奥本海姆信号与系统中文版课后习题答案
信号与系统 奥本海姆 中文答案 chapter 2
Chapter 22.1解:(a) 1[][][][0][][1][1][3][3]y n x n h n x h n x h n x h n =*=+-+-2[1]4[]2[1]2[2]2[4]n n n n n δδδδδ=+++-+---(图略)(b) 21[][2][][2]y n x n h n y n =+*=+2[3]4[2]2[1]2[]2[2]n n n n n δδδδδ=++++++--(图略)(c) 32[][][2][]y n x n h n y n =*+=(图略)2.5解:9[][][]k y n x k h n k ==-∑,由[4]5y =可知:4N ≥由[14]0y =可知:9114N ++≤,即:4N ≤ 所以:4N =2.11解:(a) 3t ≤时,()0y t =35t <≤时,3()(3)()(3)()ty t u t h t u h t d τττ=-*=--⎰3(3)3()313t tt e ed ττ-----==⎰5t >时,[]()63(5)53()31()(3)(5)()3t t e e y t t u t u h t e d ττ------=---*==⎰因此:()3(3)63(5)0,31(),3531,53t t t e y t t e e t -----⎧⎪≤⎪⎪-=<≤⎨⎪⎪-⎪>⎩(b )()(3)(5)dx t t t dtδδ=--- 3(3)3(5)()()()(3)(5)(3)(5)t t dx t g t h t h t h t e u t e u t dt----∴=*=---=---(c) ()()dy t g t dt=2.13解:(a) 将1[][]5n h n u n ⎛⎫= ⎪⎝⎭代入式子得:111[][1][]55n n u n A u n n δ-⎛⎫⎛⎫--= ⎪ ⎪⎝⎭⎝⎭即:()1[]5[1][]5nu n Au n n δ⎛⎫--= ⎪⎝⎭从而可得:51A =,即:15A = (b)由(a)可知:1[][1][]5h n h n n δ--= 则1S 的逆系统2S 的单位脉冲响应为:11[][][1]5h n n n δδ=--2.16解:(a)对。
奥本海姆离散时间信号处理课后习题答案(中文版)
奥本海姆离散时间信号处理课后习题答案(中文版)第一章信号与系统1.1 信号与系统的基本概念习题1.1答案:信号是描述现象或事件随时间或空间变化的数学表示。
系统是对信号进行处理、转换或传递的装置或过程。
习题1.2答案:连续时间信号是定义在连续时间范围内的信号,例如音频信号;离散时间信号是定义在离散时间点上的信号,例如图像信号。
习题1.3答案:线性系统满足叠加性和齐次性两个性质。
具体地,对于系统而言,若输入为x1(t)和x2(t),输出分别为y1(t)和y2(t),则对于任意常数a1和a2,输入为a1x1(t)+a2x2(t)时输出为a1y1(t)+a2y2(t)。
1.2 线性时不变系统习题1.4答案:时不变系统的输出仅与输入在时间上的延迟有关,与系统的初始时刻无关。
习题1.5答案:系统的单位冲激响应是对单位冲激信号的系统输出。
习题1.6答案:对于线性时不变系统,输入信号可以表示为一系列单位冲激信号的线性组合,输出信号是对这些单位冲激响应的线性组合。
第二章离散时间信号与系统2.1 离散时间信号的表示习题2.1答案:离散时间信号可以通过序列来表示,例如x[n]。
答案:离散时间信号有两种表示方法:时域表示和频域表示。
时域表示是离散时间信号在时间上的展示,例如折线图;频域表示是离散时间信号在频率上的展示,例如傅立叶变换。
习题2.3答案:离散时间信号可以视为连续时间信号在时间上的采样得到的。
2.2 离散时间系统的基本概念习题2.4答案:对于离散时间系统,输入信号和输出信号都是离散时间信号。
习题2.5答案:线性时不变系统的性质也适用于离散时间系统。
答案:离散时间系统的单位冲激响应是对单位冲激信号的系统输出。
第三章离散时间系统的时域分析3.1 离散时间系统的瞬时描述习题3.1答案:离散时间系统的单位冲激响应可以通过对系统输入的单位冲激信号进行采样得到。
习题3.2答案:离散时间系统的零状态响应是指在该系统中,输入信号的作用结束后,系统输出的响应。
奥本海姆 信号与系统 习题参考答案
.第三章作业解答3.1解:420ππω==T , j a a 4*33-==- 则:t j t j t j t j k tjk ke a e a e a e a ea t x 00000333311)(ωωωωω----∞-∞=+++==∑-)243cos(84cos 443sin 84cos 4)](21[8)(2144422434344434344πππππππππππππ++=-=--⨯++⨯=-++=------t t tt e e je e jejeeet j t j t j t j t jt jt j t j3.3解:)35sin(4)32cos(2)(t t t x ππ++= 则3)32cos(1=→T t π 56)35s i n (2=→T t π故:6],[21==T T lcm T 320ππω==T )(214)(21235353232t j t j t j t j e e je e ππππ---⨯+++=则:20=a 2122==-a a 25j a -= 25j a =- 3.9x[n]波形如下图所示:0 1 4 5 n…- 4 -3则:N=4,220ππω==N ]84[41]}1[8][4{41][41][122302300πππωδδjk n jk n n jk n n jk N n k e e n n e n x e n x N a --=-=->=<+=-+===∑∑∑即:2112133210j a a j a a +=-=-==3.15解:6π=T ,1220==Tπω )(ωj H 如下图所示:则:⎩⎨⎧>≤=9||08||1)(0k k jk H ωtjk k kea t x 0)(ω∑∞-∞==tjk k ktjk k k ea ea jk H t y 00880)()(ωωω∑∑-=∞-∞===而:)()(t y t x =,即:t jk k k tjk k k e a t y ea t x 0088)()(ωω∑∑-=∞-∞====故:当9||≥k 时,0=k a3.22解:(a )2=T ,ππω==T20 ]|[12121)(11111110dt e te jk dt te dt e t x T a tjk t jk t jk T t jk k ⎰⎰⎰---------===πππωπkjk t jk t jk k j k j k k je k j e jk te k j )1(k ]02[21]|1|[211111-=⎪⎪⎩⎪⎪⎨⎧-=--=---=-----πππππππππ为奇数为偶数021110==⎰-dt t a(注意:与性质验证,由于x(t)是实奇函数,则a k 为纯虚的奇函数,满足: *k k k a a a -=-=- 且:00=a ) (d) 2=T ,ππω==T20 ])1(21[21]21[21)]1(2)([21)(1200k jk t jk T tjk k e dt e t t dt e t x T a --=-=--==---⎰⎰--ππωδδ21)]1(2)([21200-=--=⎰--dt t t a δδ3.28(b )解:)(21)(21)2cos()32sin(][223232nj n j n jnje e eejn n n x ππππππ--++== )(416/76/6/6/7n j n j n j n j e e e e j ππππ----+=12/2.712/2.12/2.12/2..7(41ππππn j jn jn n j e e e e j----+=⎪⎪⎪⎩⎪⎪⎪⎨⎧++=-++==othersrN rN k j rN rN k j a k 05,11417,141 则:⎪⎩⎪⎨⎧++++==othersrN rN rN rN k a k 05,11,7,141||⎪⎪⎪⎩⎪⎪⎪⎨⎧++=++=-=∠othersrN rN k rN rN k a k 05,1127,12ππ 3.34解:(b)∑∞-∞=--=n nn t t x )()1()(δ其波形如下图所示:其周期T=2,基波频率为:ππω==T20 ⎩⎨⎧=--=-=--==---⎰⎰--是偶数是奇数k 01])1(1[21]1[21)]1()([21)(1200k e dt e t t dt e t x T a k jk t jk T tjk k ππωδδ而:⎪⎩⎪⎨⎧<>==--00)(44||4t et e et h t tt则:240401684141)()(s s s dte e dt e e dt e t h s H st t st t st -=++-=+==--∞-∞--∞∞-⎰⎰⎰故:2)(168)(ππjk jk H -=故:⎪⎩⎪⎨⎧-==∑∞-∞=为偶数为奇数(k k e jk ea jk H t y tjk tjk k k 0)168)()(200πωπω3.357π=T ,1420==Tπω 解:)(ωj H 如下图所示:则:⎩⎨⎧<>=17||017||1)(0k k jk H ωtjk k kea t x 0)(ω∑∞-∞==tjk k k tjk k k ea ea jk H t y 0018||0)()(ωωω∑∑∞=∞-∞===而:)()(t y t x =,即:tjk k ktjk k kea t y ea t x 0018||)()(ωω∑∑∞=∞-∞====故:当18||<k 时,0=k a3.44解:(1)*k k a a =- (2)6=T ,320ππω==T (3)⎩⎨⎧===其他,不为02||1||0k k a k(4)k jk k k a e b t x a t x π--=→--→)3()(k jk k a ea π--= 则:当为偶数k a k 0=结合(3)则:⎩⎨⎧==其他不为01||0k a k(5)帕斯瓦尔关系式:21||21||||12121=⇒=+-a a a (6)211=a 211=-a 则t e e ea e a t x t j t j t j tj 3cos )(21)(333131πππππ=+=+=--- 故:03,1===C B A π。
信号与系统奥本海姆中文答案chapter5
信号与系统奥本海姆中⽂答案chapter5第五章习题解答【注】:F{}表⽰傅⽴叶变换5.9 对某⼀特殊的[]x n ,其傅⽴叶变化()jw X e ,已知下⾯四个条件 1、[]x n =0,0n > 2、[0]0x > 3、Im{()}sin sin 2jw X e w w =-4、21()32jw x e dw πππ-=?求[]x n 。
解:由条件(1), (2) 和(3)得 A e e j X j j +-=ωωω2)(所以,][]2[]1[][n A n n n x δδδ++-+= 代⼊条件4,则可得][]2[]1[][n n n n x δδδ++-+=5.12 设2sinsin 4[]()*()c nw n y n n nπππ=式中*记为卷积,且c w π≤。
试对c w 确定⼀个较严格的限制,以保证2sin4[]()n y n nππ=。
解:}4sin{*}4sin{}]4sin {[2nn=≤≤≤≤-≤≤-=πωππωπωππωω2,024,240,1所以,≤≤≤≤=πωωωωππc c n n F 001}4sin{易见,πωπ≤≤c 2时,满⾜条件5.14 假设⼀单位脉冲响应为[]h n ,频率响应为()jw H e 的LTI 系统S ,具有下列条件: 1、1 ()[][]4nu n g n →,其中[]0,0,0g n n n =≥< 2、 /2()1j H e π= 3、()()()jw j w H e H e π-= 求[]h n 。
解: ∑∞∞---+==]0[]1[][)(g e g e n g eG j n j j ωωω)(4111)(ωωωj j j e H e e G --=)()411()(ωωωj j j e G e e H --=∴ωωωj j j e g e g g eg -----+=]0[41]1[41]0[]1[2 1)()(22==-πH e H1]0[41]1[41]0[]1[=+++-∴g j g g jg 0]1[]0[411]1[41]0[=-=+∴g g g g可得,g[0]=16/17, g[1]=1/17 所以,]2[17/1][17/16][17/117/16)(2--=∴-=-n n n h e eH j j δδωω5.16 有⼀信号的傅⽴叶变化是3(/2)1()2()114k jwj w k k X e e π--==-∑可以证明 [][][]x n g n q n =,其中[]g n 具有[]na u n 的形式,[]q n 是周期为N 的周期信号。
奥本海姆信号与系统第一章部分习题答案
(e)
x[n], n 1
y[n] 0,
n0
x[n 1], n 1
(e)
Байду номын сангаас[n], n 1
y[n] 0,
n0
x[n 1], n 1
(g )
y[n] x[4n 1]
+++
1.31 在本题中将要说明线性时不变性质的重要结果之一,即一旦知道了一个线性
∴ 1 = 3,1 = 0,2 = −3,2 =1(或-1)
1.19判定下列输入-输出关系的系统是否具有线性性质、时不变性质,或两者俱有。
线
性: 3 = 1 + 2
时不变性: 2 = 1 ( − 0 )
(a) = 2 ( − 1)
∴ 是线性的
∴ 不是时不变的
基波周期0 : 使[] = + 成立的最小正整数。
离散时间复指数信号的周期: 0 , 0 = 是有理数,则是周期的,
2
2 0
且和无公因子时,基波周期为,角频率为 =
常数通常不讨论它的周期性,但可以认为周期为1。
1
4
2
=
= ,1 = 7
2 7 × 2 7
1
3
1
[] = [cos + cos( )]
2
4
4
N1
2
* m 8, m 3
3 / 4
N1
∴ 是周期的,基波周期为 =8
2
* m 8, m 1
/4
+ + + 1.27 这一章介绍了系统的几个一般性质,这就是一个系统可能是或不是:
信号与系统_奥本海姆_中文答案_chapter
第九章 9.6 解:(a) 若是有限持续期信号Roc 为整个s 平面,故存在极点不可能,故不可能为有限持续期。
(b) 可能是左边的。
(c) 不可能是右边的,若是右边信号,它并不是绝对可积的。
(d) x(t)可能为双边的。
9.8 解:因为te t x t g 2)()(=的傅氏变换,)(ωj G 收敛 所以)(t x 绝对可积若)(t x 为左边或者右边信号,则)(t x 不绝对可积 故)(t x 为双边信号 9.10 解:(a) 低通 (b) 带通 (c) 高通 9.14 解:dt e t x s X st⎰∞∞--=)()(, 由)(t x 是偶函数可得)()()(t d e t x s X st--=⎰-∞∞dt et x ts ⎰∞∞----=)()(dt e t x t s ⎰∞∞---=)()( )(s X -=421πj e s =为极点,故421πj e s -=也为极点,由)(t x 是实信号可知其极点成对出现,故421πj e s -=与421πje s --=也为极点。
)21)(21)(21)(21()(4444ππππjjjjes es es es Ms X --++--=由⎰∞∞-=4)(dt t x 得 4)0(=x所以,M =1/4 即,42}Re{42<<-s 9.21 解:(a) 3121)(+++=s s s X 2}Re{->s(b) 25)5(541)(2++++=s s s X 4}R e {->s (c) 3121)(----=s s s X 2}R e {<s (d) 22)2(1)2(1)(--+=s s s X2}R e {2<<-s (e) 22)2(1)2(1)(-++-=s s s X 2}R e {2<<-s (f) 2)2(1)(-=s s X 2}R e {<s (g) )1(1)(s e ss X --=0}R e {>s (h) 22)1()(s e s X s -=-0}R e {>s如对您有帮助,欢迎下载支持,谢谢!(i) ss X 11)(+= 0}R e {>s (j) ss X 131)(+=0}R e {>s9.23 解:1. Roc 包括 Re{s}=3 2. Roc 包括 Re{s}=03. Roc 在最左边极点的左边 4. Roc 在最右边极点的右边图1:1,2}Re{>s2,2}Re{2<<-s 3,2}Re{-<s 4,2}Re{>s图2: 1,2}Re{->s 2,2}Re{->s 3,2}Re{-<s 4,2}Re{->s 图3: 1,2}Re{>s 2,2}Re{<s 3,2}Re{<s 4,2}Re{>s 图4: 1,S 为整个平面 2,S 为整个平面 3,S 为整个平面 4,S 为整个平面 9.25 解:图略 9.27 解:)(t x 为实信号,)(s X 有一个极点为j s +-=1 )(s X ∴另一个极点为j s --=1 )1)(1()(j s j s Ms X ++-+=∴又 8)0(=X16=∴M则,)1(8)1(8)(j s jj s j s X -+-++=1}Re{->s 或者1}Re{-<s 之一使其成立又 )(2t x e t不是绝对可积的∴对任一个s ,右移2,不一定在Roc 中因此,1}Re{-<s 9.35 解:(a) )(1)(*)(s X st u t x L−→− 那么方框图表示的方程为)(*)(*)(6)(*)()()(*)(*)()(*)(2)(t u t u t y t u t y t y t u t u t x t u t x t x --=++即 ⎰⎰⎰⎰⎰⎰∞-∞-∞-∞-∞-∞---=++t ttt ttdt d y d y t y dt d x d x t x ττττττττ)(6)()()()(2)(对两边求导可得)(6)()()()()(2222t x dt t dx dt t x d t y dt t dy dt t y d --=++ (b) 126)(22++--=s s s s s H121-==s s 是)(s H 的二重极点,由于系统是因果的所以 1}Re{->sRoc 包含虚轴,所以系统是稳定的。
奥本海姆 信号与系统 习题参考答案
第五、六、七、八章作业解答5.1解:(a )ωωωωωωj j j j n j n n j n n n e e e ee e n u F -----∞=--∞=--=-===-∑∑211211212)21(2)21(]}1[)21{(1111 其模为:ωωcos 4111|)(|-+=j e X5.4解:根据:∑∞-∞=-=k k F )2(2}1{πωπδ)2()2(}{c o s 000ωπωπδωπωπδω+-+--=∑∞-∞=k k F k故:n 2cos1)(1π+=t x5.23解:(a ) 因为:nj N j en x eX ωω-+∞-∞=∑=][)(则:6)1(121121)1(][)(0=-+++++++-==∑+∞-∞=N j n x e X(b )设]2[][1+=n x n x则]2[][1-=n x n x ωωω21)()(j j j e e X e X -=x1[n]是实偶对称信号,则⎪⎩⎪⎨⎧<>=∠0)(0)(0)(111ωωωπj j j e X e X e X故:⎪⎩⎪⎨⎧<->-=∠+-=∠0)(20)(2)(2)(111ωωωωωπωωj j j j e X e X e X e X(c )因为: ⎰=πωωωπ2)(21][d e e X n x n j j则:ππωππω4]0[2)(==⎰-x d e X j(d) 因为:nj N j en x eX ωω-+∞-∞=∑=][)(2)1()1(12)1(112)1(1)1()1()1(][][)(=-+-⨯++-⨯+++-⨯+-⨯-=-==∑∑+∞-∞=+∞-∞=nN nj N j n x en x e X ππ(e) 2][][][)}(Re{n x n x n x eX e Fj -+=−→←π(图略)(f) I 根据帕斯瓦尔关系式:⎰∑+∞-∞==πωωπ222|)(|21|][|d e X n x j n 则:πππωωππ28)11411411(2|][|2|)(|22=+++++++==∑⎰+∞-∞=-n j n x d e XII 根据:ωωd e dX n nx j FT)(][j −→←-则:πππωωωππ316)4925649119(2|][-j |2|)(|22=++++++==−→←∑⎰∞-∞=-n j FTn nx d d e dX6.5解:而:ttt h c πωsin )(1= 的傅里叶变换为:0 ωc ω -ωc则)()()(1t g t h t h = 而:)2()2()(11c c j H j H j H ωωωωω-++= 故:t e e t g c t j tj c c ωωω2cos 2)(22=+=-6.23(a) ttt h c πωsin )(=(b) ⎩⎨⎧<=othere j H c Tj 0||)(ωωωω则:)()(sin )(T t T t t h c ++=πω(c )⎪⎪⎪⎩⎪⎪⎪⎨⎧<<-<<=-othere e j H c j c j 000)(22ωωωωωππ故:ωπωπωωπωωπd e e d e e t h t j jtj jcc⎰⎰+=--02022121)(c c t j jt j je t e e t e ωωπωωπππ0202|j 2|j 2+=--c c t j jt j je te e t e ωωπωωπππ0202|j 2|j 2+=-- ]1[2]1[222-+-=--t j jt j jc c e t j e e t j e ωπωπππ]}[]{[21122t j t j j j c c e e e e jt ωωπππ---+-=]}[]{[211)2/()2/(22πωπωπππt j t j j j c c e e e e jt -+--+-=]1[cos 1-=t t c ωπ7.3解:(a))(t x 的最高频率为4000π,故奈奎斯特率为8000π; (b ) 同上;(c ) 时域相乘,频域相卷,故)(t x 的最高频率为8000π,则奈奎斯特率为16000π;7.22解: y(t)为:)()()(ωωωj H j X j Y =πωω1000||0)(>=j Y对y(t)进行采样,则要求采样频率fs>2000π,故采样周期因为ms T 120002=<ππ7.27解: (a )x (t)e ∑∞-∞=-=n nT t t p )()(δx p (t)因为:ω0如下图图所示,为ω1与ω2的中点位置:X(j ω) ωω1 -ω2 -ω11ω2 ω0(a ))()(01ωωω+=j X j X)()()(12ωωωj H j X j X =21X2(j ω) ω(ω2-ω1)/21-(ω2-ω1)/2(b )最大的采样周期为:122ωωπ-(c)该系统为:先通过如下图所示的低通滤波器,得到X2(j ω),然后将其乘以 e j ω0t ,则信号频移ω0,然后通过一个反折系统,其系统框图图下图所示:H (j ω) ω(ω2-ω1)/2T-(ω2-ω1)/2e j ω0t说明:因为)(X ωj a 为实数,则有:)(X )(X *ωωj j a a =而)()()}(Re{2)(x *t x t x t x t aa a +==)()()(*ωωωj X j X j X a a -+=又因为)(X )(X *ωωj j a a =故:)(X )(X *ωωj j aa -=-则:)()()(ωωωj X j X j X a a -+=得到结论8.3解:定性的理解由于载波信号与同步信号的相位相差为90o ,故输出信号为0; (也可以通过调制、解调的时域表达式计算出结果也为0)。
信号与系统_奥本海姆_中文答案_chapter_4
Chapter 44.10 (a) 解:1sin ()sin tx t t tππ=⋅令:12sin ()sin ,()tx t t x t tπ==则:12()(1)(1)0,1()11X j jjX j ππωδωδωωωω=--+⎧>⎪=⎨<⎪⎩,所以:,202(),0220,jjX j ωπωωπω⎧-≤<⎪⎪⎪=-≤<⎨⎪⎪⎪⎩其他 (b )2243sin 11()()22t A t dt X j d t ωωπππ+∞+∞-∞-∞===⎰⎰ 4.11 证明: 111()()()()3339j G j X j H Y j ωωωω=⋅= 因为1(3)()33j y t Y ω↔ 所以11(3)()()393j y t Y G j ωω↔= 即:11()(3),333g t y t A B =⇒==4.13 (a) 51()(1)()2j t j t x t e e x t ππ=++⇒非周期 (b) []()()()()F x t h t X j H j ωω*=⋅[]211()(2)(5)()(())j e j j ωδωδωδωπδωπδωωω-⎡⎤=+-+-⋅+-+⎢⎥⎣⎦则:[]11051()()()()(1)10j j t x t h t FX j H j e e jωωπ--*=⋅=- 因此:()()x t h t *是周期的,周期为25π。
(c) 由(b)可知,()x t 和()h t 都不是周期的,但卷积周期。
这说明两个非周期信号的卷积有可能是周期的。
4.14 解: 由条件2得:2()2tAF Ae u t j ω-⎡⎤=⎣⎦+所以:(1)()2Aj X j j ωωω+=+即:11()()(2)(1)12A X j A j j j j ωωωωω==-++++2()()()t t x t A e e u t --=-由条件3知:22220()1()1t t x t dt A e e dt +∞+∞---∞=⇒-=⎰⎰212A ⇒=,由()0x t A ≥⇒=从而有2())()t t x t e e u t --=-。
(完整版)信号与系统奥本海姆_习题答案
∑ {δ [n + 4m - 4k ] - δ [n + 4m - 1 - 4k ]}∑ {δ [n - 4(k - m )] - δ [n - 1 - 4(k - m )]}∑ {δ [n - 4k ] - δ [n - 1 - 4k ]}s Because g (t ) =∑ δ (t - 2k ) ,Chapter 1 Answers1.6 (a).NoBecause when t<0, x (t ) =0. 1(b).NoBecause only if n=0, x [n ] has valuable.2(c).Y esBecause x[n + 4m ] ===∞ k =-∞ ∞ k =-∞ ∞ k =-∞N=4.1.9 (a). T=π /5Because w =10, T=2π /10= π /5.(b). Not periodic.Because x (t ) = e -t e - jt , while e -t is not periodic, x (t ) is not periodic.2 2(c). N=2Because w =7 π , N=(2 π / w )*m, and m=7.0 0(d). N =10Because x (n) = 3e j 3π / 10 e j (3π / 5)n , that is w =3 π /5, N=(2 π / w )*m, and m=3.4 0(e). Not periodic.Because w =3/5, N=(2 π / w )*m=10π m/3 , it ’not a rational number .1.14 A1=3, t1=0, A2=-3, t2=1 or -1Solution: x(t) isdx(t )dtis∞ k =-∞1.15. (a). y[n]=2x[n-2]+5x[n-3]+2x[n-4]dx(t ) dx(t )=3g(t)-3g(t -1) or =3g(t)-3g(t+1)d t dt2 22 12Solution:y [n ] = x [n - 2] + 1x [n - 3] 2 2 1= y [n - 2] + y [n - 3]1 1= {2 x [n - 2] + 4 x [n - 3]} + {2 x [n - 3] + 4 x [n - 4]}1 1 1 1 =2 x [n - 2] + 5x [n - 3] + 2 x [n - 4]1 11Then, y[n ] = 2 x [n - 2] + 5x[n - 3] + 2 x [n - 4](b).No. For it ’s linearity .the relationship be tw e en y [n ] and x [n ] is the same in-out relationship with (a).1 2you can have a try.1.16. (a). No.For example, when n=0, y[0]=x[0]x[-2]. So the system is memory . (b). y[n]=0.When the input is A δ [n ] ,then, y[n] = A 2δ [n]δ [n - 2] , so y[n]=0.(c). No.For example, when x[n]=0, y[n]=0; when x[n]= A δ [n ] , y[n]=0.So the system is not invertible.1.17. (a). No.For example, y(-π ) = x(0) . So it ’s not causal.(b). Y es.Because : y (t ) = x (sin(t )) ,y (t ) = x (sin(t ))1 122ay (t ) + by (t ) = ax (sin(t )) + bx (sin(t ))1 2121.21. Solution:W e(a).have known:(b).(c).(d).1.22.Solution:W e have known:(a).(b).(e).22 E {x(t )} =(g)1.23. Solution:For1[ x (t ) + x(-t )] v 1O {x(t )} = [ x (t ) - x(-t )] dthen, (a).(b).(c).1.24.2Solution:For:E {x[n ]} = v 1 2( x [n ] + x[-n ])1O {x[n]} = ( x [n ] - x[-n ]) dthen,(a).(b).Solution: x(t ) = E {cos(4π t )u(t )}s(c).1.25. (a). Periodic. T=π /2.Solution: T=2π /4= π /2. (b). Periodic. T=2.Solution: T=2π / π =2. (d). Periodic. T=0.5.v1= {cos(4πt )u (t ) + cos(4π (-t ))u (-t )}2 1= cos(4π t ){u (t ) + u(-t )}2 1= cos(4π t )2So, T=2π /4 π =0.51.26. (a). Periodic. N=7Solution: N= 2π* m =7, m=3.6π / 7(b). Aperriodic.Solution: N= 2π 1/ 8* m = 16m π , it ’not rational number .(e). Periodic. N =16Solution as follow:2 cos( n ) , it ’s period is N=2π *m/( π /4)=8, m=1.sin( n ) , it ’s period is N=2π *m/( π /8)=16, m=1.(2). g (t ) ∑δ (t - 2k )π π π πx[n ] = 2 cos( n ) + sin( n ) - 2 cos( n + 4 8 2 6)in this equation,π4 π8π π- 2 cos( n + 2 6) , it ’s period is N=2π *m/( π /2)=4, m=1.So, the fundamental period of x[n ] is N=(8,16,4)=16.1.31. SolutionBecausex (t ) = x (t ) - x (t - 2), x (t ) = x (t + 1) + x (t ) .2 11311According to LTI property ,y (t ) = y (t ) - y (t - 2), y (t ) = y (t + 1) + y (t )2 11311Extra problems:1. SupposeSketch y(t ) = ⎰t-∞x(t )dt .Solution:2. SupposeSketch:(1). g (t )[δ (t + 3) + δ (t + 1) - 2δ (t - 1)]∞k =-∞Because x[n]=(1 2 0 –1) , h[n]=(2 0 2) , the nSolution: (1).(2).Chapter 22.1 Solution:-1(a).So,y [n ] = 2δ [n + 1] + 4δ [n ] + 2δ [n - 1] + 2δ [n - 2] - 2δ [n - 4]1(b). according to the property of convolutioin:y [n ] = y [n + 2]2 1(c). y [n] = y [n + 2]31=∑ x[k ]h [n - k ]( ) 0 - ( ) (n +2)-2+1= ∑ ( ) k -2 u[n] = 2 u[n]2 ⎩0, elsewhere W e have known: x[n] = ⎨ ⎩0,elsewhere , h[n] = ⎨ ,( N ≤ 9 ), , ∑ h[k ]u[n - k ]∑ (u[k ] - u[k - N - 1])(u[n - k ] - u[n - k - 10])∑ (u[k ] - u[k - N - 1])(u[4 - k ] - u[-k - 6])⎧∑ 1,...N ≤ 4⎪∑1,...N ≥ 4 ⎪⎩∑ (u[k ] - u[k - N - 1])(u[14 - k ] - u[4 - k ])2.3 Solution:y[n ] = x[n ]* h [n ]∞ k =-∞ ∞1= ∑ ( ) k -2 u [k - 2]u [n - k + 2]2k =-∞1 1 n +2 121 k =2 1 -21= 2[1 - ( ) n +1 ]u [n ]2the figure of the y[n] is:2.5 Solution:⎧1 ....0 ≤ n ≤ 9 ....⎧1 0≤ n ≤ N .... Then,x[n] = u[n] - u[n - 10] , h[n] = u[n] - u[n - N - 1]y[n] = x[n]* h[n] =∞k =-∞=∞ k =-∞So, y[4] =∞ k =-∞N⎪ ⎪ = ⎨k =04k =0=5, the n N ≥ 4And y[14] =∞ k =-∞⎧∑ 1,...N ≤ 14⎪∑1,...N ≥ 14 ⎪⎩ ∑ x[k ]g [n - 2k ]∑ x[k ]g [n - 2k ] = ∑ δ [k - 1]g [n - 2k ] = g [n - 2]∑ x[k ]g [n - 2k ] = ∑ δ [k - 2]g [n - 2k ] = g [n - 4]∑ x[k ]g [n - 2k ] = ∑ u[k ]g [n - 2k ] = ∑ g [n - 2k ]N⎪ ⎪= ⎨ k =514k =5∴N = 4=0, the n N < 52.7 Solution:y[n] =∞k =-∞(a ) x[n] = δ [n - 1] , y[n] =∞∞k =-∞ k =-∞ (b)x[n] = δ [n - 2] , y[n] =∞∞k =-∞k =-∞(c) S is not LTI system..(d) x[n] = u[n] , y[n] =∞ ∞∞k =-∞k =-∞ k =02.8 Solution:y(t ) = x(t ) * h (t ) = x(t ) *[δ (t + 2) + 2δ (t + 1)]= x(t + 2) + 2 x (t + 1)Then,⎩ = ⎰ u(τ - 3)e -3(t -τ )u(t - τ )d τ - ⎰ u(τ - 5)e -3(t -τ )u(t - τ )d τ⎩= u(t - 3)⎰ e -3(t -τ ) d τ - u(t - 5)⎰ e -3(t -τ ) d τ⎧t + 3,..... - 2 < t < -1 ⎪4,.......... t = -1 ⎪⎪That is, y(t ) = ⎨t + 4,..... - 1 < t ≤ 0⎪2 - 2t,....0 < t ≤ 1 ⎪ ⎪0,....... others2.10 Solution:(a). W e know:Then,h '(t ) = δ (t ) - δ (t - α )y '(t ) = x(t ) * h '(t ) = x(t ) *[δ (t ) - δ (t - α )]= x(t ) - x(t - α )that is,⎧t,.....0 ≤ t ≤ α ⎪α ,....α ≤ t ≤ 1So, y(t ) = ⎨⎪1 + α - t,.....1 ≤ t ≤ 1 + α ⎪0,.....others(b). From the figure of y '(t ) , only if α = 1 , y '(t ) would contain merely therediscontinuities.2.11 Solution:(a).y(t ) = x(t ) * h(t ) = [u (t - 3) - u (t - 5)]* e -3t u (t )∞ ∞-∞-∞tt35= ⎨⎰ e -3(t -τ ) d τ = ,.....3 ≤ t < 5 ⎪ 3 ⎪⎰ e -3(t -τ ) d τ - ⎰ e -3(t -τ ) d τ = - e ⎪ t9-3t + e 15-3t ⎪⎩ s y(t ) = e -t u (t ) * ∑ δ (t - 3k ) = ∑ [e = ∑ e -(t -3k )u (t - 3k )y(t ) = e -t [ ∑ e 3k u (t - 3k )] = e -t∑ ew [n ] = 1w [n - 1] + x[n ]⎧⎪ ⎪0,................. t < 3⎪ t1 - e 9-3t3t353,...... t ≥ 5(b). g (t ) = (dx(t ) / dt ) * h(t ) = [δ (t - 3) - δ (t - 5)]* e -3t u (t )= e -3(t -3) u (t - 3) - e -3(t -5) u (t - 5)(c). It ’obvious that g (t ) = d y (t ) / dt .2.12 Solution∞∞k =-∞k =-∞∞k =-∞Considering for 0 ≤ t < 3 ,we can obtain-t u (t ) * δ (t - 3k )]∞k =-∞0 k =-∞3k= e -t 11 - e -3.(Because k mu st be negetive , u (t - 3k ) = 1 for 0 ≤ t < 3 ).2.19 Solution:(a). W e have known:2 (1)y[n ] = αy[n - 1] + βw [n ](2)then, H ( E ) = H ( E ) H ( E ) =βE 2= .... or : (α + ) = ∴⎨ 2 8 ⎝ 2 = - E ∴ h [n ] = ⎢2( ) n - ( ) n ⎥u [n ] ⎩Θ⎰⎰ sin(2πt )δ (t + 3)dt has value only on t = -3 , but - 3 ∉ [0,5]⎰ sin(2πt )δ (t + 3)dt =0Θ⎰-4from (1), H ( E ) =E1E -1 2from (2), H ( E ) =2 βEE - α121 ( E - α )(E - )2 = β1 α 1 - (α + ) E -1 + E -22 21 α∴ y[n ] - (α + ) y[n - 1] + y[n - 2] = βx[n ]2 21 3but, y[n ] = - y[n - 2] + y[n - 1] + x[n ]8 4⎧α 1 ⎛1 ⎪ 3 ⎫ ⎪4 ⎭ ⎧ 1 ⎪α = ∴⎨ 4⎪β = 1(b). from (a), we know H ( E ) = H ( E ) H ( E ) =1 22E +1 1 E - E -4 2⎡ 1 1 ⎤ ⎣ 24 ⎦2.20 (a). 1⎪⎩β = 1E 21 1 ( E - )(E - ) 4 2(b). 0∞-∞ u (t ) cos(t )dt =⎰∞ δ (t ) cos(t )dt = cos(0) = 1-∞Θ∴(c). 05 0 5 05-5 u (1 - τ ) cos(2πτ )d τ = -⎰6 u (t ) cos(2πt )dt1 1= -⎰6 δ '(t ) cos(2πt )dt-4= cos '(2π t ) |t =0= -2π sin(2πt ) |t =0= 0∑ δ (t - kT ) * h (t )∑ h (t - kT )⎰ y(t )d t , A = ⎰ x(t )dt ,A = ⎰ h(t )d t .⎰ x(τ ) x (t - τ )d τ⎰ y(t )dt = ⎰ ⎰ x(τ ) x (t - τ )d τd t= ⎰ ⎰ x(τ ) x (t - τ )dtd τ = ⎰ x(τ ) ⎰ x(t - τ )dtd τ⎰ x(τ ) ⎰ x(ξ )d ξ d τ = ⎰ x(τ )d τ{ ⎰ x(ξ )d ξ}2.23 Solution:Θ y(t ) = x(t ) * h (t ) =∞k =-∞=∞ k =-∞∴2.27 SolutionA = y∞ ∞ ∞ x h-∞ y(t ) = x(t )* h(t ) = -∞ -∞ ∞-∞A = y∞ ∞ ∞-∞ -∞ -∞∞ ∞∞∞-∞ -∞-∞ -∞= ∞ ∞ ∞ ∞-∞= A Ax h-∞ -∞ -∞⎰e ⎰ eδ (τ - 2)d τ = ⎰ e⎰ u(τ + 1)eu(t - 2 - τ )d τ - ⎰ u(τ - 2)e= u(t - 1) ⎰ ed τ - u(t - 4) ⎰ e-(t -2-τ )d τ2.40 Solution(a) y(t ) = t-(t -τ) x(τ - 2)d τ ,Let x(t ) = δ (t ) ,then y(t ) = h (t ) .-∞So , h(t ) = t t -2-(t -τ ) -∞-∞-(t -2-ξ )δ (ξ )d ξ = e -(t -2)u(t - 2)(b)y(t ) = x(t )* h(t ) = [u(t + 1) - u(t - 2)]* e -(t -2)u(t - 2)=∞ ∞ -(t -2-τ )-∞-∞-(t -2-τ )u(t - 2 - τ )d τt -2-1-(t -2-τ ) t -2 2= u(t - 1)[e -(t -2) e τ ]| t -2 -u(t - 4)[e -(t -2) e τ ]| t -2-1 2= [1- e -(t -1) ]u(t - 1) - [1- e -(t -4) ]u(t - 4)2.46 SolutionBecaused d dx(t ) = [ 2e -3t ]u (t - 1) + 2e -3t [ u (t - 1)] d t dt d t= -3x(t ) + 2e -3t δ (t - 1) = -3x(t ) + 2e -3δ (t - 1) .From LTI property ,we knowdd tx(t ) → -3 y (t ) + 2e -3 h (t - 1)whereh (t ) is the impulse response of the system.So ,following equation can be derived.2e -3h(t - 1) = e -2t u (t )Finally, h (t ) = 12e 3e -2(t +1)u (t + 1)2.47 SoliutionAccording to the property of the linear time-invariant system:(a). y(t ) = x(t ) * h(t ) = 2 x (t ) * h (t ) = 2 y (t )0 0(b). y(t ) = x(t ) * h(t ) = [ x (t ) - x (t - 2)]* h(t )1y(t)= x (t ) * h (t ) - x (t - 2) * h (t )0 2 4t= [ y (t )] = y (1). Because H ( P ) = 1so h (t ) = (1= 2 + E - E ⎪ [ ]⎪δ [k ] = i (-1 - i) n- (-1 + i) n u [n] so h [n ] = 2 2 i= y (t ) - y (t - 2)0 0(c). y(t ) = x(t ) * h(t ) = x (t - 2) * h (t + 1) = x (t - 2) * h (t ) * δ (t + 1) = y (t - 1)0 0(d). The condition is not enough.(e). y(t ) = x(t ) * h(t ) = x (-t ) * h (-t )0 0= ⎰∞ x (-τ )h (-t + τ )d τ-∞ = ⎰∞x (m )h (-t - m )dm = y (-t )-∞(f). y(t ) = x(t ) * h (t ) = x ' (-t ) * h ' (-t ) = [ x ' (-t ) * h (-t )] ' ' ' " (t )Extra problems:1. Solute h(t), h[n](1). d 2 dy(t ) + 5 y(t ) + 6 y(t ) = x(t )dt 2 dt(2). y[n + 2] + 2 y[n + 1] + 2 y[n ] = x[n + 1]Solution:1 1 - 1= = +P 2 + 5P + 6 ( P + 2)( P + 3) P + 2 P + 3- 1+)δ (t ) = (e -2t - e -3t )u (t )P + 2P + 3(2). Because H ( E ) = E E E= =E 2 + 2E + 2 ( E + 1) 2 + 1 ( E + 1 + i)( E + 1 - i)i i E - E2E + 1 + i E + 1 - i⎛ i ⎫+E + 1 + i E + 1 - i ⎪ 2 ⎪ ⎝ ⎭x(t ) = ∑ for the period of cos( 5πt ) is T = 63the period of sin( 22⎰ x 2 (t )e - jkw 2t d t = ⎰ ( x 1 (1- t ) + x 1 (t - 1))e - jkw 1t dtT T TChapter 33.1 Solution:Fundamental period T = 8 . ω = 2π / 8 = π / 4∞a e j ω0kt = a e j ω0t + a e - j ω0t + a e j 3ω0t + a e - j 3ω0tk 1 -1 3 -3k =-∞ = 2ej ω0t+ 2e - j ω0t + 4 je j 3ω0t - 4 je - j3ω0t π 3π= 4cos( t ) - 8sin( t )4 43.2 Solution:for , a = 1 , a0 -2= e - j π / 4 , a = e j π / 4 , a 2-4= 2e - j π / 3 , a = 2e j π / 34x[n] = ∑ a e jk (2π / N )nkk =< N >= a + a e j (4π / 5)n + a e - j (4π / 5)n + a e j (8π / 5)n + a e - j (8π / 5)n0 2-24-4= 1 + e j π / 4 e j (4π / 5)n + e - j π / 4 e - j (4π / 5)n + 2e j π / 3e j (8π / 5)n + 2e - j π / 3e - j (8π / 5)n4 π 8 π= 1 + 2 cos( πn + ) + 4 cos( πn + )5 4 5 3 4 3π 8 5π= 1 + 2sin( πn + ) + 4sin( πn + )5 4 5 63.3 Solution:2πt ) is T= 3 , 3so the period of x(t ) is 6 , i.e. w = 2π / 6 = π / 32π 5π x(t ) = 2 + cos(t ) + 4sin(t )331= 2 + cos(2w t ) + 4sin(5w t )0 0 1= 2 + (e j 2w 0t + e - j 2w 0t ) - 2 j(e j5w 0t - e - j5w 0t )2 then, a = 2 , a 0 -2 1= a = , a 2 -5 = 2 j , a = -2 j 53.5 Solution:(1). Because x (t ) = x (1 - t ) + x (t - 1) , the n x (t ) has the same period as x (t ) ,21121that is T = T = T ,w = w2121(2). b = 1 k⎰ x 1 (1- t )e - jkw 1t d t + 1 ⎰ x 1 (t - 1)e - jkw 1t dt ∑∑⎰ x(t ) 2 dt = a 0 2 + a -1 2 + a 1 2 = 2 a 1 2 = 1 Fundamental period T = 8 . ω = 2π / 8 = π / 4∑∑ a H ( jkw )ejkw 0tk ω ⎩0,......k ≠ 0⎧ ∑t Because a =⎰ x(t )d t = 1⎰4 1d t + 1 ⎰ 8(-1)d t = 0TT88 4= 1 T T T T= a e - jkw 1 + a e - jkw 1 = (a -k k3.8 Solution:-k+ a )e - jkw 1 kΘx(t ) =∞ k =-∞a e jw 0ktkwhile:andx(t ) is real and odd, the n a = 0 , a = -a 0 kT = 2 , the n w = 2π / 2 = πa = 0 for k > 1k-ksox(t ) =∞ a e jw 0kt = a + a e - jw 0t + a e jw 0tk 0 -1 1k =-∞= a (e j πt - e - j πt ) = 2a sin(π t )11for1 2 2 0∴∴a = ± 2 /21x(t ) = ± 2 sin(π t )3.13 Solution:Θx(t ) =∞ k =-∞a e jw 0ktk∴ y(t ) =∞k 0k =-∞H ( jk ω ) = sin(4k ω0 ) =⎨4,...... k = 00 0 ∴ y(t ) =∞a H ( jkw )e jkw 0= 4a k 00 k =-∞1Soy(t ) = 0 .∑∑a H(jkw)e jkw0tT t H(jw)=⎨if a=0,it needs kw>100T ⎰T⎰t dt=0T ⎰x(t)e-jkw0t dt=⎰te-jk22t dt=1⎰1te-jkπt dt11⎰1tde-jkπt2jkπ⎢-1⎦⎢(e-jkπ+e jkπ)-⎥-jkπ2c os(kπ)+-jkπ⎥⎦[2cos(kπ)]=j cos(kπ)=j(-1)k............k≠03.15Solution:Θx(t)=∞k=-∞a e jw0kt k∴y(t)=∞k=-∞k0∴a=1k ⎰Ty(t)H(jkw)e-jkw0d tfor⎧⎪1,......w≤100⎪⎩0,......w>100∴k0that is k2π100 >100,.......k>π/612and k is integer,so K>8 3.22Solution:a=10x(t)dt=112-1a= k 1T2-12-1π=-1 2jkπ-1=-1⎡⎢te-jkπt⎣1-1-e-jkπt-jkπ1⎤⎥⎥=-=-12jkπ12jkπ⎡(e-jkπ-e jkπ)⎤⎣⎦⎡2sin(kπ)⎤⎢⎣=-12jkπkπkπ⎰ h (t )e - j ωt d t = ⎰ e -4 t e - j ωt d t= ⎰ e e d t + ⎰ e -4t e - j ωt d t∑0 ∑∑Ta = ⎰ x(t )e - jkw 0t d t = ⎰1/ 2 δ(t )e - jk 2πt d t = 1T T-1/ 2 ∑T∑ (-1) δ (t - n ) .T=2, ω = π , a = 1T a = ⎰ x(t )e - jkw 0t d t = ⎰ δ (t )e - jk πt d t + ⎰ 3/ 2 (-1)δ (t - 1)e - jk πt d tT 2 -1/ 2 2 1/ 2 T 16 + (k π )23.34 Solution:∞ ∞H ( j ω ) =-∞-∞0 ∞ 4t - j ωt-∞118=+=4 - j ω 4 + j ω 16 + ω 2A periodic continous-signal has Fourier Series:. x(t ) =T is the fundamental period of x(t ) . ω = 2π / T∞ k =-∞a e j ω ktkThe output of LTI system with inputed x(t ) is y(t ) =Its coefficients of Fourier Series: b = a H ( jk ω )k k 0∞ k =-∞a H ( jk ω )e jk ω tk 0(a) x(t ) =∞ n =-∞ δ (t - n ) .T=1, ω = 2π a = 1 = 1 .0 k1 k(N ot e :If x(t ) =∞ n =-∞δ (t - nT ) , a =1 k)So b = a H ( jk 2π ) = k k 8 2=16 + (2k π )2 4 + (k π )2(b) x(t ) = ∞n =-∞n0 k= 11 1 1/2 1 k1= [1- (-1)k ] 24[1-(-1)k ]So b = a H ( jk π ) = ,k k(c) T=1, ω = 2π⎰ x(t )e - jk ω0t d t = ⎰1/ 4e - jk 2πt d t =∑∑ a H ( jkw )ejkw 0t⎪⎩0,......otherwise ⎩0,......otherwise H ( jw) = ⎨⎪, 14Let y(t ) = x(t ) , b = a , it needs a = 0 ,for k < 18..or .. k ≤ 17 .∑∑∑ 2n e - j ωn + ∑ ( )n e - j ωn1 =2 41 1 5∑a ejk ( N )n .a = k1 T T -1/ 4 k π sin(2 k π)b = a H ( jk π ) =k k k π8sin( )2 k π [16 + (2k π )2 ]3.35 Solution: T= π / 7 , ω = 2π / T = 14 .Θx(t ) =∞a e jw 0ktk∴y(t ) =k =-∞ ∞ k =-∞k 0∴b = a H ( jkw )k k 0for ⎧1,...... w ≥ 250 ⎧1,...... k ≥ 170 that is k ω 0 < 250,....... k < 250, and k is integer , so k < 18..or .. k ≤ 17 .kkk3.37 Solution:H (ej ω) = ∞n =-∞h [n ]e- j ωn=∞ n =-∞1 ( ) ne - j ωn 2-1∞1= 2n =-∞ n =0 1 3e j ω+ =1 - e j ω 1 - e - j ω - cos ω2 2 4A periodic sequen ce has Fourier Series: x [n ] =N is the fundamental period of x[n ] .k =< N >k2πThe output of LTI system with inputed x[n ] is y[n ] =∑ a H (ekj 2π k N)ejk ( 2π )n N .k =< N >∑4 .So b = a H (e j N k ) = 1 4 45 - cos( 2π k ) k =2 21 T ' 1 3T '-1 = ⎰ x(3t - 1)e T ' dt = ⎰ x(m )e = ⎰ x(m )e e⎡ 1T -1 T ⎢⎰∑a e jk (2π/T )t ,where a = 0 for every2π Its coefficients of Fourier Series: b = a H (ejN k )kk3(a) x[n ] =∞ k =-∞δ [n - 4k ] .N=4, a = 1 k k k 2π 4 4b =k3 165 π- cos( k ) 4 23.40 Solution:According to the property of fourier series:(a). a k '= a e - jkw 0t 0 + a e jkw 0t 0 = 2a cos(kw t ) = 2a cos(k k k k 0 0 k 2π t )T 0(b). Because E {x(t )} =v x(t ) + x(-t )2a ' a + a k 2-k= E {a }v k(c). Because R {x(t )} = x(t ) + x * (t )e'a + a *a = k-k k(d). a '= ( jkw ) 2 a = ( jk k 0 k 2πT) 2 ak(e). first, the period of x(3t - 1) is T ' =T3th e n ak ' 2π - jk t T ' 0 T ' -11 T -12π 2π - jkm - jk dmT TT -1- jk 2π m +1 dm T ' 3 3= e- jk 2π ⎣ T -1x(m )e2π- jk m T⎤dm ⎥⎦2π = a e- jk Tk3.43 (a) Proof:( i ) Because x(t ) is odd harmonic , x(t ) =non-zer o even k.∞ k =-∞k kx(t + ) = ∑ a e jk (2π /T )(t + 2 )T 2∑= - ∑ a e jk (2π /T )t(ii )Because of x(t ) = - x (t + ) ,we get the coefficients of Fourier Seriesa = ⎰ x(t )e - jk 2T π t d t = 1 ⎰ T / 2 x(t )e - jk 2T π t d t + 1 ⎰ T x(t )e - jk 2T π t d tT 0 T 0 T T /2 1 T /2 1 T /2 = ⎰ T dt + ⎰ x(t + T / 2)e x(t )e 1 T /2 1 T /2 = ⎰ x(t )eT dt - ⎰ x(t )(-1)k e T dt 1T /2It is obvious that a = 0 for every non-zer o even k. So x(t ) is odd harmonic ,-11x(t ) = ∑ δ (t - kT ) , T = π∞ T k k =-∞= ∞a e jk π e jk (2π /T )tkk =-∞∞kk =-∞It is noticed that k is odd integers or k=0.That meansTx(t ) = - x (t + )2T21 T k2π - jk t T 0 T 0 2π- jk (t +T / 2) Tdt2π 2π- jk t - jk t T 0 T 0= [1- (-1)k ] ⎰T 02π x(t )e- jk Tt d tk(b) x(t )1......-2-12 tExtra problems:∞ k =-∞(1). Consider y(t ) , when H ( jw) isx(t ) = ∑ δ (t - kT ) ↔T π T∑ a H ( jkw )ejkw 0t=1k =-∞ π∑∑π∑1(2). Consider y(t ) , when H ( jw) isSolution:∞k =-∞ 1 1 2π= , w = = 2 0(1).y(t ) =∞k 0∞k =-∞a H ( j 2k )e j 2ktk=2π (for k can only has value 0)(2).y(t ) =∞ k =-∞a H ( jkw )e jkw 0t =1k 0∞k =-∞a H ( j 2k )e j 2ktk=1π (e - j 2t + e j 2t ) =2 cos 2tπ(for k can only has value – and 1)。
信号与系统_奥本海姆_中文答案_全章节
第一章 1.3 解:(a). 2401lim(),04Tt T TE x t dt e dt P ∞-∞∞→∞-====⎰⎰(b) dt t x TP T TT ⎰-∞→∞=2)(21lim121lim ==⎰-∞→dt T TTT∞===⎰⎰∞∞--∞→∞dt t x dt t x E TTT 22)()(lim(c).222lim()cos (),111cos(2)1lim()lim2222TT TTTT T TTE x t dt t dt t P x t dt dt TT∞∞→∞--∞∞→∞→∞--===∞+===⎰⎰⎰⎰(d) 034121lim )21(121lim ][121lim 022=⋅+=+=+=∞→=∞→-=∞→∞∑∑N N n x N P N Nn n N N N n N 34)21()(lim202===∑∑-∞=∞→∞nNNn N n x E (e). 2()1,x n E ∞==∞211lim []lim 112121N NN N n N n NP x n N N ∞→∞→∞=-=-===++∑∑ (f) ∑-=∞→∞=+=NNn N n x N P 21)(121lim 2∑-=∞→∞∞===NNn N n x E 2)(lim1.9. a). 00210,105T ππω===; b) 非周期的; c) 00007,,22m N N ωωππ=== d). 010;N = e). 非周期的; 1.12 解:∑∞=--3)1(k k n δ对于4n ≥时,为1即4≥n 时,x(n)为0,其余n 值时,x(n)为1 易有:)3()(+-=n u n x , 01,3;M n =-=-1.15 解:(a)]3[21]2[][][222-+-==n x n x n y n y , 又2111()()2()4(1)x n y n x n x n ==+-, 1111()2[2]4[3][3]2[4]y n x n x n x nx n ∴=-+-+-+-,1()()x n x n =()2[2]5[3]2[4]y n x n x n x n =-+-+- 其中][n x 为系统输入。
奥本海姆《信号与系统(第二版)》习题参考答案.
信号与系统奥本海姆第二版课后答案
信号与系统 奥本海姆第二版 习题解答Department of Computer Engineering2005.12ContentsChapter 1 (2)Chapter 2 (17)Chapter 3 (35)Chapter 4 (62)Chapter 5 (83)Chapter 6 (109)Chapter 7 (119)Chapter 8 (132)Chapter 9 (140)Chapter 10 (160)Chapter 1 Answers1.1 Converting from polar to Cartesian coordinates:111cos 222j eππ==- 111c o s ()222j e ππ-=-=- 2cos()sin()22jj j eπππ=+=2c o s ()s i n ()22jjj eπππ-=-=- 522j jj eeππ==4c o s ()s i n ())144jjj πππ+=+9441j jj ππ=-9441j j j ππ--==-41jj π-=-1.2 055j=, 22j e π-=,233jj e π--=212je π--=, 41j j π+=, ()2221jj eπ-=-4(1)j je π-=, 411j je π+=-12e π-1.3. (a) E ∞=4014tdt e∞-=⎰, P ∞=0, because E ∞<∞ (b) (2)42()j t t x eπ+=, 2()1t x =.Therefore, E ∞=22()dt t x +∞-∞⎰=dt +∞-∞⎰=∞,P ∞=211limlim222()TTTTT T dt dt TTt x --→∞→∞==⎰⎰lim11T →∞=(c) 2()t x =cos(t). Therefore, E ∞=23()dt t x +∞-∞⎰=2cos()dt t +∞-∞⎰=∞, P ∞=2111(2)1lim lim 2222cos()TTTTT T COS t dt dt T Tt --→∞→∞+==⎰⎰(d)1[][]12nn u n x =⎛⎫ ⎪⎝⎭,2[]11[]4nu n n x =⎛⎫ ⎪⎝⎭. Therefore, E ∞=24131[]4nn n x +∞∞-∞===⎛⎫∑∑ ⎪⎝⎭P ∞=0,because E ∞<∞.(e) 2[]n x =()28n j e ππ-+,22[]n x =1. therefore, E ∞=22[]n x +∞-∞∑=∞,P ∞=211limlim1122121[]NNN N n Nn NN N n x →∞→∞=-=-==++∑∑.(f) 3[]n x =cos 4nπ⎛⎫ ⎪⎝⎭. Therefore, E ∞=23[]n x +∞-∞∑=2cos()4n π+∞-∞∑=2cos()4n π+∞-∞∑,P ∞=1limcos 214nNN n NN π→∞=-=+⎛⎫∑ ⎪⎝⎭1cos()112lim ()2122NN n Nn N π→∞=-+=+∑ 1.4. (a) The signal x[n] is shifted by 3 to the right. The shifted signal will be zero for n<1, And n>7. (b) The signal x[n] is shifted by 4 to the left. The shifted signal will be zero for n<-6. And n>0. (c) The signal x[n] is flipped signal will be zero for n<-1 and n>2.(d) The signal x[n] is flipped and the flipped signal is shifted by 2 to the right. The new Signal will be zero for n<-2 and n>4.(e) The signal x[n] is flipped and the flipped and the flipped signal is shifted by 2 to the left. This new signal will be zero for n<-6 and n>0.1.5. (a) x(1-t) is obtained by flipping x(t) and shifting the flipped signal by 1 to the right. Therefore, x (1-t) will be zero for t>-2. (b) From (a), we know that x(1-t) is zero for t>-2. Similarly, x(2-t) is zero for t>-1, Therefore, x (1-t) +x(2-t) will be zero for t>-2. (c) x(3t) is obtained by linearly compression x(t) by a factor of3. Therefore, x(3t) will be zero for t<1.(d) x(t/3) is obtained by linearly compression x(t) by a factor of 3. Therefore, x(3t) will bezero for t<9.1.6(a) x1(t) is not periodic because it is zero for t<0.(b) x2[n]=1 for all n. Therefore, it is periodic with a fundamental period of 1.(c) x3[n1.7. (a)()1[]vnxε={}1111[][]([][4][][4])22n n u n u n u n u nx x+-=--+----Therefore, ()1[]vnxεis zero for1[]nx>3.(b) Since x1(t) is an odd signal, ()2[]vnxεis zero for all values of t.(c)(){}11311[][][][3][3]221122vn nn n n u n u nx x xε-⎡⎤⎢⎥=+-=----⎢⎥⎢⎥⎣⎦⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭Therefore, ()3[]vnxεis zero when n<3 and when n→∞.(d) ()1554411()(()())(2)(2)22vt tt t t u t u tx x x e eε-⎡⎤=+-=---+⎣⎦Therefore, ()4()vtxεis zero only when t→∞.1.8. (a) ()01{()}22cos(0)tt tx eπℜ=-=+(b) ()02{()}cos()cos(32)cos(3)cos(30)4tt t t tx eππℜ=+==+(c) ()3{()}sin(3)sin(3)2t tt t tx e eππ--ℜ=+=+(d) ()224{()}sin(100)sin(100)cos(100)2t t tt t t tx e e eππ---ℜ=-=+=+1.9. (a)1()tx is a periodic complex exponential.101021()j t j tt jx e eπ⎛⎫+⎪⎝⎭==(b)2()tx is a complex exponential multiplied by a decaying exponential. Therefore,2()tx is not periodic.(c)3[]nx is a periodic signal. 3[]n x=7j neπ=j neπ.3[]nx is a complex exponential with a fundamental period of 22ππ=.(d)4[]nx is a periodic signal. The fundamental period is given by N=m(23/5ππ)=10().3mBy choosing m=3. We obtain the fundamental period to be 10.(e)5[]nx is not periodic. 5[]nx is a complex exponential with 0w=3/5. We cannot find any integer m such that m(2wπ) is also an integer. Therefore,5[]nxis not periodic.1.10. x(t)=2cos(10t+1)-sin(4t-1)Period of first term in the RHS =2105ππ=.Period of first term in the RHS =242ππ=.Therefore, the overall signal is periodic with a period which the least commonmultiple of the periods of the first and second terms. This is equal toπ.1.11. x[n] = 1+74j n e π−25j n e πPeriod of first term in the RHS =1. Period of second term in the RHS =⎪⎭⎫ ⎝⎛7/42π=7 (when m=2)Period of second term in the RHS =⎪⎭⎫ ⎝⎛5/22ππ=5 (when m=1)Therefore, the overall signal x[n] is periodic with a period which is the least common Multiple of the periods of the three terms inn x[n].This is equal to 35.1.12. The signal x[n] is as shown in figure S1.12. x[n] can be obtained by flipping u[n] and thenShifting the flipped signal by 3 to the right. Therefore, x[n]=u[-n+3]. This implies that M=-1 and no=-3.1.13y (t)=⎰∞-tdt x )(τ =dt t))2()2((--+⎰∞-τδτδ=⎪⎩⎪⎨⎧>≤≤--<2,022,12,0,t t tTherefore ⎰-==∞224d t E∑∑∞-∞=∞-∞=----=k k k t k t t g 12(3)2(3)(δδ)This implies that A 1=3, t 1=0, A 2=-3, and t 2=1.1.15 (a) The signal x 2[n], which is the input to S 2, is the same as y 1[n].Therefore ,y 2[n]= x 2[n-2]+21x 2[n-3] = y 1[n-2]+ 21y 1[n-3]=2x 1[n-2] +4x 1[n-3] +21( 2x 1[n-3]+ 4x 1[n-4]) =2x 1[n-2]+ 5x 1[n-3] + 2x 1[n-4] The input-output relationship for S isy[n]=2x[n-2]+ 5x [n-3] + 2x [n-4](b) The input-output relationship does not change if the order in which S 1and S 2 are connected series reversed. . We can easily prove this assuming that S 1 follows S 2. In this case , the signal x 1[n], which is the input to S 1 is the same as y 2[n].Therefore y 1[n] =2x 1[n]+ 4x 1[n-1]= 2y 2[n]+4 y 2[n-1]=2( x 2[n-2]+21 x 2[n-3] )+4(x 2[n-3]+21x 2[n-4]) =2 x 2[n-2]+5x 2[n-3]+ 2 x 2[n-4]The input-output relationship for S is once againy[n]=2x[n-2]+ 5x [n-3] + 2x [n-4]1.16 (a)The system is not memory less because y[n] depends on past values of x[n].(b)The output of the system will be y[n]= ]2[][-n n δδ=0(c)From the result of part (b), we may conclude that the system output is always zero for inputs of the form ][k n -δ, k ∈ ґ. Therefore , the system is not invertible .1.17 (a) The system is not causal because the output y(t) at some time may depend on future values of x(t). For instance , y(-π)=x(0).(b) Consider two arbitrary inputs x 1(t)and x 2(t).x 1(t) →y 1(t)= x 1(sin(t)) x 2(t) → y 2(t)= x 2(sin(t))Let x 3(t) be a linear combination of x 1(t) and x 2(t).That is , x 3(t)=a x 1(t)+b x 2(t)Where a and b are arbitrary scalars .If x 3(t) is the input to the given system ,then the corresponding output y 3(t) is y 3(t)= x 3( sin(t))=a x 1(sin(t))+ x 2(sin(t)) =a y 1(t)+ by 2(t)Therefore , the system is linear.1.18.(a) Consider two arbitrary inputs x 1[n]and x 2[n].x 1[n] → y 1[n] =][01k x n n n n k ∑+-=x 2[n ] → y 2[n] =][02k x n n n n k ∑+-=Let x 3[n] be a linear combination of x 1[n] and x 2[n]. That is :x 3[n]= ax 1[n]+b x 2[n]where a and b are arbitrary scalars. If x 3[n] is the input to the given system, then the corresponding outputy 3[n] is y 3[n]=][03k x n n n n k ∑+-==])[][(2100k bx k ax n n n n k +∑+-==a ][001k x n n n n k ∑+-=+b ][02k x n n n n k ∑+-== ay 1[n]+b y 2[n]Therefore the system is linear.(b) Consider an arbitrary input x 1[n].Lety 1[n] =][01k x n n n n k ∑+-=be the corresponding output .Consider a second input x 2[n] obtained by shifting x 1[n] in time:x 2[n]= x 1[n-n 1]The output corresponding to this input isy 2[n]=][02k x n n n n k ∑+-== ]n [1100-∑+-=k x n n n n k = ][01011k x n n n n n n k ∑+---=Also note that y 1[n- n 1]=][01011k x n n n n n n k ∑+---=.Therefore , y 2[n]= y 1[n- n 1] This implies that the system is time-invariant.(c) If ][n x <B, then y[n]≤(2 n 0+1)B. Therefore ,C ≤(2 n 0+1)B.1.19 (a) (i) Consider two arbitrary inputs x 1(t) and x 2(t). x 1(t) → y 1(t)= t 2x 1(t-1)x 2(t) → y 2(t)= t 2x 2(t-1)Let x 3(t) be a linear combination of x 1(t) and x 2(t).That is x 3(t)=a x 1(t)+b x 2(t)where a and b are arbitrary scalars. If x 3(t) is the input to the given system, then the corresponding output y 3(t) is y 3(t)= t 2x 3 (t-1)= t 2(ax 1(t-1)+b x 2(t-1))= ay 1(t)+b y 2(t)Therefore , the system is linear.(ii) Consider an arbitrary inputs x 1(t).Let y 1(t)= t 2x 1(t-1)be the corresponding output .Consider a second input x 2(t) obtained by shifting x 1(t) in time:x 2(t)= x 1(t-t 0)The output corresponding to this input is y 2(t)= t 2x 2(t-1)= t 2x 1(t- 1- t 0)Also note that y 1(t-t 0)= (t-t 0)2x 1(t- 1- t 0)≠ y 2(t) Therefore the system is not time-invariant.(b) (i) Consider two arbitrary inputs x 1[n]and x 2[n]. x 1[n] → y 1[n] = x 12[n-2]x 2[n ] → y 2[n] = x 22[n-2].Let x 3(t) be a linear combination of x 1[n]and x 2[n].That is x 3[n]= ax 1[n]+b x 2[n]where a and b are arbitrary scalars. If x 3[n] is the input to the given system, then the corresponding output y 3[n] is y 3[n] = x 32[n-2]=(a x 1[n-2] +b x 2[n-2])2=a 2x 12[n-2]+b 2x 22[n-2]+2ab x 1[n-2] x 2[n-2]≠ ay 1[n]+b y 2[n]Therefore the system is not linear.(ii) Consider an arbitrary input x 1[n]. Let y 1[n] = x 12[n-2]be the corresponding output .Consider a second input x 2[n] obtained by shifting x 1[n] in time:x 2[n]= x 1[n- n 0]The output corresponding to this input isy 2[n] = x 22[n-2].= x 12[n-2- n 0]Also note that y 1[n- n 0]= x 12[n-2- n 0] Therefore , y 2[n]= y 1[n- n 0] This implies that the system is time-invariant.(c) (i) Consider two arbitrary inputs x 1[n]and x 2[n].x 1[n] →y 1[n] = x 1[n+1]- x 1[n-1] x 2[n ]→y 2[n] = x 2[n+1 ]- x 2[n -1]Let x 3[n] be a linear combination of x 1[n] and x 2[n]. That is :x 3[n]= ax 1[n]+b x 2[n]where a and b are arbitrary scalars. If x 3[n] is the input to the given system, then the corresponding output y 3[n] is y 3[n]= x 3[n+1]- x 3[n-1]=a x 1[n+1]+b x 2[n +1]-a x 1[n-1]-b x 2[n -1]=a(x 1[n+1]- x 1[n-1])+b(x 2[n +1]- x 2[n -1])= ay 1[n]+b y 2[n]Therefore the system is linear.(ii) Consider an arbitrary input x 1[n].Let y 1[n]= x 1[n+1]- x 1[n-1]be the corresponding output .Consider a second input x 2[n] obtained by shifting x 1[n] in time: x 2[n]= x 1[n-n 0]The output corresponding to this input isy 2[n]= x 2[n +1]- x 2[n -1]= x 1[n+1- n 0]- x 1[n-1- n 0] Also note that y 1[n-n 0]= x 1[n+1- n 0]- x 1[n-1- n 0] Therefore , y 2[n]= y 1[n-n 0] This implies that the system is time-invariant.(d) (i) Consider two arbitrary inputs x 1(t) and x 2(t).x 1(t) → y 1(t)= d O {}(t) x 1 x 2(t) → y 2(t)= {}(t) x 2d OLet x 3(t) be a linear combination of x 1(t) and x 2(t).That is x 3(t)=a x 1(t)+b x 2(t)where a and b are arbitrary scalars. If x 3(t) is the input to the given system, then the corresponding output y 3(t) is y 3(t)= d O {}(t) x 3={}(t) x b +(t) ax 21d O=a d O {}(t) x 1+b {}(t) x 2d O = ay 1(t)+b y 2(t)Therefore the system is linear.(ii) Consider an arbitrary inputs x 1(t).Lety 1(t)= d O {}(t) x 1=2)(x -(t) x 11t -be the corresponding output .Consider a second input x 2(t) obtained by shifting x 1(t) in time:x 2(t)= x 1(t-t 0)The output corresponding to this input isy 2(t)= {}(t) x 2d O =2)(x -(t) x 22t -=2)(x -)t -(t x 0101t t --Also note that y 1(t-t 0)= 2)(x -)t -(t x 0101t t --≠ y 2(t)Therefore the system is not time-invariant.1.20 (a) Givenx )(t =jt e 2 y(t)=t j e 3x )(t =jt e 2- y(t)=t j e 3- Since the system liner+=tj e t x 21(2/1)(jt e 2-))(1t y =1/2(tj e 3+tj e 3-)Thereforex 1(t)=cos(2t))(1t y =cos(3t)(b) we know thatx 2(t)=cos(2(t-1/2))= (j e -jte 2+je jt e 2-)/2Using the linearity property, we may once again writex 1(t)=21( j e -jt e 2+j e jte 2-))(1t y =(j e -jt e 3+je jte 3-)= cos(3t-1)Therefore,x 1(t)=cos(2(t-1/2)))(1t y =cos(3t-1)1.21.The signals are sketched in figure S1.21.1.24 The even and odd parts are sketched in Figure S1.24 1.25 (a) periodic period=2π/(4)= π/2 (b) periodic period=2π/(4)= 2(c) x(t)=[1+cos(4t-2π/3)]/2. periodic period=2π/(4)= π/2 (d) x(t)=cos(4πt)/2. periodic period=2π/(4)= 1/2 (e) x(t)=[sin(4πt)u(t)-sin(4πt)u(-t)]/2. Not period. (f) Not period.1.26 (a) periodic, period=7.(b) Not period.(c) periodic, period=8.(d) x[n]=(1/2)[cos(3πn/4+cos(πn/4)). periodic, period=8. (e) periodic, period=16. 1.27 (a) Linear, stable(b) Not period. (c) Linear(d) Linear, causal, stable(e) Time invariant, linear, causal, stable (f) Linear, stable(g) Time invariant, linear, causal 1.28 (a) Linear, stable(b) Time invariant, linear, causal, stable (c)Memoryless, linear, causal (d) Linear, stable (e) Linear, stable(f) Memoryless, linear, causal, stable (g) Linear, stable1.29 (a) Consider two inputs to the system such that[][][]{}111.S e x n y n x n −−→=ℜand [][][]{}221.Se x n y n x n −−→=ℜNow consider a third inputx3[n]=x2[n]+x 1[n]. The corresponding system outputWill be [][]{}[][]{}[]{}[]{}[][]33121212e e e e y n x n x n x n x n x n y n y n ==+=+=+ℜℜℜℜtherefore, we may conclude that the system is additive Let us now assume that inputs to the system such that [][][]{}/4111.Sj e x n y n e x n π−−→=ℜand[][][]{}/4222.Sj e x n y n e x n π−−→=ℜNow consider a third input x 3 [n]= x 2 [n]+ x 1 [n]. The corresponding system outputWill be[][]{}()[]{}()[]{}()[]{}()[]{}()[]{}()[]{}[]{}[]{}[][]/433331122/4/41212cos /4sin /4cos /4sin /4cos /4sin /4j e m e m e m e j j e e y n e x n n x n n x n n x n n x n n x n n x n e x n e x n y n y n πππππππππ==-+-+-=+=+ℜℜI ℜI ℜI ℜℜ therefore, we may conclude that the system is additive (b) (i) Consider two inputs to the system such that()()()()211111Sdx t x t y t x t dt ⎡⎤−−→=⎢⎥⎣⎦and ()()()()222211S dx t x t y t x t dt ⎡⎤−−→=⎢⎥⎣⎦ Now consider a third input x3[t]=x2[t]+x 1[t]. The corresponding system outputWill be()()()()()()()()()2333211111211dx t y t x t dt d x t x t x t x t dt y t y t ⎡⎤=⎢⎥⎣⎦⎡⎤+⎡⎤⎣⎦=⎢⎥+⎢⎥⎣⎦≠+ therefore, we may conclude that the system is not additiveNow consider a third input x 4 [t]= a x 1 [t]. The corresponding system output Will be()()()()()()()()2444211211111dx t y t x t dt d ax t ax t dt dx t a x t dt ay t ⎡⎤=⎢⎥⎣⎦⎡⎤⎡⎤⎣⎦=⎢⎥⎢⎥⎣⎦⎡⎤=⎢⎥⎣⎦=Therefore, the system is homogeneous.(ii) This system is not additive. Consider the fowling example .Let δ[n]=2δ[n+2]+2δ[n+1]+2δ[n] andx2[n]=δ[n+1]+ 2δ[n+1]+ 3δ[n]. The corresponding outputs evaluated at n=0 are [][]120203/2y andy ==Now consider a third input x 3 [n]= x 2 [n]+ x 1 [n].= 3δ[n+2]+4δ[n+1]+5δ[n]The corresponding outputs evaluated at n=0 is y 3[0]=15/4. Gnarly, y 3[0]≠ ]0[][21y y n +.This[][][][][]444442,1010,x n x n x n y n x n otherwise ⎧--≠⎪=-⎨⎪⎩[][][][][][]4445442,1010,x n x n ax n y n ay n x n otherwise ⎧--≠⎪==-⎨⎪⎩Therefore, the system is homogenous.1.30 (a) Invertible. Inverse system y(t)=x(t+4)(b)Non invertible. The signals x(t) and x 1(t)=x(t)+2πgive the same output (c) δ[n] and 2δ[n] give the same output d) Invertible. Inverse system; y(t)=dx(t)/dt(e) Invertible. Inverse system y(n)=x(n+1) for n ≥0 and y[n]=x[n] for n<0 (f) Non invertible. x (n) and –x(n) give the same result (g)Invertible. Inverse system y(n)=x(1-n) (h) Invertible. Inverse system y(t)=dx(t)/dt(i) Invertible. Inverse system y(n) = x(n)-(1/2)x[n-1] (j) Non invertible. If x(t) is any constant, then y(t)=0 (k) δ[n] and 2δ[n] result in y[n]=0 (l) Invertible. Inverse system: y(t)=x(t/2)(m) Non invertible x 1 [n]= δ[n]+ δ[n-1]and x 2 [n]= δ[n] give y[n]= δ[n] (n) Invertible. Inverse system: y[n]=x[2n]1.31 (a) Note that x 2[t]= x 1 [t]- x 1 [t-2]. Therefore, using linearity we get y 2 (t)= y 1 (t)- y 1 (t-2).this is shown in Figure S1.31(b)Note that x3 (t)= x1 [t]+ x1 [t+1]. .Therefore, using linearity we get Y3 (t)= y1 (t)+ y1 (t+2). this is2(4) y 2(t) periodic, period T; x(t) periodic, period T/2;1.33(1) True x[n]=x[n+N ]; y 1 (n)= y 1 (n+ N 0)i.e. periodic with N 0=n/2if N is even and with period N 0=n if N is odd.(2)False. y 1 [n] periodic does no imply x[n] is periodic i.e. Let x[n] = g[n]+h[n] where0,1,[][]0,(1/2),nn even n even g n and h n n odd n odd⎧⎧==⎨⎨⎩⎩ Then y 1 [n] = x [2n] is periodic but x[n] is clearly not periodic. (3)True. x [n+N] =x[n]; y 2 [n+N 0] =y 2 [n] where N 0=2N (4) True. y 2 [n+N] =y 2 [n]; y 2 [n+N 0 ]=y 2 [n] where N 0=N/2 1.34. (a) ConsiderIf x[n] is odd, x[n] +x [-n] =0. Therefore, the given summation evaluates to zero. (b) Let y[n] =x 1[n]x 2[n] .Theny [-n] =x 1[-n] x 2[-n] =-x 1[n]x 2[n] =-y[n]. This implies that y[n] is odd.(c)ConsiderUsing the result of part (b), we know that x e [n]x o [n] is an odd signal .Therefore, using the result of part (a) we may conclude thatTherefore,(d)ConsiderAgain, since x e (t) x o (t) is odd,Therefore,1.35. We want to find the smallest N 0 such that m(2π /N) N 0 =2πk or N 0 =kN/m,{}1[][0][][]n n x n x x n x n ∞∞=-∞==++-∑∑22[][]e o n n n n x x ∞∞=-∞=-∞=+∑∑222[][][]e on n n n n n x x x∞∞∞=-∞=-∞=-∞==+∑∑∑2[][]0eon n n x x ∞=-∞=∑222[][][].e on n n n n n xx x ∞∞∞=-∞=-∞=-∞==+∑∑∑2220()()()2()().eoet dt t dt t dt t t dt x x x x x ∞∞∞∞-∞-∞-∞-∞=++⎰⎰⎰⎰0()()0.et t dt x x ∞-∞=⎰222()()().e ot dt t dt t dt xx x ∞∞∞-∞-∞-∞=+⎰⎰⎰()()()()()().xy yx t x t y d y t x d t φττττττφ∞-∞∞-∞=+=-+=-⎰⎰where k is an integer, then N must be a multiple of m/k and m/k must be an integer .this implies that m/k is a divisor of both m and N .Also, if we want the smallest possible N 0, then m/k should be the GCD of m and N. Therefore, N 0=N/gcd(m,N). 1.36.(a)If x[n] is periodic0(),0..2/j n N T o e where T ωωπ+= This implies that022o T kNT k T T Nππ=⇒==a rational number . (b)T/T 0 =p/q then x[n] =2(/)j n p q e π,The fundamental period is q/gcd(p,q) and the fundmental frequencyis(c) p/gcd(p,q) periods of x(t) are needed .1.37.(a) From the definition of ().xy t φWe havepart(a) that()().xx xx t t φφ=-This implies that()xy t φis(b) Note from even .Therefore,the odd part of().xx t φis zero.(c) Here, ()().xy xx t t T φφ=-and ()().yy xx t t φφ= 1.38.(a) We know that /22(2)().t t δδ=ThereforeThis implies that1(2)().2t t δδ=(b)The plot are as shown in Figure s3.18. 1.39 We havelim ()()lim (0)()0.u t t u t δδ→→==Also,0022gcd(,)gcd(,)gcd(,)gcd(,).T pp q p q p q p q q p q p pωωππ===/21lim (2)lim ().2t t δδ→∞→∞=01lim ()()().2u t t t δδ→=u Δ'(t ) 1 1/2Δ/2-Δ/2t 0tu Δ'(t )12Δ t 0tu Δ'(t ) 1 1/2Δ-Δttu Δ'(t )1 1/2Δ-Δt 0t⎰⎰∞∞∞--=-=0)()()()()(ττδτττδτd t u d t u t gTherefore,0,0()1,00t g t t undefined for t >⎧⎪=<⎨⎪=⎩()0()()()t u t t δττδτδτ-=-=-1.40.(a) If a system is additive ,then also, if a system is homogeneous,then(b) y(t)=x 2(t) is such a systerm . (c) No.For example,consider y(t) ()()ty t x d ττ-∞=⎰with ()()(1).x t u t u t =--Then x(t)=0for t>1,but y(t)=1 for t>1.1.41. (a) y[n]=2x[n].Therefore, the system is time invariant.(b) y[n]=(2n-1)x[n].This is not time-invariant because y[n- N 0]≠(2n-1)2x [n- N 0]. (c) y[n]=x[n]{1+(-1)n +1+(-1)n-1}=2x[n].Therefore, the system is time invariant .1.42.(a) Consider two system S 1 and S 2 connected in series .Assume that if x 1(t) and x 2(t) arethe inputs to S 1..then y 1(t) and y 2(t) are the outputs.respectively .Also,assume thatif y 1(t) and y 2(t) are the input to S 2 ,then z 1(t) and z 2(t) are the outputs, respectively . Since S 1 is linear ,we may write()()()()11212,s ax t bx t ay t by t +→+where a and b are constants. Since S 2 is also linear ,we may write()()()()21212,s ay t by t az t bz t +→+We may therefore conclude that)()()()(212121t b t a t b t a z z x x s s +−→−+Therefore ,the series combination of S 1 and S 2 is linear. Since S 1 is time invariant, we may write()()11010s x t T y t T -→-and()()21010s y t T z t T -→-Therefore,()()121010s s x t T z t T -→-Therefore, the series combination of S 1 and S 2 is time invariant.(b) False, Let y(t)=x(t)+1 and z(t)=y(t)-1.These corresponds to two nonlinear systems. If these systems are connected in series ,then z(t)=x(t) which is a linear system.00.()().00x t y t =→=0()()()()0x t x t y t y t =-→-=(c) Let us name the output of system 1 as w[n] and the output of system 2 as z[n] .Then11[][2][2][21][22]24y n z n w n w n w n ==+-+-[][][]241121-+-+=n x n x n xThe overall system is linear and time-invariant.1.43. (a) We have())(t y t x s−→−Since S is time-invariant.())(T t y T t x s-−→−-Now if x (t) is periodic with period T. x{t}=x(t-T). Therefore, we may conclude that y(t)=y(t-T).This impliesthat y(t) is also periodic with T .A similar argument may be made in discrete time . (b)1.44 (a) Assumption : If x(t)=0 for t<t 0 ,then y(t)=0 for t< t 0.To prove That : The system is causal.Let us consider an arbitrary signal x 1(t) .Let us consider another signal x 2(t) which is the same as x 1(t)fort< t 0. But for t> t 0 , x 2(t) ≠x 1(t),Since the system is linear,()()()()1212,x t x t y t y t -→-Since ()()120x t x t -=for t< t 0 ,by our assumption =()()120y t y t -=for t< t 0 .This implies that()()12y t y t =for t< t 0 . In other words, t he output is not affected by input values for 0t t ≥. Therefore, thesystem is causal .Assumption: the system is causal . To prove that :If x(t)=0 for t< t 0 .then y(t)=0 for t< t 0 .Let us assume that the signal x(t)=0 for t< t 0 .Then we may express x(t) as ()()12()x t x t x t =-, Where()()12x t x t = for t< t 0 . the system is linear .the output to x(t) will be()()12()y t y t y t =-.Now ,since the system is causal . ()()12y t y t = for t< t 0 .implies that()()12y t y t = for t< t 0 .Therefore y(t)=0 for t< t 0 .(b) Consider y(t)=x(t)x(t+1) .Now , x(t)=0 for t< t 0 implies that y(t)=0 for t< t 0 .Note that the system is nonlinear and non-causal .(c) Consider y(t)=x(t)+1. the system is nonlinear and causal .This does not satisfy the condition of part(a). (d) Assumption: the system is invertible. To prove that :y[n]=0 for all n only if x[n]=0 for all n . Consider[]0[]x n y n =→. Since the system is linear :2[]02[]x n y n =→.Since the input has not changed in the two above equations ,we require that y[n]= 2y[n].This implies that y[n]=0. Since we have assumed that the system is invertible , only one input could have led to this particular output .That input must be x[n]=0 .Assumption: y[n]=0 for all n if x[n]=0 for all n . To prove that : The system is invertible . Suppose that11[][]x n y n → and21[][]x n y n →Since the system is linear ,1212[][][][]0x n x n y n y n -=→-=By the original assumption ,we must conclude that 12[][]x n x n =.That is ,any particular y 1[n] can be produced that by only one distinct input x 1[n] .Therefore , the system is invertible. (e) y[n]=x 2[n]. 1.45. (a) Consider ,()111()()shx x t y t t φ→= and()222()()shx x t y t t φ→=.Now, consider ()()()312x t ax t bx t =+. The corresponding system output will be()()12331212()()()()()()()()()hx hx y t x h t d a x h t d b x t h t d a t b t ay t by t ττττττττφφ∞-∞∞∞-∞-∞=+=+++=+=+⎰⎰⎰Therefore, S is linear .Now ,consider x 4(t)=x 1(t-T).The corresponding system output will be()14411()()()()()()()hx y t x h t d x T h t d x h t T d t T τττττττττφ∞-∞∞-∞∞-∞=+=-+=++=+⎰⎰⎰Clearly, y 4(t)≠ y 1(t-T).Therefore ,the system is not time-invariant.The system is definitely not causal because the output at any time depends on future values of the input signal x(t).(b) The system will then be linear ,time invariant and non-causal. 1.46. The plots are in Figure S1.46.1.47.(a) The overall response of the system of Figure P1.47.(a)=(the response of the system to x[n]+x 1[n])-the response of the system to x 1[n]=(Response of a linear system L to x[n]+x 1[n]+zero input response of S)- (Response of a linear system L to x 1[n]+zero input response of S)=( (Response of a linear system L to x[n]).Chapter 2 answers2.1 (a) We have know that 1[]*[][][]k y x n h n h k x n k ∞=-∞==-∑1[][1][1][1][1]y n h x n h x n =-++-2[1]2[1]x n x n =++-This gives1[]2[1]4[]2[1]2[2]2[4]y n n n n n n δδδδδ=+++-+--- (b)We know that2[][2]*[][][2]k y n x n h n h k x n k ∞=-∞=+=+-∑Comparing with eq.(S2.1-1),we see that21[][2]y n y n =+(c) We may rewrite eq.(S2.1-1) as1[][]*[][][]k y n x n h n x k h n k ∞=-∞==-∑Similarly, we may write3[][]*[2][][2]k y n x n h n x k h n k ∞=-∞=+=+-∑Comparing this with eq.(S2.1),we see that31[][2]y n y n =+2.2 Using given definition for the signal h[n], we may write{}11[][3][10]2k h k u k u k -⎛⎫=+-- ⎪⎝⎭The signal h[k] is non zero only in the rang 1[][2]h n h n =+. From this we know that the signal h[-k] is non zero only in the rage 93k -≤≤.If we now shift the signal h[-k] by n to the right, then the resultant signal h[n-k] will be zero in the range (9)(3)n k n -≤≤+. Therefore ,9,A n =- 3B n =+ 2.3 Let us define the signals11[][]2nx n u n ⎛⎫= ⎪⎝⎭and1[][]h n u n =. We note that1[][2]x n x n =- and 1[][2]h n h n =+ Now,。
信号与系统 奥本海姆 中文答案 chapter 8
Chapter 88.6解:x (t )的傅里叶变换()m ,0j X ωωω>=故x (t )的频谱图为()()()()[]()[]()[]{}C C C C c j x j x 21j X 21t cos t x ωωωωωωδωωδπωπω++-=++-*↔其频谱图为ttsin C πω的频谱图为故()()()⎥⎦⎤⎢⎣⎡⎪⎭⎫⎝⎛*=t t sin t cos t x -t cos t x t g c c c πωωω的频谱图为故()t cos t g c ω的频谱图为()()()ttAsin t cos t g t x c πωω*=4A =8.9解:(a) 因为1()x t 和2()x t 的截止频率都为c ω,1()x t 经频率为c ω的载波信号调制器经AM —SSB/SC 技术保留下边带后截止频率为c ω。
2()x t 经频率为2c ω的载波信号调制器经AM —SSB/SC 技术保留下边带后有2c c ωωω<<时不为0,其它都为0。
所以,将二者加在一起截止频率为2c ω。
即:2c ωω>时,()0Y j ω=。
(b) 2A =8.12解:2000M ωπ=2c M ωω∴>,即:32220000.510T Tππ->⨯⇒<⨯又410.51010T -∆=⇒∆<⨯8.13解:(a) 11212111()()(1cos)2222j t T j t T T p t P j e d e d πωωπωωωωππ++∞-∞-==+⎰⎰112121111111422sin 1(0)(1cos)()22242T T T p d T T T T ππωππωππ+-∴=+=+=⎰(b) 因为在PAM 中,在1t kT =采样后,来自其它所有脉冲对这个采样值贡献为零,即1()0p t mT -=,m k ≠。
所以,当(0)0p =时,1()0p kT =(1,2,k =±± )8.16解:{}00()(2)(2)j l C e l l jωπδωωπδωωπ+∞=-∞=---+-∑1()()()2j j j Y e X e C e ωωωπ=* 1()()(2)(2)222j j l Y e X e l l j ωωπππδωπδωππ+∞=-∞⎧⎫∴=*---+-⎨⎬⎩⎭∑ 因而在0ωπ≤≤内, 当308ωπ≤≤或38πωπ≤≤时,()0j Y e ω=。
奥本海姆信号与系统第二章部分习题答案
5
+ + 2.22
概率画出结果。
< 有三种解法,建议用图解法
2.22
概率画出结果。
2.28 下面均为离散时间线性时不变系统的单位脉冲响应,试判定每一系统是 否是因果和/或稳定的。陈述理由。 (a)ℎ ������ = (5)������ ������[������] (c) ℎ ������ = (2)������ ������ −������
4 5
y
长度为 M
y
x
而 N ≤n ≤N 长度为 M ,试用M 和 M 来表示 M 。
h x
(c) 考虑一个离散线性时不变系统,它具有这么一个特点,即若对 全部 n ≥10, x[n] = 0 ,则对所有的 n ≥15 都有 y[n] = 0 。系统单 位脉冲响应 h[n] 必须满足什么条件才有此特性? (a) (c) (b)
(d) 有一个线性时不变系统的单位脉冲响应如图P2.44所示。为了确定 y (0) ,必须要知道在什么一个区间上的 x(t ) ?
2.50 图P2.50所示为两个系统的级联,其中一个系统 A 是线性时不变的,
y (t ) 而第二个系统 B 是系统 A 的逆系统,若 y (t )是系统 A 对 x (t )的响应,
5 ������ −5 1
1 − ������ cos 2������������ ������������
������0 ������ = ������ ������
(a) (b) (c)
u0 (t ) cos(t )dt (t ) cos(t )dt cos(0) 1
第二章
2.4 计算并画出y[n]=x[n]*h[n],其中
奥本海姆 信号与系统 习题参考答案
第九章作业解答9.21 解: (a) 2}Re{21)}({2->+=-s s t u e L t3}Re{31)}({3->+=-s s t u e L t2}Re{3)(2(5s 23121)(->+++=+++=s s s s s s X )Re(s )(c) 2}Re{21)}({2<--=-s s t u e L t3}Re{31)}({3<--=-s s t u e L t2}Re{3)(2(5s23121)(<----=----=s s s s s s X )9.22(a )0}Re{91)(2>+=s s s X根据:0}Re{)(sin 20200>+→s s t tu ωωω 则:)(3sin 31}91{21t tu s L =+- (c )根据:0}Re{)(cos 2020<+→--s s s t tu ωω 以及:)(X )(00s s t x e t s -→ 则:)(3cos }3)1(1{221t tu e s s L t --=+++-- (e) 32216512+++-=+++s s s s s 根据收敛域:2}Re{3-<<-s 故:)(}21{21t u e s L t -=+--- )(2}32{31t u e s L t --=+ )(2)()(32t u e t u e t x t t --+-= (g) 2222222)1(3131)1(3)1(31)1(31)1(3)1()1(1+++-=+-+-=+-=+-+=++-s s s s s s s s s s s s (须先转换为真分式)则根据收敛域:)(3)(3)()(t u te t u e t t x t t --+-=δ9.28解:其所有可能的收敛域:(1)1}{R >s e ,收敛域不包括虚轴,不稳定;收敛域位于最右边极点的右半平面,因果;(2)2}{R -<s e ,收敛域不包括虚轴,不稳定;收敛域位于最左边极点的左半平面,非因果;(3)1}{R 1-<<s e ,收敛域包括虚轴,稳定;非因果(由两个右边信号与一个左边信号组成);(4)1}{R 2--<<s e ,收敛域不包括虚轴,不稳定;非因果(由两个左边信号与一个右边信号组成);9.31解:解:微分方程两边同时进行拉氏变换,得:)2111(31)2)(1(121)()()(H 2-++-=-+=--==s s s s s s s X s Y s(1)系统是稳定时,则2}{R 1-<<s e ,h(t)为双边信号:)](2)([31)(2t u e t u e t h t t ---=- (2)系统是因果时,则}{R 2s e <,h(t)为右边信号:)](2)([31)(2t u e t u e t h t t +-=- (2)系统既不因果又不稳定时,则收敛域不包括虚轴,且不是最右边极点的右半平面,故1}{R -<s e ,h(t)为左边信号:)](2)([31)(2t u e t u e t h t t ---=-9.32由(a),根据特征函数特征值的概念,则得出:t e t x 2)(= t t e e H t y 22)6/1()2()(==故:6/1)2(=H由(b):对方程同时进行拉氏变换,则得到:0}{R )b 4121)(H >+++=s e s s s s ( 带入(a)的条件,最后得到b=1则0}s {R )4s (s 2)4s )(2s(s 42s )14121)(H >+=+++=+++=e s s s s (。
奥本海姆 信号与系统 习题参考答案
第十章作业解答10.21 解:(a) ∞<=+=+∑∞-∞=-|z |]5n []}5n [{5z zZ n nδδ (根据筛分特性)收敛域包括单位圆,故存在傅立叶变换; (c) 1||1111]]}[1{10>+=+=-=--∞=-∑z z zz z n u Z n nn n)()(收敛域不包括单位圆,故不存在傅立叶变换;10.22 解:21)21(z )21(211)21(1)21(211)21()21(21])}5[]4[(21{9944191411514144n n --=--=--==--+-----------=-∑z z z z z z z z zn u n u Z n n )()(在21=z 时,零点、极点抵消,在0处有一极点,且在∞处不收敛,故其收敛域为:∞<<||0z而零点为:0)21(191=--z 的点,故为满足kj z π291e )21(=-的点,则:922kj jpk ez π=的点,除了k=0与极点相抵消的点。
10.24解:(a )11112112111)211)(21(2125121)z (--------=---=+--=z z z z z z z X由于x[n]是绝对可和,说明其存在傅立叶变换,则说明其收敛域包括单位圆,故X(z)的收敛域为:21||>z ,则x[n]为一右边序列 ][)21(][n u n x n =(c))411(4)211(4)411)(211(381411381413)z (111112111---------+--=+-=--=--=z z z z z z z z z z X收敛域为:21||>z (理由同(a))则:][)41(4][)21(4][n u n u n x nn--=10.34解:解:差分方程两边同时进行z 变换,得: (a))()(z )()(121z X z z Y z Y z z Y ---=--故:)2521)(2521(11)()()(2211--+-=--=--==---z z zz z zz z z z X z Y z H故极点为:2521±由于系统因果,则收敛域为:2521|z |+>大于单位圆; (b ))2521(51)2521(51)(--++--=z zz zz H故:][)251(51][)251(51][n u n u n h n n ++--=(c) 若要求系统稳定,则2521|z ||2521|+<<- 故系统的单位脉冲响应为:]1[)251(51][)251(51][--+---=n u n u n h nn10.35解:对差分方程进行z 变换,得:)()()(25)(1z X z zY z Y z Y z =+--)2)(21(125251)()()(21--=+--=+-==-z z zz z z z z z X z Y z H 零极点图为:故系统存在三种可能的收敛域,其对应于3种不同的单位脉冲响应:)21(32)211(32)2(32)21(32)(11---+--=-+--=z z z z z z z H (1) 2||>z ,则对应于的单位脉冲响应为右边信号:][)2(32][)21(32][n u n u n h n n +-=(2 2||21<<z ,则对应于的单位脉冲响应为双边信号:]1[)2(32][)21(32][----=n u n u n h n n(3) 21||<z ,则对应于的单位脉冲响应为左边信号:]1[)2(32]1[)21(32][-----=n u n u n h n n10.37解:根据方框图,写出系统函数为:(1)32||)311)(321(89192311891)(111211>-+-=-+-=------z z z z z z z z H ,(由于系统因果) 而:)()(92311891)(211z X z Y z z z z H =-+-=--- 则:)()891()()92311(121z X z z Y z z ----=-+对上式进行z 反变换,得: 差分方程为:]1[89][]2[92]1[31][--=---+n x n x n y n y n y (2)收敛域包括单位圆,故系统稳定。
奥本海姆信号与系统中文版课后习题答案
1.对一个LTI 系统,我们已知如下信息:输入信号2()4()tx t e u t =-;输出响应22()()()t t y t e u t e u t -=-+(a) 确定系统的系统函数H(s)及收敛域。
(b) 求系统的单位冲激响应h(t)(c) 如果输入信号x(t)为(),tx t e t -=-∞<<+∞ 求输出y(t)。
解:(a)4114(),Re{}2,(),2Re{}2222(2)(2)X s s Y s s s s s s s ---=<=+=<-<--+-+1(),Re{}22H s s s =>-+(b)2()()t h t e u t -= (c)()2()()t ty t e e u d e τ+∞---τ--∞=ττ=⎰; ()(1)t ty t H e e --=-=.2. 已知因果全通系统的系统函数1()1s H s s -=+,输出信号2()()ty t e u t -=(a) 求产生此输出的输入信号x(t). (b) 若已知dt ∞∞<∞⎰+-|x(t)|,求输出信号x(t).(c) 已知一稳定系统当输入为2()te u t -时,输出为上述x(t)中的一个,确定是哪个?求出系统的单位冲激响应h(t).解:(a)1()2Y s s =+。
Re{}2s >-,()1()()(1)(2)Y s s X s H s s s +==-+ 由于()H s 的ROC 为Re{}1s >-,()X s ∴的ROC 为2Re{}1s -<<或Re{}1s >若 1ROC 为-2<Re{s}<1,则2112()()()33t tx t e u t e u t -=--若2ROC 为Re{s}>1,221()(2)()3t t x t e e u t -=+(b) 若 dt ∞∞<∞⎰+-|x(t)|,则只能是1()()x t x t =即:212()()()33t t x t e u t e u t -=--(c)212()()()()33t ty t x t e u t e u t-==--;1(),2Re{}1(1)(2)sY s ss s+=-<<-+()1()()1Y s sH sX s s+∴==-, 这就是(a)中系统的逆系统。
信号与系统_奥本海姆_中文答案_chapter_10
第十章10.6 (a) 可能(b) 不可能(c) 可能 (d) 可能10.8 双边的10.12 (a) 高通 (b) 低通 (c) 带通10.15解:11()119Y z z-=-1:9R O C z >22111111()()()11122111933X z X z Y z z zz ---⎛⎫⎪+-==+=⎪⎪--+ ⎪⎝⎭11()113X z z-∴=13z >1()[]3n x n u n ⎛⎫= ⎪⎝⎭ 或 1()[]3nx n u n ⎛⎫=- ⎪⎝⎭10.17 解:因为[]h n 为右边实序列,所以ROC 为最大极点的外部,极点共轭成对出现。
则:两极点都在34z =的圆上。
且由lim ()1z H z →∞=知ROC 为34z >,所以系统是因果的。
又1z =在ROC 内,知系统是稳定的。
10.20 解:单边z 变换:1()[1]()()z y z y zy z x z -+-+=112()()22x z y z zz---∴=+++当1[]()4n x n u n ⎛⎫= ⎪⎝⎭时,11()114x z z -=+11111[][][][]23264n n ny n u n u n u n ⎛⎫⎛⎫⎛⎫⇒=--+-+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭∴(a)零输入响应为1[]2nu n ⎛⎫-- ⎪⎝⎭;(b)零状态响应为1111[][]3264nnu n u n ⎛⎫⎛⎫-+ ⎪ ⎪⎝⎭⎝⎭(c)全响应为2111[][]3264nnu n u n ⎛⎫⎛⎫--+ ⎪ ⎪⎝⎭⎝⎭10.21解:(b) 5()X z z -= :0R O C z ≠,存在傅立叶变换。
(零极点图均略)(c) 11()1X z z-=+,1z >,傅立叶变换不存在。
(d) 31[]4[3]2n x n u n +⎛⎫=+ ⎪⎝⎭,311()4112X z zz-=-,1:2R O C z >。
信号与系统 奥本海姆1-4答案.doc
Signals and SystemChap11.6 Determine whether or not each of the following signals is periodic:(a): (/4)1()2()j t x t e u t π+= (b): 2[][][]x n u n u n =+-(c): 3[]{[4][14]}k x n n k n k δδ∞=-∞=----∑Solution:(a).No 【周期信号无始无终,单边肯定不周期】Because 12cos()2sin(),0()440,0t j t t x t t ππ⎧+++>⎪=⎨⎪<⎩ when t<0, )(1t x =0. (b).No 【注意n =0】 Because 21,0[]2,01,0n n n n x >⎧⎪==⎨⎪<⎩(c).Y es 【画图、归纳】 Because∑∞-∞=--+--+=+k k m n k m n m n x ]}414[]44[{]4[3δδ∑∞-∞=------=k m k n m k n )]}(41[)](4[{δδ{[4][14]}k n k n k δδ∞=-∞=----∑N=4.1.9 Determine whether or not each of the following signals is periodic, if a signal is periodic, specify its fundamental period:(a): 101()j tx t je =(b): (1)2()j t x t e -+=(c): 73[]j n x n e π=(d): 3(1/2)/54[]3j n x n e π+= (e): 3/5(1/2)5[]3j n x n e += Solution: (a). T=π/5Because 0w =10, T=2π/10=π/5. (b). Aperiodic.Because jt t e e t x --=)(2, while t e -is not periodic, )(2t x is not periodic. (c). N=2Because 0w =7π, N=(2π/0w )*m, and m=7. (d). N=10Because n j j e e n x )5/3(10/343)(ππ=, that is 0w =3π/5,N=(2π/0w )*m, and m=3. (e). Aperiodic.Because 0w =3/5, N=(2π/0w )*m=10πm/3 , it ’s not a rational number.1.14 consider a periodic signal 1,01()2,12t x t t ≤≤⎧=⎨-<<⎩with periodT=2. The derivative of this signal is related to the “impulsetrain ”()(2)k g t t k δ∞=-∞=-∑, with period T=2. It can be shownthat1122()()()dx t A g t t A g t t dt=-+-. Determine the values of1A , 1t , 2A , 2t .Solution:A 1=3, t 1=0, A 2=-3, t 2=1 or -1 Because∑∞-∞=-=k k t t g )2()(δ,)1(3)(3)(--=t g t g dtt dx1.15. Consider a system S with input x[n] and output y[n].This system is obtained through a series interconnection of a system S 1 followed by a system S2. The input-output relationships for S 1 and S 2 areS 1: ],1[4][2][111-+=n x n x n y S 2: ]3[21]2[][222-+-=n x n x n yWhere ][1n x and ][2n x denote input signals.(a) Determine the input-output relationship for system S.(b)Does the input-output relationship of system S change if the order in which S 1 and S 2 are connected in series is reversed(ie., if S2 follows S 1)? Solution: (a)]3[21]2[][222-+-=n x n x n y]3[21]2[11-+-=n y n y]}4[4]3[2{21]}3[4]2[2{1111-+-+-+-=n x n x n x n x]4[2]3[5]2[2111-+-+-=n x n x n xThen, ]4[2]3[5]2[2][-+-+-=n x n x n x n y【可以考虑先求取单位脉冲响应,再做卷积】(b).No. because it ’s linear, S 1 and S 2 do not diverge.1.16. Consider a discrete-time system with input x[n] and output y[n].The input-output relationship for this system is]2[][][-=n x n x n y(a) Is the system memory less?(b) Determine the system output when the input is ][n A δ, where A is any real or complex number . (c) Is the system invertible? Solution: (a). No.For example, when n=0, y[0]=x[0]x[-2]. So the system is memory. (b). y[n]=0.When the input is ][n A δ,]2[][][2-=n n A n y δδ, so y[n]=0.(c). No.For example, when x[n]=0, y[n]=0; when x[n]=][n A δ, y[n]=0. So the system is not invertible.1.17.Consider a continuous-time system with input x(t) and output y(t) related by ))(sin()(t x t y =, (a) Is this system causal? (b) Is this system linear? Solution: (A). No.For example,)0()(x y =-π. So it ’s not causal.【得到什么启示?】 (b). Y es.Because : ))(sin()(11t x t y = , (sin()(22tx t y =)()())(sin())(sin()(21213t by t ay t bx t ax t y +=+=1.21. A continuous-time signal ()x t is shown in Figure P1.21. Sketch and label carefully each of the following signals:(a): (1)x t - (b): (2)x t - (c): (21)x t + (d): (4/2)x t - (e): [()()]()x t x t u t +-(f): ()[(3/2)(3/2)]x t t t δδ+--Solution: (a).(b).(c). (d).1.22. A discrete-time signal ][n x is shown in as the following. Sketch and label carefully each of the following signals: (a): [4]x n - (b): [3]x n - (c): [3]x n(d): [31]x n + (e): [][3]x n u n -(f): [2][2]x n n δ--(g): 11[](1)[]22nx n x n +-(h): 2[(1)]x n -Solution:(a).(b).(e).(f) ]2[-n δ(g)1.25. Determine whether or not each of the following continuous-time signals is periodic. If the signal is periodic, determine its fundamental period.(a): ()3cos(4)3x t t π=+ (b): (1)()j t x t e π-=(c): 2()[cos(2)]3x t t π=-(d): (){cos(4)()}x t t u t ενπ=(e): (){sin(4)()}x t t u t ενπ= (f): (2)()t n n x t e∞--=-∞=∑Solution:(a).Periodic. T=π/2. Solution: T=2π/4=π/2. (b). Periodic. T=2.Solution: T=2π/π=2.(c). Periodic. T=π/2.【括号内周期,平方后仍然周期,或者做三角变换】 (d). Periodic. T=0.5. Solution: )}()4{cos()(t u t E t x v π= )}())(4cos()()4{cos(21t u t t u t --+=ππ )}()(){4cos(21t u t u t -+=π)4cos(21t π=So, T=2π/4π=0.5【值得商榷】 (e)、(f)非周期信号。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.对一个LTI 系统,我们已知如下信息:输入信号2()4()tx t e u t =-;输出响应22()()()t t y t e u t e u t -=-+(a) 确定系统的系统函数H(s)及收敛域。
(b) 求系统的单位冲激响应h(t)(c) 如果输入信号x(t)为(),tx t e t -=-∞<<+∞ 求输出y(t)。
解:(a) 4114(),Re{}2,(),2Re{}2222(2)(2)X s s Y s s s s s s s ---=<=+=<-<--+-+ 1(),Re{}22H s s s =>-+ (b) 2()()th t e u t -= (c) ()2()()t t y t e e u d e τ+∞---τ--∞=ττ=⎰; ()(1)t t y t H e e --=-=.2. 已知因果全通系统的系统函数1()1s H s s -=+,输出信号2()()ty t e u t -= (a) 求产生此输出的输入信号x(t). (b) 若已知dt ∞∞<∞⎰+-|x(t)|,求输出信号x(t).(c) 已知一稳定系统当输入为2()te u t -时,输出为上述x(t)中的一个,确定是哪个?求出系统的单位冲激响应h(t).解:(a) 1()2Y s s =+。
Re{}2s >-,()1()()(1)(2)Y s s X s H s s s +==-+ 由于()H s 的ROC 为Re{}1s >-,()X s ∴的ROC 为2Re{}1s -<<或Re{}1s > 若 1ROC 为-2<Re{s}<1,则2112()()()33t t x t e u t e u t -=-- 若2ROC 为Re{s}>1,221()(2)()3tt x t e e u t -=+ (b) 若dt ∞∞<∞⎰+-|x(t)|,则只能是1()()x t x t =即:212()()()33t t x t e u t e u t -=-- (c) 212()()()()33t t y t x t e u t e u t -==--; 1(),2Re{}1(1)(2)s Y s s s s +=-<<-+()1()()1Y s s H s X s s +∴==-, 这就是(a)中系统的逆系统。
由于系统稳定∴ROC 为()c u t Re{}1s <()()2()t h t t e u t =δ--()Y s 的ROC 为Re{}2,()s X s >-∴的ROC 为2Re{}1s -<<21()()2()3tt x t e u t e u t -=-- 22()*()()2()*()t t t y t h t e u t e u t e u t --=--当t>0时,022()21()*()()3ttt t e u t e u t e e d e u t τττ-----∞-==⎰ 当t<0时,22()21()*()()3t t t t t e u t e u t e e d e u t τττ-----∞-==-⎰212()*()()()()33t t y t h t e u t e u t x t -∴=--=从而证明该系统当输入为()y t ,输出为()x t3. 对差分方程 )1(21)()2(61)1(65)(-+=-+-+n x n x n y n y n y 所确述的LTI 稳定系统,确定(a )系统函数; (b )单位脉冲响应; (c )若系统输入)()(n u n x =,求系统的响应)(n y ;(d )如果系统输出)(])21(3)31(2[)(n u n y nn---=,求系统输入信号)(n x 。
解:(a )1211311161651211)()()(----+=+++==z z z z z X z Y z H , ROC: 13z > (b ))()31()(n u n h n-=(c ))3113111(43311111)(1111----++-=+⋅-=z z z z z Y , ROC: 1z > )()31(41)(43)(n u n u n y n-+=(d )1111123()1111322111(1)(1)32Y z z z z z z -----=--+-=-+, ROC: 12z > 11111(1)(21)()3()11()(1)(1)32z z Y z X z H z z z ----+-==-+,4. 某离散时间LTI 因果系统在z 平面上的零极点如图P7.17所示。
已知系统的单位脉冲响应)(n h 的初值1)0(=h 。
(a ) 确定系统函数;(b ) 求系统的单位脉冲响应; (c ) 写出系统的差分方程;(d ) 若系统的响应)()21()(n u n y n-=,求系统激励)(n x ; (e ) 求出一个满足该系统差分方程的稳定系统的单位脉冲响应。
解:(a ))21)(211()(11---+=z z kz H .1=k 得由1)0(=h(b ))3142111(41)(11---++=z z z H )(2)()21(41)(n u n u n h nn +-=(c ))()2()1(23)(n x n y n y n y =----(d )111121)21)(211(12111)()()(-----=-++==z z z z z H z Y z X5. 考查图P8.2所示的离散时间LTI 稳定系统;(a ) 确定该系统的系统函数及收敛域;(b ) 求出系统的频率响应、单位脉冲响应和单位阶跃响应; (c ) 如果系统的输入1()(1)nx t =-,求系统响应1()y t ;(d ) 若系统输入2()(1)()nx t u n =-,求系统响应2()y t ;(e ) 当系统响应12()[()()]()33nny n u n =+-,求系统的输入信号()x n 。
解:(a )41211175141212()12121113933z H z z z z z ----+==++--+ 收敛域3z > (b )单位脉冲响应7152()()()()()123123n n h t u n u n =+- (c )127()(1)(1)16nn y t H z =-=- (d )1221121114()()()121139z Y z H z X z z z z ----+===++-2717525()()()(1)()()()(1)()16316434n n n n y t u n u n u n u n =--+--- (e )1111112113()121211(1)(1)3333z Y z z z z z -----+=+=-+-+ 112111111121212()3393()1211()(1)(1)113344z z z z Y z X z H z z z z z --------++-+===-+++ 1111()2()()()(1)434n n x n u n u n -=⋅-+--6.序列[]n x 是某一LTI 系统当输入为[]n s 时的输出,该系统由下列差分方 程描述[][][]88--=-n s e n s n x a其中10<<a 。
(a) 求系统函数()()()z S z X z H =1 并在z 平面上画出它的极点和零点。
(b) 我们要用一个LTI 系统从[]n x 恢复[]n s ,求系统函数()()()z X z Y z H =2使得[][]n s n y =。
对()z H 2,指出所有可能的使其因果稳定的收敛域。
(c )求出使其因果稳定的单位脉冲响应[]n h 2。
解:(a )方程两边做z 变换 88()()()aX z S z e z S z --=-881()()1()a X z H z e z S z --∴==- 其极点为0z =,且为8阶重极点;零点为 4k j ak z e e π-=(b ) ()()2881111aH z H z ez--==-,其因果稳定系统的收敛域为 z eα->(c ) 考虑()8111a P z ez--=-, 82()()H z P z =,8()()np n eu n α-=,2(/8),0,8,()0n h n e n h n otherwise α-⎧==±∴=⎨⎩。