电介质陶瓷电介质陶瓷
陶瓷贴片电容各类电介质不同的区别
陶瓷电容器分类分类原因:依据材料之介电特性及产品之温度系数 (Temperature coefficient of capacitance,TCC)特性所定分为三大类。
介质材料分类:1类 (Class Ⅰ)或稱溫度補償型(temperature compensation)2类(Class Ⅱ)3类(Class Ⅲ)或稱半導體陶瓷電容器产品使用分类:温度补偿型高Q值C0G高频C0G 中高压型低感抗型片式排容1类(Class Ⅰ): C0G或称温度补偿型(temperature compensation),产品低介电系数,无论时间和温度如何改变,其电容量是极稳定的;正常电容量下有低介电损失及较小公差。
1类产品应用于精密计时电路、高频杂讯虑波、阻抗匹配、ESD/EMI(回声探测仪或电磁干扰)的限制。
2类( Class Ⅱ): X7R/X5R具有较高的介电常数,容量比1类电容器高,具有较稳定的温度特性,应用于容量范围广,稳定性要求不高的电路中,如隔直流、耦合、旁路、鉴频等电路中。
2类(Class Ⅱ):Z5U其温度特性介于X7R和Y5V之间,容量稳定性差,对温度、电压等条件较敏感;应用于要求大容量,使用温度范围接近于室温的旁路、耦合、低直流偏压等电路中。
2类(Class Ⅱ):Y5V是所有电容器中介电常数最大的电容器,但其容量稳定性较差,对温度、电压等条件较敏感;应用于要求大容量、温度变化不大的电路中。
3类(ClassⅢ):或稱半導體陶瓷電容器其电容量变化相似于2类,然而此型别在客户应用上是属于非常等级。
高频类:此类介质材料的电容器为1类电容器,包括通用型高频C0G电容器和温度补偿型高频电容器,其中C0G电容器电性能最稳定,几乎不随温度、电压、时间和变化而变化。
应用于低损耗、稳定性要求高的高频电路,如虑波器,振动器和计时电路中。
温度补偿型:温度系数系列,此为1类电容器,电容量的变化与温度呈线性变化;应用于工作温度变化较大,要求高的谐振电路中,起到温度补偿之用,例电视机中的谐振器。
电介质陶瓷材料的介电性能测试及性能优化
电介质陶瓷材料的介电性能测试及性能优化介电性能是电介质陶瓷材料的关键物理特性之一。
它衡量了材料在电场作用下的响应能力和电介质材料在电场中存储电能的能力。
了解和优化电介质材料的介电性能对于研发高性能电子器件,如电容器和电子陶瓷元件,具有重要意义。
本文将讨论电介质陶瓷材料的介电性能测试以及性能优化方法。
首先,介电性能测试是评估电介质陶瓷材料性能的关键步骤。
常用的测试方法包括介电常数(εr)和介电损耗(tanδ)的测量。
介电常数是材料在电场中存储电能的能力的衡量,它指示了材料对电场的响应程度。
介电损耗则表示了材料在电场中能量损失的程度。
这两个参数通常使用电桥或矢量网络分析仪进行测量。
通过测试介电常数和介电损耗,我们可以了解电介质陶瓷材料的电性能及其适用性。
其次,性能优化是提高电介质陶瓷材料应用效果的关键。
以下是一些优化方法:1. 材料组成与配比优化:通过调整陶瓷材料的成分和配比,可以改变其晶体结构和微观结构,从而影响材料的介电性能。
例如,添加掺杂剂或调整烧结工艺可以减小晶粒尺寸,提高晶界阻抗,从而降低介电损耗。
2. 烧结工艺优化:烧结过程对材料的微观结构和性能有重要影响。
通过优化烧结工艺参数,如温度、时间和压力等,可以改善材料的致密性、晶粒尺寸和晶界结构,从而改善介电性能。
3. 表面处理与界面设计:材料的表面和界面特性可以影响其介电性能。
通过表面处理、涂覆或界面调控等方法,可以改善材料的界面特性,提高其界面状态和界面粘结能力,从而提高介电性能。
4. 成品后处理:部分材料在制备过程中,存在一些缺陷,如氧化物含氧量不足等。
在成品后处理阶段,可以使用氧化、还原或烧结再处理等方法来优化电介质陶瓷材料的性能。
5. 添加纳米颗粒:添加纳米颗粒可以改变电介质陶瓷材料的晶体结构和微观结构,从而改善其介电性能。
纳米颗粒的添加可以增加晶界数量,减小晶界宽度,从而增加晶界阻抗,提高材料的介电常数和降低介电损耗。
此外,纳米颗粒的表面效应还可以增强材料的界面特性,提高电介质材料的性能。
介电陶瓷制备原理及应用
介电陶瓷制备原理及应用介电陶瓷是一种在电场作用下具有高电介质常数和低电导率的陶瓷材料。
其制备原理主要是通过合成、成型、烧结和后处理等步骤完成。
首先,介电陶瓷的合成主要依靠化学方法或物理方法。
化学方法一般是通过溶胶-凝胶法、水热法或共沉淀法等将金属离子与酸碱盐等反应生成介电陶瓷材料的前驱体。
而物理方法则是通过固相反应、熔融法或热反应合成所需的化合物。
第二步是成型。
常见的成型方法包括注塑成型、压片成型、涂覆成型和压坯成型等。
其中,注塑成型是一种常用的方法,通过将粉末与有机溶剂混合形成浆料,然后利用注塑机将浆料注入模具,最后通过烘干将浆料固化成形。
第三步是烧结。
通过高温烧结可以使得陶瓷晶体生长并形成致密的结构。
烧结温度和时间的选取主要根据材料的组成和烧结性能要求。
烧结过程中必须注意控制氧气分压和烧结温度,以保证陶瓷材料的物理性能。
最后,烧结后的介电陶瓷通常需要进行后处理,如热处理、压制、抛光和涂层等。
这些后处理工艺可以改善介电陶瓷的性能,增加材料的稳定性和耐久性。
介电陶瓷的应用非常广泛。
一方面,由于其高电介质常数和低电导率的特点,介电陶瓷常被应用于电容器、超声换能器和压电换能器等电子产品中。
另一方面,介电陶瓷具有良好的介电性能和化学稳定性,所以也常被用于制备传感器、滤波器和微波器件等。
此外,介电陶瓷还具有良好的机械性能和耐热性能,因此它们也被广泛应用于高温环境下的工业设备和航空航天器件中。
例如,介电陶瓷可用于制备氧化锆烧结体,用于航空航天中的热变形测量和高温压力传感器等。
总的来说,介电陶瓷制备原理主要包括合成、成型、烧结和后处理等步骤。
而其应用范围广泛,常用于电子产品、传感器、过滤器以及高温环境下的工业设备和航空航天器件等领域。
半导体电介质陶瓷详细介绍
半导体电介质陶瓷详细介绍半导体陶瓷资料的基础研讨、使用研讨、出产和使用的类型许多,是具有严重研讨含义和商业出产价值的现代蜂窝陶瓷载体资料。
由于晶界工程的研讨发展,许多基础研讨获得发展,新的陶瓷资料被研发出来,形成了共同的新方向和工业,惹起科技界和企业界的高度重视。
这些陶瓷的半导化是指将该陶瓷的晶相转变为n型或p型半导体,晶界则恰当绝缘。
半导化是出产半导体陶瓷电容器的要害工序,现以BaTiO3陶瓷的半导化为例进行评论,BaTiO3、SrTiO3及其固溶体是出产半导体陶瓷电容器的主要质料,这里以BaTiO3的半导化为例,要点评论半导化的方法和机理以及影响半导化的主要因素。
BaTiO3陶瓷半导化的方法和机理,BaTi03的禁带宽度为3eV,该陶瓷填料的室温体积电阻率约为10912)Ω·cm,很多的理沦研讨和试验研讨标明BaTiO3陶瓷半导化的方法主要有施主掺杂半导化和强迫复原半导化,施主掺杂半导化是使用离子半径与Ba2+附近的La3+、Y3+、Sb3+等三价离子置换Ba2+离子或用离子半径与Ti4+附近的Nb5+、Ta5+等五价离子置换Ti4+离子进行掺杂,经必定的工艺可制备出电阻率为10(3)一l0(5)Ω·cm或更低的n型EaTi03半导体陶瓷。
其电阻率与施主的参加浓度有亲近的联系,施主参加浓度偏大或偏小时,这种半导体陶瓷资料的电阻率均有所进步。
普通,详细的施主断定后,当其参加浓度为某一特别量时,BaTi03陶瓷资料的电阻率最小。
这种陶瓷半导体是经过施主掺杂由电价操控而得到的,普通称之为价控半导体。
普通施主掺杂陶瓷异鞍环的浓度应严厉约束在较狭隘的规模,超越该极限,跟着掺杂浓度进步或减小,BaTiO3陶瓷资料的电阻率都敏捷增大,能够成为电阻率很高的绝缘体。
BaTiO3陶瓷施主掺杂半导化所用为高纯度的质料时,施主掺杂的浓度约束在一个较小的规模内,在空气中烧成即可完成半导化。
留选用化学纯质料或工业纯质料,施主掺杂的浓度利配方中其他参加物的浓度必须依据质料的详细情况进行相应的调整。
工业陶瓷的种类
工业陶瓷的种类
工业陶瓷是指用于工业制造和应用的陶瓷材料。
根据材料的组成和特性,工业陶瓷可以分为以下几种常见的类型:
1、结构陶瓷:具有高强度、耐磨性和耐火性能,常用于制作耐火材料、冶金工业用耐磨砖、陶瓷刀具等。
2、电子陶瓷:具有优良的绝缘性能和电介质性能,常用于制作电容器、电感器、磁芯等。
3、化学陶瓷:具有良好的耐酸碱和耐腐蚀性能,常用于制作化工装置、化学反应器、储罐等。
4、磁性陶瓷:具有磁性能,常用于制作磁铁、传感器、变压器等。
5、光学陶瓷:具有优异的光学性能,常用于制作激光器、光纤通信器件、光学仪器等。
6、陶瓷涂层材料:常用于提高金属表面的耐磨、耐腐蚀和隔热性能,常见的有氧化铝涂层、碳化硅涂层等。
- 1 -。
先进陶瓷工艺学
先进陶瓷工艺学1、先进陶瓷是“采用高度精选或合成的化工原料,具有能精确控制的化学组成,按照便于控制的制造技术加工的、便于进行结构设计,并且有优异特性的陶瓷”2、功能陶瓷:指具有电、磁、光、声、超导、化学、生物等特性,且具有相互转化功能的一类陶瓷。
3、非氧化物陶瓷是包括金属的碳化物、氮化物、硅化物和硼化物等陶瓷的总称4、电介质陶瓷:电阻率大于108Ω·m的陶瓷,能继承受较强电压而不被击穿。
分为:绝缘陶瓷电容器陶瓷压电、热释电、铁电陶瓷5、铁电陶瓷:主晶相为铁电体的陶瓷材料。
6、热释电陶瓷:某些晶体中还可以由于温度变化而产生电极化的陶瓷7、敏感陶瓷:当作用于这些材料制作的元件上的某一个外界条件,如温度、压力、湿度、气氛、电场、光及射线等改变时,能引起该材料某种物理性能的变化,从而能从这种元件上准确迅速地获得某种有用的信号。
8、“移峰效应”和“压峰效应”在铁电体中引入某种添加物生成固溶体,改变原来的晶胞参数和离子间的相互联系,使居里点向低温或高温方向移动,这就是“移峰效应”。
其目的是为了在工作情况下(室温附近)材料的介电常数和温度关系尽可能平缓,即要求居里点远离室温温度,如加入PbTiO3可使BaTiO3居里点升高。
压峰效应是为了降低居里点处的介电常数的峰值,即降低ε-T非线性,也使工作状态相应于ε-T平缓区。
例如在BaTiO3中加入CaTiO3可使居里峰值下降。
常用的压峰剂(或称展宽剂)为非铁电体。
如在BaTiO3加入Bi2/3SnO3,其居里点几乎完全消失,显示出直线性的温度特性,可认为是加入非铁电体后,破坏了原来的内电场,使自发极化减弱,即铁电性减小。
9、“软性”添加物:可以使陶瓷性能往“软”的方面变化,也就是提高弹性柔顺系数S,降低Qm,提高ε,增大tanδ,提高kp,降低EC,提高ρv等。
“硬性”添加物是指进入A位置的K+、Na+、以及进入B位置的Fe2+、Co2+、Mn2+、Ni2+、Mg2+、Al3+、Ga3+、In3+、Cr3+、Sc3+等金属离子。
功能陶瓷 电介质陶瓷和绝缘陶瓷 中介 微波介质陶瓷讲解
5
5
5.5 微波介质陶瓷
实现微波设备的小型化、高稳定性和廉价的途径是微波电
路的集成化。由于金属谐振腔和金属波导体积和重量过大,
大大限制了微波集成电路的发展,而微波介质陶瓷制作的
谐振器与微波管、微带线等构成的微波混合集成电路,可
使器件尺寸达到毫米量级。这就使微波陶瓷成为实现微波 控制功能的基础和关键材料。它的应用大致分为两个方面. 从而对性能也有两种不同要求: 一种是用于介质谐振器(dielectric resonator )DR的功能 陶瓷,其中用于包括带通(阻)滤波器(filters )、分频器、 耿氏二极管、双工器和多工器、调制解调器(modem)等 固体振荡器(oscillators)中的稳倾元件;
P.R.China: 6 companys mainly
浙江正原电气股份有限公司、潮州三环(集团)股份有限公司、景华电子有限责任 公司(999厂)、苏州捷嘉电子有限公司、浙江嘉康电子有限公司、福建南安讯通电 子公司、高斯贝尔公司、嘉兴佳利电子有限公司、西安广芯电子科技有限公司、 张家港燦勤电子元件有限公司、武汉凡谷电子技术股份有限公司、江苏江佳电子 股份有限公司
11
11
1.4.5 微波介质陶瓷
最简单的电介质谐振器是一个相对介电常数为εr的陶瓷圆 柱体,其εr值很高,足以使得电介质-空气界面上反射的 电磁波仍维持在体腔内。
Avoidance Sensors Dielectric Resonator Antennas Motion Detectors
9
9
Famous company
Japan: Murata村田制作所 Germany: EPCOS(S+M) USA: Skyworks Solutions Inc. 陶瓷分部 Trans-Tech USA: Narda Microwave-West Mini-Circuits England: Morgan Electro Ceramics
陶瓷材料的电学性能研究
陶瓷材料的电学性能研究随着科技的发展和应用的广泛,人们对材料的要求也变得越来越高。
陶瓷材料作为一种重要的结构材料,在电子、能源等领域扮演着重要角色。
本文将探讨陶瓷材料的电学性能研究,着重介绍其导电性和电介质性能。
一、导电性研究陶瓷材料的导电性研究主要包括导电机理、导电性能评价以及改善导电性能的方式等方面。
其中,陶瓷的导电机理是了解其导电性能的基础。
根据陶瓷导电机理的不同,可以将陶瓷导电性分为电子导电和离子导电两种类型。
电子导电是指通过自由电子在材料中传导电流的过程。
金属陶瓷是典型的电子导电材料,其导电机制主要是通过导带中的自由电子,而陶瓷晶体结构中的价电子是与禁带中的束缚能级联系密切的。
离子导电则是指离子在材料中的迁移导致电流产生的现象。
氧化物陶瓷常常表现出较好的离子导电性能,这对于电解物质、固体氧化物燃料电池等电化学器件的研究具有重要意义。
在导电性能的评价中,关注的焦点主要是电阻率和导电机理。
电阻率是导体材料电阻特性的量化指标。
通常,电阻率越低,材料导电性能越好。
导电机理的研究能够进一步深入了解材料本质,为改善导电性能提供理论基础。
提高陶瓷材料导电性能的方式有很多。
一种常见的方法是掺杂。
通过在陶瓷导体中引入适量的杂质原子,可以调整导体的电荷密度以改变其导电性能。
此外,还可以通过物理或化学方法制备高可导陶瓷导体,例如利用溶胶-凝胶法合成导电硅氧烷材料等。
二、电介质性能研究与导电性研究相比,电介质性能研究更加广泛和复杂。
电介质是指不导电的材料,在电场作用下能够储存电荷和产生电位差的能力。
电介质性能的研究主要包括介电常数、介电损耗、耐电压和能量储存等方面。
介电常数是表征电介质储存电荷能力的一个重要参数。
高介电常数意味着电介质能够储存更多的电荷,并具有更高的电容效果。
而介电损耗则是衡量电介质的能量损耗情况。
通常情况下,介电损耗越小,电介质材料越适合用于电子器件。
耐电压是指电介质能够承受的最大电场强度。
介电材料
• (1)高的体积电阻率(室温下大于1012Ωm)和高介电强 度(>104kVm-1),以减少漏导损耗和承受较高的电压。
• (2)高频电场下的介电损耗要小(tanδ一般在2×10-4~ 9×10-3范围内)。介电损耗大,会造成材料发热,使整机 温度升高,影响工作。另外,还可能造成一系列附加的衰 减现象。
第一章
电介质陶瓷
第一节 电介质陶瓷
• 电介质陶瓷是指电阻率大于108Ωm的陶瓷材料,能承受较强 的电场而不被击穿。按其在电场中的极化特性,可分为电绝缘 陶瓷和电容器陶瓷。随着材料科学的发展,在这类材料中又相 继发现了压电、铁电和热释电等性能,因此电介质陶瓷作为功 能陶瓷又在传感、电声和电光技术等领域得到广泛应用。
2、滑石的相变 120~200℃,脱去吸附水 1000℃,脱去结构水,转变为偏硅酸镁
3MgO 4SiO2 H 2O 3(MgO SiO2 ) SiO2 H 2O
1557℃,再次失去Si,生成镁橄榄石
2(MgO SiO2 ) 2MgO SiO2 SiO2
§ 1-2 典型低介装置瓷
• ( 3)机械强度要高,因为装置瓷在使用时,一般都要承 受较大的机械负荷。通常抗弯强度为 45~300Mpa,抗压 强度为400~2000Mpa。 • (4)良好的化学稳定性,能耐风化、耐水、耐化学腐蚀, 不致性能老化。
陶瓷基片
电子用陶瓷零件
陶瓷封装
• 电绝缘陶瓷材料按化学组成分为氧化物系和非氧化物系两 大类。氧化物系主要有Al2O3和MgO等电绝缘陶瓷,非氧 化物系主要有氮化物陶瓷,如Si3N4、BN、AlN等。大量 应用的主要有以下几个多元系统陶瓷:
• BaO-Al2O3-SiO2 系统; Al2O3-SiO2 系统; MgO- Al2O3-SiO2 系统;CaO- Al2O3-SiO2系统;ZrO2- Al2O3-SiO2系统。
电介质陶瓷介电性能测试
串联和并联等效方式选择
1,被测电容器的实际等效电路首先可以生产厂 的技术规定或某些标准的规定得到; 2,如果无法得到规定或标准,可以两个不同的 测试频率下损耗因子的变化性来决定:若频率 升高而损耗增加,则应选用串联等效电路(上 表公式中, 串联方式D与频率成正比) ;若频 率升高而损耗减小,则应选用并联等效电路 (并联方式D与频率成反比)。对于电感来说, 情况正好与电容相反。
短路校正
按下“MeasOpen”右边的功能键,开始短 路校正。屏幕下方显示“Short Measurement in progress”,开始短路校 正。 等待几分钟时间,屏幕下方显示“Saving Data”、“Short Measurement Complete”。 短路校正完成。
2,厦门宇光AI708P控温及测温系统
实验步骤
启动测试软件-选择热电偶测量-选择开 启仪器-选择数据自动存盘-加载循环测 试脚本(测量频率1kHz, 4kHz, 16kHz, 64kHz, 256kHz)-选择执行脚本。 仪器自动从室温到180oC在不同温度点, 改变频率对BaTiO3陶瓷电容及损耗进行 测量。
实验步骤
实验结果第一列为频率,第二列为电容, 第三列为损耗,第四列为温度; 从体积参数用平板电容器公式可以计算 BaTiO3陶瓷的介电常数,获得BaTiO3介 电常数及损耗随温度和频率的变化。
串联和并联等效方式
串联和并联等效方式
有几个电容器,其串联等效电容均为Cs=0.1μF, 而损耗分别为D1=0.0100,D2=0.1000, D3=1.0000,根据上表中公式,并联等效电容 应为: Cpl=0.09999μF Cp2=0.09901μF Cp3=0.05μF 由此可见,当D小于0.0 l时,Cs与Cp基本相同, 而大于0.0 l时,将有明显的区别,如D=0.1时, 两者相差l%,而D=1时,两者差了一倍。
第8章 电介质陶瓷制备原理及工艺
一、电介质瓷料制备原理 二、制造工艺控制 三、纳米晶材料的软化学制备技术
一、电介质瓷料制备原理
1.1 电介质瓷原料 1.2 原料的颗粒度与粉碎 1.3 颗粒表面能与粉料的活化 1.4 粉料粒度的测定 1.5 低介装置瓷瓷料制备
电介质陶瓷的优良特性主要决定于:晶相结构、 制备工艺 例如:ZnO压敏半导瓷 主晶相性能方面:六方纤锌矿结构,本征特性 为半导性。 制备工艺方面:ZnO压敏半导瓷对外加电压有 一定的响应,其机理主要是晶界效应,而晶界 在很大程度上由制备工艺决定。例如生烧使晶 粒过小,主晶相合成不完全;过烧产生二次晶 使个别晶粒粗大,它们均使ZnO压敏半导瓷压 敏性能变坏。 一般陶瓷工艺的主要流程:原料准备—坯体成 型—烧结—瓷件加工
(3)振磨机的粉碎程度 当进料尺寸小于250µm,则成品料平均细度 可达2~5µm。球磨与振磨比较其粉碎粒度 (超细磨<2µm )要小得多,效率也较低。
1.2.5 砂磨工艺
棒钉可调卧式砂磨机 立式砂磨机
(1)影响砂磨效率的主要因素 砂磨主要以剪切、滚碾磨擦为主,故中轴转速、 磨体直径(指球形)及数量对砂磨效率具有重要 影响。 磨球直径:一般为φ2~φ5mm,以φ2~φ3mm 为佳。 磨球数量:比球磨、振磨要多。 转速:一般1000转/分。
(2)振磨工艺优缺点 优点:粉料在单位时间内受研磨体的冲击与研磨 作用次数极大,其作用次数成千倍于球磨机,因 此粉碎效率很高。粉碎粒度细,混入杂质较少。 一方面粉碎是靠疲劳破坏而粉碎,另一方面由于 研磨效率高,所用时间短,因此减少了混入杂质 的可能性。 缺点:粒形较差,呈棱角,混合效果及均匀度较 球磨差。振动噪音大,机械零件易疲劳而损坏, 装料尺寸应小于250µm(60目筛)。
高性能陶瓷电介质材料的制备与性能研究
高性能陶瓷电介质材料的制备与性能研究引言:随着科技的不断进步,陶瓷材料在电子领域中被广泛应用。
其中,高性能陶瓷电介质材料成为了研究的热点之一。
本文旨在探讨高性能陶瓷电介质材料的制备方法以及其特殊的性能研究。
一、高性能陶瓷电介质材料制备的常用方法现代高性能陶瓷电介质材料的制备方法多种多样,其中主要包括下面几种:1. 化学合成法:该方法通过在适当的反应条件下,通过化学反应制备材料。
常见的化学合成法有溶胶-凝胶、气相沉积等。
2. 固相法:该方法是通过将原料混合,将混合物进行高温处理得到陶瓷材料。
固相法是一种相对简单、成本较低的制备方式。
3. 物理法:该方法利用物理效应,如溶液混合、溶剂蒸发等方式进行材料的制备。
物理法制备的陶瓷材料具有均匀性好、成分均匀等特点。
二、高性能陶瓷电介质材料的性能研究1. 介电性能:陶瓷电介质材料的主要性能之一就是介电性能。
该性能是指材料在电场作用下的电介质响应能力。
研究人员会通过测定材料的介电常数、损耗角正切等参数来评估和探索其电介质性能。
2. 结构性能:陶瓷材料的结构对其性能有重要影响。
通过研究其晶体结构、晶格畸变、材料纯度等参数,可以了解材料的结构性能,进而优化材料的性能。
3. 热稳定性:陶瓷材料在实际应用中需要能够在高温环境下保持稳定的性能。
因此,研究人员需要通过热稳定性测试来评估材料的耐热性,以求在应用中实现高性能。
三、高性能陶瓷电介质材料应用领域的研究进展1. 电容器领域:高性能陶瓷电介质材料在电容器领域具有广泛的应用。
通过研究材料的电介质性能,可以提高电容器的电能存储密度和效率,满足电子设备对电能储存需求的提高。
2. 传感器领域:陶瓷电介质材料具有良好的敏感性和稳定性,因此在传感器领域有着广泛的应用。
通过对材料性能的研究,可以实现对物理量、化学品种等信息的高灵敏度检测。
3. 储能领域:随着清洁能源的发展,高性能陶瓷电介质材料在储能领域应用的研究也逐渐引起人们的关注。
功能陶瓷--电介质陶瓷和绝缘陶瓷-中介-微波介质陶瓷概要
浙江正原电气股份有限公司、潮州三环(集团)股份有限公司、景华电子有限责任 公司(999厂)、苏州捷嘉电子有限公司、浙江嘉康电子有限公司、福建南安讯通电 子公司、高斯贝尔公司、嘉兴佳利电子有限公司、西安广芯电子科技有限公司、 张家港燦勤电子元件有限公司、武汉凡谷电子技术股份有限公司、江苏江佳电子 股份有限公司
Dielectric Filter
7
7
在微波电路中的应用主要有以下几方面: 用作微波电路的介质基片 起着电路元器件及线路的承载、支撑和绝缘作用; 用作微波电路的电容器 起着电路或元件之间的耦合及储能作用; 用作微波电路的介质天线 起着集中吸收储存电磁波能量的作用; 用作微波电路的介质波导 起着导引电磁波沿一定方向传播的作用; 用作微波电路的介质谐振器件(最主要应用) 起着类似于一般电子线路中LC谐振电路的作用
微波谐振器的频率特征曲线
17
17
1.4.5 微波介质陶瓷
在微波频段 εr基本上为定值,不随频率而变化。 要使微波介质陶瓷具有高εr值。除需考虑微观晶相类型及 其组合外,应在工艺上保证晶粒生长充分,结构致密。
18
18
在微波频段,品质因数Q值与微波频率f有关,因此微波 介质陶瓷材料的介电损耗与品质因数则可表示为:
27
测试频率<1GHz,可用阻抗分析仪如HP4294A
28
28
1.4.5 微波介质陶瓷
Q值的测量
样品Q值可以通过测量TE011, 谐振峰的宽度计算出来。
Q fr f
相 对
△f为3dB频带宽度(BW)
辐 射
功
率
τf值的测量
f
f2 f1 f1 T2 T1
《电介质陶瓷》课件
断裂韧性
衡量电介质陶瓷抗裂纹扩展能力的物 理量。断裂韧性好的电介质陶瓷在受 到裂纹作用时不易破裂。
热性能
热导率
衡量电介质陶瓷导热性能的物理量。热 导率越大,电介质陶瓷的导热性能越好
。
耐热性
衡量电介质陶瓷在高温下稳定性的物 理量。耐热性好的电介质陶瓷在高温
下不易分解和氧化。
热膨胀系数
衡量电介质陶瓷受热后尺寸变化的物 理量。热膨胀系数的大小影响陶瓷与 其它材料的匹配程度。
气氛稳定性
衡量电介质陶瓷在特定气氛下稳定性的物理量。气氛稳定性好的电 介质陶瓷在特定气氛下不易发生化学反应或性能变化。
03
电介质陶瓷的制备工艺
粉体制备
固相法
通过物理或化学手段将原料混合 、研磨、破碎,最终得到所需粒 度的粉体。
液相法
通过溶胶-凝胶法、化学沉淀法等 手段将原料转化为溶液,再通过 热处理得到粉体。
表面改性
通过物理或化学手段对陶瓷表面进行处理,改变其表面形态和化学性质,以提高其润湿性、粘结性等 性能。Leabharlann 04电介质陶瓷的应用实例
高压电容器
高压电容器是一种能够储存大量电荷的电子元件,广泛应用于电力系统中 。
电介质陶瓷作为高压电容器的介质材料,具有高介电常数、低损耗、温度 稳定性好等优点,能够提高电容器的储能密度和可靠性。
烧结工艺
高温烧结
在高温下使陶瓷胚体中的 颗粒相互熔融、扩散,形 成致密的陶瓷材料。
低温烧结
在较低的温度下使陶瓷胚 体中的颗粒相互熔融、扩 散,形成致密的陶瓷材料 。
烧结助剂
在烧结过程中添加适量的 烧结助剂,以促进陶瓷材 料的致密化。
表面处理
表面涂层
在陶瓷表面涂覆一层具有特殊功能的涂层,以提高其耐腐蚀、耐磨损等性能。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
电绝缘陶瓷按化学组成可分为氧化物系(如氧化 铝瓷、氧化镁瓷等)和非氧化物系(如氮化硅瓷、 氮化硼瓷等)两大类。除上述多晶陶瓷外,近年 来发展了单晶电绝缘陶瓷 如人工合成云母 人 来发展了单晶电绝缘陶瓷,如人工合成云母、人 造蓝宝石、尖晶石、氧化铍及石英等。
四、 电绝缘陶瓷生产工艺、性能及应用
(一)刚玉-莫来石瓷及莫来石瓷 1、概述 莫来石瓷是以莫来石(3Al2O3·2SiO2)和石英(SiO2)为 主晶相的陶瓷,它是应用最早的高频装置瓷。
2、莫来石的生成 (1)一次莫来石的生成 偏高岭石( Al2O3·2SiO2 )或硅线石( Al2O3·SiO2 )在高 温下按下式分解:
1200℃
3(Al2O3·2SiO2)
1300~1500℃
3Al2O3·2SiO2+4SiO2 3 Al2O3·2SiO2+4SiO2
3(Al2O3·SiO2)
6.2 电介质陶瓷
一、概念 二、一般特性 般特性 1、电绝缘与极化 2、介电损耗 三、性能与分类 四、电绝缘陶瓷生产工艺、性能及应用 五、非铁电电容器陶瓷 六、铁电电容器陶瓷 七、反铁电电容器陶瓷
一 一、 概念
电介质陶瓷是指电阻率大于108Ω·m的陶瓷材料, 能承受较强的电场而不被击穿。 按其在电场中的极化特性,可分为电绝缘陶瓷 按其在电场中的极化特性 可分为电绝缘陶瓷 (insulation ceramics)和电容器陶瓷 (capacitor ceramics;condenser ceramics)。 随着材料科学的发展 在 类材料中又相继发现了 随着材料科学的发展,在这类材料中又相继发现了 压电、热释电和铁电等性能。
三、 、 性能与分类
根据体积电阻率、介电常数和介电损耗等参数的 不同 可把电介质陶瓷分为电绝缘陶瓷即装置陶 不同,可把电介质陶瓷分为电绝缘陶瓷即装置陶 瓷和电容器陶瓷。此外,某些具有特殊性质,如 压电性、铁电性及热释电性的电介质陶瓷,按性 质分别称为压电陶瓷、热释电陶瓷和铁电陶瓷。 (一)电绝缘陶瓷 电绝缘陶瓷又称装置陶瓷,是在电子设备中作为 电绝缘陶瓷又称装置陶瓷 是在电子设备中作为 安装、固定、支撑、保护、绝缘以及连接各种无 线电元件及器件的陶瓷材料 线电元件及器件的陶瓷材料。
由于电荷的移动,造成了正负电荷中心不重合,在 电介质陶瓷内部形成偶极矩,产生了极化。在与外 电场垂直的电介质表面上出现了感应电荷Q,这种 感应电荷不能自由迁移,称之为束缚电荷。束缚电 荷的面密度即为极化强度P。
静电场中介质的极化
对于平板型真空电容器,极板间无电介质存在, 当电场强度为E时,其表面的束缚电荷为Q0,电 容为C0,在真空中插入电介质陶瓷时,则束缚电 荷增为Q,电容也增至C。评价同一电场下材料的 极化强度,可用材料的相对介电常数εr 表示。用 下式计算: Q / Q0 = C / C0 = εr 相对介电常数越大,极化强度越大,即电介质陶 瓷表面的束缚电荷面密度大。用于制作陶瓷电容 器的材料, εr越大,电容量越高,相同容量时, 电容器的体积可以做的更小。(C/A= εr /d)
刚玉-莫来石瓷的结晶相不是单一的刚玉,而是共存有莫来 石,因此称为刚玉-莫来石瓷。其主要原料是粘土、氧化铝 和碳酸盐。刚玉-莫来石瓷的电性能较好,机械强度较高, 热稳定性能好 热稳定性能好,工艺性能好,烧结温度不高,且烧结温度 艺性能好 烧结温度不高 烧结温度 范围宽。可用来制造高频高压绝缘子,线圈骨架,电容器 外壳及其他绝缘支柱,高益广泛,有 时还要求具有耐机械力冲击和热冲击的性能 如 时还要求具有耐机械力冲击和热冲击的性能。如 高频装置瓷,除要求介质损耗小外,还要求热膨 胀系数小 热导率高 能承受较大的热冲击 作 胀系数小,热导率高,能承受较大的热冲击。作 为集成电路的基片材料,要求高导热系数,合适 的热膨胀系数 平整 高表面光洁度及易镀膜或 的热膨胀系数、平整、高表面光洁度及易镀膜或 表面金属化。
二、 一般特性 电介质陶瓷在静电场或交变电场中使用,其一般特 性是电绝缘性 极化(polarization)和介电损耗 性是电绝缘性、极化( (dielectric loss)。 1、电绝缘与极化 电绝缘与极化 电介质陶瓷中的分子正负电荷在弱电场的作用下, 虽然正电荷沿电场方向移动,负电荷逆电场方向移 动,但它们并不能挣脱彼此的束缚而形成电流,因 此具有较高的体积电阻率,具有绝缘性。
这种从原料矿物高温分解直接生成的莫来石称为一次莫来石。
(2) ( )二次莫来石的生成 次莫来石的 成 一次莫来石生成的同时,还伴生游离石英。石英有多晶转变, 对瓷质不利,在生产高铝瓷时要增加 Al2O3 成分,使之与游 离石英起反应生成莫来石 这时所生成的莫来石称为二次莫 离石英起反应生成莫来石,这时所生成的莫来石称为二次莫 来石。
2、介电损耗
电介质在电场作用下,把部分电能转变成热能使介质发 电介质在电场作用下 把部分电能转变成热能使介质发 热,在单位时间内因发热而消耗的能量称为损耗功率或 简称为介电损耗。常用tgδ表示,其值越大,损耗越大, 其中δ称为介质损耗角。 实际中所使用的电绝缘材料都不是完全理想的电介质, 其电阻不是无穷大的。在外电场的作用下,总有 些带 其电阻不是无穷大的。在外电场的作用下,总有一些带 电质点会发生移动而引起漏导电流,漏导电流流经介质 时使介质发热而损耗了电能。这种因电导而引起的介质 损耗称为“漏导损耗”。 损耗称为“漏导损耗”
作为装置陶瓷要求具备以下性质: (1)高的体积电阻率(室温下,大于1012Ω·m )和高介电 强度(大于104 kV/m)。以减少漏导损耗和承受较高的 电压。 电压 (2)介电常数小(常小于9)。可以减少不必要的分布电 容值,避免在线路中产生恶劣的影响,从而保证整机的 质量。 (3)高频电场下的介电损耗要小。介电损耗大会造成材料 发热 使整机温度升高 影响工作 发热,使整机温度升高,影响工作。 (4)机械强度要高,通常抗弯曲强度为45~300MPa,抗压 强度为400 400~2000MPa 2000MPa。 (5)良好的化学稳定性。能耐风化、耐水、耐化学腐蚀, 不致于性能老化。