解析几何经典例题
高中解析几何典型题
高中解析几何典型题全文共四篇示例,供读者参考第一篇示例:一、直线和平面的关系题目题目1:设直线L经过平面α和β两个平面的交点A和B,问直线L在平面α和平面β之间的位置关系是怎样的?解析:直线L在平面α和平面β之间的位置关系有三种情况,分别是直线L既不垂直于平面α,也不垂直于平面β;直线L既垂直于平面α,也垂直于平面β;直线L既不垂直于平面α,但垂直于平面β。
具体位置可根据直线和平面的垂直关系来确定。
解析:点P在平面α和平面β之间的位置关系根据两个平面的相交线和点P所在位置的具体情况来确定。
如果直线L和点P的位置不同,点P在两个平面之间;如果直线L和点P的位置相同,点P在两个平面外部;如果直线L和点P的位置重合,点P在两个平面上。
题目3:已知平面α和平面β相交于直线m,直线n与直线m相交于点A,平面α和平面β的交线分别为l1和l2,求证:∠l1An=∠l2An。
解析:根据已知条件可得到∠l1An=∠mAn,∠l2An=∠mAn,即∠l1An=∠l2An。
解析:根据已知条件可得到∠A和∠B垂直于直线m,因此∠A和∠B所成的角度为90度。
通过以上的几个典型题目及其解析,我们不难看出解析几何题目的解题思路主要是根据已知条件,运用几何知识和性质来推导出结论。
在解析几何的学习过程中,学生应该注重培养逻辑思维能力和数学运算能力,多进行几何图形的分析和推理,提高解题的能力和速度。
在解析几何的学习过程中,还需要注意以下几点:1、熟练掌握基本几何知识和性质,包括直线、角、三角形、四边形等几何图形的性质和计算方法。
2、善于画图分析,对于解析几何题目一定要画出清晰准确的图形,以便更直观地理解题意和计算。
3、多练习典型题目,通过多做题目来积累经验,查漏补缺,加深对解析几何知识的理解。
4、注意总结归纳,将解析几何的各种题目和性质进行分类和总结,形成自己的知识体系。
高中解析几何是一个非常重要的学科,学生在学习过程中要认真对待,多加练习,提高理解能力和解题能力,从而取得更好的学习成绩。
解析几何经典例题及解析
解析几何经典例题及解析题目:已知三点A(1,2)、B(3,4)、C(4,5),判断是否共线。
解析:为了判断这三个点是否共线,我们可以算出它们的斜率是否相等。
斜率公式为k=(y2-y1)/(x2-x1)。
我们先算出AB、AC两条线段的斜率,如果它们相等,则这三个点共线。
k_AB=(4-2)/(3-1)=1k_AC=(5-2)/(4-1)=1因为k_AB=k_AC,所以这三个点共线。
2. 点到直线距离问题:题目:已知直线L:2x-y+1=0,点P(3,4)到直线L的距离是多少?解析:点P到直线L的距离可以通过求点P到直线L的垂线的长度来计算。
我们先求出直线L的斜率k,因为与L垂直的直线的斜率为-k的倒数。
直线L的一般式表示为Ax+By+C=0,所以斜率k=-A/B。
将直线L的一般式转化为斜截式y=kx+b的形式,可以得到直线L的斜率为k=2/1=2。
所以与L垂直的直线的斜率为-1/2。
接下来我们求出与L垂直的直线的截距b。
因为点P在这条直线上,所以直线的表达式可以写为y=-1/2x+b,将点P代入这个方程组中可得b=5。
因此与点P到直线L的垂线的方程为y=-1/2x+5,求出点P到这条直线的垂足Q的坐标为(2,3)。
所以点P到直线L的距离为PQ的长度,即√((3-2)+(4-3))=1.41。
3. 直线交点问题:题目:已知直线L1:2x-y+1=0,直线L2:x+y-3=0,求出它们的交点。
解析:求出两条直线的交点,可以将两条直线的方程联立起来解方程组。
将L1的方程改写成x=(y-1)/2的形式,将其代入L2的方程中,得到:((y-1)/2)+y-3=0,即y=2,代入L1的方程中可以得到x=1。
因此两条直线的交点为(1,2)。
解析几何大题精选题-共四套(答案)
解析几何大题精选题-共四套(答案)-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN解析几何大题精选四套(答案)解析几何大题训练(一)1. (2011年高考江西卷) (本小题满分12分)已知过抛物线()022>=p px y 的焦点,斜率为22的直线交抛物线于()12,,A x y ()22,B x y (12x x <)两点,且9=AB .(1)求该抛物线的方程;(2)O 为坐标原点,C 为抛物线上一点,若λ+=,求λ的值.2. (2011年高考福建卷)(本小题满分12分)如图,直线l :y=x+b 与抛物线C :x 2=4y 相切于点A 。
(1) 求实数b 的值;(11) 求以点A 为圆心,且与抛物线C 的准线相切的圆的方程.3. (2011年高考天津卷)(本小题满分13分) 设椭圆22221(0)x y a b a b+=>>的左、右焦点分别为12,F F ,点(,)P a b 满足212||||PF F F =.(Ⅰ)求椭圆的离心率e ;(Ⅱ)设直线2PF 与椭圆相交于A,B 两点.若直线2PF 与圆22(1)(16x y ++-=相交于M,N 两点,且|MN|=58|AB|,求椭圆的方程.4.(2010辽宁)(本小题满分12分)设1F ,2F 分别为椭圆2222:1x y C a b+=(0)a b >>的左、右焦点,过2F 的直线l 与椭圆C 相交于A ,B 两点,直线l 的倾斜角为60,1F 到直线l 的距离为(Ⅰ)求椭圆C 的焦距;(Ⅱ)如果222AF F B =,求椭圆C 的方程.解析几何大题训练(二)1.(2010辽宁)(本小题满分12分)设椭圆C :22221(0)x y a b a b+=>>的左焦点为F ,过点F 的直线与椭圆C 相交于A ,B 两点,直线l 的倾斜角为60o ,2AF FB =.(I) 求椭圆C 的离心率;(II) 如果|AB|=154,求椭圆C 的方程.2.(2010北京)(本小题共14分)已知椭圆C 的左、右焦点坐标分别是(,y=t 椭圆C 交与不同的两点M ,N ,以线段为直径作圆P,圆心为P 。
解析几何典型例题含答案
1. 已知动点P 到点A (-2,0)与点B (2,0)的斜率之积为14-,点P 的轨迹为曲线C 。
(Ⅰ)求曲线C 的方程;(Ⅱ)若点Q 为曲线C 上的一点,直线AQ ,BQ 与直线x =4分别交于M 、N 两点,直线BM 与椭圆的交点为D 。
求证,A 、D 、N 三点共线。
解:(I )设P 点坐标(,)x y ,则2AP y k x =+(2x ≠-),2BP yk x =-(2x ≠), 由已知1224y y x x ⋅=-+-,化简得:2214x y +=.所求曲线C 的方程为2214x y +=(2x ≠±)。
(II )由已知直线AQ 的斜率存在, 且不等于0,设方程为(2)y k x =+,由2244(2)x y y k x ⎧+=⎨=+⎩,消去y 得: 2222(14)161640k x k x k +++-=⋅⋅⋅(1).因为2-,Q x 是方程(1)的两个根, 所以22164214Q k x k --⨯=+,得222814Q k x k -=+,又222284(2)(2)1414Q Q k ky k x k k k -=+=+=++,所以222284(,)1414k k Q k k -++。
当4x =,得6M y k =,即(4,6)M k 。
又直线BQ 的斜率为14k -,方程为1(2)4y x k =--,当4x =时,得12N y k =-,即1(4,)2N k-。
直线BM 的斜率为3k ,方程为3(2)y k x =-。
由22443(2)x y y k x ⎧+=⎨=-⎩,消去y 得:2222(136)14414440k x k x k +-+-=⋅⋅⋅(2).因为2,D x 是方程(2)的两个根,所以 2214442136D k x k-⋅=+,得22722136D k x k -=+,又2123(2)136D Dky k x k =-=-+,即22272212(,)136136k k D k k --++。
解析几何练习题及答案
解析几何一、选择题1.已知两点A (-3,3),B (3,-1),则直线AB 的斜率是()A.3B.-3C.33D.-33解析:斜率k =-1-33--3=-33,故选D.答案:D2.已知直线l :ax +y -2-a =0在x 轴和y 轴上的截距相等,则a 的值是()A.1B.-1C.-2或-1D.-2或1解析:①当a =0时,y =2不合题意.②a ≠0,x =0时,y =2+a .y =0时,x =a +2a,则a +2a=a +2,得a =1或a =-2.故选D.答案:D3.两直线3x +y -3=0与6x +my +1=0平行,则它们之间的距离为()A.4B.21313C.51326D.71020解析:把3x +y -3=0转化为6x +2y -6=0,由两直线平行知m =2,则d =|1--6|62+22=71020.故选D.4.(2014皖南八校联考)直线2x -y +1=0关于直线x =1对称的直线方程是()A.x +2y -1=0B.2x +y -1=0C.2x +y -5=0D.x +2y -5=0解析:由题意可知,直线2x -y +1=0与直线x =1的交点为(1,3),直线2x -y +1=0的倾斜角与所求直线的倾斜角互补,因此它们的斜率互为相反数,直线2x -y +1=0的斜率为2,故所求直线的斜率为-2,所以所求直线的方程是y -3=-2(x -1),即2x +y -5=0.故选C.答案:C5.若直线l :y =kx -3与直线2x +3y -6=0的交点位于第一象限,则直线l 的倾斜角的取值围是()A.π6,D.π3,π2解析:由题意,可作直线2x +3y -6=0的图象,如图所示,则直线与x 轴、y 轴交点分别为A (3,0),B (0,2),又直线l 过定点(0,-3),由题知直线l 与线段AB 相交(交点不含端点),从图中可以看出,直线l B.答案:B6.(2014一模)过点A (2,3)且垂直于直线2x +y -5=0的直线方程为()A.x -2y +4=0B.2x +y -7=0C.x -2y +3=0D.x -2y +5=0解析:直线2x +y -5=0的斜率为k =-2,∴所求直线的斜率为k ′=12,∴方程为y -3=12(x -2),即x -2y +4=0.答案:A7.过点(2,1)且在x 轴上截距与在y 轴上截距之和为6的直线方程为____________.解析:由题意知截距均不为零.设直线方程为x a +yb =1,b =6,+1b=1,=3=3=4=2.故所求直线方程为x +y -3=0或x +2y -4=0.答案:x +y -3=0或x +2y -4=08.(2014质检)若过点A (-2,m ),B (m,4)的直线与直线2x +y +2=0平行,则m 的值为________.解析:∵过点A ,B 的直线平行于直线2x +y +2=0,∴k AB =4-m m +2=-2,解得m =-8.答案:-89.若过点P (1-a,1+a )与Q (3,2a )的直线的倾斜角为钝角,则实数a 的取值围是________.解析:由直线PQ 的倾斜角为钝角,可知其斜率k <0,即2a -1+a 3-1-a <0,化简得a -1a +2<0,∴-2<a <1.答案:(-2,1)10.已知k ∈R ,则直线kx +(1-k )y +3=0经过的定点坐标是________.解析:令k =0,得y +3=0,令k =1,得x +3=0.+3=0,+3=0,=-3,=-3,所以定点坐标为(-3,-3).答案:(-3,-3)三、解答题11.已知两直线l 1:x +y sin α-1=0和l 2:2x sin α+y +1=0,试求α的值,使(1)l 1∥l 2;(2)l 1⊥l 2.解:(1)法一当sin α=0时,直线l 1的斜率不存在,l 2的斜率为0,显然l 1不平行于l 2.当sin α≠0时,k 1=-1sin α,k 2=-2sin α.要使l 1∥l 2,需-1sin α=-2sin α,即sin α=±22,∴α=k π±π4,k ∈Z .故当α=k π±π4,k ∈Z 时,l 1∥l 2.法二由l 1∥l 22α-1=0,α≠0,∴sin α=±22,∴α=k π±π4,k ∈Z .故当α=k π±π4,k ∈Z 时,l 1∥l 2.(2)∵l 1⊥l 2,∴2sin α+sin α=0,即sin α=0.∴α=k π,k ∈Z .故当α=k π,k ∈Z 时,l 1⊥l 2.12.设直线l 1:y =k 1x +1,l 2:y =k 2x -1,其中实数k 1,k 2满足k 1k 2+2=0.(1)证明l 1与l 2相交;(2)证明l 1与l 2的交点在椭圆2x 2+y 2=1上.证明:(1)假设l 1与l 2不相交,则l 1∥l 2即k 1=k 2,代入k 1k 2+2=0,得k 21+2=0,这与k 1为实数的事实相矛盾,从而k 1≠k 2,即l 1与l 2相交.(2)法一=k 1x +1,=k 2x -1解得交点P而2x 2+y 2=8+k 22+k 21+2k 1k 2k 22+k 21-2k 1k 2=k 21+k 22+4k 21+k 22+4=1.即P (x ,y )在椭圆2x 2+y 2=1上.即l 1与l 2的交点在椭圆2x 2+y 2=1上.法二交点P 的坐标(x ,y-1=k 1x ,+1=k 2x ,故知x ≠0.1=y -1x,2=y +1x.代入k 1k 2+2=0,得y -1x ·y +1x+2=0,整理后,得2x 2+y 2=1.所以交点P 在椭圆2x 2+y 2=1上.第八篇第2节一、选择题1.圆心在y 轴上,半径为1,且过点(1,2)的圆的方程为()A.x 2+(y -2)2=1B.x 2+(y +2)2=1C.(x -1)2+(y -3)2=1D.x 2+(y -3)2=1解析:由题意,设圆心(0,t ),则12+t -22=1,得t =2,所以圆的方程为x 2+(y -2)2=1,故选A.答案:A2.(2014模拟)动点P 到点A (8,0)的距离是到点B (2,0)的距离的2倍,则动点P 的轨迹方程为()A.x 2+y 2=32B.x 2+y 2=16C.(x -1)2+y 2=16D.x 2+(y -1)2=16解析:设P (x ,y ),则由题意可得2x -22+y 2=x -82+y 2,化简整理得x 2+y 2=16,故选B.答案:B3.(2012年高考卷)已知圆C :x 2+y 2-4x =0,l 是过点P (3,0)的直线,则()A.l 与C 相交B.l 与C 相切C.l 与C 相离D.以上三个选项均有可能解析:x 2+y 2-4x =0是以(2,0)为圆心,以2为半径的圆,而点P (3,0)到圆心的距离为d =3-22+0-02=1<2,点P (3,0)恒在圆,过点P (3,0)不管怎么样画直线,都与圆相交.故选A.答案:A4.(2012年高考卷)将圆x 2+y 2-2x -4y +1=0平分的直线是()A.x +y -1=0B.x +y +3=0C.x -y +1=0D.x -y +3=0解析:由题知圆心在直线上,因为圆心是(1,2),所以将圆心坐标代入各选项验证知选项C 符合,故选C.答案:C5.(2013年高考卷)垂直于直线y =x +1且与圆x 2+y 2=1相切于第一象限的直线方程是()A.x +y -2=0B.x +y +1=0C.x +y -1=0D.x +y +2=0解析:与直线y =x +1垂直的直线方程可设为x +y +b =0,由x +y +b =0与圆x 2+y 2=1相切,可得|b |12+12=1,故b =± 2.因为直线与圆相切于第一象限,故结合图形分析知b =-2,则直线方程为x +y -2=0.故选A.答案:A6.(2012年高考卷)直线x +3y -2=0与圆x 2+y 2=4相交于A 、B 两点,则弦AB 的长度等于()A.25B.23C.3D.1解析:因为圆心到直线x +3y -2=0的距离d =|0+3×0-2|12+32=1,半径r =2,所以弦长|AB |=222-12=2 3.故选B.答案:B 二、填空题7.(2013年高考卷)直线y =2x +3被圆x 2+y 2-6x -8y =0所截得的弦长等于________.解析:圆的方程可化为(x -3)2+(y -4)2=25,故圆心为(3,4),半径r =5.又直线方程为2x -y +3=0,∴圆心到直线的距离为d =|2×3-4+3|4+1=5,∴弦长为2×25-5=220=4 5.答案:458.已知直线l :x -y +4=0与圆C :(x -1)2+(y -1)2=2,则圆C 上各点到l 的距离的最小值为________.解析:因为圆C 的圆心(1,1)到直线l 的距离为d =|1-1+4|12+-12=22,又圆半径r = 2.所以圆C 上各点到直线l 的距离的最小值为d -r = 2.答案:29.已知圆C 的圆心在直线3x -y =0上,半径为1且与直线4x -3y =0相切,则圆C 的标准方程是________.解析:∵圆C 的圆心在直线3x -y =0上,∴设圆心C (m,3m ).又圆C 的半径为1,且与4x -3y =0相切,∴|4m -9m |5=1,∴m =±1,∴圆C 的标准方程为(x -1)2+(y -3)2=1或(x +1)2+(y +3)2=1.答案:(x -1)2+(y -3)2=1或(x +1)2+(y +3)2=110.圆(x -2)2+(y -3)2=1关于直线l :x +y -3=0对称的圆的方程为________.解析:已知圆的圆心为(2,3),半径为1.则对称圆的圆心与(2,3)关于直线l 对称,由数形结合得,对称圆的圆心为(0,1),半径为1,故方程为x 2+(y -1)2=1.答案:x 2+(y -1)2=1三、解答题11.已知圆C :x 2+(y -2)2=5,直线l :mx -y +1=0.(1)求证:对m ∈R ,直线l 与圆C 总有两个不同交点;(2)若圆C 与直线相交于点A 和点B ,求弦AB 的中点M 的轨迹方程.(1)证明:法一直线方程与圆的方程联立,消去y 得(m 2+1)x 2-2mx -4=0,∵Δ=4m 2+16(m 2+1)=20m 2+16>0,∴对m ∈R ,直线l 与圆C 总有两个不同交点.法二直线l :mx -y +1恒过定点(0,1),且点(0,1)在圆C :x 2+(y -2)2=5部,∴对m ∈R ,直线l 与圆C 总有两个不同交点.(2)解:设A (x 1,y 1),B (x 2,y 2),M (x ,y ),由方程(m 2+1)x 2-2mx -4=0,得x 1+x 2=2mm 2+1,∴x =mm 2+1.当x =0时m =0,点M (0,1),当x ≠0时,由mx -y +1=0,得m =y -1x,代入x =m m 2+1,得+1=y -1x,化简得x 2=14.经验证(0,1)也符合,∴弦AB 的中点M 的轨迹方程为x 2=14.12.已知圆C :x 2+y 2-8y +12=0,直线l :ax +y +2a =0.(1)当a 为何值时,直线l 与圆C 相切;(2)当直线l 与圆C 相交于A 、B 两点,且|AB |=22时,求直线l 的方程.解:将圆C 的方程x 2+y 2-8y +12=0配方得标准方程为x 2+(y -4)2=4,则此圆的圆心为(0,4),半径为2.(1)若直线l 与圆C 相切,则有|4+2a |a 2+1=2.解得a =-34.(2)过圆心C 作CD ⊥AB ,则根据题意和圆的性质,|=|4+2a |a 2+1,|2+|DA |2=22,|=12|AB |=2,解得a =-7,或a =-1.故所求直线方程为7x -y +14=0或x -y +2=0.第八篇第3节一、选择题1.设P 是椭圆x225+y216=1上的点.若F 1、F 2是椭圆的两个焦点,则|PF 1|+|PF 2|等于()A.4B.5C.8D.10解析:由方程知a =5,根据椭圆定义,|PF 1|+|PF 2|=2a =10.故选D.答案:D2.(2014二模)P 为椭圆x24+y23=1上一点,F 1,F 2为该椭圆的两个焦点,若∠F 1PF 2=60°,则PF 1→·PF 2→等于()A.3B.3C.23D.2解析:由椭圆方程知a =2,b =3,c =1,1|+|PF 2|=4,1|2+|PF 2|2-4=2|PF 1||PF 2|cos 60°∴|PF 1||PF 2|=4.∴PF 1→·PF 2→=|PF 1→||PF 2→|cos 60°=4×12=2.答案:D3.(2012年高考卷)椭圆x 2a 2+y2b 2=1(a >b >0)的左、右顶点分别是A 、B ,左、右焦点分别是F 1,F 2.若|AF 1|,|F 1F 2|,|F 1B |成等比数列,则此椭圆的离心率为()A.14B.55C.12D.5-2解析:本题考查椭圆的性质与等比数列的综合运用.由椭圆的性质可知|AF 1|=a -c ,|F 1F 2|=2c ,|F 1B |=a +c ,又|AF 1|,|F 1F 2|,|F 1B |成等比数列,故(a -c )(a +c )=(2c )2,可得e =c a =55.故应选B.答案:B4.(2013年高考卷)已知椭圆C :x 2a 2+y2b2=1(a >b >0)的左焦点为F ,C 与过原点的直线相交于A ,B 两点,连接AF ,BF .若|AB |=10,|BF |=8,cos∠ABF =45,则C 的离心率为()A.35B.57C.45D.67解析:|AF |2=|AB |2+|BF |2-2|AB ||BF |cos∠ABF =100+64-2×10×8×45=36,则|AF |=6,∠AFB =90°,半焦距c =|FO |=12|AB |=5,设椭圆右焦点F 2,连结AF 2,由对称性知|AF 2|=|FB |=8,2a =|AF 2|+|AF |=6+8=14,即a =7,则e =c a =57.故选B.答案:B5.已知椭圆E :x2m +y24=1,对于任意实数k ,下列直线被椭圆E 截得的弦长与l :y =kx+1被椭圆E 截得的弦长不可能相等的是()A.kx +y +k =0B.kx -y -1=0C.kx +y -k =0D.kx +y -2=0解析:取k =1时,l :y =x +1.选项A 中直线:y =-x -1与l 关于x 轴对称,截得弦长相等.选项B 中直线:y =x -1与l 关于原点对称,所截弦长相等.选项C 中直线:y =-x +1与l 关于y 轴对称,截得弦长相等.排除选项A、B、C,故选D.答案:D6.(2014省实验中学第二次诊断)已知椭圆x 2a 2+y2b 2=1(a >b >0)的左、右焦点分别为F 1(-c,0),F 2(c,0),若椭圆上存在点P ,使asin∠PF 1F 2=csin∠PF 2F 1,则该椭圆的离心率的取值围为()A.(0,2-1)D.(2-1,1)解析:由题意知点P 不在x 轴上,在△PF 1F 2中,由正弦定理得|PF 2|sin∠PF 1F 2=|PF 1|sin∠PF 2F 1,所以由a sin∠PF 1F 2=csin∠PF 2F 1可得a|PF 2|=c |PF 1|,即|PF 1||PF 2|=c a =e ,所以|PF 1|=e |PF 2|.由椭圆定义可知|PF 1|+|PF 2|=2a ,所以e |PF 2|+|PF 2|=2a ,解得|PF 2|=2a e +1.由于a -c <|PF 2|<a +c ,所以有a -c <2ae +1<a +c ,即1-e <2e +1<1+e ,1-e 1+e<2,1+e2,解得2-1<e .又0<e <1,∴2-1<e <1.故选D.答案:D 二、填空题7.设F 1、F 2分别是椭圆x225+y216=1的左、右焦点,P 为椭圆上一点,M 是F 1P 的中点,|OM |=3,则P 点到椭圆左焦点距离为________.解析:∵|OM |=3,∴|PF 2|=6,又|PF 1|+|PF 2|=10,∴|PF 1|=4.答案:48.椭圆x 2a 2+y2b2=1(a >b >0)的左、右焦点分别是F 1、F 2,过F 2作倾斜角为120°的直线与椭圆的一个交点为M ,若MF 1垂直于x 轴,则椭圆的离心率为________.解析:不妨设|F 1F 2|=1,∵直线MF 2的倾斜角为120°,∴∠MF 2F 1=60°.∴|MF 2|=2,|MF 1|=3,2a =|MF 1|+|MF 2|=2+3,2c =|F 1F 2|=1.∴e =ca=2- 3.答案:2-39.(2014模拟)过点(3,-5),且与椭圆y225+x29=1有相同焦点的椭圆的标准方程为________________.解析:由题意可设椭圆方程为y225-m+x29-m=1(m <9),代入点(3,-5),得525-m +39-m=1,解得m =5或m =21(舍去),∴椭圆的标准方程为y220+x24=1.答案:y220+x24=110.已知F 1,F 2是椭圆C :x 2a 2+y 2b2=1(a >b >0)的两个焦点,P 为椭圆C 上的一点,且PF 1→⊥PF 2→.若△PF 1F 2的面积为9,则b =________.解析:1|+|PF 2|=2a ,1|2+|PF 2|2=4c 2,∴(|PF 1|+|PF 2|)2-2|PF 1||PF 2|=4c 2,即4a 2-2|PF 1||PF 2|=4c 2,∴|PF 1||PF 2|=2b 2,∴S △PF 1F 2=12|PF 1||PF 2|=b 2=9,∴b =3.答案:3三、解答题11.(2012年高考卷)在平面直角坐标系xOy 中,已知椭圆C 1:x 2a 2+y2b2=1(a >b >0)的左焦点为F 1(-1,0),且点P (0,1)在C 1上.(1)求椭圆C 1的方程;(2)设直线l 同时与椭圆C 1和抛物线C 2:y 2=4x 相切,求直线l 的方程.解:(1)由椭圆C 1的左焦点为F 1(-1,0),且点P (0,1)在C 12-b 2=1,=1,2=2,2=1.故椭圆C 1的方程为x22+y 2=1.(2)由题意分析,直线l 斜率存在且不为0,设其方程为y =kx +b ,由直线l 与抛物线C 2=kx +b ,2=4x ,消y 得k 2x 2+(2bk -4)x +b 2=0,Δ1=(2bk -4)2-4k 2b 2=0,化简得kb =1.①由直线l 与椭圆C 1kx +b ,y 2=1,消y 得(2k 2+1)x 2+4bkx +2b 2-2=0,Δ2=(4bk )2-4(2k 2+1)(2b 2-2)=0,化简得2k 2=b 2-1.②=1,k 2=b 2-1,解得b 4-b 2-2=0,∴b 2=2或b 2=-1(舍去),∴b =2时,k =22,b =-2时,k =-22.即直线l 的方程为y =22x +2或y =-22x - 2.12.(2014海淀三模)已知椭圆C :x2a 2+y2b 2=1(a >b >0)的四个顶点恰好是一边长为2,一角为60°的菱形的四个顶点.(1)求椭圆C 的方程;(2)若直线y =kx 交椭圆C 于A ,B 两点,在直线l :x +y -3=0上存在点P ,使得△PAB 为等边三角形,求k 的值.解:(1)因为椭圆C :x 2a 2+y2b2=1(a >b >0)的四个顶点恰好是一边长为2,一角为60°的菱形的四个顶点.所以a =3,b =1,椭圆C 的方程为x23+y 2=1.(2)设A (x 1,y 1),则B (-x 1,-y 1),当直线AB 的斜率为0时,AB 的垂直平分线就是y 轴,y 轴与直线l :x +y -3=0的交点为P (0,3),又因为|AB |=23,|PO |=3,所以∠PAO =60°,所以△PAB 是等边三角形,所以直线AB 的方程为y =0,当直线AB 的斜率存在且不为0时,则直线AB 的方程为y =kx ,y 2=1,kx ,化简得(3k 2+1)x 2=3,所以|x 1|=33k 2+1,则|AO |=1+k233k 2+1=3k 2+33k 2+1.设AB 的垂直平分线为y =-1kx ,它与直线l :x +y -3=0的交点记为P (x 0,y 0),=-x +3,=-1k x ,0=3k k -1,0=-3k -1.则|PO |=9k 2+9k -12,因为△PAB 为等边三角形,所以应有|PO |=3|AO |,代入得9k 2+9k -12=33k 2+33k 2+1,解得k =0(舍去),k =-1.综上,k =0或k =-1.第八篇第4节一、选择题1.设P 是双曲线x216-y220=1上一点,F 1,F 2分别是双曲线左右两个焦点,若|PF 1|=9,则|PF 2|等于()A.1B.17C.1或17D.以上答案均不对解析:由双曲线定义||PF 1|-|PF 2||=8,又|PF 1|=9,∴|PF 2|=1或17,但应注意双曲线的右顶点到右焦点距离最小为c -a =6-4=2>1,∴|PF 2|=17.故选B.答案:B2.(2013年高考卷)已知0<θ<π4,则双曲线C 1:x 2sin 2θ-y 2cos 2θ=1与C 2:y 2cos 2θ-x2sin 2θ=1的()A.实轴长相等B.虚轴长相等C.离心率相等D.焦距相等解析:双曲线C 1的半焦距c 1=sin 2θ+cos 2θ=1,双曲线C 2的半焦距c 2=cos 2θ+sin 2θ=1,故选D.答案:D3.(2012年高考卷)已知双曲线C :x 2a 2-y2b2=1的焦距为10,点P (2,1)在C 的渐近线上,则C 的方程为()A.x220-y25=1B.x25-y220=1C.x280-y220=1D.x220-y280=1解析:由焦距为10,知2c =10,c =5.将P (2,1)代入y =bax 得a =2b .a 2+b 2=c 2,5b 2=25,b 2=5,a 2=4b 2=20,所以方程为x220-y25=1.故选A.答案:A4.已知F 1、F 2为双曲线C :x 2-y 2=2的左、右焦点,点P 在C 上,|PF 1|=2|PF 2|,则cos ∠F 1PF 2等于()A.14B.35C.34D.45解析:∵c 2=2+2=4,∴c =2,2c =|F 1F 2|=4,由题可知|PF 1|-|PF 2|=2a =22,|PF 1|=2|PF 2|,∴|PF 2|=22,|PF 1|=42,由余弦定理可知cos∠F 1PF 2=422+222-422×42×22=34.故选C.答案:C5.设椭圆C 1的离心率为513,焦点在x 轴上且长轴长为26,若曲线C 2上的点到椭圆C 1的两个焦点的距离的差的绝对值等于8,则曲线C 2的标准方程为()A.x242-y232=1B.x2132-y252=1C.x232-y242=1D.x2132-y2122=1解析:在椭圆C 1中,因为e =513,2a =26,即a =13,所以椭圆的焦距2c =10,则椭圆两焦点为(-5,0),(5,0),根据题意,可知曲线C 2为双曲线,根据双曲线的定义可知,双曲线C 2中的2a 2=8,焦距与椭圆的焦距相同,即2c 2=10,可知b 2=3,所以双曲线的标准方程为x242-y232=1.故选A.答案:A6.(2014八中模拟)若双曲线x29-y216=1渐近线上的一个动点P 总在平面区域(x -m )2+y 2≥16,则实数m 的取值围是()A.[-3,3]B.(-∞,-3]∪[3,+∞)C.[-5,5]D.(-∞,-5]∪[5,+∞)解析:因为双曲线x 29-y 216=1渐近线4x ±3y =0上的一个动点P 总在平面区域(x -m )2+y 2≥16,即直线与圆相离或相切,所以d =|4m |5≥4,解得m ≥5或m ≤-5,故实数m 的取值围是(-∞,-5]∪[5,+∞).选D.答案:D 二、填空题7.(2013年高考卷)已知F 为双曲线C :x29-y216=1的左焦点,P ,Q 为C 上的点.若PQ的长等于虚轴长的2倍,点A (5,0)在线段PQ 上,则△PQF 的周长为________.解析:由题知,双曲线中a =3,b =4,c =5,则|PQ |=16,又因为|PF |-|PA |=6,|QF |-|QA |=6,所以|PF |+|QF |-|PQ |=12,|PF |+|QF |=28,则△PQF 的周长为44.答案:448.已知双曲线C :x 2a 2-y2b2=1(a >0,b >0)的离心率e =2,且它的一个顶点到较近焦点的距离为1,则双曲线C 的方程为________.解析:双曲线中,顶点与较近焦点距离为c -a =1,又e =ca=2,两式联立得a =1,c =2,∴b 2=c 2-a 2=4-1=3,∴方程为x 2-y23=1.答案:x 2-y23=19.(2014市第三次质检)已知点P 是双曲线x2a 2-y2b2=1(a >0,b >0)和圆x 2+y 2=a 2+b 2的一个交点,F 1,F 2是该双曲线的两个焦点,∠PF 2F 1=2∠PF 1F 2,则该双曲线的离心率为________.解析:依题意得,线段F 1F 2是圆x 2+y 2=a 2+b 2的一条直径,故∠F 1PF 2=90°,∠PF 1F 2=30°,设|PF 2|=m ,则有|F 1F 2|=2m ,|PF 1|=3m ,该双曲线的离心率等于|F 1F 2|||PF 1|-|PF 2||=2m3m -m =3+1.答案:3+110.(2013年高考卷)设F 1,F 2是双曲线C :x2a 2-y2b 2=1(a >0,b >0)的两个焦点.若在C 上存在一点P ,使PF 1⊥PF 2,且∠PF 1F 2=30°,则C 的离心率为________.解析:设点P 在双曲线右支上,由题意,在Rt△F 1PF 2中,|F 1F 2|=2c ,∠PF 1F 2=30°,得|PF 2|=c ,|PF 1|=3c ,根据双曲线的定义:|PF 1|-|PF 2|=2a ,(3-1)c =2a ,e =ca =23-1=3+1.答案:3+1三、解答题11.已知双曲线x 2-y22=1,过点P (1,1)能否作一条直线l ,与双曲线交于A 、B 两点,且点P 是线段AB 的中点?解:法一设点A (x 1,y 1),B (x 2,y 2)在双曲线上,且线段AB 的中点为(x 0,y 0),若直线l 的斜率不存在,显然不符合题意.设经过点P 的直线l 的方程为y -1=k (x -1),即y =kx +1-k .=kx+1-k,2-y22=1,得(2-k2)x2-2k(1-k)x-(1-k)2-2=0(2-k2≠0).①∴x=x1+x22=k1-k2-k2.由题意,得k1-k2-k2=1,解得k=2.当k=2时,方程①成为2x2-4x+3=0.Δ=16-24=-8<0,方程①没有实数解.∴不能作一条直线l与双曲线交于A,B两点,且点P(1,1)是线段AB的中点.法二设A(x1,y1),B(x2,y2),若直线l的斜率不存在,即x1=x2不符合题意,所以由题得x21-y212=1,x22-y222=1,两式相减得(x1+x2)(x1-x2)-y1+y2y1-y22=0,即2-y1-y2x1-x2=0,即直线l斜率k=2,得直线l方程y-1=2(x-1),即y=2x-1,=2x-1,2-y22=1得2x2-4x+3=0,Δ=16-24=-8<0,即直线y=2x-1与双曲线无交点,即所求直线不合题意,所以过点P(1,1)的直线l不存在.12.(2014质检)中心在原点,焦点在x 轴上的一椭圆与一双曲线有共同的焦点F 1,F 2,且|F 1F 2|=213,椭圆的长半轴长与双曲线实半轴长之差为4,离心率之比为3∶7.(1)求这两曲线方程;(2)若P 为这两曲线的一个交点,求cos∠F 1PF 2的值.解:(1)由已知c =13,设椭圆长、短半轴长分别为a 、b ,双曲线实半轴、虚半轴长分别为m 、n ,-m =4,·13a=3·13m,解得a =7,m =3.∴b =6,n =2.∴椭圆方程为x249+y236=1,双曲线方程为x29-y24=1.(2)不妨设F 1、F 2分别为左、右焦点,P 是第一象限的一个交点,则|PF 1|+|PF 2|=14,|PF 1|-|PF 2|=6,∴|PF 1|=10,|PF 2|=4.又|F 1F 2|=213,∴cos∠F 1PF 2=|PF 1|2+|PF 2|2-|F 1F 2|22|PF 1||PF 2|=102+42-21322×10×4=45.第八篇第5节一、选择题1.(2014模拟)抛物线y =2x 2的焦点坐标为()B.(1,0)解析:抛物线y =2x 2,即其标准方程为x 2=12y C.答案:C2.抛物线的焦点为椭圆x24+y29=1的下焦点,顶点在椭圆中心,则抛物线方程为()A.x 2=-45y B.y 2=-45x C.x 2=-413yD.y 2=-413x解析:由椭圆方程知,a 2=9,b 2=4,焦点在y 轴上,下焦点坐标为(0,-c ),其中c =a 2-b 2=5,∴抛物线焦点坐标为(0,-5),∴抛物线方程为x 2=-45y .故选A.答案:A3.已知抛物线y 2=2px ,以过焦点的弦为直径的圆与抛物线准线的位置关系是()A.相离B.相交C.相切D.不确定解析:如图所示,设抛物线焦点弦为AB ,中点为M ,准线为l ,A 1、B 1分别为A 、B 在直线l 上的射影,则|AA 1|=|AF |,|BB 1|=|BF |,于是M 到l 的距离d =12(|AA 1|+|BB 1|)=12(|AF |+|BF |)=12|AB |,故圆与抛物线准线相切.故选C.答案:C4.(2014高三统一考试)已知F 是抛物线y 2=4x 的焦点,过点F 的直线与抛物线交于A ,B 两点,且|AF |=3|BF |,则线段AB 的中点到该抛物线准线的距离为()A.53B.83C.103D.10解析:设点A (x 1,y 1),B (x 2,y 2),其中x 1>0,x 2>0,过A ,B 两点的直线方程为x =my +1,将x =my +1与y 2=4x 联立得y 2-4my -4=0,y 1y 2=-4,1+1=3x 2+1,1x 2=y 214·y 224=y 1y 2216=1,解得x 1=3,x 2=13,故线段AB 的中点到该抛物线的准线x =-1的距离等于x 1+x 22+1=83.故选B.答案:B5.已知F 是抛物线y 2=x 的焦点,A ,B 是该抛物线上的两点,|AF |+|BF |=3,则线段AB 的中点到y 轴的距离为()A.34B.1C.54D.74解析:∵|AF |+|BF |=x A +x B +12=3,∴x A +x B =52.∴线段AB 的中点到y 轴的距离为x A +x B 2=54.故选C.答案:C6.设M (x 0,y 0)为抛物线C :x 2=8y 上一点,F 为抛物线C 的焦点,以F 为圆心、|FM |为半径的圆和抛物线C 的准线相交,则y 0的取值围是()A.(0,2)B.[0,2]C.(2,+∞)D.[2,+∞)解析:∵x 2=8y ,∴焦点F 的坐标为(0,2),准线方程为y =-2.由抛物线的定义知|MF |=y 0+2.以F 为圆心、|FM |为半径的圆的标准方程为x 2+(y -2)2=(y 0+2)2.由于以F 为圆心、|FM |为半径的圆与准线相交,又圆心F 到准线的距离为4,故4<y 0+2,∴y 0>2.故选C.答案:C 二、填空题7.动直线l 的倾斜角为60°,且与抛物线x 2=2py (p >0)交于A ,B 两点,若A ,B 两点的横坐标之和为3,则抛物线的方程为________.解析:设直线l 的方程为y =3x +b ,=3x +b ,2=2py消去y ,得x 2=2p (3x +b ),即x 2-23px -2pb =0,∴x 1+x 2=23p =3,∴p =32,则抛物线的方程为x 2=3y .答案:x 2=3y8.以抛物线x 2=16y 的焦点为圆心,且与抛物线的准线相切的圆的方程为________.解析:抛物线的焦点为F (0,4),准线为y =-4,则圆心为(0,4),半径r =8.所以,圆的方程为x 2+(y -4)2=64.答案:x 2+(y -4)2=649.(2012年高考卷)在直角坐标系xOy 中,直线l 过抛物线y 2=4x 的焦点F ,且与该抛物线相交于A ,B 两点,其中点A 在x 轴上方,若直线l 的倾斜角为60°,则△OAF 的面积为________.解析:∵抛物线y 2=4x ,∴焦点F 的坐标为(1,0).又∵直线l 倾斜角为60°,∴直线斜率为3,∴直线方程为y =3(x -1).联立方程y =3x -1,y 2=4x ,解得x 1=13,y 1=-233,或x 2=3,y 2=23,由已知得A 的坐标为(3,23),∴S △OAF =12|OF |·|y A |=12×1×23= 3.答案:310.已知点P 是抛物线y 2=2x 上的动点,点P 在y 轴上的射影是M ,点A 72,4,则|PA |+|PM |的最小值是________.解析:设点M 在抛物线的准线上的射影为M ′.由已知可得抛物线的准线方程为x =-12,焦点F 坐标为12,0.求|PA |+|PM |的最小值,可先求|PA |+|PM ′|的最小值.由抛物线的定义可知,|PM ′|=|PF |,所以|PA |+|PF |=|PA |+|PM ′|,当点A 、P 、F 在一条直线上时,|PA |+|PF |有最小值|AF |=5,所以|PA |+|PM ′|≥5,又因为|PM ′|=|PM |+12,所以|PA |+|PM |≥5-12=92.答案:92三、解答题11.若抛物线y =2x 2上的两点A (x 1,y 1)、B (x 2,y 2)关于直线l :y =x +m 对称,且x 1x 2=-12,数m 的值.解:法一如图所示,连接AB ,∵A 、B 两点关于直线l 对称,∴AB ⊥l ,且AB 中点M (x 0,y 0)在直线l 上.可设l AB :y =-x +n ,=-x +n ,=2x 2,得2x 2+x -n =0,∴x 1+x 2=-12,x 1x 2=-n2由x 1x 2=-12,得n =1.又x 0=x 1+x 22=-14,y 0=-x 0+n =14+1=54,即点M -14,由点M 在直线l 上,得54=-14+m ,∴m =32.法二∵A 、B 两点在抛物线y =2x 2上.1=2x 21,2=2x 22,∴y 1-y 2=2(x 1+x 2)(x 1-x 2).设AB 中点M (x 0,y 0),则x 1+x 2=2x 0,k AB =y 1-y 2x 1-x 2=4x 0.又AB ⊥l ,∴k AB =-1,从而x 0=-14.又点M 在l 上,∴y 0=x 0+m =m -14,即-14,m∴AB 的方程是y 即y =-x +m -12,代入y =2x 2,得2x 2+x x 1x 2=-m -122=-12,∴m =3212.已知过抛物线y 2=2px (p >0)的焦点,斜率为22的直线交抛物线于A (x 1,y 1),B (x 2,y 2)(x 1<x 2)两点,且|AB |=9.(1)求该抛物线的方程;(2)O 为坐标原点,C 为抛物线上一点,若OC →=OA →+λOB →,求λ的值.解:(1)直线AB 的方程是y y 2=2px 联立,从而有4x 2-5px +p 2=0,所以x 1+x 2=5p4.由抛物线定义得|AB |=x 1+x 2+p =9,所以p =4,从而抛物线方程是y 2=8x .(2)由p =4知4x 2-5px +p 2=0可化为x 2-5x +4=0,从而x 1=1,x 2=4,y 1=-22,y 2=42,从而A (1,-22),B (4,42).设OC →=(x 3,y 3)=(1,-22)+λ(4,42)=(4λ+1,42λ-22),即C (4λ+1,42λ-22),所以[22(2λ-1)]2=8(4λ+1),即(2λ-1)2=4λ+1,解得λ=0或λ=2.。
解析几何例题
解析几何例题好的,以下是一个解析几何的例题:题目:已知椭圆 C:x^2/a^2 + y^2/b^2 = 1 (a > b > 0) 的离心率为√3/2,过点 A(0,b) 和 B(a,0) 的直线与原点的距离为√3/2。
(1)求椭圆 C 的方程;(2)设 P 是椭圆 C 上的第一象限的点,点 M,N 在直线 x = 10 上,△PMN 的周长为 20,求△PMN 的面积的最大值。
【分析】(1)由题意可得椭圆C的方程为$\frac{x^{2}}{4} + \frac{y^{2}}{b^{2}} = 1$,再由$b = \sqrt{3}$,求得$a = 2$,即可得到椭圆C的方程;(2)设直线$l$的方程为$x = my + n(m \neq 0)$,联立直线与椭圆的方程,运用韦达定理和弦长公式,以及三角形的面积公式,化简整理,再由基本不等式和三角形的面积公式,即可得到所求最大值。
【解答】(1)由题意可得椭圆C的方程为$\frac{x^{2}}{4} + \frac{y^{2}}{b^{2}} = 1$,由$b = \sqrt{3}$,过点A(0,b)和B(a,0)的直线方程为$\frac{x}{a} +\frac{y}{\sqrt{3}} = 1$,即有$\frac{1}{a} + \frac{\sqrt{3}}{3} =\frac{\sqrt{3}}{2}$,解得$a = 2$,即椭圆C的方程为$\frac{x^{2}}{4} + \frac{y^{2}}{3} = 1$;(2)设直线$l$的方程为$x = my + n(m \neq 0)$,由题意可得$m > 0$.联立直线与椭圆的方程$\{\begin{matrix} x = my + n \\\frac{x^{2}}{4} + \frac{y^{2}}{3} = 1 \\\end{matrix}$,消去$x$并整理得$(3m^{2} + 4)y^{2} + 6mny + 3n^{2} - 12 = 0$.设$P(x_{1},y_{1}),M(10,y_{3}),N(10,y_{4})$,则有$\left\{ \begin{matrix} y_{1} + y_{3} = - \frac{6mn}{3m^{2} + 4} \\y_{1}y_{3} = \frac{3n^{2} - 12}{3m^{2} + 4} \\\end{matrix} \right$.①又因为$P$是椭圆C上的第一象限的点,则有$\left\{ \begin{matrix} y_{1} > 0 \\y_{1}^{2} + \frac{4}{3} - \frac{4n^{2}}{3} > 0 \\\end{matrix} \right$.②由题意可得$PM + PN = 10 - n + \sqrt{(my_{1} + n - 10)^{2} + y_{1}^{2}}$$+ \sqrt{(my_{1} + n - 10)^{2} + y_{1}^{2}} = 10 - n +$$2\sqrt{(my_{1} + n - 10)^{2} + y_{1}^{2}}$$= 10 - n+$$2\sqrt{(my_{1})^{2} - 2mny_{1} + n^{2} - 4n^{2} + 40}$ $= 10 - n +$$2\sqrt{m^{2}y_{1}^{2} - 6mny_{1} + n^{2}}$.因为$y_{1}(y_{1} - m)$是实数,所以$\Delta = (6mn)^{2} - 4m^{2}(n^{2} - 4n^{2})$ $= 8m^{2}(n^{2} + 3)$ $\geqslant 0$.所以当且仅当$n = \pm \。
数学 解析几何 经典例题 附带答案
数学解析几何经典例题~一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.双曲线x 22-y 21=1的焦点坐标是( ) A .(1,0),(-1,0) B .(0,1),(0,-1)C .(3,0),(-3,0)D .(0,3),(0,-3)解析: c 2=a 2+b 2=2+1,∴c = 3.∴焦点为(3,0),(-3,0),选C.答案: C2.“a =1”是“直线x +y =0和直线 x -ay =0互相垂直”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析: 当a =1时,直线x +y =0与直线x -y =0垂直成立;当直线x +y =0与直线x -ay =0垂直时,a =1.所以“a =1”是“直线x +y =0与直线x -ay =0互相垂直”的充要条件.答案: C3.(2010·福建卷)以抛物线y 2=4x 的焦点为圆心,且过坐标原点的圆的方程为( )A .x 2+y 2+2x =0B .x 2+y 2+x =0C .x 2+y 2-x =0D .x 2+y 2-2x =0解析: 抛物线y 2=4x 的焦点坐标为(1,0),故以(1,0)为圆心,且过坐标原点的圆的半径为r =12+02=1,所以圆的方程为(x -1)2+y 2=1,即x 2+y 2-2x =0,故选D.答案: D4.方程mx 2+y 2=1所表示的所有可能的曲线是( )A .椭圆、双曲线、圆B .椭圆、双曲线、抛物线C .两条直线、椭圆、圆、双曲线D .两条直线、椭圆、圆、双曲线、抛物线解析: 当m =1时,方程为x 2+y 2=1,表示圆;当m <0时,方程为y 2-(-m )x 2=1,表示双曲线;当m >0且m ≠1时,方程表示椭圆;当m =0时,方程表示两条直线.答案: C5.直线2x -y -2=0绕它与y 轴的交点逆时针旋转π2所得的直线方程是( ) A .-x +2y -4=0 B .x +2y -4=0C .-x +2y +4=0D .x +2y +4=0解析: 由题意知所求直线与直线2x -y -2=0垂直.又2x -y -2=0与y 轴交点为(0,-2).故所求直线方程为y +2=-12(x -0), 即x +2y +4=0.答案: D6.直线x -2y -3=0与圆C :(x -2)2+(y +3)2=9交于E 、F 两点,则△ECF 的面积为( )A.32B.34C .2 5 D.355解析: 圆心(2,-3)到EF 的距离d =|2+6-3|5= 5. 又|EF |=29-5=4,∴S △ECF =12×4×5=2 5. 答案: C 7.若点P (2,0)到双曲线x 2a 2-y 2b2=1的一条渐近线的距离为2,则该双曲线的离心率为( )A. 2B. 3C .2 2D .2 3解析: 由于双曲线渐近线方程为bx ±ay =0,故点P 到直线的距离d =2b a 2+b2=2⇒a =b ,即双曲线为等轴双曲线,故其离心率e =1+⎝⎛⎭⎫b a 2= 2.答案: A8.过点M (1,2)的直线l 将圆(x -2)2+y 2=9分成两段弧,当其中的劣弧最短时,直线l 的方程是( )A .x =1B .y =1C .x -y +1=0D .x -2y +3=0解析: 由条件知M 点在圆内,故当劣弧最短时,l 应与圆心与M 点的连线垂直,设圆心为O ,则O (2,0),∴k OM =2-01-2=-2. ∴直线l 的斜率k =12, ∴l 的方程为y -2=12(x -1), 即x -2y +3=0.答案: D9.已知a >b >0,e 1,e 2分别为圆锥曲线x 2a 2+y 2b 2=1和x 2a 2-y 2b2=1的离心率,则lg e 1+lg e 2的值( )A .大于0且小于1B .大于1C .小于0D .等于0解析: 由题意,得e 1=a 2-b 2a ,e 2=a 2+b 2a (a >b >0), ∴e 1e 2=a 4-b 4a 2=1-b 4a4<1, ∴lg e 1+lg e 2=lg(e 1e 2)=lga 4-b 4a 2<0. 答案: C10.已知A (-3,8)和B (2,2),在x 轴上有一点M ,使得|AM |+|BM |为最短,那么点M 的坐标为( )A .(-1,0)B .(1,0)C.⎝⎛⎭⎫225,0D.⎝⎛⎭⎫0,225 解析: 点B (2,2)关于x 轴的对称点为B ′(2,-2),连接AB ′,易求得直线AB ′的方程为2x +y -2=0,它与x 轴交点M (1,0)即为所求.答案: B11.已知椭圆x 216+y 29=1的左、右焦点分别为F 1、F 2,点P 在椭圆上.若P 、F 1、F 2是一个直角三角形的三个顶点,则点P 到x 轴的距离为( )A.95B .3 C.977 D.94解析: 设椭圆短轴的一个端点为M .由于a =4,b =3,∴c =7<b .∴∠F 1MF 2<90°,∴只能∠PF 1F 2=90°或∠PF 2F 1=90°.令x =±7得y 2=9⎝⎛⎭⎫1-716=9216, ∴|y |=94. 即P 到x 轴的距离为94. 答案: D12.过抛物线y 2=2px (p >0)的焦点F 的直线l 与抛物线在第一象限的交点为A ,与抛物线的准线的交点为B ,点A 在抛物线的准线上的射影为C ,若AF →=FB →,BA →·BC →=48,则抛物线的方程为( )A .y 2=8xB .y 2=4xC .y 2=16xD .y 2=42x解析: 由AF →=FB →及|AF →|=|AC →|知在Rt △ACB 中,∠CBF =30°,|DF |=p 2+p 2=p , ∴AC =2p ,BC =23p ,BA →·BC →=4p ·23p ·cos 30°=48,∴p =2. 抛物线方程为y 2=4x .答案: B二、填空题(本大题共4小题,每小题4分,共16分.请把正确答案填在题中横线上) 13.若抛物线y 2=2px 的焦点与双曲线x 2-y 23=1的右焦点重合,则p 的值为________. 解析: 双曲线x 2-y 23=1的右焦点为(2,0), 由题意,p 2=2,∴p =4.答案: 414.两圆(x +1)2+(y -1)2=r 2和(x -2)2+(y +2)2=R 2相交于P 、Q 两点,若点P 坐标为(1,2),则点Q 的坐标为______.解析: ∵两圆的圆心分别为(-1,1),(2,-2),∴两圆连心线的方程为y =-x .∵两圆的连心线垂直平分公共弦,∴P (1,2),Q 关于直线y =-x 对称,∴Q (-2,-1).答案: (-2,-1)15.设M 是椭圆x 24+y 23=1上的动点,A 1和A 2分别是椭圆的左、右顶点,则MA 1→·MA 2→的最小值等于________.解析: 设M (x 0,y 0),则MA 1→=(-2-x 0,-y 0),MA 2→=(2-x 0,-y 0)⇒MA 1→·MA 2→=x 20+y 20-4=x 20+⎝⎛⎭⎫3-34x 20-4=14x 20-1, 显然当x 0=0时,MA 1→·MA 2→取最小值为-1.答案: -116.已知双曲线x 216-y 29=1的左、右焦点为F 1、F 2,P 是双曲线右支上一点,且PF 1的中点在y 轴上,则△PF 1F 2的面积为________.解析: 如图,设PF 1的中点为M ,则MO ∥PF 2,故∠PF 2F 1=90°.∵a =4,b =3,c =5,∴|F 1F 2|=10,|PF 1|=8+|PF 2|.由|PF 1|2=|PF 2|2+|F 1F 2|2得(8+|PF 2|)2=|PF 2|2+100,∴|PF 2|=94,S △PF 1F 2=12·|F 1F 2|·|PF 2|=454. 答案: 454三、解答题(本大题共6小题,共74分.解答时应写出必要的文字说明、证明过程或演算步骤)17.(12分)双曲线的两条渐近线方程为x +y =0和x -y =0,直线2x -y -3=0与双曲线交于A ,B 两点,若|AB |=5,求此双曲线的方程.解析: ∵双曲线渐近线为x ±y =0,∴双曲线为等轴双曲线.设双曲线方程为x 2-y 2=m (m ≠0),直线与双曲线的交点坐标为A (x 1,y 1),B (x 2,y 2),由⎩⎪⎨⎪⎧2x -y -3=0,x 2-y 2=m , 得3x 2-12x +m +9=0,则x 1+x 2=4,x 1x 2=m +93. 又|AB |2=(x 1-x 2)2+(y 1-y 2)2=(x 1-x 2)2+[(2x 1-3)-(2x 2-3)]2=(x 1-x 2)2+4(x 1-x 2)2=5(x 1-x 2)2=5[(x 1+x 2)2-4x 1x 2], ∴(5)2=5⎣⎢⎡⎦⎥⎤42-4·⎝ ⎛⎭⎪⎫m +93, 解得m =94. 故双曲线的方程为x 2-y 2=94. 18.(12分)已知圆C 的方程为(x -m )2+(y +m -4)2=2.(1)求圆心C 的轨迹方程;(2)当|OC |最小时,求圆C 的一般方程(O 为坐标原点).解析: (1)设C (x ,y ),则⎩⎪⎨⎪⎧x =m ,y =4-m .消去m ,得y =4-x ,∴圆心C 的轨迹方程为x +y -4=0.(2)当|OC |最小时,OC 与直线x +y -4=0垂直,∴直线OC 的方程为x -y =0. 由⎩⎪⎨⎪⎧x +y -4=0,x -y =0,得x =y =2. 即|OC |最小时,圆心的坐标为(2,2),∴m =2.圆C 的方程为(x -2)2+(y -2)2=2.其一般方程为x 2+y 2-4x -4y +6=0.19.(12分)(盐城市三星级高中20XX 届第一次联考)已知圆C 1的方程为(x -2)2+(y -1)2=203,椭圆C 2的方程为x 2a 2+y 2b 2=1(a >b >0),且C 2的离心率为22,如果C 1、C 2相交于A 、B 两点,且线段AB 恰好为C 1的直径,求直线AB 的方程和椭圆C 2的方程.解析: 设A (x 1,y 1)、B (x 2,y 2).A 、B 在椭圆上,∴b 2x 21+a 2y 21=a 2b 2,b 2x 22+a 2y 22=a 2b 2. ∴b 2(x 2+x 1)(x 2-x 1)+a 2(y 2+y 1)(y 2-y 1)=0.又线段AB 的中点是圆的圆心(2,1),∴x 2+x 1=4,y 2+y 1=2,∴k AB =-b 2(x 2+x 1)a 2(y 2+y 1)=-2b 2a 2, 椭圆的离心率为22,∴b 2a 2=1-e 2=12, k AB =-2b 2a2=-1, 直线AB 的方程为y -1=-1(x -2),即x +y -3=0.由(x -2)2+(y -1)2=203和x +y -3=0得 A ⎝⎛⎭⎫2+103,1-103. 代入椭圆方程得:a 2=16,b 2=8,∴椭圆方程为:x 216+y 28=1. 20.(12分)已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的左、右焦点分别为F 1、F 2,离心率为e . (1)若半焦距c =22,且23、e 、43成等比数列,求椭圆C 的方程; (2)在(1)的条件下,直线l :y =ex +a 与x 轴、y 轴分别交于M 、N 两点,P 是直线l 与椭圆C 的一个交点,且M P →=λMN →,求λ的值;(3)若不考虑(1),在(2)中,求证:λ=1-e 2.【解析方法代码108001121】解析: (1)∵e 2=23×43,∴e =223, ∴a =3,b =1,∴椭圆C 的方程为x 29+y 2=1. (2)设P (x ,y ),则⎩⎨⎧ y =223x +3x 29+y 2=1,解得P ⎝⎛⎭⎫-22,13. ∵M ⎝⎛⎭⎫-924,0,N (0,3),M P →=λMN →, ∴λ=19. (3)证明:∵M 、N 的坐标分别为M ⎝⎛⎭⎫-a e ,0,N (0,a ), 由⎩⎪⎨⎪⎧ y =ex +ax 2a 2+y 2b 2=1, 解得⎩⎪⎨⎪⎧x =-cy =b 2a (其中c =a 2-b 2),∴P ⎝⎛⎭⎫-c ,b 2a . 由M P →=λMN →得⎝⎛⎭⎫-c +a e ,b 2a =λ⎝⎛⎭⎫a e ,a , ∴⎩⎨⎧ a e -c =λ·a eb 2a =λa ,∴ λ=1-e 2. 21.(12分)设椭圆C :x 2a 2+y 22=1(a >0)的左、右焦点分别为F 1、F 2,A 是椭圆C 上的一点,且AF 2→·F 1F 2→=0,坐标原点O 到直线AF 1的距离为13|OF 1|. (1)求椭圆C 的方程;(2)设Q 是椭圆C 上的一点,过Q 的直线l 交x 轴于点P (-1,0),交y 轴于点M ,若M Q →=2QP →,求直线l 的方程.解析: (1)由题设知F 1(-a 2-2,0),F 2(a 2-2,0),由于AF 2→·F 1F 2→=0,则有AF 2→⊥F 1F 2→,所以点A 的坐标为⎝⎛⎭⎫a 2-2,±2a , 故AF 1所在直线方程为y =±⎝ ⎛⎭⎪⎫x a a 2-2+1a , 所以坐标原点O 到直线AF 1的距离为a 2-2a 2-1(a >2), 又|OF 1|=a 2-2,所以a 2-2a 2-1=13a 2-2,解得a =2(a >2),所求椭圆的方程为x 24+y 22=1. (2)由题意知直线l 的斜率存在,设直线l 的方程为y =k (x +1),则有M (0,k ),设Q (x 1,y 1),由于M Q →=2QP →,∴(x 1,y 1-k )=2(-1-x 1,-y 1),解得x 1=-23,y 1=k 3. 又Q 在椭圆C 上,得⎝⎛⎭⎫-2324+⎝⎛⎭⎫k 322=1, 解得k =±4,故直线l 的方程为y =4(x +1)或y =-4(x +1),即4x -y +4=0或4x +y +4=0.22.(14分)已知椭圆y 2a 2+x 2b 2=1的一个焦点为F (0,22),与两坐标轴正半轴分别交于A ,B 两点(如图),向量A B →与向量m =(-1,2)共线.(1)求椭圆的方程;(2)若斜率为k 的直线过点C (0,2),且与椭圆交于P ,Q 两点,求△POC 与△QOC 面积之比的取值范围.【解析方法代码108001122】解析: (1)y 216+x 28=1. (2)设P (x 1,y 1),Q (x 2,y 2),且x 1<0,x 2>0.PQ 方程为y =kx +2,代入椭圆方程并消去y ,得(2+k 2)x 2+4kx -12=0,x 1+x 2=-4k 2+k 2,① x 1x 2=-122+k 2.② 设S △QOC S △POC =|x 2||x 1|=-x 2x 1=λ,结合①②得 (1-λ)x 1=-4k 2+k 2,λx 21=122+k 2. 消去x 1得λ(1-λ)2=34⎝⎛⎭⎫1+2k 2>34,解不等式λ(1-λ)2>34,得13<λ<3. ∴△POC 与△QOC 面积之比的取值范围为⎝⎛⎭⎫13,3.。
解析几何练习题
解析几何练习题一、直线方程与性质1. 已知两点A(2,3)和B(5,1),求直线AB的方程。
2. 已知直线l经过点P(1,2),且斜率为3,求直线l的方程。
3. 设直线y = 2x + 1与直线y = x + 3相交于点A,求点A的坐标。
4. 已知直线l:3x + 4y + 6 = 0,求直线l在x轴和y轴上的截距。
5. 判断下列直线是否平行:y = 2x + 3 和 y = 2x 1。
二、圆的方程与性质1. 已知圆心在原点,半径为5,求圆的方程。
2. 已知圆的方程为(x 2)² +(y + 3)² = 16,求圆的半径和圆心坐标。
3. 求过点A(1,2)、B(3,4)和C(5,6)的圆的方程。
4. 已知圆C:x² + y² = 25,直线l:2x y + 3 = 0,判断直线l与圆C的位置关系。
5. 求圆x² + y² + 2x 4y 20 = 0 的圆心和半径。
三、点、线、圆的综合问题1. 已知直线l:2x + 3y 1 = 0,求直线l上到点P(1,2)距离最短的点的坐标。
2. 已知圆C:(x 3)² + (y + 2)² = 16,直线l:x + y 4 = 0,求直线l与圆C的交点。
3. 设点A(2,3)关于直线y = x的对称点为B,求点B的坐标。
4. 已知直线l:3x 4y + 7 = 0,圆C:(x 1)² + (y + 2)² = 9,求直线l与圆C的公共点。
5. 求直线y = 2x + 1与圆x² + y² = 25的交点。
四、解析几何在实际问题中的应用1. 已知某工厂的原料存放点A(2,3)和产品存放点B(5,1),求从A 到B的最短路线。
2. 在平面直角坐标系中,有一块长方形土地,其四个角分别为A(0,0)、B(4,0)、C(4,3)和D(0,3),求该土地的对角线长度。
解析几何例题
解析几何例题解析几何是数学中的一个重要分支,它研究的是几何图形在坐标平面上的性质和变换规律。
通过解析几何的方法,我们可以更加直观地理解和推导几何图形的性质。
下面我们来分析一些典型的解析几何例题,以便更好地掌握这一知识点。
例题一:直线的方程已知直线L过点A(1,2)和点B(3,4),求直线L的方程。
解析:设直线L的方程为y=ax+b,其中a为斜率,b为截距。
由于直线L 过点A和点B,代入相应的点坐标得到两个方程:2=a+b (1)4=3a+b (2)解这个方程组,可以求得a=1/2,b=3/2。
所以直线L的方程为y=x/2+3/2。
例题二:直线的垂直平分线已知直线L的方程为y=2x+1,求直线L的垂直平分线的方程。
解析:直线L的斜率为2,垂直平分线的斜率为-1/2(斜率互为倒数且符号相反),设垂直平分线的方程为y=ax+b。
由于垂直平分线过直线L的中点M,求中点M的坐标。
直线L上任意两点的横坐标和纵坐标分别求平均,得到中点M的坐标为:x=(1+3)/2=2,y=(2+4)/2=3。
代入直线L的方程,得到3=2*2+1=5,所以点M的坐标为(2,3)。
垂直平分线通过点M,代入点坐标得到方程:3=a*2+b,所以b=1-4a。
垂直平分线的方程为y=-1/2*x+1-2a。
例题三:圆的方程已知圆C的圆心为点O(2,3),半径为r=4,求圆C的方程。
解析:圆C上任意一点P(x,y)到圆心O的距离等于半径r,可以得到方程:sqrt((x-2)^2+(y-3)^2)=4对上式进行平方处理得到:(x-2)^2+(y-3)^2=16所以圆C的方程为(x-2)^2+(y-3)^2=16。
例题四:两条直线的交点已知直线L1的方程为y=2x+1,直线L2的方程为y-3=3(x-2),求直线L1和L2的交点坐标。
解析:将直线L2的方程变形为y=3x-3+3=3x,得到y=3x。
将L1的方程和L2的方程联立,解这个方程组即可求出交点的坐标。
高中解析几何试题及答案
高中解析几何试题及答案1. 已知圆的方程为 \((x-2)^2+(y-3)^2=9\),求该圆的圆心坐标和半径。
答案:圆心坐标为 \((2, 3)\),半径为 \(3\)。
2. 求直线 \(2x + 3y - 6 = 0\) 关于点 \((1, 2)\) 对称的直线方程。
答案:对称直线的方程为 \(2x - 3y + 8 = 0\)。
3. 已知椭圆 \(\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1\)(其中\(a > b > 0\))经过点 \((2, 3)\),且离心率 \(e = \frac{c}{a}\) 为 \(\frac{1}{2}\),求椭圆的长轴和短轴长度。
答案:根据离心率 \(e = \frac{c}{a} = \frac{1}{2}\),我们有 \(c =\frac{a}{2}\)。
由于椭圆经过点 \((2, 3)\),代入椭圆方程得\(\frac{4}{a^2} + \frac{9}{b^2} = 1\)。
又因为 \(c^2 = a^2 -b^2\),代入 \(c = \frac{a}{2}\) 得 \(\frac{a^2}{4} = a^2 -b^2\),解得 \(b^2 = \frac{3}{4}a^2\)。
将 \(b^2\) 代入椭圆方程,解得 \(a^2 = 16\) 和 \(b^2 = 12\)。
因此,椭圆的长轴长度为\(2a = 32\),短轴长度为 \(2b = 24\)。
4. 求抛物线 \(y^2 = 4px\)(\(p > 0\))的焦点坐标。
答案:焦点坐标为 \((\frac{p}{2}, 0)\)。
5. 已知双曲线 \(\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1\) 的一条渐近线方程为 \(y = \frac{b}{a}x\),求双曲线的离心率。
答案:双曲线的离心率 \(e = \sqrt{1 + \frac{b^2}{a^2}}\)。
2023年全国卷解析几何解答题解法荟萃
2023年全国卷解析几何解答题解法荟萃上两点,0FM FN ⋅=,求2102y px −+==可得,,因为0FM FN ⋅=,所以)()(★方法2:焦半径表示面积设直线()11:,,MN x my n M x y =+,()22,N x y ,则1||2MFN S FM FN ∆=‖ ()()121112x x =++()()121112my n my n =++++()2212121(1)(1)2m y y m n y y n ⎡⎤=+++++⎣⎦2(1).n =− ,因为0FM FN ⋅=,所以)()(★方法2.斜率转化与齐次化.如图,设线段AB 垂直于x 轴,D 为AB 中点,P 为线外任意一点,则有:PD PB PA k k k 2=+.设直线PQ 的方程为(2)1m x ny ++=.因为直线PQ 过点(2,3)−.,代入得13n =.因为点,P Q 在椭圆22:9436C x y +=上,变形得229[(2)2]436x y +−+=,整理可得:229(2)36(2)40x x y +−++=.齐次化得229(2)36(2)[(2)]40, x x m x ny y +−++++=化简得22436(2)(936)(2)0.y ny x m x −++−+=等式两边同除以2(2)x +,构造斜率式得 24369360,22y y n m x x ⎛⎫−⋅+−= ⎪++⎝⎭把13n =代入得 24129360,22y y m x x ⎛⎫−⋅+−= ⎪++⎝⎭由根与系数的关系得32AQ AP AE k k k +==,其中E 为椭圆上顶点,故所以线段MN 的中点是定点()0,3. ★方法3.同构双割线设直线AP 方程为(2)y k x =+,联立22194(2)y x y k x ⎧+=⎪⎨⎪=+⎩得:()2222491616360k x k x k +++−=,当0∆>时,由22163649A P k x x k −⋅=+及2A x =−得2281849P k x k −+=+ 所以22281836,4949k k P k k ⎛⎫−+ ⎪++⎝⎭,设直线PQ 为:(2)3y m x =++,代入点P 化简 得:2123636270k k m −++=同理,设直线AQ 的斜率为k ',同理得到2123636270k k m −'++=k 和k '是二次方程2123636270x x m −++=的两个根,所以3k k +'=.直线,AP AQ 的方程分别为(2),(2)y k x y k x =+='+,当0x =时,2,2M N y k y k ==',即有32M Ny y k k +=+'=,综上,MN 的中点为定点(0,3).则1,0AB BC k k a b ⋅=−+<<同理令0BC k b c n =+=>,且设矩形周长为C ,由对称性不妨设1依题意可设21,4A a a ⎛⎫+ ⎪⎝⎭,易知直线的斜率分别为k 和1k −,由对称性,不妨设则联立2214()y x y k x a a ⎧=+⎪⎪⎨⎪=−++⎪⎩直线1MA 的方程为(112y y x x =+与直线2NA 的方程可得:22x x +−★方法4.消y 留x 之后的非对称处理记过点(4,0)−的直线为l .当l 与x 轴垂直时,易知点(4,(4,M N −−−,(1,P −−.当直线l 与x 轴不垂直时,设点(1M x ,)()()12200,,,,y N x y P x y ,直线:(4)l y k x =+.将(4)y k x =+代人221416x y −=,得)()2222(4816160k x k x k −−−+=.依题意,得()221212221618,. 44k k x x x x k k −++==−−设1212()x x x x λμ=++,即()22221618. 44k k k kλμ−++=−−即12x x =()12542x x −+−①. 直线1MA 的方程为()1122y y x x =++,直线2NA 的方程为()2222yy x x =−−,联立直线1MA 与直线2NA 的方程可得:()()()()()()12120021212422,2242y x x x x x y x x x −+−−==++++即01212012122248. 2428x x x x x x x x x x −−+−=++++将①代入式得0022x x −=+()1212338338x x x x −−+=−−+,即1x =−,据此可得点P 在定直线=1x −上运动.已知B A ,分别为椭圆1:222=+y ax E )1(>a 的左右顶点,G 为E 的上顶点,8=⋅→→GB AG ,点P 为直线6=x 上的动点,PA 与E 的另一个交点为C ,PB 与E 的另一个交点为D . (1)求E 的方程;(2)证明:直线CD 过定点.解析:(1)E 的方程为1922=+y x . (2)假设),(),,(),,6(2211y x D y x C t P .则由P C A ,,及P D B ,,三点共线可得:33;392211−=+=x y t x y t 将上面两式相除,再平方可得:91)3()3(21222221=+−⋅x x y y ....① 由于),(),,(2211y x D y x C 均在椭圆E 上,故满足:91;9122222121x y x y −=−=...② 将②代入①可得:91)3)(3()3)(3(2121=++−−x x x x ,整理可得:0364)(152121=−−+x x x x ...③假设直线CD 的方程为m kx y +=代入椭圆方程1922=+y x 可得: 09918)19(222=−+++m kmx x k将1999,19182221221+−=+−=+k m x x k km x x 代入③中,可得:023=+m k ,于是,直线CD 的方程为k kx y 23−=,故其过定点)0,23(.解法2.设()06,P y ,则直线AP 的方程为:()()00363y y x −=+−−,即:()039y y x =+联立直线AP 的方程与椭圆方程可得:()2201939x y y y x ⎧+=⎪⎪⎨⎪=+⎪⎩,整理得:()2222000969810y x y x y +++−=,解得:3x =−或20203279y x y −+=+,将20203279y x y −+=+代入直线()039y y x =+可得:02069y y y =+,所以点C 的坐标为20022003276,99y y y y ⎛⎫−+ ⎪++⎝⎭. 同理可得:点D 的坐标为2002200332,11y y y y ⎛⎫−− ⎪++⎝⎭∴直线CD 的方程为:0022********2000022006291233327331191y y y y y y y x y y y y y y ⎛⎫−− ⎪++⎛⎫⎛⎫−−⎝⎭−=−⎪ ⎪−+−++⎝⎭⎝⎭−++, 整理可得:()()()2220000002224200000832338331116963y y y y y y y x x y y y y y +⎛⎫⎛⎫−−+=−=− ⎪ ⎪+++−−⎝⎭⎝⎭整理得:()()0002220004243323333y y y y x x y y y ⎛⎫=+=− ⎪−−−⎝⎭,故直线CD 过定点3,02⎛⎫ ⎪⎝⎭解法3.不禁思考,为何此题使用三点共线就可成功地实现了设而不求,整体代入的思想呢?关键在于对椭圆方程的理解,即所谓的第三定义:))(()1(222222x a x a ab a x b y +−=−=这样的话,在遇到与椭圆左右顶点有关的三点共线结构时,我们就可以通过斜率关系再利用点在椭圆上将))(()1(222222x a x a ab a x b y +−=−=代入斜率式,从而构造出含21x x +与21x x 的方程,整体代入完成求解.而上面这个问题有着明显的极点极线背景:从直线t x =上任意一点P 向椭圆)0(12222>>=+b a by a x 的左右顶点引两条割线21,PA PA 与椭圆交于N M ,两点,则直线MN 恒过定点)0,(2ta .2024届九省联考解析几何的深度探究的交点,求GMN面积的最小值.,由直线AB与直线1、x m=S=GMNS=MNG例2.过椭圆22221x y a b+=的长轴上任意一点(,0)()S s a s a −<<作两条互相垂直的弦,AB CD ,若弦,AB CD 的中点分别为,M N ,那么直线MN 恒过定点222,0a s a b ⎛⎫⎪+⎝⎭.证明:如图,设AB 的直线方程为x my s =+,则CD 的直线方程为1x y s m=−+ 联立方程组22221x my s x y ab =+⎧⎪⎨+=⎪⎩,整理得()()2222222220m b a y b msy b s a +++−=则()()22222222221212222222240,,b s a msb a b m b a s y y y y m b a m b a−−∆=+−>+=⋅=++ 由中点坐标公式得22222222,a s msb M m b a m b a ⎛⎫− ⎪++⎝⎭ 将m 用1m −代换得到222222222,a sm msb N m a b m a b ⎛⎫ ⎪++⎝⎭所以MN 的直线方程为()()2222222222221a b m b sm a s y x b m a b m a a m +⎛⎫+=− ⎪++−⎝⎭令0y =,得222a sx a b =+.所以直线MN 恒过定点222,0a s a b ⎛⎫ ⎪+⎝⎭. 二.对点训练的斜率均存在,求FMN面积的最大值解析:(1)由题意得1c =,2c a =(2)证明:①当直线AB ,CD 有一条斜率不存在时,直线2,03P ⎛⎫⎪⎝⎭. 12FMNFPMFPNSSS=+=⨯S=FMN[2,∞+S取得最大值FMN。
解析几何大题集合(34题)
1. 已知椭圆C :14522=+y x 的左右焦点分别为21,F F(1)若P 是椭圆上的一点,且∠︒=3021PF F ,求△的面积;(2)过椭圆的左焦点作一条倾斜角为45°的直线l 与椭圆交于A.B 两点,求AB 的长.2.已知点P 为圆A:8)1(22=++y x 的动点,点B (1,0),线段PB 的垂直平分线与半径PA 相交于点M ,记点M 的轨迹为C 。
(1)求曲线C 的方程;(2)当P 在第一象限,且322cos =∠BAP 时,求点M 的坐标3.已知椭圆E :)0(,12222>>=+b a by a x 的离心率为21,点A,B 分别为椭圆E 的左右顶点,点C 在E 上,且△ABC 面积的最大值为32, 求(1)椭圆E 的方程;(3)设F 为E 的左焦点,点D 在直线x=-4上,过F 作DF 的垂线交椭圆E 与M,N 两点。
证明:直线OD 平分线段MN 。
4. 已知椭圆)0(,12222>>=+b a by a x 的左右焦点分别为21,F F ,A为上顶点,P 为椭圆上任一点(与左右顶点不重合)。
(1)若21AF AF ⊥,求椭圆的离心率; (2)若P (-4,3),且021=∙PF PF ,求椭圆的方程;(3)若存在一点P 使∠21PF F 为钝角,求椭圆的离心率的取值范围。
21PF F5. 如图,A,B,C 是椭圆M :上的三点,其中A 是椭圆的右顶点,BC 过椭圆M 的中心,且满足AC ⊥BC,BC=2AC. (1) 求椭圆M 的离心率(2)若y 轴被△ABC 的外接圆所截得的弦长为9,求椭圆M 的方程。
6. 设椭圆C :)0(,1222>=+a y a x 的两个焦点)0,(),0,-(21c F c F (c>0),且椭圆C 与圆222c y x =+有公共点。
(1)求a 的取值范围;(2)若椭圆上的点到焦点的最短距离是2-3,求椭圆的方程。
解析几何经典练习题(含答案)
解析几何经典练习题(含答案)题目一:已知平面直角坐标系中两点A(-3,4)和B(5,-2),求直线AB的斜率和方程。
解答:直线AB的斜率可以使用斜率公式计算:斜率 = (y2 - y1) / (x2 - x1)其中,A的坐标为(x1, y1) = (-3, 4),B的坐标为(x2, y2) = (5, -2)。
斜率 = (-2 - 4) / (5 - (-3)) = -6 / 8 = -3/4直线AB的方程可以使用点斜式来表示:y - y1 = m(x - x1)其中,m为斜率,(x1, y1)为直线上的任意一点。
将斜率和点A的坐标代入得到方程:y - 4 = (-3/4)(x + 3)化简得到直线AB的方程为:4y - 16 = -3x - 9整理得到标准形式方程:3x + 4y = 7答案:直线AB的斜率为 -3/4,方程为 3x + 4y = 7。
题目二:已知直线L的斜率为2,经过点A(3,-1),求直线L的方程。
解答:直线L的方程可以使用点斜式来表示:y - y1 = m(x - x1)其中,m为斜率,(x1, y1)为直线上的任意一点。
将斜率和点A的坐标代入得到方程:y - (-1) = 2(x - 3)化简得到直线L的方程为:y + 1 = 2x - 6整理得到标准形式方程:2x - y = 7答案:直线L的方程为 2x - y = 7。
题目三:已知直线L的方程为 3x + y = 5,求直线L的斜率和经过点A (2,-1)的方程。
解答:直线L的斜率可以从方程的标准形式中直接读取:3x + y = 5将方程转化成斜截式形式:y = -3x + 5可以看出直线L的斜率为-3。
经过点A(2,-1)的直线方程可以使用点斜式来表示:y - y1 = m(x - x1)其中,m为斜率,(x1, y1)为直线上的任意一点。
将斜率和点A的坐标代入得到方程:y - (-1) = -3(x - 2)化简得到通过点A的直线方程为:y + 1 = -3x + 6整理得到标准形式方程:3x + y = 5答案:直线L的斜率为-3,经过点A(2,-1)的方程为 3x + y = 5。
解析几何经典题目200题
题型:解答题,难度:较难
已知a,以两点A (a , 0 )和B ( 0 , b )为顶点的正三角形,且它的第三个顶点C在第一象限内.
(1)若△ABC能含于正方形D = { (x , y ) | 0x1, 0y1}内,试求变量a , b的约束条件,并在直角坐标系aOb内(见答题卷)内画出这个约束等条件表示的平面区域;
答案:
作MC⊥AB交PQ于点M,则MC是两圆的公切线,∴|MC|=|MQ|,|MC|=|MP|,即M为PQ的中点。设M(x,y),则点C,O1,O2的坐标分别是(x,0),( ,0)( ,0)。连O1M,O2M,由平几知识得:∠O1MO2=90°,
∴有|O1M|2+|O2M|2=|O1O2|2,即:
(x- )2+y2+(x- )2+y2=( - )2,化简得x2+4y2=9。又∵点C(x,0)在线段AB上,且AC,BC是圆的直径,∴-3<x<3。
故所求的轨迹方程为x2+4y2=9(-3<x<3)。
来源:06重庆调研
题型:解答题,难度:较难
(1)已知两定圆 =12,求经过一定圆圆心且与另一定圆内切的圆的圆心轨迹C的方程;
解析几何经典题目200题
设圆上点A(2,3)关于直线 的对称点B仍在圆上,且该圆的圆心在直线 上,(1)求B点的坐标;(2)求圆的方程.
答案:
(1)B(-6/5,-17/5)
(2)圆的方程:(x-6)2+(y+3)2=52
来源:09年浙江金华市月考一
题型:解答题,难度:中档
已知圆C的方程 和点 ,过动点 作圆的切线PB(B为切点)且 ,(1)求动点P轨迹L的方程;(2)若动点Q,D分别在轨迹L和圆C上运动,且三角形APQ面积 ,求三角形DPQ面积 的最小值.
解析几何经典例题
解析几何经典例题圆锥曲线的定义是“圆锥曲线方程”这一章的基础,对这些定义我们有必要深刻地理解与把握。
这里就探讨一下圆锥曲线定义的深层及其综合运用。
一、椭圆定义的深层运用例1. 如图1,P 为椭圆上一动点,为其两焦点,从的外角的平分线作垂线,垂足为M,将F2P 的延长线于N,求M的轨迹方程。
图1解析:易知故在中,则点M的轨迹方程为。
二、双曲线定义的深层运用例2. 如图2,为双曲线的两焦点,P 为其上一动点,从的平分线作垂线,垂足为M,求M的轨迹方程。
图2解析:不妨设P 点在双曲线的右支上,延长F1M交PF2 的延长线于N,则,即在故点M的轨迹方程为三、抛物线定义的深层运用例3. 如图3,AB为抛物线的一条弦,|AB| =4,F 为其焦点,求AB的中点M到直线y=-1 的最短距离。
图3解析:易知抛物线的准线l :,作AA”⊥l ,BB”⊥l ,MM”⊥l ,垂足分别为A”、B”、M”则即M到直线的最短距离为 2故M到直线y=-1 的最短距离为。
评注:上述解法中,当且仅当A、B、F 共线,即AB为抛物线的一条焦点弦时,距离才取到最小值。
一般地,求抛物线的弦AB的中点到准线的最短距离,只有当(即通径长)时,才能用上述解法。
四、圆与椭圆、圆与双曲线定义的综合运用例4. ①已知圆,M为圆上任一点,MP的垂直平分线交OM于Q,则Q的轨迹为()图4②已知圆,M为圆上任一点,MP的垂直平分线交OM于Q,则Q的轨迹为()A. 圆B. 椭圆C. 双曲线D. 抛物线解析:①如图4,由垂直平分线的性质,知|QM|=|QP| ,而|QM|=|OM|-|OQ|=2-|OQ|即|OQ|+|QP| =2>|OP| =故Q的轨迹是以O(0,0)、P 为焦点长轴长为 2 的椭圆。
应选B。
②同理,利用垂直平分线的性质及双曲线的定义,可知点Q的轨迹为双曲线的一支,应选C。
五、椭圆与双曲线定义的综合运用例5. 如图5,已知三点A(-7,0),B(7,0),C(2,-12)。
解析几何例题
解析几何例题
摘要:
1.解析几何的概述
2.解析几何的例题
3.解析几何的解题技巧
4.解析几何的实际应用
正文:
一、解析几何的概述
解析几何是数学中一个重要的分支,主要研究直线、圆、曲线等几何图形的性质和相互关系。
解析几何将几何问题转化为代数问题,利用代数方法求解几何问题。
解析几何的发展和建立,为数学的发展和应用奠定了基础。
二、解析几何的例题
例题1:已知圆心为(2,3),半径为5 的圆,求与直线x-2y+3=0 相切的点的坐标。
例题2:已知直线l 的斜率为2,截距为-1,求直线l 与圆(x-
3)^2+(y-4)^2=25 的交点。
三、解析几何的解题技巧
1.圆的标准方程和一般方程的转换
2.直线的一般式、斜截式和截距式的转换
3.解析几何中常用的代数方法:配方法、消元法、韦达定理等
4.解析几何中常用的几何方法:切割线定理、切线长定理、圆的性质等
四、解析几何的实际应用
解析几何在实际生活中的应用非常广泛,例如在建筑设计、机械制造、航空航天等领域都需要解析几何的知识。
解析几何为解决实际问题提供了一种数学方法,有助于提高人们的科学素养和实际操作能力。
解析几何经典名题
解析几何经典名题
解析几何是数学中的一个分支,主要研究的是平面和空间内图形的性质和变换规律。
在解析几何中,有许多经典的名题,这些名题经过数学家们的探索和研究,成为了解析几何中经典而有代表性的例子。
下面我们就来看看几个著名的解析几何名题。
1. 平面内两直线的交点坐标公式。
在平面内,两直线的交点可以用坐标公式来表示。
这个公式是通过解两条直线的联立方程组得到的,其表达式为:
x = (b2-b1)/(k1-k2)
y = k1x+b1
其中,k1、k2分别为两条直线的斜率,b1、b2分别为它们在y 轴上的截距。
2. 点到直线的距离公式。
在解析几何中,点到直线的距离公式是一个重要的名题。
这个公式可以用来计算一个点到一条直线的最短距离,其表达式为:
d = |ax0 + by0 + c| / √(a + b)
其中,(x0,y0)为点的坐标,a、b、c为直线的一般式方程系数。
3. 点到平面的距离公式。
点到平面的距离公式是解析几何中的另一个重要名题。
这个公式可以用来计算一个点到一个平面的最短距离,其表达式为:
d = |ax0 + by0 + cz0 + d| / √(a + b + c)
其中,(x0,y0,z0)为点的坐标,a、b、c、d为平面的一般式方程系数。
这些经典的解析几何名题,不仅是数学研究中的重要问题,而且在实际生活中也有广泛的应用。
通过学习这些名题,我们可以更深入地理解解析几何的知识,提高自己的数学素养。
解析几何初中试题及答案
解析几何初中试题及答案1. 已知点A(2,3)和点B(-1,-2),求线段AB的中点坐标。
答案:线段AB的中点坐标为(\(\frac{2+(-1)}{2}, \frac{3+(-2)}{2}\)),即(\(\frac{1}{2}, \frac{1}{2}\))。
2. 已知直线l的方程为y=2x+3,求直线l与x轴的交点坐标。
答案:当直线l与x轴相交时,y=0,代入方程得2x+3=0,解得x=-\(\frac{3}{2}\)。
因此,交点坐标为(-\(\frac{3}{2}\), 0)。
3. 已知圆C的方程为(x-1)^2 + (y+2)^2 = 9,求圆C的半径和圆心坐标。
答案:圆C的半径为3,圆心坐标为(1, -2)。
4. 已知直线l1: y=x+1与直线l2: y=-2x+4相交,求两直线的交点坐标。
答案:将两个方程联立,得到x+1=-2x+4,解得x=1。
将x=1代入任一方程得y=2。
因此,两直线的交点坐标为(1, 2)。
5. 已知抛物线y^2=4px(p>0)的焦点坐标为(2,0),求抛物线的方程。
答案:由焦点坐标(2,0)可得p=2,因此抛物线的方程为y^2=8x。
6. 已知椭圆的长轴为10,短轴为6,求椭圆的方程。
答案:设椭圆的方程为\(\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1\),其中a为长轴的一半,b为短轴的一半。
由题意得a=5,b=3,因此椭圆的方程为\(\frac{x^2}{25} + \frac{y^2}{9} = 1\)。
7. 已知双曲线的实轴长为8,虚轴长为6,求双曲线的方程。
答案:设双曲线的方程为\(\frac{x^2}{a^2} - \frac{y^2}{b^2} =1\),其中a为实轴的一半,b为虚轴的一半。
由题意得a=4,b=3,因此双曲线的方程为\(\frac{x^2}{16} - \frac{y^2}{9} = 1\)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
解析几何经典例题圆锥曲线的定义是“圆锥曲线方程”这一章的基础,对这些定义我们有必要深刻地理解与把握。
这里就探讨一下圆锥曲线定义的深层及其综合运用。
一、椭圆定义的深层运用例1. 如图1,P为椭圆上一动点,为其两焦点,从的外角的平分线作垂线,垂足为M,将F2P的延长线于N,求M的轨迹方程。
图1解析:易知故在中,则点M的轨迹方程为。
二、双曲线定义的深层运用例2. 如图2,为双曲线的两焦点,P为其上一动点,从的平分线作垂线,垂足为M,求M的轨迹方程。
图2解析:不妨设P点在双曲线的右支上,延长F1M交PF2的延长线于N,则,即在故点M的轨迹方程为三、抛物线定义的深层运用例3. 如图3,AB为抛物线的一条弦,|AB|=4,F为其焦点,求AB的中点M到直线y=-1的最短距离。
图3解析:易知抛物线的准线l:,作AA”⊥l,BB”⊥l,MM”⊥l,垂足分别为A”、B”、M”则即M到直线的最短距离为2故M到直线y=-1的最短距离为。
评注:上述解法中,当且仅当A、B、F共线,即AB为抛物线的一条焦点弦时,距离才取到最小值。
一般地,求抛物线的弦AB的中点到准线的最短距离,只有当(即通径长)时,才能用上述解法。
四、圆与椭圆、圆与双曲线定义的综合运用例4. ①已知圆,M为圆上任一点,MP的垂直平分线交OM于Q,则Q的轨迹为()图4②已知圆,M为圆上任一点,MP的垂直平分线交OM于Q,则Q的轨迹为()A. 圆B. 椭圆C. 双曲线D. 抛物线解析:①如图4,由垂直平分线的性质,知|QM|=|QP|,而|QM|=|OM|-|OQ|=2-|OQ|即|OQ|+|QP|=2>|OP|=故Q的轨迹是以O(0,0)、P为焦点长轴长为2的椭圆。
应选B。
②同理,利用垂直平分线的性质及双曲线的定义,可知点Q的轨迹为双曲线的一支,应选C。
五、椭圆与双曲线定义的综合运用例5. 如图5,已知三点A(-7,0),B(7,0),C(2,-12)。
①若椭圆过A、B两点,且C为其一焦点,求另一焦点P的轨迹方程;②若双曲线的两支分别过A、B两点,且C为其一焦点,求另一焦点Q的轨迹方程。
图5解析:①由椭圆定义知,|AP|+|AC|=|BP|+|BC|, 即 故P 的轨迹为A (-7,0)、B (7,0)为焦点 实轴长为2的双曲线的一支,其方程为;②经讨论知,无论A 在双曲线的哪一支上 总有|QA|+|QB|=|AC|+|BC|=28>|AB|=14故点Q 的轨迹为以A (-7,0)、B (7,0)为焦点长轴长为28的椭圆,其方程为。
[练习]1. 已知椭圆E 的离心率为e ,左、右焦点为F 1、F 2,抛物线C 以为焦点,为其顶点,若P 为两曲线的公共点,且,则e =__________。
答案:2. 已知⊙O :,一动抛物线过A (-1,0)、B (1,0)两点,且以圆的切线为准线,求动抛物线的焦点F 的轨迹方程。
答案:圆锥曲线中的方法与运算1. (与名师对话第51练) 已知抛物线221y x =-,点(2,0)A , 问是否存在过点A 的直线l ,使抛物线上存在不同的两点关于直线l 对称,如果存在, 求出直线l 的斜率k 的取值范围; 如果不存在,请说明理由.分析: 这是一个求变量(斜率k )的取值范围问题, 我们必须给出与变量(斜率k )相关的变量(根据题设寻找)的关系式(组), 显然,这个关系式(组)应由按题设揭示出的几何条件转换得到.我们由题设揭示出的几何条件是: 抛物线上关于直线l 对称的不同的两点所在直线必须与抛物线有两个不同的交点,并且交点为端点的线段的中点在直线l 上. 相应得到一个不等式和一个等式组成的变量关系式(组). 解这个关于式组即可得变量k 的取值范围. 解: 设直线l 的方程为(2)y k x =-,若0k =,则结论显然成立,即0k =可取.若0k ≠,则直线PQ 的方程为1y x m k =-+, 由方程组21,21,y x m ky x ⎧=-+⎪⎨⎪=-⎩可得,22210y y kb +-+=.∵ 直线PQ 与抛物线有两个不同的交点, ∴244(21)0,k kb =--+>即 2120k kb -+>.设线段PQ 的中点为G(00,x y ), 则1202y y y k +==-, ∴ 212()()2y y x k km k k km k km +=-+=--+=+, ∵ 点G(00,x y )在直线l 上, ∴ k -=2(2)k k km +-, 由 0k ≠可得,21k m k-=,∴ 212k k -+21k k-0>, 21k < (0k ≠) , ∴ 10k -<<或01k <<.综上所述, 直线l 的斜率k 的取值范围为1-1k <<.2. (与名师对话第51练)已知M 直线l 过点(1,0),且与抛物线22x y =交于,A B 两点,O 为原点,点 P 在y 轴的右侧且满足:1122OP OA OB =+.(1)求点P 的轨迹C 的方程;(2) 若曲线C 的切线的斜率为λ,满足:MB MA λ=,点A 到y 轴的距离为a ,求a 的取值范围.分析:由1122OPOA OB =+可知,点P 的轨迹C 就是弦AB 的中点的轨迹. 解(1) 显然直线l的斜率存在,设为k,则直线l的方程为:1y k x =-(),由方程组212y k x x y =-⎧⎨=⎩(),,消去y 整理得2220x kx k -+=,设1122(,),(,)A x y B x y , 122x x k +=,∴122p x x x k +==,21p y k k k k =-=-(), 消去k得点P 的轨迹C 的轨迹方程为:2y x x =-.∵ 2480kk ->, ∴ 0k <或2k >,∵ 点P 在y 轴的右侧, ∴ 2x k =>,故点P 的轨迹C 为抛物线2y x x =-上的一段弧.分析: 点A 到y 轴的距离为a 就是点A 的横坐标的绝对值.因为曲线C 的切线的斜率为λ,所以λ='21y x =-,由2x >知,3λ>,由此可知,我们必须建立点A 的横坐标的绝对值关于λ的关系.解(2): 设1122(,),(,)A x y B x y ,则由MB MA λ=可知,22(,)(1,0)x y -=λ[11(,)(1,0)x y -],∴211(1)x x λ-=-,21y y λ= ,∴ 211x x λλ=-+, 2221x x λ=, ∴ 2211[(1)]x x λλλ--=∵ 1λ≠,∴ 211210x x λλλ-+-=,方法(一) 11x ==3λ>),∴11(3)ax λ==>,∴ a∈(13-(1,13⋃+. 方法(二)211(1)x λ-=, (3λ>),∴ 1103λ<<, 0<21(1)x -13<, ∴ 11x ≠且11133x -<<+ ∴ a∈(13-(1,13⋃+.3. (与名师对话第51练) 已知抛物线的方程为22x py = (0)p >,过点M (0,)m 且倾斜角为θ(0<θ<2π)的直线交抛物线于1122(,),(,)A x y B x y 两点,且212x x p =-. (1)求m 的值; (2)若点M 分AB 所成的比为λ,求λ关于θ的函数关系式.分析: 要求m 的值,必须给出关于m 的方程. 解(1): 设过点M(0,)m 且倾斜角为θ(0<θ<2π)的直线的方程为y kx m =+. 由方程组22y kx m x py =+⎧⎨=⎩,,消去y 整理得2220x pkx pm --=, 则122x x pm =-,∵ 212x x p =-, ∴ 2pm -2p =-, 2p m =. 分析: 由2p m =可知过点M (0,)m 且倾斜角为θ(0<θ<2π)的直线为2py kx =+.先建立关于k 的函数关系式,再转换为关于θ的函数关系式.解(2): ∵ 关于θ的函数关系式,∴ AM MB λ=, 1122(0,)(,)[(,)(0,)]22p p x y x y λ-=-, 1212,(),22x x p p y y λλ=-⎧⎪⎨-=-⎪⎩由(1)可知212122,x x pk x x p +==-,由方程组1212212,2,,x x x x pk x x p λ⎧=-⎪+=⎨⎪=-⎩可消去12,,x x p 得,222(21)10k λλ-++=.∵ 0<θ<2π, ∴ 1λ<, 故222121k k k λ=+-+=2222(1sin )2tan 12tan tan 1cos θθθθθ-+-+==1sin 1sin θθ-+.4. (与名师对话第51练) 已知方向向量为(1,3)v=的直线l 过点(0,-2)和椭圆C:22221x y a b+= (0)a b >>的焦点, 且椭圆C 的中心关于直线l 的对称点在椭圆C 的右准线上.(1)求椭圆C 的方程;(2)是否存在过点E(-2,0)的直线m 交椭圆C 于,M N ,满足:OMON ⋅=463cot MON ∠ 0(O ≠为原点)? 若存在,求出直线m 的方程;若不存在,请说明理由.6.(与名师对话第52练20) 椭圆C 的方程为221189x y +=,F 是它的左焦点,M 是椭圆C 上的一个动点,O 为坐标原点.(1) 求OFM 的重心G 的轨迹方程;(2) 若OFM 的重心G 对原点和点P(-2,0)的张角OGP ∠最大, 求点G 的坐标.解(1): 设点)y ,x (G (y ≠0) , M(x 1,y 1)由题设可知,F(320-,)则11333x yxy -==,, ∴ 1333x x y =+=1,y ,∴OFM 的重心G 的轨迹方程为22112x y ++=()(0y ≠). (2) 由(1)可知, 原点和点P(-2,0)是椭圆22112x y ++=()的两个焦点.下面证明当点M 与椭圆22112x y ++=()的短轴的端点重合时张角OGP ∠最大. 方法(一) 用椭圆的定义设椭圆C 上的一个动点M 到椭圆的两个焦点的距离为1r 、2r ,则由椭圆的定义可知1r +2r =22.在MOP ∆中,21222212r r OP r r OGP COS -+=∠=21222124r r r r -+=2121221224)(r r r r r r --+=21212224)22(r r r r --=2142r r +-≥4)(42221r r ++- (当且仅当21r r =时,等于号成立)=0∴ 当21r r =,即点M 与短轴的端点重合时张角OGP ∠最大, 最大角为090,这时点M 的坐标为(-1,1)、(-1,-1).方法(二) 用椭圆的焦半径公式将椭圆22112x y ++=()平移到中心在原点的位置,这时椭圆的方程为2212x y +=,原张角OGP∠就是在点P 处的两条焦半径的夹角.设点P 的坐标为(00x y ,),则22001200222422cos 2222222x x F PF x x ++--∠=+-(2)()()()=220002011[02]12122222x x x x =⋅∈--2,() 当00x =时,12cos 0F PF ∠=, 当2002]x ∈(,时, 12cos 01]F PF ∠∈(,,故12cos [01]F PF ∠∈,, 12F PF ∠的最大值为090,这时相应点P 的坐标为(0,±1),在椭圆的原位置相应点P 的坐标为(-1,±1).7. (与名师对话第52练21) 已知动点P 与双曲线22123x y -=的两个焦点12F F ,的距离之和为定值,且12cos F PF ∠的最小值为19-. (1) 求动点P 的轨迹方程;(2) 若已知点D (0,3),点M N ,在动点P 的轨迹上,且DMDNλ=,求实数λ的取值范围;(3) 若已知点D (1,1), 点M N ,在动点P 的轨迹上,且MDDN =,求直线MN 的方程.分析: 由题设可知, 动点P 的轨迹是以双曲线22123x y -=的两个焦点12F F ,为其焦点 的椭圆,因此动点P 的轨迹方程可以用待定系数法求得.解(1): 由题设可知, 动点P 的轨迹是以双曲线22123x y -=的两个焦点12F F ,为其焦点 的椭圆,设其方程为22221x y a b+= (0a b >>).可以证明(仿例6)当动点P在椭圆的短轴的端点时12cos F PF ∠的值最小,这时2122222010cos 12a F PF a a -∠==-, ∴ 210119a -=-, 29a =. ∴ 24b =, ∴ 动点P 的轨迹方程为22194x y +=. 分析: 由DMDN λ=可知, 点,,D M N 共线, 直线MN 的变化可以用其斜率表示(直线的方程为3,y kx =+这时要k 作讨论),也可以用t 表44z 示(直线的方程为(3)x t y =-,这时不需要对t 作讨论).下面用直线方程3y kx =+求解.解法(一): 由DMDNλ=可知, 点,,D M N 共线.若直线MN 的斜率不存在,则155λλ==或. 若直线MN 的斜率存在,设直线MN 的方程为3,y kx =+则由方程组223,4936,y kx x y =+⎧⎨+=⎩可得,22(94)54450k x kx +++=,设1122(,),(,)M x y N x y ,则1212225445,9494k x x x x k k -+==++. 又由DM DNλ=可得,12x x λ=,∴ 12225454,(1)94(1)94k k x x k k λλλ--==++++, ∴ 2222(54)(1)(94)k k λλ=++24594k +∴2(1)λλ=+22259454(9)324324k k k +⋅=⋅+. ∵ 22(54)445(94)0k k ∆=-⨯+≥, ∴ 259k ≥. ∴25136(1)4λλ<≤+, ∴ 115,555λλ<<≠且, 综上所述,155λ≤≤. 分析:用点,M N 的坐标表示直线MN 的变化. 解法(二): 由DMDN λ=可知, 点,,D M N 共线.设1122(,),(,)M x y N x y ,则2211194x y +=,2222194x y +=. ∵ DMDN λ=, ∴ 12x x λ= , 1233y y λλ=-+, ∴22222(33)194x y λλλ-++=,222222294x y λλλ+=. ∴ 22(33)4y λλ-+-222214y λλ=-, 223(233)(1)14y λλλλ-+-=-,∴ 1λ=或23(233)14y λλλ-+=+, 213522,06y λλλ--≤=≤>解得155λ≤≤.8. 抛物线C 的方程为2(0)y ax a =<,过抛物线C 上一点00P x y (,) (00x ≠)作斜率为12k k ,的两条直线分别交抛物线C 于1122(,),(,)A x y B x y 两点(P A B 、、三点各不相同),且满足210k k λλλ+=≠≠(0且-1).(1) 求抛物线C 的焦点坐标和准线方程; (2) 设直线AB 上一点M 满足:BM MA λ=,证明线段PM 的中点在y 轴上;(3)当1λ=时,若点P 的坐标为(1,-1),求PAB ∠为钝角时点A 的纵坐标1y 的取值范围.分析: 将a 看作常量. 解(1): 抛物线C 的方程为21(0)x y a a=<, 故抛物线C 的焦点坐标为(104a,),准线方程为14y a=-. 分析: 从形式上看, 线段PM 的中点坐标与12k k λ、、相关,而实际上肯定横坐标可以消元为0.解(2): 由题设可知,直线PA 的方程为:100y k x x y =-+(),由方程组1002y k x x y y ax =-+⎧⎨=⎩(),,可得,211000axk x k x y -+-=,即2211000ax k x k x ax -+-=,∴ 110k x x a =-, 同理 220kx x a=-, ∵ BM MA λ=, ∴ 21M M x x x x λ-=-(), 121M x x x λλ+=+=12001k kx x a a λλ-+-+()()∵ 210k k λλλ+=≠≠(0且-1), ∴ M x =-0x ,∴ 线段PM 的中点横坐标为0, 即线段PM 的中点在y 轴上.分析:解(3): 由题设和题(2)可知, 抛物线C 的方程为2y x =-,111x k =-+(),又1λ=,故211x k =-,∴21111A k k -++((),-()), 21111B k k --(,-())∴1124AB k k =(,),211122AP k k k =++(,), ∵PAB∠为钝角,P A B、、三点各不相同, ∴0,AP AB ⋅<即有1124k k ⋅(,)211122k k k ++(,)0<,112(2)k k ++21114(2)0k k k +<,111(2)(21)0k k k ++<∴ 111202k k <--<<或, ∴ 211(1)y k =+, 111202k k <--<<或, ∴111114y y <--<<-或. 9.已知椭圆C 的中心在原点,焦点在X 轴上,一条经过点3-(,且方向向量为25a =-(,的直线l交椭圆C 于A,B 两点,交X 轴于M 点,又2AM MB =.(1) 求直线l 的方程;(2) 求椭圆C 的长轴长的取值范围. 解(1): 直线l的方程为3y x =--)分析: “直线l 与椭圆C 有两个不同的交点”可以转化为一个关于a b ,的不等式, 向量等式2AM MB =可以转化为一个关于a b ,的等式.解(2):由方程组222222535,2,y x b x a y a b ⎧=---⎪⎨⎪+=⎩()可得222222244055b a y b y b a b +-+-=(). 设设1122(,),(,)A x y B x y , 则222212122222454455b b a b y y y y b a b a -+==++,.由2AM MB =可知, 122y y = ,∴ 21224545b y b a -=+,22228545b y b a =+, ∴ 222232545b b a =+()2222245b a b b a -+,∴ 222251409a a b a -=>-()∵222222244()4()()055b b a b a b =--+->, ∴ 22545a b +>,∴ 222225(1)0,9545,a a a a b ⎧->⎪-⎨⎪+>⎩ ∴ 22222225(1)0,95(1)55,9a a a a a a a ⎧->⎪⎪-⎨-⎪+>⎪-⎩219a <<.∵ 22,b a < ∴ 2222251449a a b a a -=<-(), ∴ 224199a a <>或, ∴ 24119a<<, 4113a <<,∴ 241223a <<,即椭圆C 的长轴长的取值范围为241(2,)3. 10.自点(0,1)A -向抛物线C:2y x =作切线AB,切点为B ,且点B 在第一象限,再过线段AB 的中点M 作直线l 与抛物线C 交于不同的两点E,F,直线AE,AF 分别交抛物线C 于P,Q 两点. (1) 求切线AB 的方程及切点B 的坐标; (2) 证明()PQAB R λλ=∈.解(1): 设切点B 的坐标为00(,)x y ,过点B 的切线的方程为20002()y x x x x =-+,∵ 切线过点(0,1)A -, ∴ 200012()x x x -=-+, 01x =,∵ 点B 在抛物线上, ∴ 01y =,∴ 切线AB 的方程为21y x =-, 切点B 的坐标为(1,1).分析: 即证明AB ∥PQ .(2) 证明: 由(1)可知, 线段AB 的中点M的坐标为1(,0)2,设直线l 的方程为1()2y k x =-, 222211223344(,),(,),(,),(,)E x x F x x P x x Q x x .由方程组21(),2,y k x y x ⎧=-⎪⎨⎪=⎩可得2102x mx m -+=, 故12121,2x x m x x m +==.2243434343(,)()(1,)PQ x x x x x x x x =--=-+.∵ A,E,P 三点共线, ∴ 2331x x +=2111x x +,131x x = , 同理241x x =,∴ 21211111()(1,)PQx x x x =-+=12121212122()(1,)(1,2)x xx x x x x x x x m-+-= 由(1,2)AB =可知, 122()()x x PQ AB R mλλ-==∈其中.11. 设双曲线22221(0,0)x y a b a b-=>>的右顶点为A, P 为双曲线上异于点A 的一个动点, 从A 引双曲线的渐近线的两条平行线与直线OP 分别交于Q 和R 两点.(1) 证明:无论P 点在什么位置,总有2OP OQ OR=⋅(O 为坐标原点);(2) 若以OP 为边长的正方形的面积等于双曲线的实,虚轴围成的矩形的面积,求双曲线的离心率的取值范围.(1) 证明: 设直线OP 的方程为y kx=, 直线AR 的方程为()by x a a=-, AQ 的方程为()by x a a=--.由方程组(),,b y x a ay kx ⎧=-⎪⎨⎪=⎩得 (,)ab kab R ak b ak b ----, ∴ OR =(,)ab kab ak b ak b ----,同理OQ =(,)ab kabak b ak b++,∴OQ OR⋅=(,)ab kab ak b ak b ----⋅(,)ab kab ak b ak b----=222222(1)a b k a k b +-.设(,)P m n ,由方程组22221,,x y a b y kx ⎧-=⎪⎨⎪=⎩得2m =22222a b b a k -,2n =222222k a b b a k -∴ 2OP =222222(1)a b k b a k+-. ∵ 直线OP 过原点, ∴ 2220ba k ->, ∴ 2OP OQ OR=⋅.(2) 解: 由题设知,222222(1)a b k b a k +-=4ab , 22240,4b ab k ab a -=>+又222b k a<, ∴ 2244b ab ab a-+22b a <, (恒成立))解得4a b <, ∴e >圆锥曲线的一个统一性质———由一道高考题引发出的思考题(2001年全国·理):设抛物线y 2=2px (p>0)的一个焦点为F ,经过点F 的直线交抛物线于A 、B 两点,点C 在抛物线的准线上,且BC ∥x 轴。