搅拌釜式反应器上

合集下载

连续搅拌釜式和管式反应器液相反应的动力学参数测定

连续搅拌釜式和管式反应器液相反应的动力学参数测定

连续搅拌釜式反应器液相反应的动力学参数测定一、实验目的连续流动搅拌釜式反应器与管式反应器相比较,就生产强度或溶剂效率而论,搅拌釜式反应器不如管式反应器,但搅拌釜式反应器具有其独特性能,在某些场合下,比如对于反应速度较慢的液相反应,选用连续流动的搅拌釜式反应器就更为有利,因此,在工业上,这类反应器有着特殊的效用。

对于液相反应动力学研究来说,间歇操作的搅拌釜式反应器和连续流动的管式反应器都不能直接测得反应速度,而连续操作的搅拌釜式反应器却能直接测得反应速度。

但连续流动搅拌釜式反应器的性能显著地受液体的流动特性的影响。

当连续流动搅拌釜式反应器的流动状况达到全混流时,即为理想流动反应器——全混流反应器,否则为非理想流动反应器。

在全混流反应器中,物料的组成和反应温度不随时间和空间而变化,即浓度和温度达到无梯度,流出液的组成等于釜内液的组成。

对于偏离全混流的非理想流动搅拌釜式反应器,则上述状况不复存在。

因此,用理想的连续搅拌釜式反应器(全混流反应器)可以直接测得本征的反应速度,否则,测得的为表观反应速度。

用连续流动搅拌釜式反应器进行液相反应动力学,通常有三种实验方法:连续输入法、脉冲输入法和阶跃输入法。

本实验采用连续输入的方法,在定常流动下,实验测定乙酸乙酯皂化反应的反应速度和反应常数。

同时,根据实验测得不同温度下的反应速度常数,求取乙酸乙酯皂化反应的活化能,进而建立反应速度常数与温度关系式(Arrhenius formula )的具体表达式。

通过实验练习初步掌握一种液相反应动力学的实验研究方法。

并进而加深对连续流动反应器的流动特性和模型的了解;加深对液相反应动力学和反应器原理的理解。

二、实验原理1.反应速度 连续流动搅拌釜式反应器的摩尔衡算基本方程:dt dn dV r F F A v A A AO =---⎰)(0 (1) 对于定常流动下的全混流反应器,上式可简化为0)(=---V r F F A A AO (2)或可表达为 V F F r AAO A -=-)((3)式中;AO F ——流入反应器的着眼反应物A 的摩尔流率, 1-⋅s mol ;A F ——流出反应器的着眼反应物A 的摩尔流率, 1-⋅s mol ;)(A r -——以着眼反应物A 的消耗速度来表达的反应速度,13--⋅⋅s m mol ;由全混流模型假设得知反应速度在反应器内一定为定值。

釜式反应器的特点

釜式反应器的特点
间歇操作 物料一次性加入釜中,反应结束后 一 次性排出。所有物料的反应时间相同,物 料和产物的浓度及化学反应速率均随时间 而变化,是一个非定态过程。其生产能力 小,产品质量不稳定,劳动强度大,不易 自动控制和自动调节。宜于小批量、多品 种的生产。
釜式反应器的特点
单釜连续操作 物料不断加入,产物不断的流出。在搅 拌作用下,釜内各点浓度均匀一致,出口 浓度与釜中浓度相同,属定态过程。但物 料在釜内停留时间不一,因而会降低转化 率。其产品质量稳定,易于自动控制,宜 于大规模生产。
釜式反应器的特点
多釜串联操作 可分段控制反应,提
高每釜的推动力。克服单釜 连续操作中返混大,物料浓 度低的缺点;温差小,易于 稳定控制温度。生产中常采 用2-4釜串联。
釜式反应器的特点
半连续操作 一种物料一次性全部加入,另一种物料 连续加入。物料浓度随时间不断变化,属 非定态过程。适宜于小型生产,对放热剧 烈的反应,用改变进料速度的方法来调节 放热量的变化,达到控制温度的目的。
釜式反应器
一、釜式反应器的结构
釜式反应器
釜体:由壳体和上、下封头组成,其高与直
径之比一般1~3之间。必须提供足够的体积
以保证反应物有一定的停留时间来达到规
定的转化率;必须有足够的强度和耐腐蚀
能力以保证操作安全可靠。
釜式反应器
换热装置
釜式反应器
搅拌装置:由搅拌器和传动装置组成
二、釜式反应器的特点
反应时间(t)可参考动力学方程结合物料衡算 求得,或者由生产经验值与实验值获得。辅 助时间(t’)由实践经验确定。

2. 反应釜的总容积(VT)
VT VR /
装料系数 一般在0.4~0.85之间, 不起泡不沸腾的物料可取0.7~0.85,易起 泡或沸腾的物料可取0.4~0.6

化学反应工程第2讲 釜式反应器资料

化学反应工程第2讲 釜式反应器资料

2018/10/20
《化学反应工程》
20
• 搅拌器是实现搅拌操作的主要部件,其主 要的组成部分是叶轮,它随旋转轴运动将 机械能施加给液体,并促使液体运动。
2018/10/20
《化学反应工程》
21
2018/10/20
《化学反应工程》
22
2018/10/20
《化学反应工程》
23
2018/10/20
1、式搅拌器主要用于流体的循环, 不能用于气液分散操作。 2、折叶式比平直叶式功耗少,操 作费用低,故折叶桨使用较多。
桨式搅拌器常用参数(表8-5)
推进式搅拌器
推进式搅拌器常用参数(表8-6)
推进式搅拌器的特点
轴向流搅拌器
循环量大,搅拌功率小
常用于低粘流体的搅拌 结构简单、制造方便
搅拌器的常见种类及其应用
• 5、锚式搅拌器 • 锚式搅拌器顾名思义,叶片形状与船 舶的锚极为相似。锚式搅拌器的叶片尺寸 与搅拌槽尺寸相近,两者在组合后只留有 极小的间隙,这样锚式搅拌器的叶片在旋 转时能清除搅拌槽内壁上的反应物,维持 搅拌器的搅拌效果。 • 锚式搅拌器可用于搅拌粘度较高的物料。
6、螺带式搅拌器 • 螺带式搅拌器的叶片为螺带状,螺带的数 量为两到三根,被安装在搅拌器中央的螺 杆上,螺带式搅拌器的螺距决定了螺带的 外径。螺带式搅拌器通常是在层流状态下 操作。 • 适用于粘稠度高的液体和拟塑性的流体混 合。
2018/10/20
《化学反应工程》
8
• 由于材料Q235A不耐酸性介质腐蚀,常用 的还有不锈钢材料制的反应釜,可以耐一 般酸性介质。经过镜面抛光的不锈钢制反 应釜还特别适用于高粘度体系聚合反应。 • 铸铁反应釜在氯化、磺化、硝化、缩合、 硫酸增浓等反应过程中使用较多。

CSTR 反应器

CSTR 反应器

CSTR 反应器:质量平衡表达式CSTR 反应器(连续搅拌釜反应器)是化学或生物化学工业中非常普遍的一类反应器。

反应器有一个入口和一个出口,并被完美地搅拌。

本页重点介绍将一般质量平衡方程应用于CSTR 反应器。

1、CSTR反应器连续搅拌釜反应器配备有反应物入口和反应器内容物出口,它们在反应器操作期间连续进行。

反应器装有搅拌器,假定它可以有效地搅拌反应介质。

一般的质量平衡方程可以用以下方式表示:入口= 出口+ 消耗+ 累积表达式的每个组成部分的单位是材料流量:例如mol/s。

在下面的应用中,我们考虑考虑的CSTR 反应器的情况是:•完美搅拌:反应器反应介质中任何一点的浓度相同•等温线2. CSTR反应器完全搅拌并处于稳定状态:物料平衡让我们假设反应物 A 和 B 被引入反应器。

反应A +B =C +D生成 C 和D。

入口处只有 A 和B,但在出口流中我们可以发现 A 和 B 未反应,而 C 和D。

与在反应发生时浓度始终变化的间歇式和半间歇式反应器相反,CSTR 反应器具有在稳态下运行的特性,这意味着在入口和出口之间找到平衡,可以防止积累(正或负)在反应器中。

稳态意味着:dnA/dt = dnB/dt = dnC/dt = dnD / dt = 0除了反应器处于稳定状态外,反应体积不会随时间变化,这意味着我们可以直接使用材料平衡方程中的体积V。

将反应器完全搅拌的事实也有助于表达反应物和产物的消耗/产生,因为它可以表示为反应速度与体积(r'V) 和浓度的乘积。

完全搅拌意味着:[A]reactor = [A]out[B]reactor = [B]out[C]reactor = [C]out[D]reactor = [D]out每个组分的质量平衡将如下(r'是消耗速度,r是形成速度):反应性AQ输入*[A]输入= Q输出*[A]输出 + r' A .V + 0反应BQ in *[B] in = Q out *[B] out + r' B .V + 0产品C0 = Q输出*[C]输出+ r C .V + 0产品D0 = Q输出*[D]输出+ r D .V + 03. CSTR反应器搅拌完美且处于稳定状态:反应速度反应速度系统可以由上述方程表示如下:r' A = (Q in .[A] in - Q out *[A] out )/Vr' B = (Q in .[B] in - Q out *[B] out )/Vr C =Q输出*[C]输出/Vr D = Q输出*[D]输出/V这些是稳态CSTR 的特征方程。

连续搅拌釜式反应器永通安全操作规定

连续搅拌釜式反应器永通安全操作规定

连续搅拌釜式反应器永通安全操作规定前言为了确保在生产中的安全,保障工人生命财产安全,制定此《连续搅拌釜式反应器永通安全操作规定》,请大家遵守。

一、连续搅拌釜式反应器的安全操作基本要求1.在操作前,应进行预先检查:保证接地系统良好,钢丝绳无破损并无对绳力的征兆,各传感器的电气接触良好,油路应无泄漏现象。

2.开始搅拌前,应检查杠杆的锁扣以及轴承导套与轴之间的卡紧螺母并进行锁紧。

3.操作时,禁止穿戴宽松衣物和披风等,以及戴手表,裸露手臂,并确保操作服穿戴整齐,露出的身体部位应涂有油墨或石墨。

4.操作人员应熟悉仪器、设备性能参数,理解反应过程原理,明确控制要点和操作步骤,正确使用操作面板的各种按钮和旋钮。

5.操作前必须进行必要的安全措施,必须做好消毒、防爆和反应器清洗等工作。

6.连续搅拌釜式反应器在操作过程中禁止闲人或拉帮结派的人员进入操作间;责任人员应当自觉遵守操作规范进行工作。

7.反应器必须安装警报器和推拉式开关,通风口处应安装防护网,防止异物进入。

8.操作过程中应注意烟火,反应器的操作环境及必备器材齐全并置于合适位置,反应器的进出口防护套装必需齐全,以免产生爆炸。

9.如若在操作过程中需要停机,必须彻底清洁反应器内部,并关闭所有相关性能参数。

二、连续搅拌釜式反应器的操作规范1.开启操作开关,设定相关参数,排空反应器内的空气。

2.反应器在操作过程中必须装备液位和温度测量仪器。

当液位偏高或温度不正常时,必须及时进行适当调整。

3.开始操作前,应将气压与流速等内容调至适宜状态,并进行相关调整,以达到预期的目标效果。

4.操作过程中,应遵守反应物料添加规律,保证反应物料加入的正确性和时效性,并注意停止添加的时间点。

5.当设定的反应时间到达后,应立即飞速制止反应,以防止反应失控。

6.操作人员必须保证反应器内部及周围环境的稳定性,对于发生异常的情况,应及时进行警示和处理。

7.反应器操作完毕后,必须断电切断相关电源,待温度与压力稳定时,方可停机装卸。

第三章 釜式反应器

第三章 釜式反应器

������������
1
= − ln 1 − ������
1 − ������
������
化学反应工程——釜式反应器
7
t与CA0有关 t与CA0无关
2. 间歇反应器的反应体积:
������ = ������ ������ + ������
式中: Q0— 单位时间内处理的反应物料的体积(由生产任务决定) t— 反应时间 t0— 辅助时间
1 − ������
������������
������������
1 反应时间:������ =
������������
������������ 1 − ������
若 ������ ≠ 1
t = 1 − ������
−1
������ − 1 ������������
若 ������ = 1
1 ������ = ������
������ = = ������ ������
(5)
������������
初 始 条 件 : t=0时,CA=CA0 ; CP=0; CQ=0
对 ( 4 ) 积 分 得 : ∴ ������ =
ln =
ln
(6)
由此式可求得为达到一定的XA所需要的反应时间,式(6)也可写成:
������ = ������ exp − ������ + ������ ������
1 − exp − ������ + ������ ������
������ + ������
两种产物的浓度之比,在任何反应时间下均等于两个反应的速率常数之比。
化学反应工程——釜式反应器
16

釜式反应器—釜式反应器的结构

釜式反应器—釜式反应器的结构

➢涡轮式搅拌器 涡轮式搅拌器分为圆盘涡轮搅拌器和开启涡轮搅拌器;按照叶轮又 可分为平直叶和弯曲叶。涡轮搅拌器速度较大,300~600r/min 。 涡轮搅拌器的主要优点是当能量消耗不大时,搅拌效率较高,搅拌 产生很强的径向流。因此它适用于乳浊液、悬浮液等。
➢推进式搅拌器 推进式搅拌器,搅拌时能使物料在反应釜内循环流动,所起作用从外型上是一高径比接近于一的圆筒型反应器。
反应器结构:反应器筒体、各种接管、搅拌装置、密
封装置和换热装置等 。
釜式反应器的基本结构
基本结构:壳体结构、搅拌器、密封装置、换热装置
反应器的筒体皆为圆筒形。底、盖常用的 形状有平面形、碟形、椭圆形和球形,也 有的釜底为锥形。

反应釜的顶盖也叫上封头,通过法兰将顶盖
当加热温度超过250℃时,可采用联苯混合物的蒸汽加热, 根据其冷凝液回流方法的不同,也可分为自然循环与强制循环 。
➢电加热
是一种操作方便、热效率高、便于实现自控和遥控的一种高温加 热方法。有电阻加热、感应电流加热、短路电流加热三种类型。
➢烟道气加热
用煤气、天然气、石油加工废气或燃料油等燃烧时产生的高温烟 道气作热源加热设备,可用于300℃以上的高温加热。缺点是热 效率低,给热系数小,温度不易控制。可用于300℃以上的高温 加热。
一般多采用直接冷却方式,即利用制冷剂的蒸发直接冷却冷间内的 空气,或直接冷却被冷却物体。制冷剂一般有液氨、液氮等。成本 较高。
有些情况下则采用间接冷却方式,即被冷却对象的热量是通过中间 介质传送给在蒸发器中蒸发的制冷剂。中间介质起传送和分配冷量 的媒介作用,称为载冷剂。常用的载冷剂有三类,即水、盐水及有 机物载冷剂。
釜式反应器的传动和密封装置
电动机

化工反应过程之釜式反应器

化工反应过程之釜式反应器

釜式反应器的搅拌装置
搅拌器的作用,通过搅拌达到物料的充分混合,增强 物料分子碰撞,强化反应器内物料的传质传热
搅 拌 器 类 型
搅拌器的选型主要根据物料性质、搅拌目的 及各种搅拌器的性能特征来进行
釜式反应器的搅拌装置
挡板:一般是指固定在反应釜内壁上的长条
挡 形板挡板。它可把切线流转变为轴向流和径 板 向流,增大了液体的湍动程度,从而改善了
多个连续操作釜式反应器的串联
FA0
FA1
C A0
CA1
1
FA2
CA2
2
FAi1
C Ai 1
FAi
CAi
i
FAN 1 CiN 1
FAN
CiN N
任一釜物料衡算 FA(i1)dt FAidt (rA )iVRidt 0
VR i
FA0
(x Ai x A(i1) ) (rA )i
c A0 V0
(x Ai x A(i1) ) (rA )i
V0 c p (T T0 ) KA(T TW ) VR (rA )(H r )
连续操作釜式反应器的热稳定性
热稳定性判断:
放热速率: QR VR (rA )(H r ) 恒容一级不可逆反应:
QR
V0cA0 (H r )k0 exp( E RT) 1 k0 exp( E RT)
移热速率: QC V0 c p (T T0 ) KA(T TW )
热稳定条件: Qc QR
dqr dqg dT dT
连续操作釜式反应器的热稳定性
操作参数的影响:
着火点和熄火点
定态温度会随着操作条件的改变而改变。 放热反应可能有多定态;吸热反应:定态唯一。
项目四、釜式反应器的技能训练

釜式反应器设计说明书123

釜式反应器设计说明书123

一概述醋酸乙酯生产工艺的现状和特点醋酸乙酯分子式C4H8O2,又名:乙酸乙酯,英文名称:acetic ester;ethyl acetate,简称EA。

醋酸乙酯是醋酸工业重要的下游产品,也是一种重要的绿色有机溶剂,溶解能力及快干性能均属上乘,主要用做涂料(油漆和瓷漆)、油墨和粘合剂配方中的活性溶剂,也可用做制药和有机化学合成的工艺溶剂。

EA可用于制造乙酰胺、乙酰醋酸酯、甲基庚烯酮等,并在香料、油漆、医药、火胶棉、硝化纤维、人造革、染料等行业中广泛应用,还可用作萃取剂和脱水剂,亦可用于食品工业。

还可用于硝酸纤维、乙基纤维、氯化橡胶和乙烯树脂、乙酸纤维素脂、纤维素乙酸丁酯和合成橡胶等的生产过程;也可用于复印机的液体硝基纤维墨水。

在纺织工业中用作清洗剂;在食品工业中作为特殊改性酒精的香味萃取剂;在香料工业中是重要的香料添加剂,可作为调香剂的组份。

同时醋酸乙酯本身也是制造染料、香料和药物的原料。

在高级油墨、油漆及制鞋用胶生产过程中,对醋酸乙酯的质量要求较高。

当前全球醋酸乙酯的市场状况是:欧美等发达国家醋酸乙酯的市场发展比较成熟,产量和消费量的增长都比较缓慢,亚洲尤其是中国成为醋酸乙酯生产和消费增长最为快速的国家和地区。

由于中国国内快速发展的市场,尤其是建筑、汽车等行业的强劲发展,推动国内醋酸乙酯的需求,但是同时,醋酸乙酯生产能力的增长也非常快速,市场未来发展充满了机遇与挑战。

醋酸乙酯消费持续增长的主要原因是它取代了污染空气环境的用于表面涂层和油墨配方的甲乙酮和甲基异丁基酮。

醋酸乙酯作为优良溶剂,正逐步替代一些低档溶剂,发展潜力较大。

受消费拉动,20世纪90年代以来,我国醋酸乙酯生产发展迅速。

“八五”期间,产量年均增长率为%;1995-2000年,年均增长率达到%;2000-2002年,年均增长率高达%。

目前我国有醋酸乙酯生产企业30多家,年产能力为万吨。

其中,万吨级以上规模的企业有14家,年产能力为47万吨。

03 第三章 釜式反应器1

03 第三章  釜式反应器1

(3-6)
nA0 dX A Vr R A
(3-7)
(3-7)适用于多相,均相及等温,非等温的间歇 反应过程
义:
nA0 c A0 Vr
X Af 0

t c A0
1 dX A R A
(3-8)
若进行a级单一不可逆反应
R A rA k c A
LOGO
化学反应工程
第三章 釜式反应器
1
LOGO
第三章—釜式反应器
连续搅拌釜式反应器
重点掌握: 等温间歇釜式反应器的计算(单一反应、平行与连串反应)。 连续釜式反应器的计算 。 空时和空速的概念及其在反应器设计计算中的应用。 连续釜式反应器的串联和并联。 釜式反应器中平行与连串反应选择性的分析,连接和加料方式 的选择。 连续釜式反应器的质量、热量衡算式的建立与应用。 深入理解: 变温间歇釜式反应器的计算。 广泛了解: 串联釜式反应器最佳体积的求取方法。 连续釜式反应器的多定态分析与计算。 产生多定态点的原因,着火点与熄火点的概念。
j 1
M
(3-2)
ij
关键组分i 在第j个独立均 相反应中的化学计量数
反应物: 产物:
Ri 0
Ri 0
I. 定态操作,累积速率dni/dt,则式(3-1)化为
连续釜式反应器的物料衡算式
Q0 ci 0 Qci Vr i j rj
j 1
M
i 1, 2,, K
(3.4)
dFR 令: dt 0
(3-15)
根据函数求极值方法,目标函数对t求导, (3-16)
dcR cR 得: dt t t0
(3-17)
(3-17)即为FR最大时必须满足的条件,此 时的t即为最优反应时间tm。

釜式反应器结构和工作原理

釜式反应器结构和工作原理

釜式反应器结构和工作原理嗨,亲爱的小伙伴们!今天咱们来聊一聊化工领域里超级有趣的釜式反应器。

釜式反应器呀,从外观上看,就像是一个大大的罐子。

它的结构其实还挺简单又很巧妙的呢。

一般来说,它有个圆圆的筒体,这个筒体就像是它的身体,能容纳各种反应物质。

筒体会有一定的厚度,毕竟有时候里面发生的反应可是很“激烈”的,得保证它足够结实,不会被撑破或者损坏。

在这个筒体的顶部,会有一个进料口。

这个进料口就像是小嘴巴一样,各种原料从这儿欢快地跑进去。

想象一下,就像是一群小伙伴要到这个大罐子里开派对呢。

进料口的设计也很有讲究哦,它得保证原料能顺利地进入,而且有时候还得控制进料的速度,就像控制小伙伴们入场的节奏一样。

筒体的底部呢,有出料口。

这就相当于派对结束后,大家从出口离开的通道。

反应结束后的产物就从这儿出去,去到下一个工序或者被收集起来。

釜式反应器里面还有搅拌器。

这个搅拌器可太重要啦,就像是一个超级活跃的小精灵在里面跳舞。

搅拌器不停地转动,把筒体内的原料搅得晕头转向的。

为啥要这么做呢?这是因为很多化学反应,要是原料们都各自待在一边,就没办法很好地接触,反应就会进行得很慢或者不完全。

搅拌器这么一转,就把原料们都混合均匀了,让它们可以亲密接触,这样反应就能快速又高效地进行啦。

那釜式反应器的工作原理是啥呢?这就像是一场神奇的魔法表演。

当原料们从进料口进入到釜式反应器这个大舞台后,在搅拌器这个魔法棒的作用下,它们开始了奇妙的变化。

比如说,我们要做一个简单的酸碱中和反应。

酸和碱这两种原料从进料口进去,搅拌器开始转动,酸分子和碱分子就被搅在一起。

它们就像两个小冤家,一见面就开始互相作用。

酸分子把自己的氢离子拿出来,碱分子把自己的氢氧根离子拿出来,然后结合成水,而剩下的部分就组成了新的盐。

这个反应就在釜式反应器里热热闹闹地进行着。

再比如说一些复杂的有机合成反应。

各种有机分子原料进去后,在特定的温度、压力条件下,在搅拌器的帮助下,它们的化学键开始断裂、重新组合。

釜式反应器结构及原理

釜式反应器结构及原理

釜式反应器结构及原理
釜式反应器也称槽式、锅式反应器,它是各类反应器中结构较为简单且应用较广的一种反应器。

它可用来进行均相反应,也可用于以液相为主的非均相反应。

如非均相液相、液固相、气液相、气液固相等等。

釜式反应器的结构,主要由壳体、搅拌装置、轴封和换热装置四大部分组成。

1、间歇釜
间歇釜式反应器,或称间歇釜。

操作灵活,易于适应不同操作条件和产品品种,适用于小批量、多品种、反应时间较长的产品生产。

间歇釜的缺点是:需有装料和卸料等辅助操作,产品质量也不易稳定。

但有些反应过程,如一些发酵反应和聚合反应,实现连续生产尚有困难,至今还采用间歇釜。

2、连续釜
连续釜式反应器,或称连续釜
3、釜式搅拌反应器
釜式搅拌反应器有立式容器中心搅拌、偏心搅拌、倾斜搅拌,卧式容器搅拌等类型。

其中以立式容器中心搅拌反应器是最典型的一种。

性能特点:
釜式反应器具有适用的温度和压力范围宽、适应性强、操作弹性大、连续操作时温度浓度容易控制、产品质量均一等特点。

但用在较高转化率工艺要求时,需要较大容积。

通常在操作条件比较缓和的情况下操作,如常压、温度较低且低于物料沸点时,应用此类反应器最为普遍。

4、多级串联反应釜。

聚合反应器的分类介绍全解

聚合反应器的分类介绍全解

对处理高粘度的聚合体系,如本体聚合或缩聚反应后
期,反应物料的粘度可达500一5000Pa· s,故需采用特殊 型式反应器。该反应器一般采用卧式,主要型式有螺杆型 反应器(如尼龙66的后缩聚反应采用双螺杆)和表面更新型 反应器(如聚酯生产中的后缩聚采用单轴或双轴的表面更 新型圆盘式反应器)。
搅拌釜式反应器
1.管体
是带有夹套的长直圆管,为便于制造安装,常制
成若干段(每段3一5m),各段间用法兰联接。管体顶部可采 用凸形或平板封头,为便于高粘度物料流出,底部多采用锥 形封头。管外装有夹套,内通载热体,管体多采用不锈钢, 夹套可采用普通钢。
管体直径是影响聚合过程的重要因素,在同样聚合温度
和聚合时间下,管径愈小,愈易制取质量均匀、相对粘度较 高的聚合物。这是因为当管径较大时,反应物量增多,引发 剂加入量增多,温度相应增加,低分子物排除困难,并且随
卧式反应器
一、卧式反应器的工作原理 在聚合过程中,有时前后不同阶段物料的特性差异很大, 对反应条件的要求亦不尽相同如聚合前期物料体系粘度低,放 热多,流动较容易,而在聚合后期则往往相反,且希望在反应 进行的同时能去除生成的低分子物,此时在生产中往往采用卧 式反应器。 卧式反应器除需满足一般反应器的要求外,还有以下特殊 要求: 1.物料在反应器内能沿径向充分返混,轴向无返混,尽 量接近平推流。 2.根据聚合动力学理论,为达到预定的聚合度,要尽量 去除体系中生成的小分子,故应在反应器内将反应物料尽可能 展开,形成大面积的薄膜,增加蒸发表面积、且蒸发表面积能 不断更新。
质量,检修时需将釜内物料全部排净。该型式较常用于大型搅拌设备。
3.卧式搅拌反应器
该型式可设臵多个搅拌器,每个搅拌器之间用隔板分开,使物料在反应器 内流动状况类似于多级串联搅拌反应器,从而减少设备台数,降低安装高度。

第四章釜式反应器的搅拌与传热

第四章釜式反应器的搅拌与传热

23
流体流型的作用:
搅拌流体的流型对传质传热有着显著的影响,也是 搅拌器的重要特性之一,搅拌器型式不同,其对应 的流体流型也显著不同。一般而言: 轴向流剪切作用小而循环速率高; 径向流剪切作用大而循环速率低; 切线流的优点是可以提高夹套的传热速率,但对其 它过程往往产生不利影响,而且,切线流的存在经 常使流体液面下陷,严重时导致桨叶露出液面。
27
e - 锚式
f - 螺杆式带导流筒
g - 螺带式
28
4.1.3搅拌附件
• 指搅拌釜内为了改善流体流动状况而增设的零件, 在化学反应器中通常为挡板和导流筒。 • (1)挡板: 一般是长条形竖向固定在搅拌釜内壁上的板。 作用:加剧流体的湍动程度,消除切线流,提高搅拌 器的剪切性能。 全挡板条件:挡板数目足够,再增加数目,搅拌效 率也不再增加,此时称为全挡板条件。 板宽W=(1/20~1/10)D,视粘度高低而减增; 数目依釜径尺寸而异,小直径釜一般2~4个,大者一 般4~8个。通常以4~6个居多。
29

挡板安装方式
当搅拌高粘度流体(7000~10000cP)或固液多相操作 时,挡板一般要离壁安装,离壁距离通常为板宽 的1/5~1倍。 釜内有传热蛇管时,挡板一般安装在蛇管内侧。 挡板上缘一般与液面平齐,下缘可到釜底。如需 沉降固体物料,其下缘可在桨叶之上,使底部出 现切线流,以利固体沉降。
30
39
• 处于高速液流和静止或低速液流界面的液体,由于受 到强烈的剪切作用被卷起而形成漩涡。这些高速旋 转的漩涡又对它周围的液体造成强烈的剪切作用,从 而产生更多的漩涡。众多的漩涡一方面把更多的液体 挟带到作宏观流动的主体液流中去,同时形成局部 范围内液体快速而紊乱的对流运动,即局部的湍流 流 动 。 这种局 部范围 内的漩 涡运动 称为 “ 微 观 流 动”。

釜式反应器

釜式反应器

釜式反应器:反应原理与结构组成釜式反应器是一种常见的反应器类型,广泛应用于化工、石油、食品和材料等行业。

下面将介绍釜式反应器的反应原理和结构组成。

一、反应原理釜式反应器的主要作用是在一定的温度、压力和催化剂作用下,将原料和反应物混合在一起进行化学反应。

釜式反应器一般采用间歇式操作,即每次反应结束后,将反应产物从反应器中取出,再进行下一轮反应。

在釜式反应器中,反应物之间通过搅拌、混合和传递热量等过程,实现反应的均匀性和稳定性。

釜式反应器的操作方式可以根据不同的工艺要求进行调整,例如温度、压力、催化剂等参数都可以进行控制和优化。

二、结构组成釜式反应器主要由以下几个部分组成:1.釜体:釜式反应器的主体部分,一般由耐腐蚀、耐高温的材料制成,如不锈钢、钛等。

釜体内部一般分为上下两部分,上部为反应区,下部为加热区。

2.搅拌装置:搅拌装置是釜式反应器中的重要组成部分,它可以将反应物充分混合均匀,并促进反应的进行。

搅拌装置一般由电动机、减速器和搅拌桨组成。

3.传热装置:传热装置的作用是将外部的热量传递给釜体内的反应物,以控制反应温度。

传热装置一般由加热管、散热器等组成。

4.密封装置:密封装置的作用是防止反应物泄漏,保证反应的进行和安全性。

密封装置一般由填料密封、机械密封等组成。

5.控制系统:控制系统是整个釜式反应器的中枢神经,它可以通过调节温度、压力、搅拌速度等参数来控制反应的进行。

控制系统一般由仪表、阀门、传感器等组成。

总之,釜式反应器作为一种常见的反应器类型,具有操作简单、适应性强、可靠性高等优点。

了解釜式反应器的反应原理和结构组成有助于更好地理解其工作原理和应用场景。

反应工程实验 答案

反应工程实验 答案

反应工程实验实验 1 连续搅拌釜式反应器液体停留时间分布及其流动模型的测定⑴ 何谓返混?答:返混是指不同的停留时间的微团之间的混合。

⑵ 返混的起因是什么?答:器内反应流体的流动状态、混合状态以及器内的传热性能等。

⑶ 限制返混的措施有那些?答:器内反应流体的流动状态和混合状态的复杂性,反应流体在反应器内浓度、温度和速度的分布造成返混。

⑷ 测定停留时间分布的方法有那些?答:脉冲法、阶跃法、周期示踪法和随机输入示踪法⑸ 本实验采用哪种方法?答:脉冲示踪法。

⑹ 何谓示踪剂?答:平推流和理想混合流。

⑺ 对于示踪剂有什么要求?答:反应器出口的反应物料的各质点具有不同的停留时间。

⑻ 本实验采用什么示踪剂?答:饱和KCL溶液。

⑼ 为什么说返混与停留时间分布不是一一对应的?答:器内物料的返混会导致各种不同的停留时间分布而有停留时间分布的反应器,器内未必一定有返混存在。

⑽ 为什么可以通过测定停留时间分布来研究返混?答:在定常态下的连续流动的系统中,相对于某瞬间的流入反应器的流体,在反应器出口流体的质点中在器内停留了⊿t的流体的质点所占的分率。

⑾ 模型参数与实验中反应釜的个数有何不同?答:多级全混流模型。

⑿ 模型参数与实验中反应釜的个数为什么不同?答:不同。

模型参数N的数值可检验理想流动反应器和度量非理想流动反应器的返混程度。

当实验测得模型参数N值与实际反应器的釜数相近时,则该反应器达到了理想的全混流模型。

若实际反应器的流动状况偏离了理想流动模型,则可用多级全混流模型来模拟其返混情况,用其模型参数N值来定量表征返混程度。

⒀ 如何保证各釜有效容积相等?答:要保持水的流量和釜内波面高度稳定。

⒁ 本次实验用什么来测电导率?如何清理?答:铂黑电极。

用丙酮清洗。

⒂ 实验过程中如何保持操作条件的恒定和测定仪器的稳定?答:每次实验前,需检查校正电导率仪指针的零点和满量程;保持电极插头洁净,用最好用丙酮擦拭干净;防止电极上气泡的形成,一旦有气泡必须及时清除(放水控干)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二章 搅拌釜式反应器
四、搅拌功率与混和效果
➢ 为了达到宏观上的均匀,必须有足够强 大的总体流动,即流量要足够大,为了达 到小尺度上的均匀,必须提高总流的湍动 程度,即压头要足够大。
➢安装搅拌器的目的就是为了通过搅拌器将 能量输入到被搅拌的液体中去,不消耗足 够的搅拌功率,就达不到所需要的混和效 果。
因為
第二章 搅拌釜式反应器
第二章 搅拌釜式反应器
式(2—2)和式(2—3)表明:在等功率条件下,采用大 直径、低转速的搅拌器,更多的功率消耗于总体流动, 有利于宏观混和;采用小直径、高转速的搅拌器,则更 多的功率消耗于湍动,有利于小尺度上的混和。
第二章 搅拌釜式反应器
五、混和时间
通常将混和时间定义为在分子尺度上达到均匀所 需的时间。
第二章 搅拌釜式反应器
2.加设导流筒
若搅拌器周围无固体边界约束,液体可沿各个方向 回流到搅拌器的入口,故不同的流体微团行程长短不 一。釜中设置导流筒,可以严格地控制流动方向,使 釜内所有物料均通过导流筒内的强烈混和区,既提高 了混和效果,又有助于消除短路与死区。
第二章 搅拌釜式反应器
安装方式,对螺旋桨搅拌器,导 流筒是套在叶轮外面的;对涡轮式 搅拌器,导流简应置于叶轮的上方。
第二章 搅拌釜式反应器
第二章 搅拌釜式反应器
3.螺带式搅拌器
在旋转时会产生液体 的轴向流所以混和效 果较框式和锚式为好。
第二章 搅拌釜式反应器
搅拌釜式 反应器结构图
第二章 搅拌釜式反应器
第一节 搅拌釜中的流动与混和
旋转的搅拌器桨叶对液体施加压力,使其发生运动, 随着桨叶的形状、叶轮的尺寸、安装位置以及转速等 的不同,使液体产生不同的运动情况,从而达到不同 的混和效果。
第二章 搅拌釜式反应器
一、混和效果的度量
均勻度 若将A、B两种液体,各取体积VA
第二章 搅拌釜式反应器
合理利用问题
如果搅拌的的只是为了达到宏观混和,则希望
有较大的V和较小的H,如果目的为了快速地分散成微 小液团,则应有较小的V和较大的H。因此,在消耗同
样功率的条件下,对不同的搅拌目的,功率应作不同 的分配。
第二章 搅拌釜式反应器
搅拌器的流量取决于面积与速度的乘积 而搅拌器在湍流区的功率为
与VB置于一容器中,则容器内A、B的 平均浓度(体积%).分别为
CA。=
第二章 搅拌釜式反应器
经一定时间的搅拌后,在容器中各 处取样分析,若混和已经均匀,则混合 液中各处的A、B浓度均分别为CA0。与 CB0;若混和尚未均匀,则各处的浓度CA 或大于CA0。,或小于CAo;CB亦然。CA (或CB)与CA0(或CB0)相差越大,表示 混和越不均匀。
推进式和涡轮式搅拌器都具有直径小、转速高的特点,
第二章 搅拌釜式反应器
(二)大叶片低转速搅拌器
第二章 搅拌釜式反应器
1.桨式搅拌器
桨式搅拌器的桨叶尺寸大,转速低。 垂直于轴安装的桨叶(平桨)使液体沿径向及切向运动,可
用于简单的液体混和。
2.框式和锚式搅拌器
当液体粘度更大时,可按照釜底的形状,把桨式搅拌器做成 框式或锚式。这种搅拌器的旋转直径与釜内径接近相等,间 隙很小,转速很低,其所产生的剪切作用很小,但搅动范围 很大,不会产生死区,适用于高粘度液体的搅拌。
第二章 搅拌釜式反应器
当混和均匀时:I=1。
偏离1越远,反映了混和越不均匀
第二章 搅拌釜式反应器
2.宏观均匀与微观均匀
初看起来似乎均匀度已能反映物料的 混和程度,但进一步分析可以发现单凭 均匀度还不足以说明物料的实际混合程 度。
第二章 搅拌釜式反应器
宏观均匀与微观均匀
对互溶液体,搅拌剧烈可以大大地缩短达到微 观均匀所需要的时间:对不互溶液体,搅拌越剧 烈,液滴尺寸越小,可以达到均匀混和的尺度就 越小,但不可能达到微观均匀;对悬浮液通常只 能达到某种尺度上的宏观均匀。
第二章 搅拌釜式反应器
一、搅拌器的型式 (一)高转速搅拌器 1、螺旋浆式搅拌器 螺旋桨旋转时使液体作轴向和切向运动。切向分 速度使釜内液体作圆周运动,会将颗粒抛向壁面, 起到与分散相反的作用,须安装挡板予以抑制。
第二章 搅拌釜式反应器
2、涡轮式搅拌器
在涡轮式搅拌器中,液体作切向和径向运动,并以很高 的绝对速度由出口冲出。出口液体的径向分速度使液体流向 壁面,然后分成上、下两路回流入搅拌器,形成总体循环流 动。
第二章 搅拌釜式反应器
二、混和的机理
搅拌器旋转时使釜内液体产生一定 途径的循环流动,称为总体流动。
总流中高速旋转的旋涡与液体微团之间 产生很大的相对运动和剪切力,使微团破碎 得更加细小。总流中的湍动程度越高, 则旋涡的尺寸越小,强度越高,数量越多,破 碎作用越大,能达到更小尺度上的均匀混和。
第二章 搅拌釜式反应器
根据研究,混和时间大致等于釜内物料循环时 间的4倍,即
搅拌器的流量与其直径的3次方和转速的1次方成 正比,即
第二章 搅拌釜式反应器
第二节 搅拌器的选型与放大
➢问题在于了解有关的工艺过程对于搅拌器的 液体流型、循环量及压头大小等方面的要求, 从而定出叶轮尺寸和转速大小的合理配合,而 不在于另外设计式样新奇的搅拌器。
消除打旋现象的措施
(1)加设挡板
当挡板数乘挡板宽再被釜径除 约等于0.4时(大致为4块宽度为 0.1D的挡板),可获得很好的挡 板效果,称为全挡板条件(即使 再增加附件,搅拌器的功率也不 再增大了
第二章 搅拌釜式反应器
(2)偏心安装 将搅拌器偏心或偏心且倾斜地安装,借以破坏循
环回路的对称性,可以有效地阻止圆周运动,增加 湍动,消除液面凹陷现象。
互不相容液体
分散相的液滴在运动过程中不断地碰撞,从而使部 分液滴聚并成较大的液滴,大液滴被带至高剪切区(桨 叶附近)又重新破碎。
第二章 搅拌釜式反应器
三、提高混和效果的措施
1、消除打旋现象 打旋时各层液体之间无速度
梯度,不能提供分散所需要的 剪切力,几乎没有轴向混和作 用。
第二章 搅拌釜式反应器
相关文档
最新文档