圆的标准方程.[解] 法一:若椭圆的焦点在x 轴上,则设其标准方程为x 2a 2+y 2b 2=1(a >b >0). 由题意得⎩⎪⎨⎪⎧ 2a =5×2b ,25a 2+0b2=1,解得⎩⎨⎧a =5,b =1,故所求椭圆的标准方程为x 225+y 2=1.若椭圆的焦点在y 轴上,则设其标准方程为y 2a 2+x 2b 2=1(a >b >0). 由题意得⎩⎪⎨⎪⎧2a =5×2b ,0a 2+25b2=1,解得⎩⎨⎧a =25,b =5,故所求椭圆的标准方程为y 2625+x 225=1.综上可知,所求椭圆的标准方程为x 225+y 2=1或y 2625+x 225=1. 法二:设椭圆的标准方程为x 2m +y 2n =1(m >0,n >0,m ≠n ),由题意得⎩⎪⎨⎪⎧25m +0n=1,2m =5×2n或⎩⎪⎨⎪⎧25m +0n =1,2n =5×2m ,解得⎩⎨⎧ m =25,n =1或⎩⎨⎧m =25,n =625.故所求椭圆的标准方程为x 225+y 2=1或y 2625+x 225=1.【例3】 1和上顶点B ,则该椭圆的离心率为________.(2)已知椭圆C 的中心在坐标原点,连接椭圆的长轴的一个端点A 和短轴的一个端点B ,∠OAB =30°,则椭圆的离心率为________.[思路探究] (1)求出直线l 与x 、y 轴交点,找出a ,b ,进而求出离心率e ; (2)在直角三角形OAB 中,由∠OAB =30°,可得a ,b 的关系,利用这个a ,b 的关系可求离心率.(1)255 (2)63 [(1)在直线l 的方程x -2y +2=0中令y =0得x =-2,令x =0得y =1,故F 1(-2,0),B (0,1),所以c =2,b =1,故a 2=b 2+c 2=5.所以a =5,因此离心率e =c a =25=255.(2)如图所示,不妨设椭圆的焦点在x 轴上,由条件得∠OAB =30°,OA =a ,OB =b ,∴b a =tan 30°=33, ∴e 2=c 2a 2=1-b 2a 2=1-13=23,∴e =63.]求椭圆的离心率,关键是寻找a 与c 的关系,一般地: 1.若已知a ,c ,则直接代入e =ca 求解; 2.若已知a ,b ,则由e =1-⎝ ⎛⎭⎪⎫b a 2求解; 3.若已知a ,b ,c 的关系,则可转化为a ,c 的齐次式,再转化为含e 的方程求解即可.3.A 为y 轴上一点,F 1,F 2是椭圆的两个焦点,△AF 1F 2为正三角形,且AF 1的中点B 恰好在椭圆上,求此椭圆的离心率.[解] 如图,连接BF 2. ∵△AF 1F 2为正三角形, 且B 为线段AF 1的中点, ∴F 2B ⊥BF 1.又∵∠BF 2F 1=30°,|F 1F 2|=2c , ∴|BF 1|=c ,|BF 2|=3c . 据椭圆定义得|BF 1|+|BF 2|=2a , 即c +3c =2a ,∴ca =3-1. ∴椭圆的离心率e =3-1.[1.直线与椭圆有几种位置关系?能否像判断直线与圆的位置关系那样判断?如何判断直线与椭圆的位置关系?[提示] (1)直线与椭圆有相交、相切和相离三种位置关系,其几何特征分别是直线与椭圆有两个交点、有且只有一个交点、无公共点,并且二者互为充要条件.但不能像判断直线与圆的位置关系那样进行判断.(2)判断直线与椭圆的位置关系可使用代数法,即先将直线方程与椭圆的方程联立,消去一个未知数y (或x ),得到关于x (或y )的一个一元二次方程.利用一元二次方程根的判别式Δ,根据Δ>0,Δ<0还是Δ=0,即可判断方程组解的个数,从而得出直线与椭圆的交点情况.2.直线与椭圆相交时,若交点为A ,B ,则线段AB 是椭圆的弦,如何计算弦AB 的长呢?[提示] 将直线方程与椭圆方程联立,得到关于x (或y )的一元二次方程,然后运用根与系数的关系,再求弦长.设直线y =kx +m 与椭圆相交于A (x 1,y 1),B (x 2,y 2)两点,则弦长公式为: |AB |=1+k 2|x 1-x 2|=1+k 2·(x 1+x 2)2-4x 1x 2, 或|AB |=1+1k 2|y 1-y 2|=1+1k 2(y 1+y 2)2-4y 1y 2.3.与弦的中点有关的问题称为中点弦问题,若已知椭圆x 2a 2+y 2b 2=1(a >b >0)的弦AB 的中点坐标为(x 0,y 0),能否确定直线AB 的斜率?[提示] 设A (x 1,y 1),B (x 2,y 2),则⎩⎨⎧x 1+x 2=2x 0,y 1+y 2=2y 0,⎩⎪⎨⎪⎧x 21a 2+y 21b2=1,x 22a 2+y 22b 2=1,所以1a 2(x 21-x 22)+1b 2(y 21-y 22)=0, 变形得y 1-y 2x 1-x 2=-b 2a 2·x 1+x 2y 1+y 2=-b 2a 2·x 0y 0, 即k AB =-b 2x 0a 2y 0.这种方法叫平方差法,也叫点差法. 【例4】 已知椭圆x 24+y 2=1.(1)当m 为何值时,直线y =x +m 与椭圆有两个不同的交点? (2)当m =2时,求直线y =x +m 被椭圆截得的线段长.[思路探究] 联立,消去y 得一元二次方程→Δ判别式→m 的范围→根与系数的关系→由弦长公式求弦长[解] (1)联立⎩⎪⎨⎪⎧x 24+y 2=1,y =x +m消去y ,得5x 2+8mx +4(m 2-1)=0.(*)∵Δ=64m 2-80(m 2-1)>0,∴-5<m <5,∴当-5<m <5时,直线与椭圆有两个不同的交点. (2)当m =2时,方程(*)化为5x 2+16x +12=0,设线段端点为A (x 1,y 1),B (x 2,y 2),由根与系数的关系得 x 1+x 2=-165,x 1x 2=125,又k =1,∴AB =1+k 2·(x 1+x 2)2-4x 1x 2=45 2.直线与椭圆位置关系的判定及弦长公式1.直线与椭圆公共点个数问题,一般转化为方程根的问题,由判别式进行判断.2.求直线被圆锥曲线截得的弦长,一般用弦长公式AB =1+k 2|x 1-x 2|=1+k 2·(x 1+x 2)2-4x 1x 2进行求解,也可利用AB =1+1k 2|y 1-y 2|=1+1k 2· (y 1+y 2)2-4y 1y 2进行求解.4.如图,已知一直线与椭圆4x 2+9y 2=36相交于A 、B 两点,弦AB 的中点坐标为M (1,1),求直线AB 的方程.[解] 设通过点M (1,1)的直线AB 的方程为y =k (x -1)+1,代入椭圆方程,整理得(9k 2+4)x 2+18k (1-k )x +9(1-k )2-36=0. 设A ,B 的横坐标分别为x 1,x 2,则x1+x22=-18k(1-k)2(9k2+4)=1,解得k=-49.故直线AB的方程为y=-49(x-1)+1,即4x+9y-13=0.1.已知椭圆的方程讨论性质时,若不是标准形式,应先化成标准形式.2.根据椭圆的几何性质,可以求椭圆的标准方程,其基本思路是“先定型,再定量”,常用的方法是待定系数法.在椭圆的基本量中,能确定类型的量有焦点、顶点,而不能确定类型的量有长轴长、短轴长、离心率e、焦距.3.求椭圆的离心率要注意函数与方程的思想、数形结合思想的应用.4.解决直线与椭圆的位置关系问题,经常利用设而不求的方法,解题步骤为:(1)设直线与椭圆的交点为A(x1,y1),B(x2,y2);(2)联立直线与椭圆的方程;(3)消元得到关于x或y的一元二次方程;(4)利用根与系数的关系设而不求;(5)把题干中的条件转化为x1+x2,x1·x2或y1+y2,y1·y2,进而求解.1.判断(正确的打“√”,错误的打“×”)(1)椭圆x2a2+y2b2=1(a>b)的长轴长为a,短轴长为b.()(2)椭圆的离心率越大,则椭圆越接近于圆.()(3)若一个矩形的四个顶点都在椭圆上,则这四个顶点关于椭圆的中心对称.()[答案](1)×(2)×(3)√2.已知中心在原点的椭圆C的右焦点为F(1,0),离心率等于12,则C的方程是()A.x23+y24=1 B.x24+y23=1C.x 24+y 22=1D.x 24+y 23=1D [右焦点为F (1,0)说明两层含义:椭圆的焦点在x 轴上,c =1.又离心率为c a =12,故a =2,b 2=a 2-c 2=4-1=3,故椭圆的方程为x 24+y 23=1.]3.若焦点在y 轴上的椭圆x 2m +y 22=1的离心率为12,则m 的值为________.32 [由题意知0<m <2,且e 2=1-b 2a 2=1-m 2=14. 所以m =32.]4.椭圆y 2a 2+x 2b 2=1(a >b >0)的两焦点为F 1(0,-c ),F 2(0,c )(c >0),离心率e =32,焦点到椭圆上点的最短距离为2-3,求椭圆的方程.[解] 由题意知⎩⎨⎧ c a =32,a -c =2-3,解得⎩⎨⎧ a =2,c =3,所以b 2=a 2-c 2=1,所以所求椭圆的方程为y 24+x 2=1.。

椭圆的几何性质 教案

椭圆的几何性质 教案

课题:椭圆的几何性质授课教师:季人杰教材:苏教版选修2-1一、教学目标1)知识与技能层面(1)能够从方程的角度出发,结合椭圆的图形研究椭圆的几何性质:顶点、范围、对称性、离心率等。

(2)能够从椭圆的定义出发,理解椭圆的离心率,进一步理解椭圆的第一定义。

2)过程与方法层面(1)经历运用方程这个代数手段研究椭圆这个几何问题的过程,理解解析几何利用方程研究几何问题的本质。

(2)通过特殊——一般——特殊的研究方法,提高学生分析问题、解决问题的能力,提高学生自主研究的意识和能力。

3)情感、态度、价值观层面(1)通过方程来研究几何性质,培养学生的探索能力,利用代数验证从几何图形中得到的猜想,培养严谨的治学精神。

(2)在椭圆几何性质的探求过程中,运用合作学习的方式进行,培养学生团结协作的精神。

二、教学重点、难点教学重点:从椭圆图形出发,猜测研究椭圆的几何性质,利用方程研究椭圆的几何性质。

教学难点:从方程的角度研究几何性质,深入的理解椭圆的离心率。

三、教学方法与教学手段教学方法:问题教学法、合作学习法。

教学手段:多媒体教学(ppt与几何画板展示)、实物投影。

四、教学过程我们学习了椭圆,获得了椭圆的方程,下面我们来研究椭圆的几何性质。

【问题1】你打算怎样研究椭圆的几何性质?【设计意图】引导学生进行回顾以前的研究经验,从而借助已有的经验获得研究新问题的方法,由特殊到一般,同时引导学生获得具体的研究方向和步骤。

(预设1):举几个例子,分析具体的椭圆性质,归纳获得一般性质。

(预设2):举几个例子,比如x24+y2=1,x24+y22=1,x23+y22=1,x23+y24=1。

画出图形,根据图形,提出猜想,再进行代数论证,最后推广到一般的情况。

【问题2】按照上述预设2的基本步骤,请你采用适当的方法,研究椭圆的几何性质。

【设计意图】放手让学生进行研究,在每个同学独立思考的基础上进行汇报交流。

子问题 1:你是怎么画图的?怎样取点?为什么这样取点?(预设1)列表,描点,作图,取了椭圆的四个顶点,描绘大致图形。

苏教版椭圆的几何性质说课稿

苏教版椭圆的几何性质说课稿

椭圆的几何性质深圳市南头中学王立海一、教材分析1.教材的内容和地位:本节课是江苏教育出版社出版的普通高中课程标准实验教科书《数学》选修2—1第二章第二节的内容,它是在学完椭圆的标准方程的基础上,通过研究椭圆的标准方程来探究椭圆的简单几何性质,是本单元的重点内容之一。

利用曲线方程研究曲线的性质,是解析几何的主要任务目的。

通过本节课的学习,既让学生了解了椭圆的几何性质,又让学生初步体会了利用曲线方程来研究其性质的过程,同时也为下一步学习双曲线和抛物线的性质做好了铺垫。

2.教学重点:椭圆的几何性质及其应用:如何通过椭圆方程研究其性质二、教学目标1.知识目标:掌握椭圆的简单的几何性质。

2.能力目标:能够运用椭圆的几何性质处理一些简单的实际问题,初步感受运用曲线方程研究曲线性质的方法,进一步领会数形结合的思想,培养学生自主学习、合作探究、类比猜想的能力。

:通过实例培养学生爱国主义情感,激发学生学习数学的兴趣。

三、教法学法“问题是数学的心脏”,教学活动采用“问题探究式”的教学方式进行,通过把知识转化成问题,引导学生分组讨论,合作探究,教学中穿学练结合,同时渗透数形结合,渗透数形结合。

学生则采用自主探究,合作交流的“研讨式”学习方式,去体验知识的形成过程,参与问题的分组讨论等方式,体验知识的形成过程,参与问题的发现、解决过程,从而达到掌握知识、提高能力的目的。

四、教学过程1.设境激趣,导入新课:2005年10月12日上午九时整,随着一声巨响,我国研制的神州六号载人飞船,从酒泉卫星发射中心顺利升空,不久,飞船进入了以近地点200公里,远地点347公里的椭圆轨道围绕地球运行,举世瞩目,万众欢腾。

请问你能利用所学的知识求出椭圆轨道的方程吗?你想知道椭圆有哪些重要的几何性质吗?今天这一节课我们就来探讨这些问题(板书:椭圆的几何性质)设计意图:通过同学们熟悉的例子,引入新课,激发学生的爱国热情和好奇心,激起他们强烈的求知欲。

高中数学苏教版选修2-1课件:2.2.2椭圆的几何性质

高中数学苏教版选修2-1课件:2.2.2椭圆的几何性质

y2
2
b
=1
y
· · F1
o F2
x
x2 + a2
y2
2
b
=1
y
· · F1
o F2
x
x2 + a2
y2
2
=1
b
y
· · F1
o F2
x
x2 + a2
y2
2
b
=1
y
· · F1
o F2
x
x2 + a2
y2
2
b
=1
y
· · F1
o F2
x
x2 + a2
y2
2
b
=1
y
· · F1
o F2
x
x2 + a2
y2
2
b
=1
y
· · F1
o F2
x
x2 + a2
y2
2
b
=1
y
· · F1
o F2
x
x2 + a2
y2
2
b
=1
y
· · F1
o F2
x
x2 + a2
y2
2
b
=1
y
· · F1
o F2
x
x2 + a2
y2
2
b
=1
y
· · F1
o F2
x
x2 + a2
y2
2
b
=1
y
· · F1
o F2
x
x2 + a2

x =a
o
x
y = -b
2、顶点: ①、称为椭圆的顶点:

苏教版高中数学高二选修2-1课件 椭圆的几何性质(一)

苏教版高中数学高二选修2-1课件  椭圆的几何性质(一)

23
跟踪演练3 如图所示,椭圆的中心在原点,焦点
F1,F2在x轴上,A,B是椭圆的顶点,P是椭圆上
一点,且PF1⊥x轴,PF2∥AB,求此椭圆的离心率.
解 设椭圆的方程为ax22+by22=1 (a>b>0).
如题图所示,则有F1(-c,0),F2(c,0),A(0,b),B(a,0),
直线PF1的方程为x=-c, 代入方程ax22+by22=1,得 y=±ba2,∴P(-c,ba2).
∵e=ac= 36,∴c= 36a, ∴b2=a2-c2=a2-23a2=13a2,
2.2.2 椭圆的几何性质(一)
18
∴a2=3b2=27,∴椭圆的标准方程为2y72 +x92=1. 综上可知,椭圆的标准方程是x92+y32=1 或2y72 +x92=1.
2.2.2 椭圆的几何性质(一)
19
要点三 求椭圆的离心率
2.2.2 椭圆的几何性质(一)
30
2.2.2 椭圆的几何性质(一)
31
为直线 x=32a上一点,△F2PF1 是底角为 30°的等腰三角形, 3
则 E 的离心率为____4____
解析 由题意可得PF2=F1F2, ∴2(32a-c)=2c,∴3a=4c,∴e=43.
2.2.2 椭圆的几何性质(一)
29
课堂小结
1.已知椭圆的方程讨论性质时,若不是标准形式,应先化成标准形式. 2.根据椭圆的几何性质,可以求椭圆的标准方程,其基本思路是“先 定型,再定量”,常用的方法是待定系数法.在椭圆的基本量中,能 确定类型的量有焦点、顶点,而不能确定类型的量有长轴长、短轴 长、离心率e、焦距. 3.求椭圆的离心率要注意函数与方程的思想、数形结合思想的应用.

高中数学椭圆 椭圆的简单几何性质苏教版选修2-1

高中数学椭圆 椭圆的简单几何性质苏教版选修2-1

椭圆 椭圆的简单几何性质◆ 知识与技能目标了解用方程的方法研究图形的对称性;理解椭圆的范围、对称性及对称轴,对称中心、离心率、顶点的概念;掌握椭圆的标准方程、会用椭圆的定义解决实际问题;通过例题了解椭圆的第二定义,准线及焦半径的概念,利用信息技术初步了解椭圆的第二定义.◆ 过程与方法目标(1)复习与引入过程引导学生复习由函数的解析式研究函数的性质或其图像的特点,在本节中不仅要注意通过对椭圆的标准方程的讨论,研究椭圆的几何性质的理解和应用,而且还注意对这种研究方法的培养.①由椭圆的标准方程和非负实数的概念能得到椭圆的范围;②由方程的性质得到椭圆的对称性;③先定义圆锥曲线顶点的概念,容易得出椭圆的顶点的坐标及长轴、短轴的概念;④通过P 48的思考问题,探究椭圆的扁平程度量椭圆的离心率.〖板书〗§2.1.2椭圆的简单几何性质.(2)新课讲授过程(i )通过复习和预习,知道对椭圆的标准方程的讨论来研究椭圆的几何性质. 提问:研究曲线的几何特征有什么意义?从哪些方面来研究?通过对曲线的范围、对称性及特殊点的讨论,可以从整体上把握曲线的形状、大小和位置.要从范围、对称性、顶点及其他特征性质来研究曲线的几何性质.(ii )椭圆的简单几何性质①范围:由椭圆的标准方程可得,222210y x b a=-≥,进一步得:a x a -≤≤,同理可得:b y b -≤≤,即椭圆位于直线x a =±和y b =±所围成的矩形框图里;②对称性:由以x -代x ,以y -代y 和x -代x ,且以y -代y 这三个方面来研究椭圆的标准方程发生变化没有,从而得到椭圆是以x 轴和y 轴为对称轴,原点为对称中心;③顶点:先给出圆锥曲线的顶点的统一定义,即圆锥曲线的对称轴与圆锥曲线的交点叫做圆锥曲线的顶点.因此椭圆有四个顶点,由于椭圆的对称轴有长短之分,较长的对称轴叫做长轴,较短的叫做短轴;④离心率: 椭圆的焦距与长轴长的比ac e =叫做椭圆的离心率(10<<e ),⎩⎨⎧→→→椭圆图形越扁时当01a ,,b ,c e ;⎩⎨⎧→→→椭圆越接近于圆时当a ,b ,c e 00 . (iii )例题讲解与引申、扩展例4 求椭圆221625400x y +=的长轴和短轴的长、离心率、焦点和顶点的坐标.分析:由椭圆的方程化为标准方程,容易求出,,a b c .引导学生用椭圆的长轴、短轴、离心率、焦点和顶点的定义即可求相关量.扩展:已知椭圆()22550mx y m m +=>的离心率为5e =求m 的值.解法剖析:依题意,0,5m m >≠,但椭圆的焦点位置没有确定,应分类讨论:①当焦点在x 轴上,即05m <<时,有a b c ===,∴=得3m =;②当焦点在y 轴上,即5m >时,有a b c ===253m =⇒=. 例5 如图,一种电影放映灯的反射镜面是旋转椭圆面的一部分.过对对称的截口BAC 是椭圆的一部分,灯丝位于椭圆的一个焦点1F 上,片门位于另一个焦点2F 上,由椭圆一个焦点1F 发出的光线,经过旋转椭圆面反射后集中到另一个焦点2F .已知12BC F F ⊥,1 2.8F B cm =,12 4.5F F cm =.建立适当的坐标系,求截口BAC 所在椭圆的方程.解法剖析:建立适当的直角坐标系,设椭圆的标准方程为22221x y a b+=,算出,,a b c 的值;此题应注意两点:①注意建立直角坐标系的两个原则;②关于,,a b c 的近似值,原则上在没有注意精确度时,看题中其他量给定的有效数字来决定.引申:如图所示, “神舟”截人飞船发射升空,进入预定轨道开始巡天飞行,其轨道是以地球的中心2F 为一个焦点的椭圆,近地点A 距地面200km ,远地点B 距地面350km ,已知地球的半径6371R km =.建立适当的直角坐标系,求出椭圆的轨迹方程.例6如图,设(),M x y 与定点()4,0F 的距离和它到直线l :254x =的距离的比是常数45,求点M 的轨迹方程.分析:若设点(),M x y ,则MF =直线l :254x =的距离254d x =-,则容易得点M 的轨迹方程. 引申:(用《几何画板》探究)若点(),M x y 与定点(),0F c 的距离和它到定直线l :2a x c=的距离比是常数c e a =()0a c >>,则点M 的轨迹方程是椭圆.其中定点(),0F c 是焦点,定直线l :2a x c=相应于F 的准线;由椭圆的对称性,另一焦点(),0F c '-,相应于F '的准线l ':2a x c=-. ◆ 情感、态度与价值观目标在合作、互动的教学氛围中,通过师生之间、学生之间的交流、合作、互动实现共同探究,教学相长的教学活动情境,结合教学内容,培养学生科学探索精神、审美观和科学世界观,激励学生创新.必须让学生认同和掌握:椭圆的简单几何性质,能由椭圆的标准方程能直接得到椭圆的范围、对称性、顶点和离心率;必须让学生认同与理解:已知几何图形建立直角坐标系的两个原则,①充分利用图形对称性,②注意图形的特殊性和一般性;必须让学生认同与熟悉:取近似值的两个原则:①实际问题可以近似计算,也可以不近似计算,②要求近似计算的一定要按要求进行计算,并按精确度要求进行,没有作说明的按给定的有关量的有效数字处理;让学生参与并掌握利用信息技术探究点的轨迹问题,培养学生学习数学的兴趣和掌握利用先进教学辅助手段的技能.◆能力目标(1) 分析与解决问题的能力:通过学生的积极参与和积极探究,培养学生的分析问题和解决问题的能力.(2) 思维能力:会把几何问题化归成代数问题来分析,反过来会把代数问题转化为几何问题来思考;培养学生的会从特殊性问题引申到一般性来研究,培养学生的辩证思维能力.(3) 实践能力:培养学生实际动手能力,综合利用已有的知识能力.(4) 创新意识能力:培养学生思考问题、并能探究发现一些问题的能力,探究解决问题的一般的思想、方法和途径.练习:第52页1、2、3、4、5、6、7作业:第53页4、5。

高中数学新苏教版精品教案《苏教版高中数学选修2-1 2.2.2 椭圆的几何性质》

高中数学新苏教版精品教案《苏教版高中数学选修2-1 2.2.2 椭圆的几何性质》

椭圆-----解答题方法突破【教学目标】学会合理选择参数〔坐标、斜率等〕表示动态几何对象和几何量,探究、证明动态图形中的不变性质,体会“设而不求〞、“整体代换〞在简化运算中的作用.一、根底练习1 是过椭圆中心的任一弦,是椭圆上异于的任意一点.假设斜率分别为,那么=______________.2 椭圆,过右焦点作不垂直于轴的直线交椭圆于、两点,线段的垂直平分线交轴于,那么等于_______二、典型例题例1椭圆C:的离心率为,,,,△OAB的面积为1〔1〕求椭圆C的方程;〔2〕设,直线,N,求错误!的值;〔3分析:〔重点在参数的选择上〕〔1〕〔2〕法一设点,定值为4法二:设点,,那么解方程组:参数方程。

变式训练:椭圆C:的离心率为,,,,△OAB的面积为1〔1〕求椭圆C的方程;〔II〕设,直线的面积为定值〔1〕〔2〕法一设点,定值为2例2 【2021年苏锡常三模18】在平面直角坐标系中,椭圆的焦距为,离心率为,椭圆的右顶点为〔1〕求该椭圆的方程;〔2〕过点作直线交椭圆于两个不同点,求证:直线的斜率之和为定值例2分析与解答.分析:〔重点在点坐标求不求〕一般情形:定点〔,t〕关系式:当,;当,;解:〔1〕由题所以,……2分所以椭圆C的方程为……4分〔2〕法一:不求点坐标当直线,N,求错误!的值;〔3〕记直线与轴的交点为满足MB⊥AB,连结AM交椭圆于点Q的交点,那么点Q的坐标为____________.2、1,.1求椭圆的方程;2直线:与椭圆C交于A、B两点,试问在轴上是否存在定点P,使得以弦AB 为直径的圆恒过P点?假设存在,求出P点的坐标,假设不存在,说明理由.。

数学苏教版选修2-1教案第2章3椭圆几何性质1

数学苏教版选修2-1教案第2章3椭圆几何性质1

[目标要求]1.掌握椭圆的范围性、对称性、顶点、离心率等几何性质2.理解椭圆标准方程中a 、b 、c 及离心率e 的几何意义[重点难点]1.重点:椭圆的范围性、对称性、顶点、焦点、离心率的确定2.难点:基本量a 、b 、c 及e 的几何意义[典例剖析]例1:求下列椭圆的长轴和短轴长、离心率、焦点和顶点的坐标,并尝试画出它们的图形.(1)400251622=+y x (2)13222=+y x例2:求适合下列条件的椭圆的标准方程.(1)长轴的长为16,离心率为21,焦点在y 轴上;(2)过点(2,0),且长轴长是短轴长的2倍.例3:(1)以椭圆短轴为直径的圆经过此椭圆的焦点,则椭圆的离心率是(2)若椭圆19422=++y k x 的离心率21=e ,则k 的值是 (3)方程为13222=+-y xy x 的曲线关于 对称[学习反思]1.长轴长、短轴长、焦距、离心率由a 、b 、c 确定,而顶点、焦点的坐标不仅取决于a 、b 、c 的值,还取决于椭圆的位置.2. 对于椭圆)1(12222>>=+b a by a x 来说,a 、b 、c 是 图中的BOF Rt ∆三边,(F 为焦点),且离心率e ∠=cos 3.椭圆的离心率)1,0(∈e ,0→e ,椭圆越接近于圆;1→e ,椭圆越扁平4.判断曲线的对称性,有如下结论:(1)以-x 代x ,方程不变,则曲线关于y 轴对称.(2)以-y 代y ,方程不变,则曲线关于x 轴对称.(3)以-x 代x ,同时-y 代y ,方程不变,则曲线关于原点对称.(4)以x 代y ,同时y 代x ,方程不变,则曲线关于直线y=x 对称.[巩固练习]1.求适合下列条件的椭圆的标准方程.(1)6=a ,31=e ,焦点在x 轴上. (2)长半轴长为10, 53=e(3)3=c ,53=e ,焦点在y 轴上. (4)焦点在x 轴上,右焦点到短轴端点距离为2,到右顶点距离为12.下列每组椭圆中,哪个更接近于圆?(1)1:c 36922=+y x 与2:c 1121622=+y x (2)1:c 36922=+y x 与2:c 110622=+y x3.画出图中椭圆焦点的位置,并说明画法及根据.【A 组题】1、椭圆12322=+y x 的焦点坐标是2、焦点在x 轴上,长、短半轴之和为10,焦距为54,则椭圆的标准方程为3、椭圆的一个顶点与两个焦点构成等边三角形,则此椭圆的离心率是4、与椭圆4 x 2 + 9 y 2 = 36 有相同的焦点,且过点(-3,2)的椭圆方程为_______________5、已知椭圆的短轴长为6,焦点到长轴的一个端点的距离等于9,则椭圆的离心率等于_______.6、我国载人航天飞船”神六”飞行获得圆满成功.已知飞船变轨前的运行轨道是一个以地心为焦点的椭圆,飞船近地点、远地点离地面的距离分别为200千米、350千米.则此飞船飞行的椭圆轨道的两焦点之间的距离为___________7、求下列各椭圆的长轴和短轴的长、离心率、焦点坐标、顶点坐标,并画出草图:(1)16422=+y x (2)81922=+y x8、求适合下列条件的椭圆的标准方程:(1)椭圆经过两点P (22-,0)、Q (0,5);(2)长轴是短轴的3倍,椭圆经过点P (3,0);(3)离心率等于0.8,焦距是8.【B 组题】1、方程x y x 5422=-表示的曲线关于 对称2、关于椭圆192522=+y x 与125922=-+-k y k x (0<k<9)的关系正确的有①有相等的长、短轴 ②有相等的焦距③有相同的焦点 ④有相同的离心率3、已知椭圆短轴上的两个三等分点与两个焦点构成一个正方形,求椭圆的离心率。

苏教版高中数学选修2-1 椭圆 教案

苏教版高中数学选修2-1 椭圆 教案

椭圆基础知识整合1.椭圆的概念在平面内到两定点F1,F2的距离的和等于常数(大于|F1F2|)的点的轨迹(或集合)叫做□0102焦点,两焦点间的距离叫做□03焦距.椭圆.这两定点叫做椭圆的□集合P={M||MF1|+|MF2|=2a},|F1F2|=2c,其中a>0,c>0,且a,c为常数:(1)若□04a>c,则集合P表示椭圆;(2)若□05a=c,则集合P表示线段;(3)若□06a<c,则集合P为空集.2.椭圆的标准方程和几何性质续表椭圆的常用性质(1)设椭圆x 2a 2+y 2b2=1(a >b >0)上任意一点P (x ,y ),则当x =0时,|OP |有最小值b ,P 点在短轴端点处;当x =±a 时,|OP |有最大值a ,P 点在长轴端点处.(2)椭圆的一个焦点、中心和短轴的一个端点构成直角三角形,其中a 为斜边,a 2=b 2+c 2.(3)已知过焦点F 1的弦AB ,则△ABF 2的周长为4a . (4)过椭圆的焦点且垂直于长轴的弦之长为2b2a.(5)椭圆离心率e =1-b 2a2.1.已知椭圆x 210-m +y 2m -2=1,长轴在y 轴上,若焦距为4,则m 等于( )A .4B .5C .7D .8答案 D解析 椭圆焦点在y 轴上,∴a 2=m -2,b 2=10-m .又c =2,∴m -2-(10-m )=c 2=4.∴m =8.2.(2018·广西模拟)若椭圆C :x 2a 2+y 2b2=1(a >b >0)的短轴长等于焦距,则椭圆的离心率为( )A.12B.33C.22D.24答案 C解析 因为椭圆的短轴长等于焦距,所以b =c ,所以a 2=b 2+c 2=2c 2,所以e =c a =22,故选C.3.已知中心在原点的椭圆C 的右焦点为F (1,0),离心率等于13,则椭圆C 的方程是( )A.x 24+y 23=1B.x 24+y 23=1 C.x 24+y 22=1 D.x 29+y 28=1 答案 D解析 依题意,设椭圆方程为x 2a 2+y2b2=1(a >b >0),所以⎩⎪⎨⎪⎧c =1,c a =13,c 2=a 2-b 2,解得a 2=9,b 2=8.故椭圆C 的方程为x 29+y 28=1.4.(2019·西安模拟)已知点P (x 1,y 1)是椭圆x 225+y 216=1上的一点,F 1,F 2是其左、右焦点,当∠F 1PF 2最大时,△PF 1F 2的面积是( )A.1633B .12C .16(2+3)D .16(2-3)答案 B解析 ∵椭圆的方程为x 225+y 216=1,∴a =5,b =4,c =25-16=3,∴F 1(-3,0),F 2(3,0).根据椭圆的性质可知当点P 与短轴端点重合时,∠F 1PF 2最大,此时△PF 1F 2的面积S =12×2×3×4=12,故选B.5.椭圆3x 2+ky 2=3的一个焦点是(0,2),则k =________. 答案 1解析 方程3x 2+ky 2=3可化为x 2+y 23k=1.a 2=3k >1=b 2,c 2=a 2-b 2=3k-1=2,解得k=1.6.设椭圆C :x 2a 2+y 2b2=1(a >b >0)的左、右焦点分别为F 1,F 2,P 是C 上的点,PF 2⊥F 1F 2,∠PF 1F 2=30°,则C 的离心率为________.答案33解析 设|PF 2|=x ,∵PF 2⊥F 1F 2,∠PF 1F 2=30°,∴|PF 1|=2x ,|F 1F 2|=3x .又|PF 1|+|PF 2|=2a ,|F 1F 2|=2c .∴2a =3x,2c =3x ,∴C 的离心率为e =c a =33. 核心考向突破考向一 椭圆定义的应用例1 (1)(2018·湖北八校联考)设F 1,F 2为椭圆x 29+y 25=1的两个焦点,点P 在椭圆上,若线段PF 1的中点在y 轴上,则|PF 2||PF 1|的值为( )A.514B.513C.49D.59答案 B解析 由题意知a =3,b =5,c =2.设线段PF 1的中点为M ,则有OM ∥PF 2,∵OM ⊥F 1F 2,∴PF 2⊥F 1F 2,∴|PF 2|=b 2a =53.又∵|PF 1|+|PF 2|=2a =6,∴|PF 1|=2a -|PF 2|=133,∴|PF 2||PF 1|=53×313=513.故选B. (2)设F 1,F 2分别是椭圆E :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点,过点F 1的直线交椭圆E 于A ,B 两点,|AF 1|=3|F 1B |,且|AB |=4,△ABF 2的周长为16.则|AF 2|=________.答案 5解析 由|AF 1|=3|F 1B |,|AB |=4,得|AF 1|=3.∵△ABF 2的周长为16,∴4a =16,∴a =4.则|AF 1|+|AF 2|=2a =8,∴|AF 2|=8-|AF 1|=8-3=5.触类旁通椭圆定义的应用主要有两个方面:一是确认平面内与两定点有关的轨迹是否为椭圆;二是当P 在椭圆上时,与椭圆的两焦点F 1,F 2组成的三角形通常称为“焦点三角形”,利用定义可求其周长,利用定义和余弦定理可求|PF 1|·|PF 2|,通过整体代入可求其面积等.即时训练 1.(2019·甘肃联考)设A ,B 是椭圆C :x 212+y 22=1的两个焦点,点P 是椭圆C 与圆M :x 2+y 2=10的一个交点,则||PA |-|PB ||=( )A .2 2B .4 3C .4 2D .6 2答案 C解析 由题意知,A ,B 恰好在圆M 上且AB 为圆M 的直径,∴|PA |+|PB |=2a =43,|PA |2+|PB |2=(2c )2=40,∴(|PA |+|PB |)2=|PA |2+|PB |2+2|PA ||PB |,解得2|PA ||PB |=8,∴(|PA |-|PB |)2=|PA |2+|PB |2-2|PA ||PB |=32,则||PA |-|PB ||=42,故选C.2.已知椭圆C :x 29+y 24=1,点M 与椭圆C 的焦点不重合.若M 关于椭圆C 的焦点的对称点分别为A ,B ,线段MN 的中点在椭圆C 上,则|AN |+|BN |=________.答案 12解析 取MN 的中点为G ,点G 在椭圆C 上.设点M 关于椭圆C 的焦点F 1的对称点为A ,点M 关于椭圆C 的焦点F 2的对称点为B ,则有|GF 1|=12|AN |,|GF 2|=12|BN |,所以|AN |+|BN |=2(|GF 1|+|GF 2|)=4a =12.考向二 椭圆的标准方程例2 (1)(2019·杭州模拟)已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的左、右焦点为F 1,F 2,离心率为33,过F 2的直线l 交C 于A ,B 两点.若△AF 1B 的周长为43,则C 的方程为( ) A.x 23+y 22=1 B.x 23+y 2=1 C.x 212+y 28=1 D.x 212+y 24=1 答案 A解析 由题意及椭圆的定义知4a =43,则a =3,又c a=c3=33,∴c =1,∴b 2=2,∴C 的方程为x 23+y 22=1.选A.(2)已知A ⎝ ⎛⎭⎪⎫-12,0,B 是圆:⎝ ⎛⎭⎪⎫x -122+y 2=4(F 为圆心)上一动点,线段AB 的垂直平分线交BF 于点P ,则动点P 的轨迹方程为________.答案 x 2+43y 2=1解析 如图,由题意知|PA |=|PB |,|PF |+|BP |=2.所以|PA |+|PF |=2且|PA |+|PF |>|AF |,即动点P 的轨迹是以A ,F 为焦点的椭圆,a =1,c =12,b 2=34.所以动点P 的轨迹方程为x 2+43y 2=1.触类旁通求椭圆方程的常用方法(1)定义法,定义法的要点是根据题目所给的条件确定动点的轨迹满足椭圆的定义.待定系数法,待定系数法的要点是根据题目所给的条件确定椭圆中的两个系数a ,b .当不知焦点在哪一个坐标轴上时,一般可设所求椭圆的方程为mx 2+ny 2=m >0,n >0,m ≠n ,再用待定系数法求出m ,n 的值即可.即时训练 3.(2019·青岛模拟)已知F 1(-1,0),F 2(1,0)是椭圆C 的两个焦点,过F 2且垂直于x 轴的直线交C 于A ,B 两点,且|AB |=3,则C 的方程为( )A.x 22+y 2=1 B.x 23+y 22=1C.x 24+y 23=1 D.x 25+y 24=1 答案 C解析 如图,|AF 2|=12|AB |=32,|F 1F 2|=2,由椭圆定义,得|AF 1|=2a -32. ①在Rt △AF 1F 2中,|AF 1|2=|AF 2|2+|F 1F 2|2=⎝ ⎛⎭⎪⎫322+22. ②由①②得a =2,∴b 2=a 2-c 2=3. ∴椭圆C 的方程为x 24+y 23=1,应选C.4.设F 1,F 2为椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点,经过F 1的直线交椭圆C 于A ,B 两点,若△F 2AB 是面积为43的等边三角形,则椭圆C 的方程为________.答案x 29+y 26=1 解析 l 经过F 1垂直于x 轴,得y A =b 2a ,在Rt △AF 1F 2中,∠AF 2F 1=30°,得b 2a =33×2c ,12×2c ×2b 2a =43,a 2=b 2+c 2,解得a 2=9,b 2=6,c 2=3.所求的椭圆方程为x 29+y 26=1.考向三 椭圆的几何性质例3 (1)(2018·全国卷Ⅰ)已知椭圆C :x 2a 2+y 24=1的一个焦点为(2,0),则C 的离心率为( )A.13B.12C.22D.223答案 C解析 根据题意,可知c =2,因为b 2=4,所以a 2=b 2+c 2=8,即a =22,所以椭圆C 的离心率为e =222=22.故选C. (2)已知椭圆x 2a 2+y 2b 2=1(a >b >0)的半焦距为c ,且满足c 2-b 2+ac <0,则该椭圆的离心率e 的取值范围是________.答案 ⎝ ⎛⎭⎪⎫0,12 解析 ∵c 2-b 2+ac <0,∴c 2-(a 2-c 2)+ac <0,即2c 2-a 2+ac <0,∴2c 2a 2-1+ca<0,即2e 2+e -1<0,解得-1<e <12.又∵0<e <1,∴0<e <12.∴椭圆的离心率e 的取值范围是⎝ ⎛⎭⎪⎫0,12.触类旁通椭圆离心率的求解方法求椭圆的离心率,常见的有三种方法:一是通过已知条件列方程组,解出a ,c 的值;二是由已知条件得出关于a ,c 的二元齐次方程,然后转化为关于离心率e 的一元二次方程求解;三是通过取特殊值或特殊位置,求出离心率.即时训练 5.(2018·全国卷Ⅱ)已知F 1,F 2是椭圆C 的两个焦点,P 是C 上的一点,若PF 1⊥PF 2,且∠PF 2F 1=60°,则C 的离心率为( )A .1-32B .2- 3 C.3-12D.3-1答案 D解析 在△F 1PF 2中,∠F 1PF 2=90°,∠PF 2F 1=60°,设|PF 2|=m ,则2c =|F 1F 2|=2m ,|PF 1|=3m ,又由椭圆定义可知2a =|PF 1|+|PF 2|=(3+1)m ,则离心率e =c a =2c 2a=2m 3+m=3-1.故选D.6.(2019·江苏模拟)已知椭圆x 2a 2+y 2b2=1(a >b >0),A 为左顶点,B 为上顶点,F 为右焦点且AB ⊥BF ,则这个椭圆的离心率等于________.答案5-12解析 由题意得A (-a,0),B (0,b ),F (c,0),∵AB ⊥BF ,∴AB →·BF →=0,∴(a ,b )·(c ,-b )=ac -b 2=ac -a 2+c 2=0,∴e -1+e 2=0,解得e =5-12. 考向四 直线与椭圆的位置关系角度1 弦的中点问题例4 (2018·全国卷Ⅲ)已知斜率为k 的直线l 与椭圆C :x 24+y 23=1交于A ,B 两点.线段AB 的中点为M (1,m )(m >0).(1)证明:k <-12;(2)设F 为C 的右焦点,P 为C 上一点,且F P →+F A →+F B →=0.证明:|FA →|,|FP →|,|FB →|成等差数列,并求该数列的公差.解 (1)证明:设A (x 1,y 1),B (x 2,y 2),则x 214+y 213=1,x 224+y 223=1.两式相减,并由y 1-y 2x 1-x 2=k 得x 1+x 24+y 1+y 23·k =0. 由题设知x 1+x 22=1,y 1+y 22=m ,于是k =-34m.①由题设得m <⎝ ⎛⎭⎪⎫1-14×3=32,且m >0,即0<m <32,故k <-12. (2)由题意得F (1,0).设P (x 3,y 3),则由(1)及题设得(x 3-1,y 3)+(x 1-1,y 1)+(x 2-1,y 2)=(0,0),x 3=3-(x 1+x 2)=1,y 3=-(y 1+y 2)=-2m <0.又点P 在C 上,所以m =34,从而P ⎝⎛⎭⎪⎫1,-32,|F P →|=32. 于是|F A →|=x 1-2+y 21= x 1-2+3⎝ ⎛⎭⎪⎫1-x 214=2-x 12.同理|F B →|=2-x 22. 所以|F A →|+|F B →|=4-12(x 1+x 2)=3.故2|F P →|=|F A →|+|F B →|,即|FA →|,|FP →|,|FB →|成等差数列.设该数列的公差为d ,则 2|d |=||FB →|-|FA →||=12|x 1-x 2|=12x 1+x 22-4x 1x 2.②将m =34代入①得k =-1.所以l 的方程为y =-x +74,代入C 的方程,并整理得7x 2-14x +14=0.故x 1+x 2=2,x 1x 2=128,代入②解得|d |=32128.所以该数列的公差为32128或-32128.角度2 弦长的问题例5 (2019·陕西咸阳模拟)在平面直角坐标系xOy 中,已知椭圆C :x 2a 2+y 2b2=1(a >b >0)过点P (2,1),且离心率e =32. (1)求椭圆C 的方程;(2)直线l 的斜率为12,直线l 与椭圆C 交于A ,B 两点.求△PAB 面积的最大值.解 (1)∵e 2=c 2a 2=a 2-b 2a 2=34,∴a 2=4b 2.又椭圆C :x 2a 2+y 2b2=1(a >b >0)过点P (2,1),∴4a 2+1b2=1,∴a 2=8,b 2=2.故所求椭圆方程为x 28+y 22=1.(2)设l 的方程为y =12x +m ,点A (x 1,y 1),B (x 2,y 2),联立⎩⎪⎨⎪⎧y =12x +m ,x 28+y22=1,整理,得x 2+2mx +2m 2-4=0.∵Δ=4m 2-8m 2+16>0,解得|m |<2. ∴x 1+x 2=-2m ,x 1x 2=2m 2-4. 则|AB |=1+14× x 1+x 22-4x 1x 2=-m2.点P 到直线l 的距离d =|m |1+14=2|m |5. ∴S △PAB =12d |AB |=12×2|m|5×-m2=m2-m2≤m 2+4-m 22=2.当且仅当m 2=2,即m=±2时取得最大值. 触类旁通解决直线与椭圆的位置关系的问题,其常规思路是先把直线方程与椭圆方程联立,消元、化简,然后应用根与系数的关系,解决相关问题.(3)直线与椭圆相交时常见问题的处理方法即时训练 7.(2019·广西联考)已知椭圆C :x 2a 2+y 2b2=1(a >b >1)的焦距为2,过短轴的一个端点与两个焦点的圆的面积为4π3,过椭圆C 的右焦点作斜率为k (k ≠0)的直线l 与椭圆C相交于A ,B 两点,线段AB 的中点为P .(1)求椭圆C 的标准方程;(2)过点P 垂直于AB 的直线与x 轴交于点D ⎝ ⎛⎭⎪⎫17,0,求k 的值.解 (1)由题易得,过椭圆短轴的一个端点与两个焦点的圆的半径为 43. 设椭圆的右焦点的坐标为(c,0), 依题意知⎩⎪⎨⎪⎧2c =2,a 2=b 2+c 2,⎝ ⎛⎭⎪⎫b -432+c 2=43.又因为b >1,解得a =2,b =3,c =1, 所以椭圆C 的标准方程为x 24+y 23=1.(2)由题意,过椭圆C 的右焦点的直线l 的方程为y =k (x -1),将其代入x 24+y 23=1,得(3+4k 2)x 2-8k 2x +4k 2-12=0. 设A (x 1,y 1),B (x 2,y 2), 则x 1+x 2=8k 23+4k 2,x 1x 2=4k 2-123+4k 2,所以y 1+y 2=k (x 1+x 2)-2k =-6k3+4k 2.因为P 为线段AB 的中点,所以点P 的坐标为⎝ ⎛⎭⎪⎫4k 23+4k 2,-3k 3+4k 2.又因为直线PD 的斜率为-1k,所以直线PD 的方程为 y --3k 3+4k 2=-1k ⎝ ⎛⎭⎪⎫x -4k 23+4k 2. 令y =0,得x =k 23+4k2,所以点D 的坐标为⎝ ⎛⎭⎪⎫k 23+4k 2,0, 则k 23+4k 2=17,解得k =±1. 8.(2019·云南昆明模拟)已知中心在原点O ,焦点在x 轴上的椭圆E 过点C (0,1),离心率为22. (1)求椭圆E 的方程;(2)直线l 过椭圆E 的左焦点F ,且与椭圆E 交于A ,B 两点,若△OAB 的面积为23,求直线l 的方程.解 (1)设椭圆E 的方程为x 2a 2+y 2b2=1(a >b >0),由已知得⎩⎪⎨⎪⎧b =1,c a =22,a 2=b 2+c 2,解得a 2=2,b 2=1,所以椭圆E 的方程为x 22+y 2=1.(2)由已知,直线l 过左焦点F (-1,0). 当直线l 与x 轴垂直时,A ⎝ ⎛⎭⎪⎫-1,-22,B ⎝ ⎛⎭⎪⎫-1,22, 此时|AB |=2,则S △OAB =12×2×1=22,不满足条件.当直线l 与x 轴不垂直时,设直线l 的方程为y =k (x +1),A (x 1,y 1),B (x 2,y 2). 由⎩⎪⎨⎪⎧y =k x +,x 22+y 2=1得(1+2k 2)x 2+4k 2x +2k 2-2=0,所以x 1+x 2=-4k 21+2k 2,x 1x 2=2k 2-21+2k 2.因为S △OAB =12|OF |·|y 1-y 2|=12|y 1-y 2|,由已知S △OAB =23得|y 1-y 2|=43.因为y 1+y 2=k (x 1+1)+k (x 2+1)=k (x 1+x 2)+2k =k · -4k 21+2k 2+2k =2k1+2k2,y 1y 2=k (x 1+1)·k (x 2+1)=k 2(x 1x 2+x 1+x 2+1)=-k 21+2k 2, 所以|y 1-y 2|=y 1+y 22-4y 1y 2=4k2+2k22+4k 21+2k 2=43, 所以k 4+k 2-2=0,解得k =±1,所以直线l 的方程为x -y +1=0或x +y +1=0.1.已知点F 1,F 2是椭圆x 2+2y 2=2的左、右焦点,点P 是该椭圆上的一个动点,那么|PF 1→+PF 2→|的最小值是( )A .0B .1C .2D .2 2答案 C解析 解法一:设P (x 0,y 0),则PF 1→=(-1-x 0,-y 0),PF 2→=(1-x 0,-y 0),所以PF 1→+PF 2→=(-2x 0,-2y 0),所以|PF 1→+PF 2→|=4x 20+4y 20=22-2y 20+y 20=2-y 20+2.因为点P 在椭圆上,所以0≤y 20≤1,所以当y 20=1时,|PF 1→+PF 2→|取最小值2.解法二:由PF 1→+PF 2→=PO →+OF 1→+PO →+OF 2→=2PO →求解.故选C.2.已知F 是椭圆x 29+y 25=1的左焦点,P 是此椭圆上的动点,A (1,1)是一定点,求|PA |+|PF |的最大值和最小值.解 由题意知a =3,b =5,c =2,F (-2,0).设椭圆右焦点为F ′,则|PF |+|PF ′|=6,所以|PA |+|PF |=|PA |-|PF ′|+6.当P ,A ,F ′三点共线时,|PA |-|PF ′|取到最大值|AF ′|=2,或者最小值-|AF ′|=- 2.所以|PA |+|PF |的最大值为6+2,最小值为6- 2.3.在椭圆x 218+y 28=1上求一点,使它到直线2x -3y +15=0的距离最短.解 设所求点坐标为A (32cos θ,22sin θ),θ∈R , 由点到直线的距离公式得 d =|62cos θ-62sin θ+15|22+-2=⎪⎪⎪⎪⎪⎪-12sin ⎝ ⎛⎭⎪⎫θ-π4+1513,当θ=2k π+3π4,k ∈Z 时,d 取到最小值31313,此时A 点坐标为(-3,2).答题启示椭圆中距离的最值问题一般有3种解法:(1)利用椭圆的定义结合平面几何知识求解(适用于所求的表达式中隐含有长轴或者离心率e );(2)根据椭圆标准方程的特点,把距离问题转化为二次函数求最值的问题(适用于定点在椭圆的对称轴上);(3)用椭圆的参数方程设动点的坐标,转化为三角问题求解.对点训练1.设P ,Q 分别为圆x 2+(y -6)2=2和椭圆x 210+y 2=1上的点,则P ,Q 两点间的最大距离是( )A .5 2 B.46+ 2 C .7+ 2 D .6 2答案 D解析 解法一:设椭圆上任意一点为Q (x ,y ),则圆心(0,6)到点Q 的距离d =x 2+y -2=-9y 2-12y +46=-9⎝ ⎛⎭⎪⎫y +232+50≤52, P ,Q 两点间的最大距离d ′=d max +2=6 2.解法二:易知圆心坐标为M (0,6),|PQ |的最大值为|MQ |max +2,设Q (10cos θ,sin θ), 则|MQ |=10cos 2θ+θ-2=-9sin 2θ-12sin θ+46 =-9⎝⎛⎭⎪⎫sin θ+232+50,当sin θ=-23时,|MQ |max =52,所以|PQ |max =52+2=6 2.故选D.2.如图,焦点在x 轴上的椭圆x 24+y 2b 2=1的离心率e =12,F ,A 分别是椭圆的一个焦点和顶点,P 是椭圆上任意一点,则PF →·PA →的最大值为________.答案 4解析 设P 点坐标为(x 0,y 0).由题意知a =2,因为e =c a =12,所以c =1,所以b 2=a 2-c 2=3.所以椭圆方程为x 24+y 23=1.所以-2≤x 0≤2,-3≤y 0≤ 3. 因为F (-1,0),A (2,0), PF →=(-1-x 0,-y 0),PA →=(2-x 0,-y 0),所以PF →·PA →=x 20-x 0-2+y 20=14x 20-x 0+1=14(x 0-2)2. 即当x 0=-2时,PF →·PA →取得最大值4.。

高中数学第2章圆锥曲线与方程2.2.2椭圆的几何性质(一)学案苏教版选修2-1(2021年整理)

高中数学第2章圆锥曲线与方程2.2.2椭圆的几何性质(一)学案苏教版选修2-1(2021年整理)

2018-2019高中数学第2章圆锥曲线与方程2.2.2 椭圆的几何性质(一)学案苏教版选修2-1编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2018-2019高中数学第2章圆锥曲线与方程2.2.2 椭圆的几何性质(一)学案苏教版选修2-1)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2018-2019高中数学第2章圆锥曲线与方程2.2.2 椭圆的几何性质(一)学案苏教版选修2-1的全部内容。

2.2.2 椭圆的几何性质(一)学习目标1。

根据椭圆的方程研究曲线的几何性质,并正确地画出它的图形。

2。

根据几何条件求出曲线方程,并利用曲线的方程研究它的性质、图形.知识点一椭圆的范围、对称性和顶点坐标思考观察椭圆错误!+错误!=1(a〉b〉0)的形状(如图),你能从图中看出它的范围吗?它具有怎样的对称性?椭圆上哪些点比较特殊?答案(1)范围:-a≤x≤a,-b≤y≤b;(2)对称性:椭圆关于x轴、y轴、原点都对称;(3)特殊点:顶点A1(-a,0),A2(a,0),B1(0,-b),B2(0,b).梳理椭圆的几何性质焦点在x轴上焦点在y轴上标准方程x2a2+错误!=1(a>b>0)y2a2+错误!=1(a>b>0)图形焦点坐标(±c,0)(0,±c)对称性关于x轴、y轴轴对称,关于坐标原点中心对称顶点坐标A1(-a,0),A2(a,0),B1(0,-b),B2(0,b)A1(0,-a),A2(0,a),B1(-b,0),B2(b,0)范围|x|≤a,|y|≤b|x|≤b,|y|≤a 长轴、短轴长轴A1A2长为2a,短轴B1B2长为2b知识点二椭圆的离心率思考如何刻画椭圆的扁圆程度?答案用离心率刻画扁圆程度,e越接近于0,椭圆越接近于圆,反之,越扁.梳理(1)焦距与长轴长的比错误!称为椭圆的离心率.记为:e=c a .(2)对于错误!+错误!=1,b越小,对应的椭圆越扁,反之,e越接近于0,c就越接近于0,从而b越接近于a,这时椭圆越接近于圆,于是,当且仅当a=b时,c=0,两焦点重合,图形变成圆,方程变为x2+y2=a2。

2.2.2 椭圆的几何性质 教案(苏教版选修2-1)

2.2.2 椭圆的几何性质 教案(苏教版选修2-1)

2.2.2椭圆的几何性质●三维目标1.知识与技能掌握椭圆的范围、对称性、顶点,掌握椭圆基本量的几何意义以及其相互关系,初步学习利用方程研究曲线性质的方法.2.过程与方法利用曲线的方程来研究曲线性质的方法是学习解析几何以来的第一次应用,通过初步尝试,使学生经历知识产生与形成的过程,不仅注意对研究结果的掌握和应用,更重视对研究方法的思想渗透及分析问题和解决问题能力的培养;以自主探究为主,通过体验数学发现和创造的历程,培养学生观察、分析、逻辑推理、理性思维的能力.3.情感、态度与价值观通过自主探究、交流合作使学生亲身体验研究的艰辛,从中体味合作与成功的快乐,由此激发其更加积极主动的学习精神和探索勇气;通过多媒体展示,让学生体会椭圆方程结构的和谐美和椭圆曲线的对称美,培养学生的审美习惯和良好的思维品质.●重点难点重点:从知识上来讲,要掌握如何利用椭圆标准方程的结构特征研究椭圆的几何性质;从学生的体验来说,需要关注学生在探究椭圆性质的过程中思维的过程展现,如思维角度和思维方法.难点:椭圆几何性质的形成过程,即如何从椭圆标准方程的结构特征中抽象出椭圆的几何性质.通过本节课的教学力求使一个平淡的性质陈述过程成为一个生动而有价值的学生主动交流合作、大胆探究的过程.(教师用书独具)●教学建议本节课采用创设问题情景——学生自主探究——师生共同辨析研讨——归纳总结组成的“四环节”探究式学习方式,并在教学过程中根据实际情况及时地调整教学方案,通过创设问题情景、学生自主探究、展示学生的研究过程来激励学生的探索勇气.根据学生的认知情况和学生的情感发展来调整整个学习活动的梯度与层次,逐步形成敢于发现、敢于质疑的科学态度.使用实物投影及多媒体辅助教学.借助实物投影展示学生的解题思维及解题过程,突出学生的思维角度与思维认识,遵循学生的认知规律,提高学生的思维层次,●教学流程通过复习和预习,知道由对椭圆的标准方程的讨论来研究椭圆的几何性质.提问:研究曲线的几何特征有什么意义?从哪些方面来研究?⇒由范围、对称性、顶点及离心率等研究椭圆的几何性质.既要数形结合直观感知,又要根据标准方程严格推证.⇒采用类比教学的方法,由焦点在x轴上的情形得出焦点在y轴上的情形.⇒通过例1及变式训练,使学生掌握由椭圆方程求其几何性质的方法,首先将方程化为标准方程,由方程得出基本量a,b,c,再写出相应的几何性质.⇒通过例2及变式训练,使学生掌握由椭圆的几何性质求其方程的方法,由几何性质得出基本量a,b,c,从而求出其标准方程.注意焦点位置的两种情形.⇒通过例3及变式训练,使学生掌握椭圆离心率或其范围的求解方法,求椭圆的离心率,即找基本量a,b,c的等式关系;求椭圆的离心率的取值范围,即找基本量a,b,c的不等式关系.⇒通过例4及变式训练,使学生掌握直线与椭圆位置关系的研究方法,会讨论公共点个数,会求弦长,弦中点等问题.体会方程思想的应用.⇒通过易错易误辨析,体会椭圆范围的应用,注意椭圆上点的坐标不是在整个实数范围内,解题时应作为一个隐含条件考虑,否则将会导致错误.⇒归纳整理,进行课堂小结,整体认识本节课所学知识.⇒完成当堂双基达标,巩固基本知识,形成基本能力.图中椭圆的标准方程为x 2a 2+y 2b 2=1(a >b >0).1.椭圆具有对称性吗?【提示】 有,椭圆是以原点为对称中心的中心对称图形,也是以x 轴,y 轴为对称轴的轴对称图形.2.可以求出椭圆与坐标轴的交点坐标吗?【提示】 可以,令y =0得x =±a ,故A 1(-a,0),A 2(a ,0),同理可得B 1(0,-b ),B 2(0,b ).3.椭圆方程中x ,y 的取值范围是什么? 【提示】 x ∈[-a ,a ],y ∈[-b ,b ].4.当a 的值不变,b 逐渐变小时,椭圆的形状有何变化? 【提示】 b越小,椭圆越扁. 1.椭圆的简单几何性质当椭圆的离心率越接近于1,则椭圆越扁;当椭圆的离心率越接近于0,则椭圆越接近于圆.求椭圆x 2+9y 2=81的长轴长、短轴长、离心率、焦点和顶点坐标,并用描点法画出这个椭圆.【思路探究】化为标准方程→求a ,b →求几何性质【自主解答】 把已知方程化成标准方程x 281+y 29=1,于是a =9,b =3,c =81-9=62,所以椭圆的长轴长2a =18,短轴长2b =6,离心率e =c a =223,焦点为F 1(-62,0),F 2(62,0),顶点为A 1(-9,0),A 2(9,0),B 1(0,-3),B 2(0,3).将方程变形为y =±1381-x 2,根据y =1381-x 2算出椭圆在第一象限内的几个点的坐标(如下表所示):1.由椭圆方程求其几何性质,首先应将方程化为标准形式.2.画椭圆时,应充分利用椭圆的对称性,可简化作图过程,增强准确度.求椭圆4x 2+9y 2=36的长轴长、短轴长、离心率、焦点和顶点坐标,并用描点法画出这个椭圆.【解】 把椭圆的方程化为标准方程x 29+y 24=1.可知此椭圆的焦点在x 轴上,且长半轴长a =3,短半轴长b =2,故半焦距c =a 2-b 2=9-4= 5.因此,椭圆的长轴长2a =6,短轴长2b =4;离心率e =c a =53,两个焦点的坐标分别是(-5,0),(5,0);四个顶点的坐标分别是(-3,0),(3,0),(0,-2),(0,2).为画此椭圆的图形,将椭圆方程变形为 y =±239-x 2(-3≤x ≤3).由y =239-x 2(0≤x ≤3),可求出椭圆的两个顶点及其在第一象限内一些点的坐标(x ,y ),列表如下:称性画出整个椭圆,如图所示.求符合下列条件的椭圆标准方程:(1)焦距为8,离心率为0.8;(2)焦点与长轴较接近的端点的距离为10-5,焦点与短轴两端点的连线互相垂直; (3)长轴长是短轴长的2倍,且过点(2,-6).【思路探究】由几何性质→寻求a ,b ,c 关系→求a ,b →得方程 【自主解答】 (1)由题意:∵2c =8,∴c =4. 又∵ca=0.8,∴a =5,∴b 2=9,焦点在x 轴上时椭圆标准方程为:x 225+y 29=1;焦点在y 轴上时椭圆标准方程为:y 225+x 29=1.(2)由题意:a -c =10-5,b =c ,a 2=b 2+c 2,∴解得a 2=10,b 2=5,焦点在x 轴上时椭圆标准方程为:x 210+y 25=1;焦点在y 轴上时椭圆标准方程为:y 210+x 25=1.(3)设椭圆的标准方程为x 2a 2+y 2b 2=1或y 2a 2+x 2b 2=1.又过点(2,-6),因此有22a 2+(-6)2b 2=1或(-6)2a 2+22b2=1. 由已知a =2b ,得a 2=148,b 2=37或a 2=52,b 2=13. 故所求的方程为x 2148+y 237=1或y 252+x 213=1.1.利用椭圆的几何性质求标准方程,通常采用待定系数法.其步骤是:首先确定焦点的位置,其次根据已知条件构造关于参数的关系式,利用方程(组)求得参数.2.当椭圆焦点位置不完全确定时,其标准方程有两种形式,不要漏掉焦点在y 轴上的情形.求满足下列各条件的椭圆的标准方程: (1)长轴长是短轴长的2倍且经过点A (2,0);(2)短轴一个端点与两焦点组成一个正三角形,且焦点到同侧顶点的距离为 3. 【解】 (1)若椭圆的焦点在x 轴上, 设方程为x 2a 2+y 2b 2=1(a >b >0),∵椭圆过点A (2,0),∴4a2=1,a =2,∵2a =2·2b ,∴b =1,∴方程为x 24+y 2=1.若椭圆的焦点在y 轴上, 设椭圆方程为y 2a 2+x 2b 2=1(a >b >0),∵椭圆过点A (2,0),∴02a 2+4b2=1,∴b =2,2a =2·2b ,∴a =4,∴方程y 216+x 24=1.综上所述,椭圆方程为x 24+y 2=1或y 216+x 24=1.(2)由已知⎩⎨⎧ a =2ca -c =3,∴⎩⎨⎧a =23c =3.从而b 2=9,∴所求椭圆的标准方程为x 212+y 29=1或x 29+y 212=1.(1)(2012·江西高考)椭圆x 2a 2+y 2b2=1(a >b >0)的左、右顶点分别是A ,B ,左、右焦点分别是F 1,F 2.若AF 1,F 1F 2,F 1B 成等比数列,则此椭圆的离心率为________.(2)已知F 1、F 2是椭圆x 2a 2+y 2b 2=1(a >b >0)的左、右焦点,P 是椭圆上一点,∠F 1PF 2=90°,求椭圆离心率的最小值.【思路探究】 (1)用a ,c 表示出AF 1,F 1B ,依据AF 1,F 1F 2,F 1B 成等比数列,建立a ,c 间的关系式.(2)法一,利用勾股定理及基本不等式寻求基本量a ,c 间的不等关系;法二,利用短轴端点对两焦点张角为椭圆上任一点对两焦点张角最大值;法三,利用圆半径c ≥b 求解.【自主解答】 (1)椭圆的顶点为A (-a,0),B (a,0),焦点为F 1(-c,0),F 2(c,0),所以AF 1=a -c ,F 1B =a +c ,F 1F 2=2c .因为AF 1,F 1F 2,F 1B 成等比数列,所以有4c 2=(a -c )(a +c )=a 2-c 2,即5c 2=a 2,所以a =5c ,所以离心率为e =c a =55.【答案】55(2)法一 设PF 1=m ,PF 2=n ,∴m 2+n 2=4c 2, 又2a =m +n ,∴4a 2=m 2+n 2+2mn ≤2(m 2+n 2)=8c 2. 即:a 2≤2c 2,∴e =c a ≥22.∴e min =22.法二 设椭圆与y 轴上方交点为B .∵∠F 1BF 2≥90°,∴cos ∠F 1BF 2=a 2+a 2-4c 22a 2≤0,即:a 2≤2c 2.∴e =c a ≥22,∴e min =22. 法三 以F 1F 2为直径的圆的方程为:x 2+y 2=c 2, 由题意c ≥b ,∴c 2≥a 2-c 2,∴2c 2≥a 2,∴c a ≥22,∴e =c a ≥22,∴e min =22.1.求椭圆的离心率,就是由题意求基本量a ,b ,c 的等式关系.2.求椭圆离心率的取值范围,就是求基本量a ,b ,c 间的不等关系,然后利用定义或列出关于e 的不等式进行求解,应注意e 还应受到0<e <1的限制.(2013·辽宁高考改编)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左焦点为F ,C 与过原点的直线相交于A ,B 两点,连接AF ,BF .若|AB |=10,|BF |=8,cos ∠ABF =45,则C 的离心率为________.【解析】 在△ABF 中,|AF |2=|AB |2+|BF |2-2|AB |·|BF |·cos ∠ABF =102+82-2×10×8×45=36,则|AF |=6.由|AB |2=|AF |2+|BF |2可知,△ABF 是直角三角形,OF 为斜边AB 的中线,c =|OF |=|AB |2=5.设椭圆的另一焦点为F 1,因为点O 平分AB ,且平分FF 1,所以四边形AFBF 1为平行四边形,所以|BF |=|AF 1|=8.由椭圆的性质可知|AF |+|AF 1|=14=2a。

苏教版数学高二- 选修2-1教案 椭圆的标准方程

苏教版数学高二- 选修2-1教案  椭圆的标准方程

2.2.1椭圆的标准方程●三维目标1.知识与技能进一步理解椭圆的定义;掌握椭圆的标准方程,理解椭圆标准方程的推导;会根据条件写出椭圆的标准方程;能用标准方程判定是否是椭圆.2.过程与方法(1)通过寻求椭圆的标准方程的推导,帮助学生领会观察、分析、归纳、数形结合等思想方法的运用.(2)在相互交流学习中,使学生养成表述、抽象、总结的思维习惯,逐步培养学生在探索新知的过程中进行合作推理的能力及应用代数知识进行同解变形和化简的能力.3.情感、态度与价值观在平等的教学氛围中,让学生体验数学学习的成功与快乐,增加学生的求知欲和自信心,培养学生不怕困难、勇于探索的优良作风,增强学生审美体验,提高学生的数学思维能力,给学生以成功的体验,形成学习数学知识的积极态度.●重点难点重点:标准方程的推导及椭圆的判断.难点:椭圆标准方程的推导及应用.教学时,应从回顾椭圆定义入手,回顾曲线方程的求解方法,通过建立坐标系,推导焦点在x轴上的椭圆的标准方程,从而得出焦点在y轴上的椭圆的标准方程,且通过推导,得出基本量a,b,c之间的基本关系,化解难点.通过三个例题的教学,突出椭圆的标准方程的应用.●教学建议本节课主要内容是椭圆的标准方程.学生在前面已经学习了解析几何的两种基本曲线:直线和圆,初步掌握了解析几何的思维方法——利用代数的方法描述平面图形及性质;基本上掌握了解析几何的解题基本格式,数形结合的思想比以前有了质的飞跃,因此在教学过程中,采用了引导发现法和感性体验法进行教学.引导发现法属于启发式教学,有利于充分调动学生的积极性和主动性,体现了认知心理学的相关内容.在教学过程中,教师采用启发、引导、点拨的方式,创设各种问题情景,使学生带着问题去主动思考,动手操作,交流合作,进而达到对知识的“发现”和“接受”,完成知识的内化,使书本的知识真正成为自己的知识.●教学流程创设情景情景一:复习上节课内容,重点是椭圆的定义.情景二:展示图片一,思索:油罐的横截面是不是椭圆?情景三:展示图片二,思索:“鸟巢”顶部的椭圆型建筑如何设计?⇒互动探究椭圆标准方程的推导问题1:回想圆方程的推导步骤是如何的?问题2:怎样给椭圆建立直角坐标系?问题3:焦点在y轴的椭圆方程该如何推导?⇒分析两类椭圆的标准方程,体会二者的区分办法,及共性.⇒通过例1及变式训练,使学生掌握椭圆标准方程的求法,待定形式应根据焦点的位置区分,应注意定义及方程的应用.⇒通过例2及变式训练,使学生掌握椭圆标准方程的应用,根据椭圆特征对方程中字母范围的讨论,以及焦点三角形的求解.⇒通过例3及变式训练,使学生掌握与椭圆有关的轨迹问题的求法,会用椭圆定义判断曲线是否为椭圆,并用待定系数法求动点轨迹方程.⇒通过易错易误辨析,体会焦点分别在x轴,y轴上的区别,注重分类讨论思想的应用.⇒归纳整理,进行课堂小结,整体认识本节课所学知识.⇒完成当堂双基达标,巩固基本知识,形成基本能力.课标解读1.了解椭圆标准方程的推导过程.(难点)2.掌握椭圆的标准方程,会求椭圆的标准方程.(重点)3.两种位置的椭圆的标准方程的区分.(易混点)椭圆的标准方程1.给你两个图钉,一根无弹性的细绳,一张硬纸板,你能画出椭圆吗?【提示】固定两个图钉,将绳子两端固定在图钉上且绳长大于图钉间的距离,用笔尖把绳子拉紧,使笔尖在纸板上移动就可以画出一个椭圆.2.求曲线的方程通常分为几步?【提示】四步:建系、设点、列式、化简.焦点在x轴上焦点在y轴上标准方程x2a2+y2b2=1(a>b>0)y2a2+x2b2=1(a>b>0)图象焦点坐标(-c,0),(c,0) (0,-c),(0,c)a,b,c的关系a2=b2+c2待定系数法求椭圆的标准方程求适合下列条件的椭圆的标准方程:(1)焦点坐标分别为(-3,0),(3,0),且椭圆上的一点到两个焦点的距离之和等于10;(2)焦点坐标分别为(0,-2),(0,2),并且过点(-32,52).【思路探究】(1)由焦点坐标和椭圆定义分别求出c,a,代入b2=a2-c2求出b2即可;(2)本题有两种思路:一是先由焦点坐标和椭圆定义分别求出c,a,再求解;二是将点的坐标代入椭圆方程,结合b2=a2-c2求解.【自主解答】(1)由题意,设椭圆的标准方程是x2a2+y2b2=1(a>b>0),则2c=6,2a=10,所以a=5,c=3.由a2=b2+c2,得b2=16,所以椭圆的标准方程是x225+y216=1.(2)因为椭圆的焦点在y轴上,所以设它的标准方程为y2a2+x2b2=1(a>b>0).法一由椭圆的定义知2a=-32-02+52+22+-32-02+52-22=210,所以a=10.又由题意知c=2,所以b2=a2-c2=10-4=6.因此,所求椭圆的标准方程为y210+x26=1.法二因为所求椭圆过点(-32,52),所以254a2+94b2=1.又a2-b2=c2=4,解得a2=10,b 2=6,故所求椭圆的标准方程为y 210+x 26=1.1.在本例(2)的解答中,利用椭圆定义求a 较为简洁,也是我们常用的一种方法. 2.在已知椭圆的类型求椭圆的标准方程时,一般采用待定系数法求解,步骤如下: (1)根据已知条件判断焦点所在的坐标轴,设出对应的标准方程;(2)将已知条件代入,求出a ,b(注意隐含条件a 2=b 2+c 2,a>b>0),此时注意椭圆定义的应用;(3)写出椭圆的标准方程.其主要步骤可归纳为“先定型,再定量”.求经过点M(2,-3)且与椭圆9x 2+4y 2=36有共同焦点的椭圆方程.【解】 法一 已知椭圆方程可化为x 24+y 29=1,∴c =5,∴F 1(0,-5),F 2(0,5),∴2a =MF 1+MF 2=215,∴a =15,∴b 2=a 2-c 2=10,∴椭圆方程为x 210+y 215=1. 法二 椭圆9x 2+4y 2=36的焦点为(0,±5),则设所求椭圆的方程为x 2λ+y 2λ+5=1(λ>0).又椭圆过点(2,-3),∴4λ+9λ+5=1,解得λ=10或λ=-2(舍去). ∴所求椭圆方程为x 210+y 215=1.椭圆标准方程的应用(1)若方程x 2+ky 2=2表示焦点在y 轴上的椭圆,求k 的取值范围;(2)已知椭圆x 24+y 23=1中,点P 是椭圆上一点,F 1,F 2是椭圆的焦点,且∠F 1PF 2=60°,求△PF 1F 2的面积.图2-2-1 【思路探究】(1)化为标准方程→由条件列不等式→求k 的范围 (2)PF 1·PF 2面积PF 1+PF 2=4―→由定义PF 1,PF 2, F 1F 2关系―→由余弦 定理【自主解答】 (1)原方程可化为x 22+y 22k =1,∵表示焦点在y 轴上的椭圆. ∴⎩⎪⎨⎪⎧k>0,2k >2.解得0<k<1.∴k 的取值范围是0<k<1.(2)由题意知a =2,b =3,c =a 2-b 2=4-3=1, ∴F 1F 2=2c =2,在△PF 1F 2中有, PF 1+PF 2=4,①PF 21+PF 22-2PF 1·PF 2·cos 60°=F 1F 22,即(PF 1+PF 2)2-3PF 1·PF 2=4, ②①代入②得PF 1·PF 2=4,∴S △PF 1F 2=12PF 1·PF 2·sin 60°=12×4×32= 3.1.对于方程x 2m +y 2n =1,当m>n>0时,方程表示焦点在x 轴上的椭圆;当n>m>0时,方程表示焦点在y 轴上的椭圆.特别注意,当n =m>0时,方程表示圆心在原点的圆.2.椭圆上一点P 与椭圆的两焦点F 1、F 2构成的△F 1PF 2称为焦点三角形,解关于椭圆的焦点三角形问题时要充分利用椭圆的定义、三角形中的正弦定理、余弦定理等知识.(1)已知方程(2-k)x 2+ky 2=2k -k 2表示焦点在x 轴上的椭圆,求实数k 的取值范围. (2)如图2-2-2所示,点P 为椭圆x 24+y 23=1上一点,若点P 在第二象限,且∠PF 1F 2=120°,求△PF 1F 2的面积.图2-2-2 【解】(1)由(2-k)x 2+ky 2=2k -k 2表示椭圆,知2k -k 2≠0,且有x 2k +y 22-k=1. ∵方程表示焦点在x 轴上的椭圆, ∴k>2-k>0, 即1<k<2,故实数k 的取值范围是1<k<2. (2)由已知a =2,b =3,所以c =a 2-b 2=4-3=1,F 1F 2=2c =2, 在△PF 1F 2中,由余弦定理,得PF 22=PF 21+F 1F 22-2PF 1·F 1F 2·cos 120°, 即PF 22=PF 21+4+2PF 1,①由椭圆定义,得PF 1+PF 2=4, 即PF 2=4-PF 1,②②代入①解PF 1=65.∴S △PF 1F 2=12PF 1·F 1F 2·sin 120°=12×65×2×32=335.与椭圆有关的轨迹问题△ABC 的三边a ,b ,c 成等差数列,且a >b >c ,A ,C 的坐标分别为(-1,0),(1,0),求顶点B 的轨迹方程.【思路探究】 利用椭圆定义分析出B 点的轨迹是椭圆,再利用待定系数法求解. 【自主解答】 由已知得b =2,又a ,b ,c 成等差数列, ∴a +c =2b =4,即AB +BC =4,∴点B 到定点A 、C 的距离之和为定值4,由椭圆定义知B 点的轨迹为椭圆的一部分,设椭圆的标准方程为x 2a′2+y 2b′2=1(a′>b′>0).其中a′=2,c′=1. ∴b′2=3. 又a >b >c ,∴顶点B 的轨迹方程为x 24+y 23=1(-2<x <0).1.本例解答过程中,不要忽略a>b>c 这个条件,而误认为轨迹为整个椭圆. 2.解答与椭圆有关的求轨迹问题的一般思路是:已知动圆与定圆C :x 2+y 2+4y -32=0内切且过定圆内的一个定点A(0,2),求动圆圆心P 的轨迹方程.【解】 由定圆C :x 2+(y +2)2=36知,圆心C(0,-2),半径r =6,设动圆圆心P(x ,y),动圆半径为PA ,由于圆P 与圆C 相内切,∴PC =r -PA , 即PA +PC =r =6>AC.因此,动圆圆心P 到两定点A(0,2),C(0,-2)的距离之和为6, ∴P 的轨迹是以A ,C 为焦点的椭圆,且2a =6,2c =4,即a =3,c =2, ∴b 2=5.∴所求动圆圆心P 的轨迹方程为y 29+x 25=1.误认为焦点只在x 轴上而致错已知椭圆的标准方程为x 225+y 2m2=1(m>0),并且焦距为6,求m 的值.【错解】 ∵2c =6,∴c =3,由椭圆的标准方程知a 2=25,b 2=m 2.∵a2=b2+c2,∴25=m2+9,∴m2=16.又m>0,故m=4.【错因分析】椭圆的焦点在哪个坐标轴上主要看x2和y2项分母的大小,如果x2项的分母大于y2项的分母,则椭圆的焦点在x轴上,反之,焦点在y轴上.由于本题中x2和y2项分母的大小不确定,因此需要进行分类讨论.【防范措施】涉及椭圆方程的问题,如果没有指明椭圆焦点所在的位置,一般都会有两种可能的情形,不能顺着思维的定式,想当然地认为焦点在x轴或y轴上.【正解】∵2c=6,∴c=3.(1)当椭圆的焦点在x轴上时,由椭圆的标准方程知a2=25,b2=m2.∵a2=b2+c2,∴25=m2+9,∴m2=16.又m>0,故m=4.(2)当椭圆的焦点在y轴上时,由椭圆的标准方程知a2=m2,b2=25.∵a2=b2+c2,∴m2=25+9=34.又m>0,故m=34.由(1)(2)可得m的值为4或34.1.求椭圆的标准方程,主要采用待定系数法,一般“先定型”即先确定标准形式,“再定量”即由题目条件求基本量a,b,c,求解过程中,要注意定义的应用.2.对方程带有字母系数的椭圆,其焦点在哪个坐标轴上要由字母的取值范围确定,必要时要进行分类讨论.3.求与椭圆有关的轨迹问题,常见的直接法、代入法、参数法等都同样可用,除此以外,还要注意利用椭圆的定义求解轨迹问题.1.动点P 到两定点F 1(-3,0),F 2(3,0)的距离的和为10,则动点P 的轨迹方程是________. 【解析】 ∵2a =10,∴a =5,∵c =3,∴b 2=a 2-c 2=16, 又∵焦点在x 轴上,∴轨迹方程为x 225+y 216=1.【答案】 x 225+y 216=12.已知椭圆x 236+y 225=1上一点P 到椭圆一个焦点的距离为3,则点P 到另一个焦点的距离为________.【解析】 由题意,a =6,不妨设PF 1=3,又PF 1+PF 2=2×6=12, ∴PF 2=12-3=9. 【答案】 93.若方程x 2k -3+y 25-k =1表示椭圆,则k 的取值范围是________.【解析】 ∵⎩⎪⎨⎪⎧k -3>05-k>0k -3≠5-k ,∴k ∈(3,4)∪(4,5).【答案】 (3,4)∪(4,5)4.设P 是椭圆x 225+y 216=1上的一点,F 1,F 2是椭圆的两个焦点,则|PF 1|+|PF 2|等于________.【解析】 由标准方程得a 2=25,∴2a =10,由椭圆定义知|PF 1|+|PF 2|=2a =10. 【答案】 10一、填空题1.椭圆25x 2+16y 2=400的焦点坐标为________. 【解析】 椭圆方程可化为x 216+y 225=1,∴c 2=9,∴c =3,∴焦点坐标为(0,±3). 【答案】 (0,±3)2.对于常数m 、n ,“mn>0”是“方程mx 2+ny 2=1的曲线是椭圆”的________条件.(填“充分不必要”或“必要不充分”或“充要”或“既不充分又不必要”)【解析】 由方程mx 2+ny 2=1的曲线表示椭圆,常数m ,n 的取值为⎩⎪⎨⎪⎧m>0,n>0,m≠n ,所以mn>0;反过来,由mn>0得不到方程mx 2+ny 2=1的曲线表示椭圆.【答案】 必要不充分3.椭圆x 2m +y 24=1的焦距是2,则m 的值为________.【解析】 ∵2c =2,∴c =1,∴m -4=1或4-m =1, ∴m =3或5. 【答案】 3或54.椭圆x 24+y 2=1的两个焦点为F 1、F 2,过F 1作垂直于x 轴的直线与椭圆相交,一个交点为P ,则PF 2=________.【解析】 如图,x P =-c =-3, ∴34+y 2P =1,∴y P =12,∴PF 1=12.∵PF 1+PF 2=4,∴PF 2=72.【答案】 725.一个焦点坐标是(0,4),且过点B(1,15)的椭圆的标准方程为________.【解析】 由一个焦点坐标是(0,4)知椭圆焦点在y 轴上,设椭圆的标准方程为y 2a 2+x 2b 2=1(a>b>0),由c =4,得b 2=a 2-c 2=a 2-16,则椭圆方程可化为y 2a 2+x 2a 2-16=1(a 2-16>0),将点B(1,15)代入,得a 2=20(a 2=12舍去),从而b 2=a 2-16=4,故所求椭圆的标准方程为y 220+x 24=1. 【答案】 y 220+x 24=16.若单位圆x 2+y 2=1上每个点的纵坐标不变,横坐标变为原来的13,则所得曲线的方程是________.【解析】 设所求曲线上任一点的坐标为(x ,y),圆x 2+y 2=1上的对应点为(x 1,y 1),由题意可得⎩⎪⎨⎪⎧ x =13x 1y =y 1, 解得⎩⎪⎨⎪⎧ x 1=3x y 1=y ①,将①代入x 21+y 21=1得(3x)2+y 2=1,即y 2+x 219=1. 所以所求曲线的方程是y 2+x 219=1. 【答案】 y 2+x 219=1 7.椭圆x 225+y 29=1上的点M 到焦点F 1的距离为2,N 是MF 1的中点,则ON(O 为坐标原点)的值为________.【解析】 由题意,a =5,b =3,∴c =a 2-b 2=25-9=4,MF 1=2,∴MF 2=2×5-2=8,又ON 为△MF 1F 2的中位线,∴ON =12MF 2=12×8=4. 【答案】 48.在平面直角坐标系xOy 中,已知△ABC 顶点A(-4,0)和C(4,0),顶点B 在椭圆x 225+y 29=1上,则sin A +sin C sin B=________. 【解析】 ∵B 在椭圆上,∴BA +BC =2a =10.由正弦定理,知sin A +sin C sin B =2a 2c =108=54. 【答案】 54二、解答题9.已知椭圆C 经过点A(2,3),且点F(2,0)为其右焦点,求椭圆C 的标准方程.【解】 依题意,可设椭圆C 的方程为x 2a 2+y 2b 2=1(a >b >0),且可知左焦点为F′(-2,0). 从而有⎩⎪⎨⎪⎧c =2,2a =AF +AF′=3+5=8,解得⎩⎪⎨⎪⎧c =2a =4.又a 2=b 2+c 2,所以b 2=12,故椭圆C 的标准方程为x 216+y 212=1. 10.已知椭圆x 2a 2+y 2b 2=1(a>b>0)上一点P(3,4),若PF 1⊥PF 2,试求椭圆的方程. 【解】 在Rt △F 1PF 2中,∵PF 21+PF 22=F 1F 22,∴(3+c)2+16+(3-c)2+16=4c 2,∴c 2=25,∴c =5,∴F 1(-5,0),F 2(5,0),∴2a =PF 1+PF 2=65,∴a =35,∴b 2=20,∴椭圆方程为x 245+y 220=1. 11.已知F 1,F 2是椭圆x 2100+y 264=1的两个焦点,P 是椭圆上任意一点. (1)若∠F 1PF 2=π3,求△F 1PF 2的面积; (2)求PF 1·PF 2的最大值.【解】 (1)设PF 1=m ,PF 2=n(m>0,n>0).根据椭圆的定义,得m +n =20.在△F 1PF 2中,由余弦定理得PF 21+PF 22-2PF 1·PF 2·cos ∠F 1PF 2=F 1F 22,即m 2+n 2-2mn·cos π3=122. ∴m 2+n 2-mn =144,即(m +n)2-3mn =144.∴202-3mn =144,即mn =2563. 又∵S △F 1PF 2=12PF 1·PF 2·sin ∠F 1PF 2 =12mn·sin π3, ∴S △F 1PF 2=12×2563×32=6433. (2)由题意知a =10,∴根据椭圆的定义,得PF 1+PF 2=20. ∵PF 1+PF 2≥2PF 1·PF 2,∴PF 1·PF 2≤(PF 1+PF 22)2=(202)2=100, 当且仅当PF 1=PF 2时,等号成立.∴PF 1·PF 2的最大值是100.(教师用书独具)椭圆C :x 2a 2+y 2b2=1(a>b>c)的两个焦点为F 1,F 2,点P 在椭圆C 上,且PF 1⊥F 1F 2,PF 1=43,PF 2=143.求椭圆C 的方程.【思路探究】画图分析→利用椭圆定义求2a→求2c→求b→求方程【自主解答】 因为点P 在椭圆C 上,所以2a =PF 1+PF 2=43+143=6,所以a =3.在Rt △PF 1F 2中,F 1F 2=PF 22-PF 21=1432-432=25,故c =5,从而b 2=a 2-c 2=4,所以椭圆C 的方程为x 29+y 24=1.1.本例中,求解2c 时利用Rt △PF 1F 2,充分利用了平面图形的性质.2.求椭圆的标准方程最常用的方法是待定系数法.已知椭圆经过点(63,3)和点(223,1),求椭圆的标准方程. 【解】 设椭圆方程为mx 2+ny 2=1(m>0,n>0,m≠n),∵点(63,3),(223,1)在椭圆上, ∴⎩⎨⎧ m·632+n 32=1,m·2232+n·12=1,解得⎩⎪⎨⎪⎧m =1,n =19. ∴椭圆方程为y 29+x 2=1.。

高中数学《2.2.2 椭圆的几何性质(1)》教案 苏教版选修2-1

高中数学《2.2.2 椭圆的几何性质(1)》教案 苏教版选修2-1

椭圆的几何性质1课题第 1 课时计划上课日期:教学目标知识与技能1.掌握椭圆的基本几何性质:X围、对称性、顶点、长轴、短轴.2.感受如何运用方程研究曲线的几何性质过程与方法情感态度与价值观教学重难点椭圆的几何性质——X围、对称性、顶点教学流程\内容\板书关键点拨加工润色一、问题情境1.情境:复习回顾:椭圆的定义;椭圆的标准方程;椭圆中a,b,c的关系.2.问题:在建立了椭圆的标准方程之后,就可以通过方程来研究椭圆的几何性质.那么椭圆有哪些几何性质呢?二、学生活动(1)探究椭圆的几何性质.阅读课本第34页至第35页例1上方,回答下列问题:问题1 椭圆的X围是指椭圆的标准方程22221(0)x ya ba b+=>>中x,y的X围,可以用哪些方法推导?问题2借助椭圆的图形容易发现椭圆的对称性,能否借助标准方程用代数方法推导?问题3椭圆的顶点是最左或最右边的点吗?三、建构数学1.X围.由方程22221x ya b+=可知,椭圆上点的坐标都适合不等式222211x ya b=-≤,即22x a ≤,所以 x a ≤,同理可得y b ≤.这说明椭圆位于直线x a =±和y b =±所围成的矩形内.2.对称性:从图形上看:椭圆关于x 轴、y 轴、原点对称. 从方程22221x y a b+=上看: (1)把x 换成x -方程不变,说明当点(,)P x y 在椭圆上时,点P 关于y 轴的对称点(,)P x y '-也在椭圆上,所以椭圆的图象关于y 轴对称;(2)把y 换成y -方程不变,所以椭圆的图象关于y 轴对称;(3)把x 换成x -,同时把y 换成y -方程不变,所以椭圆的图象关于原点成中心对称. 综上:坐标轴是椭圆的对称轴,原点是椭圆的对称中心,椭圆的对称中心叫做椭圆的中心.3.顶点:在方程22221x y a b+=中,令0x =,得y b =±,说明点1(0,)B b -,2(0,)B b 是椭圆与y 轴的两个交点.同理1(,0)A a -,2(,0)A a 是椭圆与x 轴的两个交点.(1)顶点:椭圆与它的对称轴的四个交点,叫做椭圆的顶点;(2)长轴、短轴:线段12A A 、线段12B B 分别叫椭圆的长轴和短轴,它们的长分别等于2a 和2b ;(3)a ,b 的几何意义:a 是长半轴的长,b 是短半轴的长.四、数学运用1.例题:例1 求椭圆221259x y +=的长轴长,短轴长,焦点和顶点坐标,并用描点法画出这个椭圆.例2 求符合下列条件的椭圆标准方程(焦点在x 轴上):(1)焦点与长轴较接近的端点的距离为105-,焦点与短轴两端点的连线互相垂直.。

高中数学2.2 椭圆 教案 苏教版选修2—1

高中数学2.2 椭圆 教案 苏教版选修2—1

2.2椭圆椭圆的标准方程教学目标:(1)知识与技能:理解椭圆标准方程的推导;掌握椭圆的标准方程;会根据条件求椭圆的标准方程,会根据椭圆的标准方程求焦点坐标.(2)过程与方法:让学生经历随圆标准方程的推导过程,进一瞠掌握求曲线方程的一般方法,体会数形合等数学思想;培养学生运用类比、联想等方法提出问题.(3)情感态度与价值观:通过具体的情境感知研究随圆标准方程的必要性和实际意义;体会数学的对称美、简洁美,培养学生的审美情趣,形成学习数学知识的积极态度. 教学重点:椭圆的标准方程 教学难点:椭圆标准方程的推导 教学方法:引导启发、自主探究 教学手段:多媒体 教学过程: 一、问题情境:师:生活是一个五彩缤纷的万花筒,而在这个万花筒中存在着很多美丽的图形和轮廓,比如餐桌的桌面、汽车贮油罐的横截面的外轮廓线,同学们怎样称呼它们? 生:椭圆师:很多,这就是我们今天要研究的一个很优美的图形.这样一个优美的图形椭手能描绘它吗?这里我有一个画椭圆的工具:将绳子的两端用图钉固定,使绳子长大于两定点之间的位置,用粉笔拉紧绳子并在黑板上慢慢移动,就可以勾勒出一个椭圆,哪位同学愿意试一试? 生:(尝试画椭圆)师:在这个过程中,同学们可以发现椭圆上的点都有什么共同特点? 生:到两定点的距离等于定长. 师:好的.所以我们将在平面内到两定点1F ,2F 距离之和等于常数(大于12F F )的点的轨迹叫做椭圆,两定点称为椭圆的焦点,两定点之间的距离叫做焦距,通常用2c 来表示. (板书:12122(2)PF PF a a >F F +=,焦点:1F ,2F ,焦距:122F F c =)师:对于椭圆这样一个优美的图形,其中也蕴涵了许多性质,那如何研究这些性质呢? 生:(思考)师:在解析几何中,我们学过的图形有哪些? 生:直线和圆.师:不错.那以圆为例,在解析几何中我们通过什么研究圆的性质呢? 生:圆的方程.师:大家还记得圆的方程是怎样建立的吗?(个别提问) 生:(回答问题,教师加以引导)得出圆的标准方程的基本步骤:建坐标系、设点、列等式、代坐标、化简.师:那么大家觉得这样方程是否适用于椭圆呢? 生:可以.师:那么请大家来研究一下椭圆的方程是什么? 生:(研究探索椭圆的方程,教师适时加以引导) 二、建构数学(1)如何建立适当的坐标系?原则:尽可能使方程的形式简单、运算简单; (一般利用对称轴或已有的互相垂直的线段所在的直线作为坐标轴.) ①建立适当的直角坐标系: 以直线12F F 为x 轴,线段12F F 的垂直平分线为y 轴,建立如图所示坐标系.②设点:设()P x y ,是椭圆上的任意一点,122F F c = ,1(0)F c ∴-,,1(0)F c ,; ③根据条件112PF PF a +=2a =(1)④化简:(移项,两边平方)22222222()()a c x a y a a c -+=-, 师:能否美化结论的形象?0a c >> ,220a c ∴->,令222a c b -=,则:222222b x a x a b +=.师:由直线方程的截距式是否可以得到启发?∴椭圆方程为:22221x y a b +=.(a ,b 即为椭圆在x ,y 轴上的截距)师:怎样推导焦点在y 轴上的椭圆的标准方程?(用小黑板做演示)生:交换x ,y 就可以得到.师:(板书两种方程和图形)师:椭圆标准方程的特点是什么? 生:x ,y 轴分别为椭圆的两个对称轴,焦点在坐标轴上,焦点的中心是原点.师:焦点位于x ,y 轴上时的焦点坐标分别是什么?生:(回答,教师板书)师:a b c ,,之间存在一个什么关系? 生:222a b c =+三、数学运用例1、将下列椭圆方程转化成标准方程(1)22431x y += (2)22561x y += 思考:上述两个方程的焦点位于哪根坐标轴上? 师:如何判断椭圆的焦点的位置? 生:在分母较大的对应轴上.练习:若P 为椭圆22194x y +=上一个动点,则P 到两个焦点1F ,2F 之间的距离是____.若P 到其中一个焦点1F 的距离是4,则P 到另外一个焦点2F 的距离是________.其中a =________,b =________,焦点位于________轴上,焦点坐标为________.例2、求椭圆的方程为22167112x y +=的焦点坐标. 例3、若动点P 到两定点1(40)F -,,2(40)F ,的距离之和为8,则动点P 的轨迹为( )A.椭圆B.线段12F FC.直线12F FD.不存在师:若绳长12F F =,则轨迹是什么?生:线段12F F师:若绳子12F F <,则轨迹是什么?生:不存在.例4、求适合下列条件的椭圆方程. (1)4a =,1b =,焦点在x 轴上;(2)4a =,1c =,焦点在y 轴上;(3)1b =,c =,焦点在坐标轴上.师:由第三题可知:求椭圆方程的第一种方法是直接法,先定位再定量.例5、若一椭圆两焦点的坐标分别是椭圆229436x y +=的两焦点,并且经过点(23)A -,,求该椭圆的标准方程.(由学生板书)师:这是我们学到的又一种求曲线方程的方法:待定系数法.四、课堂小结:这节课我们学习了椭圆的标准方程,掌握了求焦点在x 轴上和在y 轴上的标五、作业布置1.教材P28页习题2.2(1)第2,3,4题2.推导焦点在y轴上的椭圆的标准方程.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课题第 1 课时计划上课日期:
教学目标知识与技能
1.掌握椭圆的基本几何性质:范围、对称性、顶点、长轴、短轴.
2.感受如何运用方程研究曲线的几何性质
过程与方法
情感态度
与价值观
教学重难点椭圆的几何性质——范围、对称性、顶点
教学流程\内容\板书关键点拨加工润色
一、问题情境
1.情境:
复习回顾:椭圆的定义;椭圆的标准方程;椭圆中a,b,c的关系.
2.问题:
在建立了椭圆的标准方程之后,就可以通过方程来研究椭圆的几何性质.那么椭圆有哪些几何性质呢?
二、学生活动
(1)探究椭圆的几何性质.
阅读课本第34页至第35页例1上方,回答下列问题:
问题1椭圆的范围是指椭圆的标准方程
22
22
1(0)
x y
a b
a b
+=>>中x,y的范围,可
以用哪些方法推导?
问题2借助椭圆的图形容易发现椭圆的对称性,能否借助标准方程用代数方法推导?
问题3椭圆的顶点是最左或最右边的点吗?
三、建构数学
1.范围.
由方程22221x y a b +=可知,椭圆上点的坐标都适合不等式22
2211x y a b
=-≤, 即22x a ≤,所以 x a ≤,同理可得y b ≤.
这说明椭圆位于直线x a =±和y b =±所围成的矩形内.
2.对称性:
从图形上看:椭圆关于x 轴、y 轴、原点对称.
从方程22
221x y a b
+=上看: (1)把x 换成x -方程不变,说明当点(,)P x y 在椭圆上时,点P 关于y 轴的对称点(,)P x y '-也在椭圆上,所以椭圆的图象关于y 轴对称;
(2)把y 换成y -方程不变,所以椭圆的图象关于y 轴对称;
(3)把x 换成x -,同时把y 换成y -方程不变,所以椭圆的图象关于原点成中心对称.
综上:坐标轴是椭圆的对称轴,原点是椭圆的对称中心,椭圆的对称中心叫做椭圆的中心.
3.顶点:
在方程22
221x y a b
+=中,令0x =,得y b =±,说明点1(0,)B b -,2(0,)B b 是椭圆与y 轴的两个交点.同理1(,0)A a -,2(,0)A a 是椭圆与x 轴的两个交点.
(1)顶点:椭圆与它的对称轴的四个交点,叫做椭圆的顶点;
(2)长轴、短轴:线段12A A 、线段12B B 分别叫椭圆的长轴和短轴,它们的长分别等于2a 和2b ;
(3)a ,b 的几何意义:a 是长半轴的长,b 是短半轴的长.
四、数学运用
1.例题:
例1 求椭圆22
1259
x y +=的长轴长,短轴长,焦点和顶点坐标,并用描点法画出这。

相关文档
最新文档