圆的面积公式PPT课件

合集下载

圆的面积课件ppt

圆的面积课件ppt
换算错误
进行单位换算时,应遵循正确的换算 关系。例如,1米等于100厘米,而不 是10厘米或1000厘米。
误区二:混淆直径与半径概念
概念不清
应明确半径是圆的任意一点到圆心的距离,而直径是通过圆心且两端都在圆上的线段。半径是直径的一半。
应用错误
在计算圆的面积时,应使用半径而不是直径。若题目给出的是直径,应将其除以2得到半径后再进行计算。
多边形内切圆与外接圆面积关系推导
正多边形情况
对于正多边形,其内切圆半径r与外接圆半径R之比为r:R=1:2,进而可推导出正多边形 内切圆面积与外接圆面积之比为πr²:πR²=1:4。
一般多边形情况
对于一般多边形,由于其各边长度和角度不均等,内切圆半径r与外接圆半径R之比不具 有固定值。但可以通过计算多边形各顶点到内切圆圆心的距离平均值来估算内切圆半径
圆的面积计算公式推导
• 推导过程:假设圆的半径为r,将圆划分为无数个小的扇形,每个扇形的面积近似于一个三角形。三角形的底为圆的周长( 2πr),高为半径(r)。因此,圆的面积可以表示为无数个三角形面积之和,即S=πr²。
CHAPTER 02
圆的面积计算方法详解
直接法计算圆的面积
01
02
03
公式推导
求解组合图形的面积
当需要求解由圆和其他图形组合而成的复杂图形的面积时,可以通过圆的面积 公式来求解。
圆的面积在物理学中的应用
计算物体的转动惯量
在物理学中,转动惯量是一个物体对于旋转运动的惯性大小 的度量,而圆的面积公式可以用于计算某些形状物体的转动 惯量。
计算电磁场的能量
在电磁学中,电磁场的能量密度与场的分布有关,而场的分 布又与某些几何形状的面积有关,因此圆的面积公式也被用 于计算电磁场的能量。

六年级上册数学课件-圆的面积-人教版 (共20张PPT)

六年级上册数学课件-圆的面积-人教版 (共20张PPT)

• 以近似长方形为例:等分的分数越多,拼成的 图形越接近长方形,其面积越接近圆的面积。
三 十 二 等 分
公式推导
所拼的长方形面积与圆的面积有什么关系?
长方形的长= 圆周长的一半 长方形的宽=
圆的半径 长方形面积=
长×宽
S圆=πr2
拼组图形
平行四边形
三角形
梯形
哪种图形最有利于我们研究圆的面积公式?
半径:125.6÷2÷3.14=20(厘米)
面积:3.14×202=1256(平方厘米)
答:这棵树干的横截面 约是1256平方厘米。
总结反思
说一说
• 通过这节课的学习,咱们都学会了哪些知识?
化曲为直
极限思想

有一位国王很喜欢下棋,棋艺也很高。一天他贴出了
一张布告:谁能战胜国王,就奖励给他一块土地。一个聪
这是一个由草绳编织成的圆形茶杯垫片。
r
2πr
三角形的面积=
底×高 2
所以圆的面积:S=2π2r×r = r2π
求下面圆的面积。(口答)
3厘米
圆形草坪的 直径是20米
3.14×(20÷2)2 = 3.14 ×100 = 314(平方米) 答:这个圆形草坪的面积是314平方米。
125.6厘米
他量得一棵树干的周长是 125.6厘米。这棵树干的 横截面积约是多少?
明的年轻人来揭了榜,经过几番较量,果然战胜了国王。
可是,国王想耍赖,拿出一块羊皮说道: “好,你可以
在海边划去一块羊皮那么大的土地。”一块羊皮的面积实 在太小了!聪明的年轻人苦思冥想,终于
想出了一个好办法。
数学教科书第十一册
圆的面积
答:这个圆形草坪的面积是314平方米。

圆的面积ppt教学课件共31张ppt

圆的面积ppt教学课件共31张ppt

重点与难点解析
针对推导过程中的重点和难点进行深 入剖析,帮助学生更好地理解和掌握 。
公式记忆技巧分享
公式记忆方法
介绍一些有效的记忆方法 ,如联想记忆、口诀记忆 等,帮助学生快速记住圆 的面积公式。
公式应用技巧
分享在实际应用中如何灵 活运用圆的面积公式,提 高解题效率和准确性。
公式记忆的意义
强调记住公式并非目的, 而是为了更好地应用公式 解决实际问题。
思考题二
若将一个圆分成n个相等的小扇形 ,然后将这些小扇形重新组合成 一个近似于矩形的图形,试推导 圆的面积公式。
THANKS
感谢观看
使用测量工具测量每个内
02
切圆的半径,并通过公式
计算面积。
分析比较不同形状内切圆
04
面积的关系,并尝试总结
规律。
创意拼图活动:用圆形创造美丽图案
准备多个大小、颜色不同 的圆形纸片。
让学生们自由发挥想象力 ,使用这些圆形纸片拼出 各种美丽的图案。
可以拼出动物、植物、建 筑物等各种形状,也可以 创作出抽象的艺术作品。
特点
圆是到定点的距离等于定长的所有点组成的图形,具有 对称性和均匀性。
圆心、半径、直径关系
01 圆心
圆的中心,通常用字母O表示。
02 半径
从圆心到圆上任一点的线段,通常用字母r表示。
03 直径
通过圆心且两端点在圆上的线段,是圆中最长的 弦,通常用字母d表示,且d=2r。
圆周角与圆心角关系
01 圆周角
03
典型例题分析与解答
已知半径求面积问题
例题1
已知圆的半径为3厘米,求圆的面积。
注意事项
计算过程中要注意pi r^2$,将 半径代入公式进行计算。

《圆的面积例》课件(共15张PPT)

《圆的面积例》课件(共15张PPT)

圆中有方:S=S圆-S正或 S=1.
=(cm²)
的面积是多少平方 小路的面积的多少平方米?
右图(外圆内方):3.
中国建筑中经常能见到“外方内圆”和“外圆内方”的设计。
米? 求出正方形和圆之间部分的面积,就是求什么?
一个圆形花坛的半径是20米,在花坛的外边修一条宽1米的环形小路。 一个圆的周长是,求它的面积?
答:外面的圆与内部的正方形之间的面积 约是cm²。
方中有圆:S=S正-S圆或S=0.86r² 圆中有方:S=S圆-S正或 S=1.14r²
课本72页9题、73页10、11、12题
谢谢大家!
圆的面积(例题3)
记忆宝库
1、圆的面积计算公式?写出计算公式。
S圆=πr²
2、怎样求圆环的面积?写出计算公式。
S圆环=π(R2-r²)
1. 一个圆形茶几面的半径是0.3m ,它的面 积是多少平方米?
2. 一个圆的周长是,求它的面积?
3. 一个圆形花坛的半径是20米,在花坛的外边修
一条宽1米的环形小路。小路的面积的多少平方米?
(5)阴影部分的面积:
-(m²)
回顾与反思
如果两个圆的半径都是r,结果又是怎样的?
左图(外方内圆):(2r)²-3.14×r²=4r²-3.14r²=0.86r²
1 右图(外圆内方):3.14r²-( ×2 2r ×r) ×2
=3.14 r ²-2r²
=1.14r²
当r=1时,和前面的面 积完全一致。
=3.
同学们见过这种图案吗?
外方内圆
外圆内方
中国建筑中经常能见到“外方内圆”和“外圆内方”
的设计。上图中的两个圆半径都是1m,你能求出正方形
和圆之间部分的面积吗?

圆的面积动画演示ppt课件

圆的面积动画演示ppt课件

二、填表:
半径
直 径 周周 长长 面面 积积
(厘米) (厘米) (厘米) (厘米2)
3Leabharlann 618.84 28.26
5
10
31.4
78.5
4
8
25.12 50.24
草地上用绳子栓着一只羊,绳子长 6米,接头处忽略不计,这只羊能吃到 多大面积的草?
此课件下载可自行编辑修改,供参考! 感谢您的支持,我们努力做得更好!
例1.一个圆的半径是4厘米,它的面积 是多少?
S =r2
= 3.14× 42 =3.14×16 =50.24 ﹙平方厘米﹚
答:它的面积是50.24平方厘米.
练习
• 一、填空:
• 将一个圆分成若干等份,剪开后, 拼成一个近似的长方形,这个长
方形的长相当于圆的

周长的一半 ),宽相
当于圆的( 半径 )。
圆所占平面的大小叫做圆的面积。
上一页 下一页 主页
圆的半径为r,你能 算出圆的面积吗?
宽 =r
长= r
因为:长方形的面积= 长


所以: 圆的面积 = r
×宽 ‖
×r
用S表示圆的面积,那么圆 的面积计算公式就是:
S=r×r =r2

人教版小学六年级上册数学课件 《圆的面积》圆PPT教学课件

人教版小学六年级上册数学课件 《圆的面积》圆PPT教学课件

拓展运用
1. 图中的大圆半径等于小圆的直径,求阴影部分的面积。
大圆面积:S=πr²=3.14×6²=113.04cm²
小圆半径:r=6÷2=3cm
6 cm
小圆面积:S=πr²=3.14×3²=28.26cm²
阴影面积:113.04–28.26=84.78cm²
拓展运用
2. 一个运动场(如图所示),两端是
半径是6cm,圆环的面积是多少?
2c
m
6c
m
S=πR²﹣πr²
S=π(R²﹣r²)
=3.14×6²-3.14×2²
=3.14×(6²-2²)
=113.04-12.56
=3.14×32
=100.48(cm²)
=100.48(cm²)
教学新知
中国建筑中经常能见到“外方内圆”和“外圆内方”的设
计(如图所示),图中的两个圆半径都是1米,你能求出正方形
和圆之间部分的面积吗?
教学新知
“外方内圆”面积的计算
“外圆内方”面积的计算
正方形边长:1×2=2(米)
圆的直径:1×2 = 2(米)
正方形面积:2×2=4(平方米)
内圆面积:3.14×1²=3.14(平方米)
正方形面积: 1 ×(2×1)×2 = 2(平方米)
2
内圆面积:3.14×1² = 3.14 (平方米)
A. 1
B. 2
C. 3
D
D. 3π
(3)若A.B两个圆的直径比是2:1,则它们的面积比是多少?(
A. 2 : 4
B. 4 : 1
C. 1 : 2
D. 1 : 4


B
课堂练习
4. 解决问题
(1)一个直径是4米的圆形花坛种上玫瑰花。一平方米只能种5株,这个

圆的面积-PPT教学课件

圆的面积-PPT教学课件
详细描述
首先,我们需要知道圆的面积公式是 πr²,其中r是圆的半径。然后,我们将 给定的半径值代入公式中,即可求出圆 的面积。
计算给定面积的圆的半径
总结词
通过给定的面积值,我们可以使用公式反推出圆的半径。
详细描述
首先,我们需要知道圆的面积公式是πr²,其中r是圆的半径。 然后,我们将给定的面积值代入公式中,通过求解方程可以求 出半径的值。
圆的面积与球体体积的关系
总结词:几何关系
详细描述:球体体积的计算涉及到球的半径和球的表面积( 即圆的面积)。掌握这一关系有助于解决与球体相关的几何 问题。
05
总结与回顾
总结圆的面积公式及其应用
圆的面积公式
A = πr²,其中r是圆的半径,π是一个常数约等于3.14159。
应用
通过圆的面积公式,我们可以计算圆的面积,进而计算与圆相关的量,如圆的 周长、圆的体积等。
圆的面积公式应用
总结词:实际应用
圆的面积公式应用:圆的面积公式在日常生活和科学研究中有着广泛的应用。例如,在计算圆形物体的表面积、计算圆形区 域的面积、计算圆的周长等场合都会用到。此外,圆的面积公式也是进一步学习其他几何知识的基础。
03
圆的面积计算示例
计算给定半径的圆的面积
总结词
通过给定的半径值,我们可以使用公 式计算出圆的面积。
总结词:明确概念
圆的定义:圆是一种几何图形,由所有与给定点等距的点组成。这个给定点称为 圆心,而该距离称为半径。
圆的面积公式推导
总结词:推导过程
圆的面积公式推导:圆的面积公式是通过将圆分割成若干个小的扇形,然后求和这些扇形的面积得到 的。每个扇形都可以近似为一个等腰三角形,其底为圆的半径,高为圆的半径。将这些三角形的面积 加起来,就得到了圆的面积。

5.3.1《圆的面积》课件(20张PPT)

5.3.1《圆的面积》课件(20张PPT)

314×8=2512(元) 答:铺满草皮需要2512元。
巩固练习
一个圆形茶几桌面的直径是1m,它的面积是多少平 方米?
1÷2=0.5(m) 3.14×0.52=0.785(m2)
答:它的面积是0.785m2。
课堂总结
这节课我们学习了什么? 通过本节课的学习,你们有什 么收获?

填一填。
• (1)一个圆形杯垫的半径是1.5 m,它的面积是( 7.065 )m2。

完成下表。
半径 3 cm 4 dm 4.5 m
直径 6 cm 8 dm 9m
圆的面积 28.26 cm2
50.24 dm2 63.585 m2

计算下面各圆的周长和面积。(单位:cm)
• (1)
(2)
• (1)周长:3.14×3×2=18.84(cm) • 面积:3.14×32=28.26(cm2) • (2)周长:3.14×8=25.12(cm) • 面积:3.14×(8÷2)2=50.24(cm2)
所以:圆的面积=πr×r =πr2
用等分后的小块组成不同的形状 近似平行四边形
近似梯形
近似三角形
巩固应用 这个圆形草坪的直径是20m。0÷2=10(m) 3.14×102=314(m2)
答:这个圆形草坪的占地面积是314㎡。
例1 每平方米草皮8元。
铺满草皮需要 多少钱?
• 答:这个圆的面积是50.24 dm2。

如图,正方形的面积是17 cm2,这个圆的面积是多少?
• 解:设这个圆的半径是r cm,则r2=17。
• 3.14×17=53.38(cm2)
• 答:这个圆的面积是53.38 cm2。
布置作业

人教版数学六年级上册5.3圆的面积课件(32张ppt)

人教版数学六年级上册5.3圆的面积课件(32张ppt)
3.14×(25²-5²)
=3.14×600
=1884(m²)
2、在直径为8米的圆形水池四周铺一条1米宽的小路,这条小路的面积是( )平方米。

①3.14×(9 – 8 ) ②3.14×(6 – 4 ) ③3.14×(5 – 4 )
2
2
2
2
2
2
课堂作业: 教材练习十五72页第5题,第6题,第7题,第8题。
3.14× 42
答:它的面积是50.24平方厘米。
=πr2
=3.14×16
=50.24
﹙平方厘米﹚
例1:圆形草坪的直径是20米,每平方米草皮8元。铺满这个草坪要多少元?
3.14× 102
=3.14×100
=314
(㎡)
20÷2=10(m )
答:铺满这个草坪要2512元。
8 ×314=2512(元)
2、方法探究
方法一:
S环=πR2 -πr2
二、自主探究
3.14×(62-22)=。= (cm2圆环的面积是 cm2。
100.48
例2:光盘的银色部分是一个圆环,内圆半径是2cm,外圆半径是6cm。圆环的面积是多少?

圆的面积

πr

r
所以: = ×
πr
用S表示圆的面积,那么圆的面积计算公式就是: S=πr×r
例: 一个圆的半径是4厘米,它的面积是多少?
人教版 六年级上册
第5单元 圆
第 5 课时 圆的面积(2)
填空: 将一个圆分成若干等份,剪开后,拼成一个近似的长方形,这个长方形的长相当于圆的( ),宽相当于圆的( )。如果用S表示圆的面积,那么圆的面积计算公式是:( )

《圆的面积公式》课件

《圆的面积公式》课件
圆的面积公式
欢迎来到我的PPT课件,今天我们将深入探讨最基本的几何形状之一-圆形。 我们将学习如何计算其面积,以及如何使用这个公式解决实际问题。
公式介绍
公式
圆的面积公式是πr²,其中r是圆的半径。
几何形状
圆是一个平面上的几何形状,由所有到圆心距离相 等的点组成。
公式推导过程
1
正方形网格
首先,我们将一个圆放在一个正方形网格里。每个小矩形的面积都是(r÷n)², 其中n是网格的列数。
注意事项
1 使用正确的单位
使用正确的单位是计算圆 面积的一个重要部分。例 如,如果半径为米,则面 积为平方米。
2 遵循正确的计算顺序
先计算括号里的内容,然 后是乘法或除法,最后是 加法或减法。
3 检查你的计算结果
即使是最小的错误也会导 致完全不同的答案。所以 一定要在计算过程中反复 检查。
总结
公式:πr²;圆是平面上的几何形状,由所有到圆心距离相等的点组成;计算圆面积广泛应用于建筑、科学和 工业等;正确使用单位,严格遵守计算顺序,反复检查结果是计算圆面积的重要步骤。
பைடு நூலகம்
2
小矩形面积总和
然后,我们将所有小矩形的面积相加,因为其和正好等于圆的面积。
3
极限过程
最后,我们取n趋近于无穷大,即将网格分得越来越细,得到了πr²的公式。
应用举例
路面工程
如果你是一名路面工程师,你需要计算交通标志周围圆形的面积,从而安排路灯,移动信号 等等。
烘焙
如果你是一名蛋糕师,你需要计算圆形烤盘的面积,确定原材料的用量。
农业
如果你是一名农民,你需要计算土地面积,从而购买足够的肥料和收成最大的农作物。
实际问题解决
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档