人教版初中数学锐角三角函数的分类汇编
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
人教版初中数学锐角三角函数的分类汇编
一、选择题
1.利用量角器可以制作“锐角余弦值速查卡”.制作方法如下:如图,设1OA =,以O 为圆心,分别以0.05,0.1,0.15,0.2,…,0.9,0.95长为半径作半圆,利用“锐角余弦值速查卡”可以读出相应锐角余弦的近似值.例如:cos300.87︒≈,cos450.71︒=.下列角度中余弦值最接近0.94的是( )
A .30°
B .50︒
C .40︒
D .20︒
【答案】D
【解析】
【分析】
根据“锐角余弦值速查卡”解答即可.
【详解】
从“锐角余弦值速查卡”可以读出cos 20︒≈0.94,
∴余弦值最接近0.94的是20︒,
故选:D.
【点睛】
此题考查“锐角余弦值速查卡”,正确读出“锐角余弦值速查卡”是解题的关键.
2.在半径为1的O e 中,弦AB 、AC 的长度分别是3,2,则BAC ∠为( )度. A .75 B .15或30 C .75或15 D .15或45
【答案】C
【解析】
【分析】
根据题意画出草图,因为C 点位置待定,所以分情况讨论求解.
【详解】
利用垂径定理可知:AD=32
AE =, .
sin∠AOD=
3
2
,∴∠AOD=60°;
sin∠AOE=
2
2
,∴∠AOE=45°;
∴∠BAC=75°.
当两弦共弧的时候就是15°.
故选:C.
【点睛】
此题考查垂径定理,特殊三角函数的值,解题关键在于画出图形.
3.如图,对折矩形纸片ABCD,使AD与BC重合,得到折痕EF,把纸片展平,再一次折叠纸片,使点A落在EF上的点A′处,并使折痕经过点B,得到折痕BM,若矩形纸片的宽AB=4,则折痕BM的长为( )
A 83
B
43
C.8 D.83
【答案】A 【解析】【分析】
根据折叠性质可得BE=1
2
AB,A′B=AB=4,∠BA′M=∠A=90°,∠ABM=∠MBA′,可得∠
EA′B=30°,根据直角三角形两锐角互余可得∠EBA′=60°,进而可得∠ABM=30°,在Rt△ABM 中,利用∠ABM的余弦求出BM的长即可.
【详解】
∵对折矩形纸片ABCD,使AD与BC重合,AB=4,
∴BE=1
2
AB=2,∠BEF=90°,
∵把纸片展平,再一次折叠纸片,使点A落在EF上的点A’处,并使折痕经过点B,∴A′B=AB=4,∠BA′M=∠A=90°,∠ABM=∠MBA′,
∴∠EA′B=30°,
∴∠EBA′=60°,
∴∠ABM=30°,
∴在Rt△ABM中,AB=BM⋅cos∠ABM,即4=BM⋅cos30°,
解得:BM=83
3
,
故选A.
【点睛】
本题考查了折叠的性质及三角函数的定义,折叠前后,对应边相等,对应角相等;在直角三角形中,锐角的正弦是角的对边比斜边;余弦是角的邻边比斜边;正切是角的对边比邻边;余切是角的邻边比对边;熟练掌握相关知识是解题关键.
4.为了方便行人推车过某天桥,市政府在10m高的天桥一侧修建了40m长的斜道(如图所示),我们可以借助科学计算器求这条斜道倾斜角的度数,具体按键顺序是( )
A.
B.
C.
D.
【答案】A
【解析】
【分析】
先利用正弦的定义得到sinA=0.25,然后利用计算器求锐角∠A.
【详解】
解:因为AC=40,BC=10,sin∠A=BC AC
,
所以sin∠A=0.25.
所以用科学计算器求这条斜道倾斜角的度数时,按键顺序为
故选:A.
点睛:
本题考查了计算器-三角函数:正确使用计算器,一般情况下,三角函数值直接可以求出,已知三角函数值求角需要用第二功能键.
5.如图,在△ABC中,AC⊥BC,∠ABC=30°,点D是CB延长线上的一点,且AB=BD,则tan D的值为()
A .23
B .33
C .23+
D .23-
【答案】D
【解析】
【分析】 设AC =m ,解直角三角形求出AB ,BC ,BD 即可解决问题.
【详解】
设AC =m ,
在Rt △ABC 中,∵∠C =90°,∠ABC =30°,
∴AB =2AC =2m ,BC =3AC =3m ,
∴BD =AB =2m ,DC =2m+3m ,
∴tan ∠ADC =
AC CD =23m m
+=2﹣3. 故选:D .
【点睛】
本题考查解直角三角形,直角三角形30度角的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.
6.如图,从点A 看一山坡上的电线杆PQ ,观测点P 的仰角是45︒,向前走6m 到达B 点, 测得顶端点P 和杆底端点Q 的仰角分别是60︒和30°,则该电线杆PQ 的高度( )
A .623+
B .63+
C .103
D .83+
【答案】A
【解析】
【分析】 延长PQ 交直线AB 于点E ,设PE=x 米,在直角△APE 和直角△BPE 中,根据三角函数利用x 表示出AE 和BE ,列出方程求得x 的值,再在直角△BQE 中利用三角函数求得QE 的长,则问题求解.
【详解】
解:延长PQ 交直线AB 于点E ,设PE=x .