微积分重要公式及概念
微积分基本公式16个
微积分基本公式16个1. 微分:微分是数学中最重要的概念之一,它指的是在一定时间内几何形状的变化率。
可以理解为小步长地移动拟合函数,接近曲线本身。
可以表示为\frac{dy}{dx} 或f'(x) 。
2. 泰勒公式:泰勒公式是一个重要的微积分工具,它可以在某一特定点附近对任意连续函数进行展开,也就是说任意设定一个位置x0,可以根据它附近的数值向量求出函数在该位置的平均值。
可以用公式表示为:f(x) = f(x_0) + f'(x_0)(x-x_0) + \frac{f''(x_0)(x-x_0)^2}{2!} + \frac{f^{n}(x_0)(x-x_0)^n}{n!} + ...3. 高斯积分公式:高斯积分是指将函数抽象为一次多项式曲线,采用指数型或线性型积分方法求解积分。
它可以用公式f(x)=\sum_{i=0}^n a_i x^i 表示,其中a_i为积分下限、上限和积分点x_i处函数值相乘所得到的系数。
4. 黎曼积分:黎曼积分是一种常用的积分方法,它通过对连续函数求和,来确定函数在给定区间上的定积分。
可以用公式表示为:\int_{a}^{b}f(x)dx=\sum_{i=1}^{n}f(x_i)\Delta x_i ,其中n为梯形的节点数。
5. Stokes公式:Stokes公式是一种将多变量函数投影到多方向进行积分的方法,可以用公式表示为:\int_{\Omega}\nabla\times{\bf F} dA =\int_{\partial\Omega}{\bf F}\cdot{\bf n}dS,其中\nabla\times{\bf F} 为梯度矢量场,\partial\Omega 为边界,{\bfn}dS 为单位向量与边界面积的乘积。
6. Γ函数:Γ函数是一种重要的数学函数,通常用来表示非负整数的排列组合,也可以表示实数的阶乘,可以用公式表示为:\Gamma(x)=\int_0^{\infty}t^{x-1}e^{-t}dt7. 方阵的行列式:方阵的行列式是指一个n阶矩阵的行列式,可以用公式表示为:D= |a_{i,j}| = \begin{vmatrix} a_{1,1} & a_{1,2} & ... & a_{1,n} \\ a_{2,1} & a_{2,2} & ... & a_{2,n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n,1} & a_{n,2} & ... & a_{n,n} \end{vmatrix} ,其中a_{i,j} 为矩阵中的元素。
微积分常用公式及运算法则
微积分常用公式及运算法则1.调和级数:调和级数为H(n)=1+1/2+1/3+...+1/n,其中n为正整数。
它是发散级数,在计算机科学和数学中都有重要应用。
2.多项式级数:多项式级数为f(x)=a0+a1x+a2x^2+a3x^3+...。
其中a0、a1、a2是常数系数,x是变量。
多项式级数可以直接求和,也可以使用其他方法进行求和。
3.幂级数:幂级数为f(x)=c0+c1(x-a)+c2(x-a)^2+c3(x-a)^3+...。
其中c0、c1、c2是常数系数,a是常数。
幂级数可以表示为基于常数系数和常数a的级数。
4.泰勒级数:在微积分中,泰勒级数是一种用函数的高阶导数来逼近函数的方法。
泰勒级数可以将函数表示为一个无限级数。
5.泰勒公式:泰勒公式是泰勒级数的具体表达形式。
泰勒公式可以将函数在其中一点的值表示为该点的函数值和函数的各阶导数值的线性组合。
6.均值定理:均值定理是微积分中的重要定理,它指出在其中一区间上,连续函数的平均变化率等于该区间内其中一点的瞬时变化率。
7.拉格朗日中值定理:拉格朗日中值定理是微积分中的一类中值定理,它指出在其中一区间上,连续函数的导数必在其中一区间内的其中一点等于函数在该区间两个端点的斜率。
8.柯西中值定理:柯西中值定理是微积分中的一类中值定理,它指出在其中一区间上,连续函数的导数必在其中一区间内的其中一点等于函数在该区间两个端点的斜率。
9.极值点:极值点是函数在其中一区间内的最大值点或最小值点。
极值点可以使用导数的符号和戴布尔不等式来判断。
10.弧长:弧长是曲线上的一段长度。
计算曲线的弧长可以使用微积分的方法,如积分的方法。
11.曲率:曲率是表示曲线弯曲程度的一个数值。
曲率可以使用导数和二阶导数计算。
12.方向角:方向角是表示曲线在其中一点的切线方向的角度。
方向角可以使用导数计算。
微积分定理和公式
一、函数【定义 1.1】 设在某一变化过程中有两个变量x 和y ,若对非空集合D 中的每一点x ,都按照某一对应规则f ,有惟一确定的实数y 与之相对应,则称y 是x 的函数,记作.),(D x x f y ∈=x 称为自变量,y 称为因变量,D 称为函数的定义域,y 的取值范围即集合{}D x x f y y ∈=),(|称为函数的值域.xoy 平面上点的集合{}D x x f y y x ∈=),(|),(称为函数)(x f y =的图形.定义域D (或记f D )与对应法则f 是确定函数的两个要素.因此称两个函数相同是指它们的定义域与对应法则都相同.(二)函数的几何特性1.单调性(1)【定义1.2】 设函数)(x f 在实数集D 上有定义,对于D 内任意两点21,x x ,当 1x <2x 时,若总有)(1x f ≤)(2x f 成立,则称D x f 在)(内单调递增(或单增);若总有 )(1x f <)(2x f 成立,则称)(x f 在D 内严格单增,严格单增也是单增.当)(x f 在D 内单调递增时,又称D x f 是)(内的单调递增函数.单调递增或单调递减函数统称为单调函数.2.有界性【定义1.3】 设函数内有定义在集合D x f )(,若存在实数M >0,使得对任意D x ∈,都有|)(|x f ≤M ,则称)(x f 在D 内有界,或称)(x f 为D 内的有界函数.【定义 1.4】 设函数内有定义在集合D x f )(,若对任意的实数M >0,总可以找到一D x ∈,使得|)(|x f >M ,则称)(x f 在D 内无界,或称)(x f 为D 内的无界函数.【定义 1.5】 设函数)(x f 在一个关于原点对称的集合内有定义,若对任意D x ∈,都有))()()(()(x f x f x f x f =--=-或,则称)(x f 为D 内的奇(偶)函数.奇函数的图形关于原点对称,当)(x f 为连续的函数时,)(x f =0,即)(x f 的图形过原点.偶函数的图形关于y 轴对称.关于奇偶函数有如下的运算规律:设)()(21x f x f ±为奇函数,)(),(21y g x g 为偶函数,则)()(21x f x f ±为奇函数;)()(21x g x g ±为偶函数;)()(11x g x f ±非奇偶函数;)()(11x g x f ⋅为奇函数;)()(),()(2121x g x g x f x f ⋅⋅均为偶函数.常数C 是偶函数,因此,奇函数加非零常数后不再是奇函数了.利用函数奇偶性可以简化定积分的计算.对研究函数的单调性、函数作图都有很大帮助.4.周期性【定义 1.6】 设函数内有定义在集合D d x f )(,如果存在非零常数T,使得对任意D x ∈,恒有)()(x f T x f =+成立,则称)(x f 为周期函数.满足上式的最小正数T,称为)(x f 的基本周期,简称周期.我们熟知的三角函数为周期函数(考纲不要求),除此以外知之甚少.][x x y -=是以1为周期的周期函数.][x y =与][x x y -=的图形分别如图1-1(a)和图1-1(b)所示.(三)初等函数1.基本初等函数(1)常数函数 C y =,定义域为(-∞,+∞),图形为平行于x 轴的直线.在y 轴上的截距为c .(2)幂函数 αx y =,其定义域随着α的不同而变化.但不论α取何值,总在(1,+∞)内有定义,且图形过点(1,1).当α>0时,函数图形过原点(图1-2)(a ) (b )图1-2(3)指数函数 )1,0(≠=ααα xy ,其定义域为(-∞,+∞).当0<α<1时,函数严格单调递减.当α>1时,函数严格单调递增.子数图形过点(0,1).微积分中经常用到以e 为底的指数函数,即x e y =(图1-3)(4)对数函数 )1,0(log ≠=ααα x y ,其定义域为(1,+∞),它与x y α=互为反函数.微积分中常用到以e 为底的对数,记作nx y 1=,称为自然对数.对数函数的图形过点(1,0)(图1-4)(图1-3) (图1-4)另有两类基本初等函数:三角函数与反三角函数,不在考纲之内.对基本初等函数的特性和图形要熟练地掌握,这充分条件判断、导数和定积分应用中都很重要.例如,设f b a x b a x f ),,(,),()(∈对任意区间内二阶可导在″)(x <0.则 (1)f ′)(x 在),(b a 内严格单调减少;(2))(x f 在),1(b 上为凸弧,均不充分. 此题可以用举例的方法来说明(1)、(2)均不充分.由初等函数的图形可知,4x y -=为凸弧.y ′=34x -在(-∞,∞+)上严格单调递减,但y ″=-122x ≤0,因此(1),(2)均不充分,故选E.此题若把题干改成f ″)(x ≤0,则(1),(2)均充分,差别就在等于零与不等于零.可见用初等函数图形来判断非常便捷.2.反函数【定义1.7】 设函数)(x f y =的定义域为D ,值域为R ,如果对于每一个R y ∈,都有惟一确定的D x ∈与之对应,且满足)(x f y =x 是一个定义在R 以y 为自变量的函数,记作 .),(1R y y f x ∈=-并称其为)(x f y =反函数. 习惯上用x 作自变量,y 作因变量,因此)(x f y =反函数常记为R x x fy ∈=-),(1. 函数)(x f y =与反函数)(1x f y -=的图形关于直线x y =对称.严格单调函数必有反函数,且函数与其反函数有相同的单调性.x y a y a x log ==与互为反函.∈=x x y ,2[0,+∞]的反函数为x y =,而∈=x x y ,2(-∞,0)的反函数为x y -=(图1-2(b )).3.复合函数【定义 1.8】 已知函数f f R y D u u f y ∈∈=,),(.又D x x u ∈=),(ϕϕ,u ≤R ϕ,若f f R D 非空,则称函数{}f D x x x x f y ∈∈=)(|)],([ϕϕ为函数)()(x u u f y ϕ==与的复合函数.其中y 称为因变量,x 称为自变量,u 称为中间变量.4.初等函数由基本初等函数经过有限次四则运算和有限次复合运算而得到的一切函数统称为初等函数,初等函数在其定义域内有统一的表达式.(四)隐函数若函数的因变量y 明显地表示成)(x f y =的形式,则称其为显然函数.1),13(1,222-=-==x y x n y x y 等.设自变量x 与因变量y 之间的对应法则用一个方程式0),(=y x F 表示,如果存在函数)(x f y =(不论这个函数是否能表示成显函数),将其代入所设方程,使方程变为恒等式:f D x x f x F ∈=,0))(,(其中f D 为非空实数集.则称函数)(x f y =由方程0),(=y x F 所确定的一个隐函数. 如方程1=+y x 可以确定一个定义在[0,1]上的隐函数.此隐函数也可以表示成显函数的形式,即 ]1,0[,)1()(2∈-==x x x f ye n n n =⎪⎭⎫ ⎝⎛+∞→11lim (e = 2.718,是一个无理数). (5)单调有界数列必有极限 设数列{}n x 有界,且存在正整数0N ,使得对任意0N n ≥都有n n x x ≤+1(或n n x x ≥+1),则数列{}n x 的极限一定存在.利用此定理可以证明重要极限e n n n =⎪⎭⎫ ⎝⎛+∞→11lim (e = 2.718,是一个无理数). (二)函数的极限1.∞→x 时的极限【定义1.10】 设函数)(x f 在)0(||>≥a a x 上有定义,当∞→x 时,函数)(x f 无限接近常数A ,则称)(x f 当∞→x 时以A 为极限,记作.)(lim A x f n =∞→当+∞→x 或-∞→x 时的极限当x 沿数轴正(负)方向趋于无穷大,简记+∞→x (-∞→x )时,)(x f 无限接近常数A ,则称)(x f 当+∞→x (-∞→x )时以A 为极限,记作.)(lim )(lim )(lim ).)(lim ()(lim A x f A x f A x f A x f A x f n n n n n ===⇔===+∞→+∞→∞→-∞→+∞→3.0x x →时的极限【定义 1.11】 设函数)(x f 在0x 附近(可以不包括0x 点)有定义,当x 无限接近)(00x x x ≠时,函数)(x f 无限接近常数A ,则称当0x x →时,)(x f 以A 为极限,记作.)(lim 0A x f x x =→4.左、右极限若当x 从0x 的左侧(0x x <)趋于0x 时,)(x f 无限接近一个常数A ,则称A 为0x x →时)(x f 的左极限,记作.)(lim 0A x f x x =-→ 或 A x f =-)0(0若当x 从0x 的左侧(0x x >)趋于0x 时,)(x f 无限接近一个常数A ,则称A 为0x x →时)(x f 的右极限,记作.)(lim 0A x f x x =+→ 或 A x f =+)0(0.)(lim )(lim )(lim 000A x f A x f A x f x x x x x x ===⇔=-+→→→(三)函数极限的性质1.惟一性若,B x f A x f x x x x ==→→)(lim ,)(lim 00则A=B .2.局部有界性若A x f x x =→)(lim 0.则在0x 的某邻域内(点0x 可以除外),)(x f 是有界的.3.局部保号性若A x f x x =→)(lim 0.且A >0(或A <0=,则存在0x 的某邻域(点0x 可以除外),在该邻 域内有)(x f >0(或)(x f <0=。
微积分的公式大全
微积分的公式大全微积分是数学中的重要分支,涵盖了一系列的公式,用于计算和解决各种与变化相关的问题。
下面是微积分中的一些重要公式:1.导数的基本公式:- 常数的导数:$$\frac{d(c)}{dx}=0$$,其中c为常数。
- 幂函数的导数:$$\frac{d(x^n)}{dx}=nx^{n-1}$$,其中n为常数。
- e的指数函数的导数:$$\frac{d(e^x)}{dx}=e^x$$。
- 对数函数的导数:$$\frac{d(\ln(x))}{dx}=\frac{1}{x}$$。
2.常见初等函数的导数:- 正弦函数的导数:$$\frac{d(\sin(x))}{dx}=\cos(x)$$。
- 余弦函数的导数:$$\frac{d(\cos(x))}{dx}=-\sin(x)$$。
- 正切函数的导数:$$\frac{d(\tan(x))}{dx}=\sec^2(x)$$。
- 反正弦函数的导数:$$\frac{d(\arcsin(x))}{dx}=\frac{1}{\sqrt{1-x^2}}$$。
- 反余弦函数的导数:$$\frac{d(\arccos(x))}{dx}=-\frac{1}{\sqrt{1-x^2}}$$。
3.基本微分法则:- 常数乘积法则:$$\frac{d(cu)}{dx}=c\frac{du}{dx}$$。
- 加法法则:$$\frac{d(u+v)}{dx}=\frac{du}{dx}+\frac{dv}{dx}$$。
- 乘法法则:$$\frac{d(uv)}{dx}=u\frac{dv}{dx}+v\frac{du}{dx}$$。
- 商法则:$$\frac{d\left(\frac{u}{v}\right)}{dx}=\frac{v\frac{du}{dx}-u\frac{dv}{dx}}{v^2}$$。
- 复合函数求导法则:如果y是x的函数,z是y的函数,则$$\frac{dz}{dx}=\frac{dz}{dy}\frac{dy}{dx}$$。
高等数学中所涉及到的微积分公式汇总
高等数学中所涉及到的微积分公式汇总微积分是高等数学中的一门重要学科,涉及到很多重要的公式和定理。
下面是一些微积分中常用的公式的汇总:1.导数公式:- 函数f(x)在点x处的导数:f'(x) = lim (f(x+h)-f(x))/h,其中h -> 0- 常见函数的导数公式:常数函数导数为0,幂函数导数为nx^(n-1),三角函数的导数等-乘法法则:(f*g)'(x)=f'(x)*g(x)+f(x)*g'(x)-商法则:(f/g)'(x)=(f'(x)g(x)-f(x)g'(x))/(g(x))^22.积分公式:- 不定积分和定积分的基本定理:若F'(x) = f(x),则∫f(x) dx = F(x) + C- 基本不定积分:∫x^n dx = (1/n+1)*x^(n+1) + C (其中n不等于-1)- 定积分的性质:∫(a to b) f(x) dx = -∫(b to a) f(x) dx,∫(a to b) [f(x) ± g(x)] dx = ∫(a to b) f(x) dx ± ∫(a to b)g(x) dx3.微分学的基本定理:- 导数的基本定理:如果F(x)是f(x)的一个原函数,那么∫(a to b) f(x) dx = F(b) - F(a)- 牛顿-莱布尼茨公式:若F(x)是f(x)的一个原函数,那么∫(a tob) f(x) dx = F(x),_(a to b) = F(b) - F(a)4.极限定理:- 极限的四则运算定理:设lim (x -> a) f(x) = L,lim (x -> a) g(x) = M,则lim (x -> a) [f(x)±g(x)] = L±M,lim (x -> a)[f(x)*g(x)] = L*M,lim (x -> a) [f(x)/g(x)] = L/M (其中M不等于0)- L'Hospital法则:设lim (x -> a) f(x) = 0,lim (x -> a) g(x) = 0,并且lim (x -> a) f'(x)/g'(x) 存在,则lim (x -> a) f(x)/g(x) = lim (x -> a) f'(x)/g'(x)- 夹逼定理:如果数列{a_n}、{b_n}、{c_n}满足a_n <= b_n <=c_n,并且lim (n -> ∞) a_n = lim (n -> ∞) c_n = L,则lim (n -> ∞) b_n = L5.泰勒级数:-函数f(x)的泰勒级数展开:f(x)=f(a)+f'(a)(x-a)+f''(a)*(x-a)^2/2!+...+f^n(a)*(x-a)^n/n!+...,其中f^n(a)表示函数f(x)在点a处的n阶导数以上仅是微积分中涉及到的一些公式,实际上微积分的公式和定理非常丰富,还有更多的公式可以在相关的教材和文献中找到。
高等数学微积分笔记
第一章 函数、极限和连续§ 函数一、 主要内容 ㈠ 函数的概念1. 函数的定义: y=f(x), x ∈D定义域: D(f), 值域: Z(f).2.分段函数: ⎩⎨⎧∈∈=21)()(D x x g D x x f y3.隐函数: F(x,y)= 04.反函数: y=f(x) → x=φ(y)=f -1(y)y=f -1(x)定理:如果函数: y=f(x), D(f)=X, Z(f)=Y 是严格单调增加(或减少)的; 则它必定存在反函数:y=f -1(x), D(f -1)=Y, Z(f -1)=X且也是严格单调增加(或减少)的。
㈡ 函数的几何特性1.函数的单调性: y=f(x),x ∈D,x 1、x 2∈D 当x 1<x 2时,若f(x 1)≤f(x 2),则称f(x)在D 内单调增加( );若f(x 1)≥f(x 2),则称f(x)在D 内单调减少( );若f(x 1)<f(x 2),则称f(x)在D 内严格单调增加( );若f(x 1)>f(x 2),则称f(x)在D 内严格单调减少( )。
2.函数的奇偶性:D(f)关于原点对称 偶函数:f(-x)=f(x) 奇函数:f(-x)=-f(x)3.函数的周期性:周期函数:f(x+T)=f(x), x ∈(-∞,+∞) 周期:T ——最小的正数4.函数的有界性: |f(x)|≤M , x ∈(a,b) ㈢ 基本初等函数1.常数函数: y=c , (c 为常数)2.幂函数: y=x n, (n 为实数)3.指数函数: y=a x, (a >0、a ≠1) 4.对数函数: y=log a x ,(a >0、a ≠1) 5.三角函数: y=sin x , y=con xy=tan x , y=cot x y=sec x , y=csc x6.反三角函数:y=arcsin x, y=arccon x y=arctan x, y=arccot x ㈣ 复合函数和初等函数1.复合函数: y=f(u) , u=φ(x)y=f[φ(x)] , x ∈X2.初等函数:由基本初等函数经过有限次的四则运算(加、减、乘、除)和复合所构成的,并且能用一个数学式子表示的函数§ 极 限一、 主要内容 ㈠极限的概念1. 数列的极限: A y n n =∞→lim 称数列{}n y 以常数A 为极限;或称数列{}n y 收敛于A.定理: 若{}n y 的极限存在⇒{}n y 必定有界. 2.函数的极限:⑴当∞→x 时,)(x f 的极限:A x f A x f A x f x x x =⇔⎪⎪⎭⎫==∞→+∞→-∞→)(lim )(lim )(lim ⑵当0x x→时,)(x f 的极限:A x f xx =→)(lim 0左极限:A x f x x =-→)(lim 0右极限:A x f x x =+→)(lim 0⑶函数极限存的充要条件: 定理:A x f x f A x f x x x x x x ==⇔=+-→→→)(lim )(lim )(lim㈡无穷大量和无穷小量 1.无穷大量:+∞=)(limx f称在该变化过程中)(x f 为无穷大量。
微积分重要公式
第一讲函数、极限与连续二、在自变量不同变化过程中的函数极限及其联系1. lim f (x) XxA lim f (x) Xx 0lim f (x) A. Xx2. lim f (x) x Alim f (x) xlim f (x) A.X3. [im f (x) Alim f (x) A.4.设 lim X n nx °,lim f(x)x x 0A,则 lim f (x n ) lim f (x) A.nxx °重要公式与结论一、函数的奇偶性、周期性与导数、积分的联系1•设f(x)是可导的偶函数,则f (x)为奇函数,且f (0) 0设f(x)是可导的奇函数,则f(x)为偶函数。
X__2•设f(x)连续:如f(x)为偶函数,则0f(t)dt 为奇函数;x数,则对任意的a ,o f(t)dt 为偶函数。
f (x)为奇函3.设f (x)在一a,a 上连续,贝卩f(x)dxa2 f (x)dx, f (x)为偶函数,0, f (x)为奇函数,4•可导的周期函数的导函数仍为同周期函数。
5•设f(x)是以T 为周期的连续函数,则f(x)dxf (x)dxT2 f(x)dx,2nT 0f(x)dxTn 0 f(x)dx.[评注]由结论3, 4知可利用函数极限求数列极限。
三、连续的隐含条件如题中给了连续条件,应充分利用以下结论:1.设f(x)在X o 处连续,则f(X o) lim f(x).X X o2•设f(x)在[a,b]上连续,则f(x)在[a,b]上可积,且可构造f(x)的原函数X f(t)dt x b),对f (x)在[a,b]上可应用最值、介值、零点定理。
a四、两个重要极限的一般形式1.设a(x) 0,则lim Sna勺 1.a(x)2.设 f (x) 1,贝Slim f(x严e limg(x)lnf(x) e limg(x)[f(x) 1](因为In f(x) ln[1 f(x) 1] ~ f (x) 1 )。
高数微积分公式大全3篇
高数微积分公式大全第一篇:高数微积分公式大全(上)微积分是数学中的重要分支,也是物理、工程、经济等领域中不可或缺的工具。
下面将介绍一些高等数学中常用的微积分公式,包括极限、导数、微分等,供读者参考。
1. 极限极限是微积分中的基本概念,它描述的是函数在某一点附近的取值趋近于某个常数的情况。
极限公式如下:(1)左极限$$\lim_{x\to x_{0}^{-}}f(x)=A$$(2)右极限$$\lim_{x\to x_{0}^{+}}f(x)=A$$(3)无穷远处的极限$$\lim_{x\to \infty}f(x)=A$$(4)无穷小量$$\lim_{x\to x_{0}}\frac{f(x)}{g(x)}=0$$2. 导数导数是微积分中的重要概念,它描述的是函数在某一点处的变化率。
导数公式如下:(1)切线的斜率$$k=\lim_{x\to x_{0}}\frac{f(x)-f(x_{0})}{x-x_{0}} $$(2)函数的导数$$f'(x)=\lim_{\Delta x\to 0}\frac{f(x+\Delta x)-f(x)}{\Delta x}$$3. 微分微分是微积分中的基本运算,它可以帮助我们研究函数的变化趋势。
微分公式如下:$$df=f'(x)dx$$其中,$dx$表示自变量$x$的微小变化量,$df$表示因变量$y$的微小变化量。
4. 泰勒公式泰勒公式是微积分中的重要定理,它可以帮助我们将一个函数表示为一系列多项式的和,从而简化函数的计算。
泰勒公式如下:$$f(x)=\sum_{n=0}^{\infty}\frac{f^{(n)}(a)}{n!}(x-a)^{n} $$其中,$f^{(n)}(x)$表示函数$f(x)$的$n$阶导数。
5. 柯西-黎曼方程柯西-黎曼方程是复分析中的重要定理,它描述了复函数的导数和复共轭函数的关系。
柯西-黎曼方程如下:$$\frac{\partial u}{\partial x}=\frac{\partialv}{\partial y},\frac{\partial u}{\partial y}=-\frac{\partial v}{\partial x}$$其中,$u(x,y)$和$v(x,y)$分别表示复函数$f(z)=u(x,y)+iv(x,y)$的实部和虚部。
微积分—基本积分公式
微积分—基本积分公式微积分是数学的一个重要分支,主要研究变化和量的关系。
其中积分是微积分的一个基本概念,它用于求解函数曲线下面的面积,以及函数的反导数。
在微积分中,有一些基本的积分公式是非常重要的,通过这些公式,我们可以简化积分计算的过程。
1.常数积分公式:∫k*dx = kx + C这个公式表示对于任何常数k,对其进行积分,得到的结果是k乘以自变量x再加上一个常数C。
2.幂函数积分公式:∫x^n*dx = (x^(n+1))/(n+1) + C (n≠-1)这个公式适用于幂函数的积分,其中n为任意实数。
对于幂函数的积分,可以将指数n加1后再除以(n+1),然后加上一个常数C。
3.指数函数积分公式:∫e^x*dx = e^x + C这个公式对于指数函数e^x的积分非常简单,积分结果直接是e^x再加上一个常数C。
4.对数函数积分公式:∫1/x*dx = ln,x, + C这个公式适用于1/x形式的函数的积分,其中ln表示自然对数。
对于1/x的积分,结果是ln取绝对值后再加上一个常数C。
5.三角函数积分公式:∫sin(x)*dx = -cos(x) + C∫cos(x)*dx = sin(x) + C这两个公式分别表示sin(x)和cos(x)的积分结果,其中负号表示积分后的结果会减少。
6.反三角函数积分公式:∫1/√(1-x^2)*dx = arcsin(x) + C∫1/√(1+x^2)dx = arctan(x) + C这两个公式分别表示1/√(1-x^2)和1/√(1+x^2)的积分结果,其中arcsin和arctan分别表示反正弦和反正切。
上面列举的是一些基本的积分公式,它们在微积分的求解过程中经常使用。
当然,还有其他一些复杂的积分公式和技巧,但它们都是由这些基本公式进行推导和扩展而来的。
需要注意的是,这些基本积分公式只是一些常用的情况,对于更复杂的函数积分,可能需要借助其他技巧和方法进行求解,比如换元法、分部积分等。
微积分的基本公式
微积分的基本公式微积分是数学中的一个分支,主要研究连续变化的对象,如函数、曲线和曲面等。
微积分的基本公式是应用广泛且重要的数学工具,包括导数、积分、微分方程等。
下面将对微积分的基本公式进行详细介绍。
一、导数导数是微积分中的基本概念之一,用于描述函数在其中一点上的变化率。
导数的定义如下:对于函数y = f(x),其在特定点x处的导数表示为f'(x)或dy/dx,定义为函数曲线在该点处的切线斜率。
导数的几何意义是函数曲线在其中一点的切线斜率的极限值。
导数的基本公式包括:1.常数导数公式:如果f(x)=k,其中k是常数,则f'(x)=0。
2. 幂函数导数公式:对于f(x) = x^n,其中n是实数,则f'(x) = nx^(n-1)。
3.指数函数导数公式:对于f(x)=e^x,其中e是自然对数的底,则f'(x)=e^x。
4. 对数函数导数公式:对于f(x) = ln(x),其中ln表示以e为底的对数,则f'(x) = 1/x。
5. 三角函数导数公式:对于f(x) = sin(x),则f'(x) = cos(x);对于f(x) = cos(x),则f'(x) = -sin(x)。
二、积分积分是微积分中的另一个基本概念,用于计算曲线下面的面积或者曲线长度。
积分的定义如下:对于函数y = f(x),其在区间[a, b]上的积分表示为∫f(x)dx,定义为区间[a, b]上函数曲线与x轴之间的面积。
积分的基本公式包括:1. 不定积分公式:如果F(x)是f(x)的一个原函数,则∫f(x)dx =F(x) + C,其中C是常数。
这是积分的基本公式,也称为不定积分。
2. 定积分公式:如果f(x)是在区间[a, b]上连续函数,且F(x)是其原函数,则∫[a, b]f(x)dx = F(b) - F(a),其中F(a)表示F(x)在点a处的值,F(b)表示F(x)在点b处的值。
高数常用微积分公式24个
高数常用微积分公式24个为了更好地帮助大家理解高等数学中的微积分,本文主要介绍高数常用的微积分公式24个。
首先,介绍最基本的微积分概念。
微积分是一个广义的概念,它包括微分学和积分学。
微分学是研究变动数量的变化率,变量可以表达为函数。
积分学则是将某一函数在不同区域上的积分和运算,可以表示为面积、重量或其他距离变化的概念。
其次,介绍高数常用的微积分公式。
1、微分中的基本公式:(1)函数的定义域x的导数,表示为f′(x)(2)复合函数的导数,表示为f′(g(x))(3)二阶导数的定义,表示为f″(x)2、积分中的基本公式:(1)求解定积分,表示为∫[a, b]f(x)dx(2)定积分的换折叠公式,表示为∫[a, b]f(x)dx=[a,c]f(x)dx+[c, b]f(x)dx(3)求解不定积分,表示为∫f(4)二重积分的定义,表示为∫[a, b]∫[c, d]f(x,y)dydx (5)定义域积分,表示为∫[S]f(x,y)ds3、微分与积分的关系:微分与积分有着相互联系的关系。
积分是将函数某一段区间的值累积为某一量,而微分则是积分的反过程,求出函数在有限的区间内的变化率。
这一关系也被称为微分法和积分法的反射关系。
4、偏微分的基本公式:偏微分是指关于同一变量的偏导数。
它是微分中比较复杂的一种形式,通常与多元函数相关,旨在研究函数变化率在同一点上受其他变量影响的情况。
它的基本公式为f′(x, y)=f/x, f′(x, y)=f/y。
5、常见的微分与积分公式:(1)指数函数的求导公式,表示为f′(x)=ae^(ax)(2)对数函数的求导公式,表示为f′(x)=1/x(3)三角函数的求导公式,表示为f′(x)=cos(x),f′(x)=sin(x)(4)椭圆函数的求导公式,表示为f′(x)=2a(a+bx)/(b^2-a^2)(5)反椭圆函数的求导公式,表示为f′(x)=-2a(a+bx)/(b^2-a^2)(6)求极限的求导公式,表示为limX→0f′(x)=f(0)(7)求微积分的积分公式,表示为∫[a,b]f(x)=F(b)-F(a)最后,本文介绍了高数常用的微积分公式24个,包括微分、积分、偏微分以及极限的求导公式,利用这些公式,大家就可以更好地理解微积分的概念,从而更好地学习高等数学中的微积分内容。
高数(一)微积分公式(重要)
R(P)的导数
4.4 曲线的凹凸性和拐点 定理 1 如果 f(x)在[a,b]上连续,在(a,b)内具有二阶导数,若在(a,b)内 (1)f''(x)>0,则 f(x)在[a,b]上的图形是凹的; (2)f''(x)<0,则 f(x)在[a,b]上的图形是凸的。 曲线的拐点及其求法 1.定义 连续曲线上凹凸的分界点称为曲线的拐点。 2.拐点的求法 拐点只可能是二阶导数为零的点以及二阶导数不存在的点。 设函数 f(x)在 x0 的邻域内二阶可导且 f''(x0)=0 或者二阶不可导: (1)x0 两侧 f''(x)变号,点(x0,f(x0))即为拐点; (2)x0 两侧 f''(x)不变号,点(x0,f(x0))不是拐点。 4 3 例 2、求曲线 y=3x -4x +1 的拐点及凹凸的区间。 解:
特殊角的三角函数值
例 1.已知一个三角函数值,求其他的三角函数值。 (1)已知 tanx=3 求其他的三角函数值 斜边^2=a^2+b^2
Sinx=对/斜 cosx=邻/斜 tgX=对/邻 cotX=邻/对 sec x=1/cosx ①倒数关系:
②商的关系
③平方关系
两角和的正弦、余弦、正切公式
两角差的正弦、余弦、正切公式
关键:将其它类型未定式化为洛必达法则可解决的类型 1、0.∞型
。
步骤:
,或
。
3、
型
步骤: 一、单调性的判别法
用导数取得极限值后代入原极限对数 E
定理 设函数 y=f(x)在[a,b]上连续,在(a,b)内可导, (1)如果在(a,b)内 f'(x)>0,那么函数 y=f(x),在[a,b]上单调增加; (2)如果在(a,b)内 f'(x)<0,那么函数 y=f(x)在[a,b]上单调减少。 例 1、讨论函数 解: 的单调性。
微积分基本公式和基本定理
利用泰勒公式展开函数$f(x) = sin x$在$x = frac{pi}{2}$处的幂级数。
答案
根据泰勒公式,得到$sin x = sum_{n=0}^{infty} (1)^n cdot frac{x^{2n+1}}{(2n+1)!}$。代入$x = frac{pi}{2}$,得到$sin frac{pi}{2} = sum_{n=0}^{infty} (-1)^n cdot frac{(frac{pi}{2})^{2n+1}}{(2n+1)!} = 1$。
求函数$f(x) = ln(x + sqrt{1 + x^2})$的导数。
利用链式法则和基本导数公式 ,得到$f'(x) = frac{1}{sqrt{1 + x^2}} cdot frac{x}{sqrt{1 + x^2}} = frac{x}{1 + x^2}$。
积分习题及答案
题目
计算$int_0^1 (x^2 + 1) dx$。
泰勒公式是一个重要的微积分定理,它可以用来近似计算复杂的函数。通过泰勒公式,可以将一个复 杂的函数展开成多项式的和,从而简化计算。
泰勒公式在近似计算中广泛应用于数值分析、物理、工程等领域。例如,在计算物理现象的近似解时 ,可以使用泰勒公式来逼近真实解。此外,泰勒公式还可以用于求解函数的极限、证明不等式等数学 问题。
牛顿-莱布尼兹定理
总结词
牛顿-莱布尼兹定理是计算定积分的 核心定理,它提供了计算定积分的简 便方法。
详细描述
牛顿-莱布尼兹定理表述为:对于任意 在[a, b]区间上连续的函数f(x),F(x)是f(x)的一个原函数。这个定理大大 简化了定积分的计算过程,是微积分学 中的重要内容。
4.2微积分基本公式
6
首页
返回
结束
上页
下页
铃
4.2.3 微积分基本公式
经济应用数学
定理4.3 设函数 f (x) 在区间 [a,b] 上连续,F(x)
是 f (x) 在 [a,b] 上的一个原函数,则
b
a f (x)dx F (b) F (a)
此公式称为牛顿—莱布尼玆公式,也称为微积 分基本公式.
du 0
dx
2 x sin u 2x sin x
4.
f ( x)
x2 dt u
0
1
t
3
u
ቤተ መጻሕፍቲ ባይዱ
x2
u 0
1
dt t
3
·u(
u
x
)
=
1 1 u3 ·2 x
2x = 1 x6
(u x2 )
15
首页
返回
结束
上页
下页
铃
经济应用数学
5.
dy
dx
=
x3 x2
1 t 2dt = x
d dx
cos x et2 dt ,
1
ecos2 x (cos x) sin x ecos2 x ,
lim
x0
1 et2 dt
cos x
x2
lim sin x ecos2 x
x0
2x
1. 2e
17
首页
返回
结束
上页
下页
铃
经济应用数学
7.
lim
x0
0 sint 2dt
2x
lim
当 x 在a, b上任意变动,则对于每一个 x 值
16个微积分公式
16个微积分公式微积分是数学的一个重要分支,主要研究函数的变化规律及其应用。
在微积分中,有许多重要的公式被广泛应用于各种问题的解决中。
本文将介绍16个微积分公式,并分别阐述其含义和应用。
一、导数的定义公式导数是微积分中最基础的概念之一,它描述了函数在某一点的变化率。
导数的定义公式为:f'(x) = lim(h->0) [f(x+h) - f(x)] / h在这个公式中,f'(x)表示函数f(x)在点x处的导数。
该公式的含义是通过计算函数在极限情况下的变化率来求得导数。
导数的应用非常广泛,包括求函数的极值、判断函数的增减性等。
二、导数的四则运算法则导数的四则运算法则是求导过程中常用的规则,它将导数与函数的四则运算相结合。
具体公式如下:(1) (cf(x))' = cf'(x)(2) (f(x) ± g(x))' = f'(x) ± g'(x)(3) (f(x)g(x))' = f'(x)g(x) + f(x)g'(x)(4) (f(x)/g(x))' = (f'(x)g(x) - f(x)g'(x)) / (g(x))^2这些公式可以通过对函数中的每一项进行求导,并按照四则运算法则进行组合计算。
它们对于求解复杂函数的导数提供了便利。
三、常用导数公式在微积分中,有一些常用的导数公式被广泛应用于各种问题的求解中。
这些公式包括:(1) (x^n)' = nx^(n-1)(2) (e^x)' = e^x(3) (lnx)' = 1/x(4) (sinx)' = cosx(5) (cosx)' = -sinx(6) (tanx)' = sec^2x这些公式可以帮助我们快速求取一些特定函数的导数,从而简化求解过程。
四、高阶导数公式除了一阶导数外,函数的高阶导数也是微积分中的重要概念。
微积分入门基本公式推导
微积分入门基本公式推导微积分是数学的一个重要分支,研究函数的变化以及函数的导数和积分。
在微积分中,有许多基本的公式可以用来推导和计算函数的性质。
下面是微积分入门基本公式的推导和相关参考内容。
一、导数的定义和基本计算公式1. 导数的定义:设函数y = f(x),在点x处的导数定义为:f'(x) = lim(x→0) [(f(x + h) - f(x)) / h]2. 基本函数的导数:(1) 常数函数f(x) = c,其中c为常数,导数为f'(x) = 0;(2) 幂函数f(x) = x^n,其中n为自然数,导数为f'(x) = n*x^(n-1);(3) 指数函数f(x) = a^x,其中a>0且a≠1,导数为f'(x) = ln(a) * a^x;(4) 对数函数f(x) = log_a(x),其中a>0且a≠1,导数为f'(x) = 1 / (ln(a) * x);(5) 正弦函数f(x) = sin(x),导数为f'(x) = cos(x);(6) 余弦函数f(x) = cos(x),导数为f'(x) = -sin(x);(7) 正切函数f(x) = tan(x),导数为f'(x) = sec^2(x)。
3. 函数的和差、乘积和商的导数:(1) 和差的导数:(f(x) ± g(x))' = f'(x) ± g'(x);(2) 乘积的导数:(f(x) * g(x))' = f'(x) * g(x) + f(x) * g'(x);(3) 商的导数:(f(x) / g(x))' = (f'(x) * g(x) - f(x) * g'(x)) / g^2(x),其中g(x)≠0。
二、积分的定义和基本计算公式1. 不定积分的定义:设函数f(x)在[a, b]上连续,且F'(x) = f(x),则称F(x)为f(x)在[a, b]上的一个原函数。
微积分十个重要公式
微积分十个重要公式微积分可是数学中的“大怪兽”,但别怕,让咱们一起来瞧瞧微积分里十个重要的公式,把这“怪兽”驯服!先来说说第一个重要公式——导数的定义式。
导数就像是函数变化的速度,比如说,你在骑自行车,速度就是路程关于时间的导数。
想象一下,你早上上学,出发时看了下手表,骑了一段路又看了下手表,这中间路程的变化除以时间的变化,就是这一小段路程的平均速度。
要是把这段路程变得无限小,那得到的就是瞬间速度,这就是导数啦。
再看看第二个公式——基本导数公式。
这就像是数学世界里的“工具包”,给了你计算常见函数导数的方法。
比如幂函数的导数,正弦函数、余弦函数的导数等等。
就好像你有了一把把不同的钥匙,可以打开不同类型的锁。
第三个重要公式是乘积的导数法则。
假设你和小伙伴一起做手工,一个人负责剪裁,一个人负责粘贴,最后完成作品的速度就跟你们两个人合作的方式有关。
这就跟函数乘积的求导类似,要考虑两个部分的贡献。
第四个公式是商的导数法则。
比如说,你和同学一起分糖果,总糖果数除以人数就是每人能得到的糖果数。
但如果总糖果数和人数都在变化,那每人能得到的糖果数变化的规律就得用这个公式来算。
第五个是链式法则。
这个公式有点像接力赛,一个函数套着另一个函数,求导的时候就像接力棒在传递,一层一层地传递下去。
比如,你先穿上外套,再背上书包,穿外套和背书包的顺序变化可能会影响你准备好出门的速度,这就和链式法则有关系。
第六个重要公式是积分的定义式。
积分就像是把一个个小碎片拼起来,算出总的面积或者体积。
比如你要计算一个不规则图形的面积,把它切成很多小的部分,每个小部分的面积算出来再加起来,这就是积分的思想。
第七个是牛顿-莱布尼茨公式。
它就像是一座桥梁,把导数和积分联系了起来。
就好比你知道了跑步的速度,又知道了起点和终点,就能算出跑过的路程。
第八个是换元积分法。
这就像是给问题换个“新装”,让计算变得更简单。
比如你要计算一个复杂的积分,通过巧妙的变量替换,就可能把难题变成简单的题目。
微积分重要公式
微积分重要公式微积分是数学中的一门重要学科,它研究的是变化和积累的数学方法。
微积分有许多重要的公式,这些公式在各种数学和科学领域都有广泛的应用。
本文将介绍一些微积分中的重要公式,并探讨它们的用途和意义。
1. 导数的定义公式导数是微积分中最基本的概念之一,它描述了函数在某一点的变化率。
导数的定义公式为:f'(x) = lim(h->0) [f(x+h) - f(x)] / h。
这个公式告诉我们,导数是函数在无穷小变化下的极限。
导数的概念和公式在物理学、经济学等领域具有重要的应用,如速度、加速度、边际效应等。
2. 导数的四则运算法则导数的四则运算法则是微积分中的重要工具,它们描述了导数在加减乘除运算中的性质。
这些法则包括常数法则、幂法则、和法则、差法则和乘法法则。
通过这些法则,我们可以计算出复杂函数的导数,进而研究函数的性质和变化规律。
3. 不定积分的定义公式不定积分是微积分中的另一个基本概念,它是导数的逆运算。
不定积分的定义公式为:∫f(x)dx = F(x) + C,其中F(x)是f(x)的一个原函数,C是常数。
不定积分的概念和公式在求解曲线下的面积、求解定积分和解微分方程等问题中起着重要的作用。
4. 定积分的定义公式定积分是微积分中的另一个重要概念,它描述了函数在一个区间上的积累效应。
定积分的定义公式为:∫[a,b]f(x)dx = lim(n->∞)Σf(xi)Δx,其中[a,b]是积分区间,f(x)是被积函数,Δx是区间的等分长度。
定积分的概念和公式在求解曲线下的面积、计算物体的质量和体积等问题中有广泛的应用。
5. 牛顿-莱布尼茨公式牛顿-莱布尼茨公式是微积分中的一条重要定理,它将不定积分和定积分联系起来。
牛顿-莱布尼茨公式的表达式为:∫[a,b]f(x)dx = F(b) - F(a),其中F(x)是f(x)的一个原函数。
这个公式告诉我们,定积分可以通过不定积分来计算,进一步简化了积分的计算过程。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
当x→+∞时,以下各函数趋势于+∞的速度为:
㏑x , xⁿ (n>0) , a (a>1) , x
由慢到快
当n→∞时
㏑x , xⁿ (n>0) , a (a>1) , n! , x
由慢到快
7.积分中值定理:若f(x)在[a,b]上连续,则在[a,b]上至少存在一个点ξ使∫f(x)dx=f(ξ)(b-a)
2.常见的偶函数:|x| , cosx , x (n为正整数), e , e ……
常见的奇函数:sinx , tanx , 1/x , x , arcsinx , arctanx ,……
3.常见的函数周期:sinx , cosx ,其周期T=2π;
tanx , cotx , |sinx| , |cosx| ,其周期T=π.
4.三个恒等式:a =x ; arcsinx + arccosx = π/2 ; arctanx + arccotx = π/2
5.常用的等价形式:当x→0时,sinx ~ x , arcsinx ~ x , tanx ~ x , arctan x ~ x ,
㏑(1+ x) ~ x , e –1 ~ x , 1-cosx ~ (1/2)x², (1+x) -1 ~ (1/n)x
8.微分中值定理:若函数f(x)满足条件:函数f(x)在x的某邻域内有定义,并且在此邻域内恒有
f(x)≤f (x )或f(x)≥f (x ),f(x)在x处可导,则有f′(x )=0
9.洛尔定理:设函数f(x)满足条件:在闭区间[a,b]上连续;在开区间(a,b)内可导;f(a)=f(b),则
在(a,b)内至少存在一个ξ,使f′(ξ)=0
10.拉格朗日中值定理:设函数f(x)满足条件:在闭区间[a,b]上连续;在开区间(a,b)内可导;f(a)=f(b),则在(a,b)内至少存在一个ξ,使———— = f′(ξ)
1.函数定义域的求法:
y=1/x , D: x≠0 , (-∞,0) U (0,+∞)
y=x , D: x≥0, [0, +∞ ]
y=㏒x , D: x﹥0, 0, +∞)
y=tanx, D: x≠kπ+π/2 , k∈Z
y=cotx, D:x≠kπ , k∈Z
y=arcsin(或arccosx) , D: |x|≤1, [-1, 1]